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Abstract
The structural integrity of mine dumps is crucial for mining operations to avoid adverse impacts on the triple bottom-line. 
Routine temporal assessments of coal mine dumps are a compliant requirement to ensure design reconciliation as spoil off-
loading continues over time. Generally, the conventional in-situ coal spoil characterisation is inefficient, laborious, hazardous, 
and prone to experts' observation biases. To this end, this study explores a novel approach to develop automated coal spoil 
characterisation using unmanned aerial vehicle (UAV) based optical remote sensing. The textural and spectral properties 
of the high-resolution UAV images were utilised to derive lithology and geotechnical parameters (i.e., fabric structure and 
relative density/consistency) in the proposed workflow. The raw images were converted to an orthomosaic using structure 
from motion aided processing. Then, structural descriptors were computed per pixel to enhance feature modalities of the spoil 
materials. Finally, machine learning algorithms were employed with ground truth from experts as training and testing data 
to characterise spoil rapidly with minimal human intervention. The characterisation accuracies achieved from the proposed 
approach manifest a digital solution to address the limitations in the conventional characterisation approach.

Keywords  Lithology · Fabric structure · Consistency/relative density · Dimensionality reduction · Supervised learning 
algorithms

1  Introduction

Mine dumps are massive vertical structures containing a 
large amount of barren or spoil material from mine excava-
tion. A potential failure of a mine dump often leads to expen-
sive downtimes due to delays in production, fatal/non-fatal 
injuries, loss of machinery, and costs associated with dump 
reconstruction (McQuillan et al. 2020; Oggeri et al. 2019; 
Xiao et al. 2022). There may also be a significant adverse 
environmental impact, including deterioration of surface/
groundwater quality, degradation of crops through bioac-
cumulation of metals, and contamination of aquatic and ter-
restrial ecosystems (Adibee et al. 2013; Welch et al. 2021). 
Therefore, mine dumps require precise design, operation, 
and monitoring to avoid structural failures. The composi-
tion and characteristics of the materials in a dump define the 
shear strength, which is a key parameter for a stable dump 
design. The excavated overburden and interburden (i.e., from 
above and between coal seams, respectively) material dis-
carded in a dump are often made up of sand/silt/clay or mix-
tures of sandstone, siltstone, mudstone claystone, limestone, 
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shale, coal, and may contain concretions or efflorescence 
(Welch et al. 2021).

In coal mining, draglines are most frequently used since it 
is best suited for stripping deposits made up of interburdens 
and relatively flat-lying resource seams. In the context of 
building dragline dump, profile geometry, spoil and founda-
tion characteristics, the response of groundwater to sequen-
tial dumping and changes in dump profile over time with 
dynamic loading contribute to the stability of mine dumps. 
Due to the incapability of available strength testing configu-
ration to cater for large particle-sized spoils, characterisation 
of dragline spoils is empirical or semi-empirical (Hawley 
and Cunning 2017). A thorough study by Simmons and 
McManus (2004) to determine a correlation between back-
analysed shear strengths of failed dumps and laboratory-
based shear strength resulted in a coal spoil characterisation 
framework called BHP Mitsubishi Alliance coal (BMAC) 
framework. BMAC framework characterise spoil material 
in coal mines into four categories based on visual-tactile 
attributes relevant to shear strength, such as particle size, 
plasticity, fabric structure, age, and consistency/relative den-
sity. Over the last two decades, the coal mining industry has 
extensively relied on the BMAC framework for maintain-
ing dumps through manual in-situ characterisation of spoils 
using field investigations. However, this manual in-situ spoil 
characterisation is prone to human biases and errors and 
eventually reflected in the design parameters of dumps that 
may compromise stability (Mostofa 2015). Hence, investiga-
tion of new technologies that can deliver reliable automated 
spoil characterisation while minimising human subjectivity 
is necessary. Unmanned aerial vehicle (UAV) based remote 
sensing technology is a potential solution to overcome the 
drawbacks of manual spoil characterisation to provide quick, 
reliable and objective results.

Recent developments in UAVs coupled with miniaturised 
high-resolution sensor systems have improved monitoring and 
management of mines (Ren et al. 2019). These sensors are 
non-invasive and offer several benefits such as a short revisit 
cycle, flexible data collection and high precision. Several stud-
ies have investigated the use of multi-sensor UAVs (e.g., UAV 
optical, multispectral and hyperspectral imaging) in mines for 
geological (Jackisch et al. 2020; Tan and Qiao 2020), metal-
lurgical (Barton et al. 2021) and environmental applications 
to characterise joints/fractures (Kong et al. 2021; Samieinejad 
et al. 2017), minerals (Sinaice et al. 2022) and native vegeta-
tion (Banerjee and Raval 2022; Banerjee et al. 2020), respec-
tively. Kim et al. (2022) and Tien Bui et al. (2018) demon-
strated that UAV-based structure from motion (SfM) is a viable 
and efficient tool for accurate 3D topographic mapping in com-
plicated terrains such as open-pit mines. Moreover, advances 
in SfM have improved the capacity of topographic survey-
ing using UAVs by mapping targets at different spatial scales 
more efficiently (Anderson et al. 2019; Froideval et al. 2019; 

Mlambo et al. 2017). The outputs are obtained in the form 
of digital surface models, 3D point clouds and orthomosaics, 
which possess immense potential for automated spoil material 
characterisation in surface mines. However, there is no study 
till date on the use of SfM-derived data to characterise coal 
spoil materials in dumps geotechnically.

