Contents lists available at ScienceDirect

Progress in Natural Science: Materials International

journal homepage: www.elsevier.com/locate/pnsmi

Original Research

Environmentally-friendly harvesting TiO₂ nanospheres and V₂O₅ microrods from spent selective catalytic reduction catalysts

Hua-Jun Chen^a, Rui Wang^a, Yan-Ling Yang^{b,*}, Xiao-Lei Shi^{c,d}, Siyu Lu^e, Zhi-Gang Chen^{c,d,*}

^a School of Environment and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471000, China

^b School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science

and Technology, Xi'an, 710021, China

^c Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD, 4300, Australia

^d School of Mechanical and Mining Engineering, The University of Queensland, QLD, 4072, Australia

^e Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China

ARTICLE INFO

Keywords: TiO₂ nanospheres V₂O₅ microrods Hydrothermal Spent selective catalytic reduction catalyst

ABSTRACT

Spent selective catalytic reduction (SCR) catalysts are defined as hazardous wastes because of the toxicity of V_2O_5 to the ecological environment. Recycling of V_2O_5 and TiO₂ from the spent SCR catalysts has strikingly social and environmental benefits as well as economic values. In this work, a "NaOH + Na₂CO₃" system was employed to recycle 99.2% of anatase/rutile TiO₂ nanospheres with a nanospherical morphology from the spent SCR catalysts by a simple sintering-leaching process. The observed photocatalytic performance of anatase/rutile TiO₂ nanospheres was higher than that of the other TiO₂ recovered from the spent SCR catalysts, commercial TiO₂, and chemosynthetic TiO₂, which can be ascribed to the enhanced separation of photo-excited electron/hole in a direct Z-scheme of anatase/rutile TiO₂ homostructures. Additionally, high-purity V_2O_5 microrods with high H₂S removal performance were efficiently prepared by a hydrothermal method in the leaching solution, which is superior to the traditional method including NH₄VO₃ precipitation and solvent extraction as the present method can recycle vanadate from low-grade filtrate with a 99.6% of recovery rate. This study develops an alternative method for controlling pollution of vanadate to soil and water and recycling of valuable metals.

1. Introduction

Selective catalytic reduction (SCR) technology is widely used to reduce NO_x emission [1,2], while V_2O_5 -supported TiO_2 is mainly used material [3–6]. With the promotion of SCR denitration technology in cement, glass, steel, and thermal power industry, increasing amounts of the spent SCR catalysts are generated and bring severe environment pressure because of the toxicity of V_2O_5 to ecological environment [7,8].

Recycling of V_2O_5 and TiO₂ from the spent SCR catalysts can prevent environmental pollution and avoid wastes of the valuable resources. Recently, various hydrometallurgical processes, such as acid leaching [9], alkaline leaching [10], salt leaching [11], and bioleaching [12], together with roasting as a pre-treatment step, have been used to recycle V_2O_5 and TiO₂ from the spent SCR catalysts. Choi et al. [13] reported V and W can be recycled from the spent SCR catalysts by a Na₂CO₃ roasting-leaching process. The leaching rate of W increases rapidly as functions of the Na₂CO₃ addition, time, and temperature. However, the leaching rate of V is only 40% in the entire experiment, leading to the wasting of V as well as the environmental pollution of toxic V, which is ascribed to the formation of calcium vanadate (CaV₂O₆). Yang et al. [14] extracted W and V from the spent SCR catalysts by a roasting-leaching method. The leaching solutions of W and V were enriched by using an ion-exchange and NaOH elution process, then 96.2% of W and 93.4% of V were separated by an ammonium salt precipitation method from the enriched solutions. In addition, nano-sized TiO₂ and sodium titanate (Na₂Ti₃O₇) microrods with superior adsorption capacity for heavy metal ions were recycled from the leached residue. During those roasting-leaching process, V2O5 can transform into soluble species and separate vanadate from TiO₂, then TiO₂ and V₂O₅ can be prepared from filter residue and filtrate, respectively [15].

* Corresponding authors. *E-mail addresses:* yangyanling@sust.edu.cn (Y.-L. Yang), zhigang.chen@usq.edu.au (Z.-G. Chen).

https://doi.org/10.1016/j.pnsc.2021.10.002

Received 20 July 2021; Received in revised form 22 September 2021; Accepted 8 October 2021 Available online 30 October 2021

^{1002-0071/© 2021} Chinese Materials Research Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync.nd/4.0/).

Table 1

Chemical components of the spent SCR catalysts.

components	TiO ₂	V ₂ O ₅	SiO ₂	Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	Etc.
Contents (wt. %)	79.80	1.23	10.26	5.36	2.35	0.56	0.23	0.21

Fig. 1. An illustration of the preparation of anatase/rutile TiO2 nanospheres and V2O5 microrods from the spent SCR catalysts.

The activity of recovered TiO₂ depends on the morphology, the spherical TiO₂ in the spent SCR catalysts can easily melt down and agglomerate together to form bulky materials in the process of high temperature and strongly alkaline roasting, which degrade the activity of recovered TiO₂. Therefore, it is difficult to prepare TiO₂ nanospheres with high photocatalytic performance from the spent SCR catalysts using conventional roasting techniques. In the past decades, WO3-TiO2 sheet [16], TiO₂ rods [17], and titanate [14] have been recycled from the spent SCR catalysts by conventional roasting-leaching methods. In addition, the concentration of vanadate in filtrate is usually less than the solubility of NH₄VO₃ precipitation. The enrichment steps, such as ionic-exchange and extraction, are necessary to precipitate NH₄VO₃. Hence, it is pivotal to develop an environmentally-friendly technology with a high recovery rate that can prepare TiO₂ nanospheres from the spent SCR catalysts, harvest vanadate from low-grade filtrate to address the pollution of vanadate, and promote the sustainability of SCR catalysts industry.

In this work, to maintain nanospherical morphology of TiO₂ in the spent SCR catalysts and prepare TiO₂ nanospheres with high photocatalytic activity, a "NaOH + Na₂CO₃" system was employed to dispose the spent SCR catalysts as well as recycling of valuable metals via a simple sintering-leaching process. Furthermore, a hydrothermal method with a high recovery rate was developed to address the difficulty of harvesting vanadate from the low-grade filtrate. This study develops an environmentally-friendly disposal of the spent SCR catalysts as well as the preparation of anatase/rutile TiO₂ nanospheres and V₂O₅ microrods with great potential industrial applications.

2. Materials and methods

2.1. Chemicals and materials

The spent SCR catalysts used in this study were collected from a thermal power plant in Henan province of China. Chemical components of the spent SCR catalysts were analyzed by titrimetry and the results are shown in Table 1. The mainly effective compositions are TiO₂ and V₂O₅. The analytical grade reagents including NaOH, Na₂CO₃, H₂SO₄