Several studies have evaluated different combinations of 
features extracted from images and the potential of machine 
learning algorithms for the geotechnical characterisation of 
the materials in other contexts such as sand grain size map-
ping in riverbeds (Bae et al. 2019; Lang et al. 2021). These 
studies showed that geotechnical characterisation improves 
accuracy by extracting features (e.g., colour, texture and shape) 
from images and feeding those features into machine learning 
algorithms. For instance, Bae et al. (2019) demonstrated that 
employing optical features and textural features extracted using 
Gray level co-occurrence matrix (GLCM) filters from very 
high resolution (1.23 mm ground sampling distance, i.e., GSD) 
UAV images can improve the overall characterisation. Experi-
mental analysis of six sand grain classes indicated accuracy 
improvement from 42.34% to 91.28% when deploying a maxi-
mum likelihood algorithm for characterisation. Another more 
recent study by Lang et al. (2021) in this area developed a 
convolution neural network, ‘GRAINet’, to investigate the par-
ticle grain size distribution near river systems. The model was 
trained using high-resolution UAV (0.25 cm) image patches 
and yielded a low mean absolute error (1.1 cm). However, 
GRAINet, compared to the approach suggested by Bae et al. 
(2019), is a data-driven deep learning approach developed 
using extensive datasets and computational power. Hence, in 
the context of limited data, utilising the combination of fea-
ture extraction and the traditional machine learning approach, 
which demands less computational power, is an industry-
friendly way to characterise the geotechnical parameters of 
a mine dump.

Hence, in this study, various machine learning algorithms 
along with textural feature extraction are explored to develop 
an optimum workflow to characterise spoil materials based 
on lithology, fabric structure and consistency/relative density 
in presence of a limited number of datasets. With the mining 
industry increasingly using UAVs for monitoring applications, 
the proposed workflow would be useful in providing necessary 
insights to improve dump stability. Moreover, an effort is made 
to reduce/limit the human intervention in the produced outputs 
to help advance the mining industry towards automation.

2 � Material and methods

This section covers the background in regard to BHP 
Mitsubishi Alliance Coal (BMAC) framework and 
describes the methodology adopted in this study for dump 
characterisation.
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2.1 � Conventional coal spoil characterisation 
approach

Out of many factors affecting coal mine dump stability, Sim-
mons and McManus (2004) demonstrated shear strength of 
spoil as the critical parameter. Determining shear strength 
parameters of spoil involves time-consuming laboratory 
tests. Hence, Simmons and McManus (2004) developed a 
framework that provides the basis to classify spoils with dif-
ferent shear strength parameters based on their visual-tactile 
attributes. This framework is called the BMAC spoil shear 
strength framework (Table 1). Coal mine industry routinely 
utilise the BMAC framework to monitor spoil dumps.

The BMAC categories are derived by multiplying each 
attribute’s category with its relative total weightage. Sum of 
product of category and relative total weightage of category 
[∑(Category × Weightage)/100] are rounded to the closest 
category except when there is substantial mixing of materi-
als from adjacent categories (i.e., categories 1.5, 2.5 and 
3.5). Hence, the original BMAC four spoil category system 
(i.e., 1, 2, 3 and 4) could be expressed as seven spoil catego-
ries (i.e., categories 1, 1.5, 2, 2.5, 3, 3.5, 4).

Although the visual evaluation method provided in 
BMAC is simple, there are several limitations associated 
with the implementation of BMAC, some of which are: (1) 
the broad characterisation of spoils in BMAC may ignore 
quantifying the strength of subclasses within a particular 
category, (2) field examination of these attributes is time-
consuming and requires expertise, (3) exposure of personnel 
to field hazards, and (4) characterisation of spoil is subjec-
tive when the attributes fall into borderline of two catego-
ries (e.g., defining the boundary between matrix-supported 
and framework supported fabric structure) (Mostofa 2015). 
Hence, an alternative method is needed to minimize human 

intervention in this characterisation process. Exploring 
UAV-based remote sensing is a potential solution.

Even though UAV-based image analysis is a promising 
alternative, characterising BMAC attributes using UAV-
based remote sensing is challenging due to the difference in 
operational spatial scales. BMAC was developed to provide 
a framework to standardise field-based material characteri-
sation of dump piles. Geotechnical experts in the field have 
a detailed view of the material and ability to use invasive 
methodologies to characterise material categories. On the 
contrary, UAV-based SfM sensing is limited to passive 
modes of characterisation. Nevertheless, SfM-based survey-
ing is spatially holistic, efficient, and takes away the human 
risk element in field surveying. Moreover, this limitation 
could be resolved through improved analytics involving 
empirical methodologies to characterise materials, such as 
partial least square regression, machine learning regression 
or deep learning.

Though not all, several of the attributes in BMAC could 
be derived using UAV-based SfM due to their associa-
tion with features derivable from images. In this lieu, this 
study characterises mine dumps for particle size and con-
sistency/relative density, which are essential attributes in 
the BMAC framework, and can be obtained through UAV 
optical imaging. Particle size distribution provides insights 
into the shearing behaviour of the material by identifying 
the fabric structure, which is governed by lithology and 
influenced by fragmentation/breakdown during handling 
(Gao et al. 2017; Simmons and McManus 2004). Similarly, 
consistency/relative density influences a material’s shear 
strength and is affected by the particles’ chemical composi-
tion, size, shape and orientation (Baver 1930). Several stud-
ies have identified lithology as an essential contributor to 
most BMAC attributes (Andrade et al. 2011; Bishwal et al. 

Table 1   BHP Mitsubishi Alliance Coal (BMAC) framework spoil categories and their visual-tactile attributes (Simmons and McManus 2004)

Category 1 2 3 4 Weightage
Description Fine-grained clay-

rich high plasticity
Fine-grained low plastic-
ity with larger clasts

Larger clasts with fine 
matrix, low plasticity

Large blocks, minor 
fines, minor slaking

Predominant particle size Clay Sand Gravel Cobbles 9.7
Consistency:
(Cohesive)

Soft to firm Stiff Hard Hard packed 22.6

Relative density:
(Cohesionless)

Loose Medium dense Dense

Structure

Matrix only Matrix supported Framework supported Framework only

22.6

Liquid limit High (> 50) Intermediate (35–50) Low (20–35) Not plastic (< 20) 29
Age 0–2 years 2–10 years 10–30 years > 30 years 16.1
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2017). Therefore, characterisation of mine dumps is also 
performed for lithology to aid future research on automated 
attribute derivation. A comprehensive workflow is presented 
to generate several spectral and textural features from images 
that provide enough descriptive properties to segregate spoil 
material based on three BMAC attributes: particle size, con-
sistency/relative density, and lithology. Although, this study 
does not focus on predominant particle size, liquid limit and 
age, these attributes could be inferred from deriving associa-
tions with related geotechnical parameters derivable from 
the image in future.

2.2 � Association between lithology and fabric 
structure or consistency/relative density

Lithology (physical characteristics of rock such as colour, 
texture, particle size, and mineralogical composition) of 
spoil influences the attributes in the BMAC framework 
(Andrade et al. 2011; Bishwal et al. 2017; Simmons and 
McManus 2004; Ulusay et al. 1995). It is possible to deduce 
BMAC parameters from lithology, if a relationship between 
lithology and relevant parameters could be established 
empirically. In this regard, this study investigated the asso-
ciation between lithology and consistency/relative density or 
fabric structure through a Chi-squared test of independence, 
a statistical test that evaluates the association between two 
categorical variables (Ugoni and Walker 1995). The hypoth-
esis tested in this study is given below:

H0: No significant relationship between the two variables.

H1: There exists a relationship between the two variables.

2.3 � Study area and field investigation

A dump site at a surface coal mine in New South Wales, 
Australia, was selected as the study area (Fig. 1). A field 
investigation was carried out to determine the predominant 
lithology, consistency/relative density and fabric structure 
of the spoil dumps according to the BMAC framework. 
Locations of these manually characterised spoil dumps 
were recorded using a multi-band global navigation satellite 
system (GNSS) based real-time kinetic (RTK) positioning 
receiver (Reach RS2, Emlid Ltd., Hong Kong) with centime-
tre level precision. These spatially tagged and characterised 
spoil dump data points were used as ground truth for training 
and testing image-based characterisation. The characterisa-
tion was restricted to a 2 m radius circle around the control 
points to account for the heterogeneity present in the dump 
environment.

The mine dump categorical labelling was conducted by a 
team of expert geologists and geotechnical engineers. Lith-
ologies of 323 mine dumps were identified in this process, 
out of which 217 dumps were labelled for consistency/rela-
tive density and fabric structure. The lithology categories 
consist of carbonaceous coaly rock, coarse sandstone, fine 
sandstone and mudrock. The consistency/relative density 
category includes dumps that fall into one of the five BMAC 
framework categories: 1.5, 2, 2.5, 3, 3.5 and fabric structure 
is separated into four categories: 1.5, 2, 2.5, and 3.

Fig. 1   a Location of a selected 
mine dump site in New South 
Wales b Selected study area, 
ground control points (GCPs) 
and distribution of ground truth 
sample points in the selected 
dump site. The size of GCPs 
and sampling point locations 
are shown using visual markers, 
as the original points are not 
visible in the given map scale. 
These markers do not corre-
spond to the actual size of the 
objects on the ground
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2.4 � Dump characterisation workflow

The workflow implemented to characterised dump piles 
in the study area is shown in Fig. 2. Briefly, the steps are 
collection of ground truth and determination of association 
between lithology and geotechnical parameters (Fig. 2a), 
generation of orthomosaic from geotagged images cap-
tured during ground truth collection (Fig. 2b), genera-
tion of textural features from red, green and blue bands 
of generated orthomosaic (Fig. 2c), smoothing optical 
bands using optimal filters for noise reduction (Fig. 2d), 
dimensionality reduction of generated 24 texture features 
generated (Fig. 2e), and composite of filtered optical bands 
and reduced textural features (Fig. 2f) were subjected to 
machine learning algorithms to determine best performing 
algorithm for each parameter.

A detailed explanation of steps from data collection 
to data processing is presented in Sect. 2.4.1 through to 
Sect. 2.4.5.

2.4.1 � Aerial data acquisition and preprocessing

A quadcopter—DJI Phantom 4 RTK (DJI, Shenzhen, 
China) was used to capture optical (red, green, blue, i.e., 
RGB) image data around solar noon over the mine dump 
site on the same day (1st February 2021) of ground truth 
data collection. The DJI Phantom 4 RTK incorporates an 
RGB camera, model DJI FC6310, with a sensor size of 
13.2 × 8.8 mm, and a focal length of 8.8 mm. The images 
from the camera are stabilised by an electromechanical 
gyrostabilized gimbal and tagged with positional values, 
i.e., latitude, longitude and altitude. The UAV camera sys-
tem was set to trigger and acquire images at the desired 
flying height of 87.7 m to achieve a ground sampling dis-
tance (GSD) of 2.19 cm. Image acquisition was set to auto-
mated capture mode with acquisition programmed at 85% 
forward and side overlaps to cover an area of 33,112 m2.

The raw images from the UAV mission were processed 
using a SfM-based photogrammetric stitching package, 
Pix4D Mapper (Pix4D SA, Lausanne, Switzerland). All 
images were aligned at the highest resolution, with 40000 
key points and 4000 tie points. After the alignment pro-
cess, the residuals revealed a good camera calibration with 
no significant errors. Then ground control points (GCPs), 
obtained in Step 2.3, were used to improve model recon-
struction by optimising camera positions and orientation 
data. The bundle adjustment after marking GCPs resulted 
in an orthomosaic. Due to the undulating terrain height of 
the dump site, the spatial resolution of the orthomosaic 
had a mean GSD of 5 cm and an absolute planimetric 
error of 2.3 cm.

2.4.2 � Selection of optimum mean filter for image 
processing

A mean filter was used to minimise heterogeneity within 
a dump pile by reducing pixel-to-pixel intensity variance 
and image noise (Kaur and Kaur 2013) in optical bands, 
i.e., smoothing contributes to the lowering of local-level 
noises that may result from (1) sample impurity, i.e., the 
existence of minute amounts of non-class material inside the 
target class material and (2) fluctuating levels of the particle 
shadow, i.e., the variation in shadow length and area pro-
jected by different size of debris in a target class material. 
Smoothing contributes to class homogeneity and prevents 
the creation of erroneous, misclassified pixelated noise.

Mean filters at eight steps were applied to the orthomosaic 
(i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13 and 15 × 15 
pixels) to examine the changes in classification accuracy 
with each filter size. Filtered images were categorised for 
lithology using the Decision Tree (DT) algorithm to identify 
the optimum filter size. The DT algorithm is explicitly used 
here since it is relatively fast compared to other traditional 
algorithms (i.e., k-nearest neighbourhood (kNN), DT, ran-
dom forest (RF) and support vector machine (SVM)). This 
step used a simple single-fold validation with the training-to-
test data ratio set at 50:50 to reduce computational resources 
and time. The overall accuracy and kappa coefficient were 
evaluated, and the best filter was selected to smoothen the 
RGB data prior to classification.

2.4.3 � Texture feature generation

When spectral data alone is insufficient, texture can provide 
additional discrimination between features by providing a 
spatial relationship between pixels in the image (Ait Ker-
roum et al. 2010; Haralick et al. 1973). Haralick's features, 
which characterise the joint local statistics of pairs of pixels 
through the grey level co-occurrence matrix (Moser et al. 
2013), were used in this study.

In the context of smoothing input layers prior to textural 
feature extraction, a high-resolution input grey-level band is 
necessary for the computation of precise textural measures. 
Hence, input layers were kept without being smoothed for 
texture generation.

Simple Haralick textural features (energy, entropy, cor-
relation, inverse difference moment, inertia, cluster shade, 
cluster prominence, Haralick correlation) from unsmoothed 
RGB bands were generated using a 3 × 3 window with a slid-
ing length of one pixel. Hence, 24 texture bands (3 bands × 8 
textural features) were obtained. However, to avoid resource-
intensive classification, it is crucial to identify salient textural 
features that provide the necessary discriminatory information 
(Ait Kerroum et al. 2010). Thus, dimensionality reduction is 
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Fig. 2   Workflow of image-based characterisation of coal spoil from step a to f 
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incorporated as the next step to identify texture information-
rich bands.

2.4.4 � Dimensionality reduction of textural features

Dimensionality reduction reduces the high dimensions using a 
projection or selection approach (Sellami and Farah 2018). In 
this work, two dimensionality reduction approaches, i.e., prin-
cipal component analysis (PCA) and independent component 
analysis (ICA), were employed to extract two salient textural 
features out of 24 textural bands to reduce the computational 
resource requirement and computation time for classifica-
tion. PCA results in an orthogonal linear transformation that 
increases the variance of the components, whereas ICA results 
in linear transformation where components are non-Gaussian 
and statistically independent (Tibaduiza et al. 2012).

2.4.5 � Analysis of model performance in classification

In this study, three sets of composites were generated, (1) 
RGB, (2) RGB with principal component bands of textural 
features (RGB + PCA), and (3) RGB with independent com-
ponent bands (RGB + ICA) of textural features. In these com-
posites, the optical bands were smoothed to reduce noise while 
texture characteristics were left unaltered to preserve all tex-
ture information.

This study used a few relatively mature machine learning 
algorithms, namely kNN, DT, RF and SVM, as these algo-
rithms have been tested and widely adopted in UAV image 
classification (Maxwell et al. 2018). Four-fold cross-validation 
was used to evaluate the models to prevent overfitting and 
improve generalisation performance (Gebrehiwot et al. 2019). 
Four-fold cross-validation was accomplished by randomly 
splitting the data into four equal folds. Each run's training set 
was created by combining three folds, with the remaining one-
fold acting as testing or validation set to measure classification 
errors.

Three accuracy metrics, i.e., F-score, overall accuracy 
and kappa coefficient derived from the confusion matrices 
were used to compare the performance of the algorithms. 
The F-score is used to check the ability of the model to 
identify a class confidently. Overall accuracy is a measure 
of a model’s ability to predict all classes, whereas kappa is 
a measure of agreement between ground truths and predic-
tions generated by the model. The kappa coefficient was 
also included to find the best-performing model due to the 
imbalanced data.

3 � Results

3.1 � Association between lithology and geotechnical 
attributes

The association of lithology with (1) fabric structure 
and (2) consistency/relative density, obtained from 
Chi-squared tests, are tabulated in Table 2. The p-value 
obtained from chi-squared independence test was com-
pared to the significance level to evaluate the variable 
association. A higher p-value at a given significance level 
indicates that variables are independent, and thus null 
hypothesis (no relationship between variables) is accepted. 
Conversely, if the p-value is lower than the threshold, an 
association exists between variables revealing that the null 
hypothesis cannot be accepted. The test indicated that at 
a 5% significance (p-value of 0.05), an association exists 
between lithology and fabric structure as the p-value is 
significantly low. Similarly, an association between lithol-
ogy and consistency/relative density was revealed at 10% 
significance level (p-value of 0.10). The statistical analysis 
suggests that any processing technique that improves the 
accuracy of lithological classification would potentially 
improve the accuracy of the spoil classification based on 
fabric structure and consistency/relative density.

3.2 � Selection of optimum mean filter

The performance of the DT algorithm for lithological clas-
sification on RGB images smoothened with different filter 
sizes is given in Fig. 3. Due to computational constraints, 
the maximum filter size was 15 × 15 pixels. Results indi-
cate that overall accuracy plateaus at the 9 × 9 window 
size. Further, the generation of the smoothened image 
using 9 × 9 pixels takes less time compared to 11 × 11, 
13 × 13 and 15 × 15 window sizes while producing the 
same accuracy. Therefore, 9 × 9 window size was chosen 
as optimum and RGB bands were smoothened using the 
selected optimum filter for further analysis.

Table 2   Results of Chi-squared independence test for association 
between lithology and geotechnical parameters

Parameters within which association 
checked

Chi-squared value p-value

Fabric structure 51.25 ≈ 0.000
Consistency or relative density 19.04 0.088
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3.3 � Dimensionality reduction of textural features

Each of the 24 textural elements produced by the Haral-
ick texture generation from unsmoothed optical data does 
not contain valuable information. Hence, components with 
eigenvalue > 4 and eigenvalue > 13,000 were selected to 
generate the composite with optical data for PCA and ICA 
respectively (Fig. 4). Therefore, the first two components 
retrieved from PCA, and ICA were considered as compo-
nents with salient textural features required to characterise 
spoil in addition to RGB bands.

3.4 � Analysis of the model performance 
in classification

3.4.1 � Lithology

The overall accuracy and kappa coefficient of the lithology 
classification of three composites (i.e., RGB, RGB + PCA 

and RGB + ICA) using DT, kNN, RF and SVM are given 
in Fig. 5a The kNN algorithm, though simplistic, outper-
formed other algorithms in composites of RGB and trans-
formed the components obtained from PCA and ICA. In the 
RGB composite, the SVM achieves slightly higher accuracy 
(OA: 0.78, kappa: 0.72) than the other algorithms. The best 
classification (OA: 0.82, kappa: 0.77) results were obtained 
for RGB + PCA with kNN. Results imply additional tex-
tural features have increased overall accuracy by almost 4%. 
However, all algorithms produced classification with over-
all accuracies within a narrow range (i.e., 0.78–0.82) and 
a kappa coefficient range from 0.71 to 0.77. In the context 
of per-class accuracy, evaluation metrics such as precision, 
recall, and F-score (Fig. 5b–d) show that coaly carbonaceous 
rocks are classified more accurately (F-score: 0.94–0.96) 
than other lithologies, whereas mudrock is classified with 
low accuracy (F-score: 0.50–0.66). F-scores of coarse sand-
stone and fine sandstone range from 0.87 to 0.88, and 0.74 
to 0.78, respectively. Figure 6 generated from classifying 
RGB + PCA composite using kNN algorithm illustrated car-
bonaceous coaly rock, coarse sandstone, fine sandstone and 
mudrock make 4%, 16%, 30% and 50% of the selected dump 
site, respectively.

3.4.2 � Fabric structure

Outcomes of fabric structure classification reveal that kNN 
has superior performance on RGB + PCA composite with 
overall accuracy of 0.76 and kappa coefficient of 0.67 
(Fig. 7a). All algorithms, however, generated categorisa-
tion with overall accuracies falling within a small range 
(i.e., 0.78–0.82) and a kappa coefficient range from 0.61 
to 0.67. All categories with an F-score greater than 0.5 
denotes the ability to classify the categories confidently 
(Fig. 7b–d). Values of precision, recall and F-score indi-
cate that category-1.5 can be categorised with high accu-
racy (F-score: 0.86–0.92). F-scores of categories 2, 2.5, 3 
range from 0.64–0.69, 0.71–0.75, 0.58–0.64 respectively. 
Figure 8 generated from classifying RGB + PCA composite 
using kNN algorithm illustrated cat-1.5, cat-2, cat-2.5 and 
cat-3 make 24%, 48%, 16% and 12% of the selected dump 
site, respectively.

3.4.3 � Consistency/relative density

The kNN performs slightly better with RGB + ICA (Fig. 9a) 
for consistency/relative density classification than other 
algorithms and composites. The best classification (OA: 
0.71, kappa: 0.63) results were obtained with kNN. Tested 
algorithms produced overall accuracies within a small range 
0.65–0.71 in all composites and kappa coefficient range 
from 0.56 to 0.63. F-scores of categories 1.5, 2, 2.5, 3, 3.5 
range from 0.76–0.81, 0.51–0.58, 0.65–0.71, 0.34–0.47, 

Fig. 3   Accuracy assessment of different smoothing filters and time 
taken to produce smoothened image with the specified window sizes

Fig. 4   Eigenvalue plot for principal component analysis (PCA) and 
independent component analysis (ICA). The eigenvalues decrease 
monotonically with the number of components, indicating a lack 
of information in higher components. The eigenvalue plot can be 
exploited to identify the optimum number of components
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0.85–0.90, respectively, All the categories except category-3 
show an F-score greater than 0.5, which denotes the abil-
ity to classify these categories confidently (Fig. 9b–d). Low 
F-score (less than 0.50) in category-3 may have risen from 
different lithologies belonging to this category. Figure 10 
generated from classifying RGB + PCA composite using 
kNN algorithm illustrated cat-1.5, cat-2, cat-2.5, cat-3 and 
cat-3.5 make 23%, 30%, 16%, 24% and 8% of the selected 
dump site, respectively.

4 � Discussion

4.1 � Discussion of results

This study presented a workflow to characterise coal mine 
dumps for lithology, consistency/relative density and fab-
ric structure. The method provides new insights into the 
mapping properties of coal spoils using machine learning 
algorithms. The study reveals that adding textural features 

improves the classification accuracy of three attributes. The 
highest accuracy (82%) was obtained for lithology, while 
consistency/relative density and fabric structure showed 
nearly equal accuracy (~ 77%). A possible explanation for 
this discrepancy might be the high dependence of lithol-
ogy on colour (Simon et al. 2016) than the other two attrib-
utes. Therefore, lithological classification was inherently 
better since this study used optical data and textural fea-
tures derived from the optical data. Additionally, statisti-
cal analysis using chi-squared test identified the association 
between lithology and fabric structure, and between lithol-
ogy and consistency/relative density at 10% significance 
levels (p-value: 0 and 0.088 respectively). This implies 
that improvement of lithological classification is likely to 
improve the derivation of fabric structure and consistency/
relative density.

kNN showed superior performance for categorical clas-
sification of three attributes due to the large difference 
between the number of training data (323 and 217) and 
the number of features (5). DT and RF had slightly better 

Fig. 5   Overall accuracy and kappa coefficient of classification algo-
rithms on composites formed using optical data, and optical + textural 
data. Precision, recall and F-Score of classifications, respectively for 

a Optical data b Optical + textural data transformed with principal 
component analysis (RGB + PCA) and c and d Optical + textural data 
transformed with independent component analysis (RGB + ICA)
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Fig. 6   Lithological classifica-
tion produced by a composite of 
optical data and data trans-
formed with principal com-
ponent analysis (RGB + PCA) 
using k-nearest neighbourhood 
(kNN)

Fig. 7   Overall accuracy and kappa coefficient of classification algo-
rithms on composites formed using optical data and, optical + textural 
data. Precision, recall and F-Score of classifications respectively for 

a Optical data b Optical + textural data transformed with principal 
component analysis (RGB + PCA) and c and d Optical + textural data 
transformed with independent component analysis (RGB + ICA)



Spoil characterisation using UAV‑based optical remote sensing in coal mine dumps﻿	

1 3

Page 11 of 15     65 

accuracy than SVM as they are more suited for categorical 
data and cope with collinearity better than SVM (Merghadi 
et al. 2018). In all three attributes of interest, machine learn-
ing performs well on composites of RGB and transformed 
textural bands (i.e., either RGB + PCA or RGB + ICA). This 
result indicates that accuracy can be further improved by 
using texture information in spoil classification. Given the 
vast number of textural parameters that can be derived from 
either spatial co-occurrence matrices or geostatistical func-
tions at different window sizes and lag distances, the addi-
tion of textural information to classification may result in 
an exponential growth in the features used for classification 
(Fan 2013). To prevent the curse of dimensionality induced 
by additional textural parameters, which causes classifica-
tion performance to deteriorate and computation time to 
increase, dimensionality reduction using PCA, and ICA is 
essential. Although composite with PCA performed slightly 
better in classification of lithology and fabric structure, it 
is worth noting overall accuracies achieved in RGB only, 
RGB + PCA and RGB + ICA are nearly equal. This outcome 
could be a result of the low spatial resolution not being able 
to capture the necessary texture information.

Fabric structure and consistency/relative density showed 
a statistically significant association with lithology. Out of 
these attributes, fabric structure shows a higher associa-
tion with lithology at 5% significance as most mine dumps 
with the same lithology fall into a similar category for fab-
ric structure. Hence, fine categorisation of lithologies (for 
instance, mudrock into claystone and siltstone) may further 

improve the association and inference of geotechnical 
attributes.

When comparing per-class accuracy, a major factor that 
impacted accuracy was the ambiguity between lithology 
when they had similar optical properties but different mate-
rial properties. For instance, at the given spatial resolution, 
mudrock and sandstone appear similar in RGB band due 
to similar shades of grey, but they have different material 
types, which increases the error of omission and, thereby the 
overall accuracy. A possible solution to improve accuracy 
could be to either have high-resolution images with ample 
texture information or use multi-scale textural features at 
the expense of processing time. In addition, class imbalance 
in reference data due to the nature of the mine environment 
might also impact the algorithm’s performance. Since the 
likelihood of selecting a class in simple random selection 
is related to the per-class area, relatively rare classes will 
likely make up a smaller fraction of the training set. In pres-
ence of imbalanced data, it is typical for machine learning 
algorithms to underestimate the proportions of less common 
groups as the learning process tries to decrease the overall 
error by underpredicting rare classes.

4.2 � Study contribution and scope for future work

Even though prior studies have highlighted the impor-
tance of autonomous spoil characterisation due to the 
time and effort required in manual BMAC framework-
based characterisation, research to date has not explored 

Fig. 8   Fabric structure classifi-
cation using k-nearest neigh-
bourhood (kNN) algorithm 
on a composite of optical data 
and data transformed with 
principal component analysis 
(RGB + PCA)
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use of UAV based optical remote sensing in coal spoil 
characterisation. This research addresses the gap by 
investigating remote sensing as a potential solution for 
automated characterisation. It is shown that when trained 
with sufficient data, machine learning algorithms could 
lead to automated and satisfactory classification results 
with minimal human intervention. The contribution is 
specifically beneficial as (1) fewer on-site visits for char-
acterisation would be required, thereby reducing exposure 
of mine personnel to hazards, (2) reduced human biases in 
results, (3) ability to cover a large area and provide results 
in minimal time, (4) provide flexibility in multi-spatio-
temporal data capture using UAVs, (5) verify whether 
dump progress follows predefined design for proactive 
decision making, and (6) generate a 3D profile of dump 
development with time.

This study primarily aims to prove that materials in 
a dump site could be classified into different classes 
through this first-of-its-kind applied use of UAV-based 
remote sensing. UAV-based classification of dump mate-
rials can potentially add practical value in the way dumps 

are currently being monitored, i.e., by making the pro-
cess more comprehensive, safer, faster, and unbiased. The 
results show that the approach applies to material types 
classified under the BMA framework, developed over two 
decades for coal dumps. Although the study was done in 
one location, a standard four-fold cross-validation test-
ing was used to split the samples into mutually exclusive 
‘training’ and ‘test’ sets, advocating the reliability of the 
assessment. Furthermore, we do not aim to cross-deploy 
the trained classification model from one mine site to 
another. The reported algorithm, by its nature, needs 
some input training from a given dump site, and as long 
as the input training can be suitably provided, the method 
would potentially work in the given environment. It is 
important to add more sites to diversify the input material 
properties (lithology, fabric structure, etc.), possibly from 
other basins, if direct cross-deployment of the models is 
to be sought. This is outside the scope of current study 
and will require substantial data gathering and aerial sur-
veying. Hence, we have deemed it as a future scope.

Fig. 9   Overall accuracy and kappa coefficient of classification algo-
rithms on composites formed using optical data and, optical + textural 
data. Precision, recall and F-score of classifications respectively for 

a Optical data b Optical + textural data transformed with principal 
component analysis (RGB + PCA) and c and d Optical + textural data 
transformed with independent component analysis (RGB + ICA)
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Although this study assessed pixel-based classifica-
tion, few shortcomings could be addressed in future work. 
Pixel-based classification techniques classify individual 
pixels into one class and do not consider spatial and con-
textual information. For instance, shadow and changes in 
sun angles with image acquisition time can result in the 
classification of pixels belonging to one class into dif-
ferent classes (Aryaguna and Danoedoro 2016). Object-
based classification techniques reduce this effect by 
grouping the pixels as objects and allocating the object 
to a class. Hence, object-based techniques provide a real-
istic and geometrically precise spatial mapping of features 
of interest (Blaschke 2010). Object-based classification 
could be explored as a future work to provide more accu-
rate classification results. Additionally, with the avail-
ability of more data, an advanced machine learning algo-
rithms could be employed to improve the results. Further 
case studies would be needed to evaluate the applicability 
of the proposed method to other mine sites.

5 � Conclusions

Spoil dumps without proper temporal characterisation 
may cause design reconciliation issues and structural 
stability. Coal spoil characterisation has conventionally 
demanded the presence of expertise in the field, which 
is not only hazardous but also involves intensive field 

activity. The development of tools such as UAV coupled 
with SfM photogrammetry provides immense potential 
in automating the otherwise manual process of spoil 
characterisation that was previously time-consuming and 
prone to bias. This study presented the use of UAV-based 
optical sensing for lithology, fabric structure and consist-
ency/relative characterisation of spoil dumps. The opti-
cal data together with derived textural features helped 
achieve better overall accuracies for lithology, fabric 
structure and consistency/relative density. The use of 
textural features slightly improved the performance by 
capturing spatial context in the classification. A further 
improvement in accuracy could be achieved with high-
resolution images, more training data and improvement 
of the processing workflow. Nevertheless, it is evident 
from the obtained results that the workflow proposed can 
be used to remotely map mine dumps and automatically 
perform the lithological and geotechnical characteristics 
contributing to the shear strength of the spoil. This study 
also provides insight into machine learning based clas-
sification, which is not explored in the context of mine 
dump characterisation. Object-based classification and 
deep learning algorithms could be explored as a future 
work of this study to improve characterisation accuracy. 
Moving forward, automated dump spoil characterisation 
would enable proactive decision-making for improved and 
efficient dump management.

Fig. 10   Consistency/relative 
density classification produced 
by a composite of optical data 
and data transformed with 
independent component analysis 
(RGB + ICA) using k-nearest 
neighbourhood (kNN)
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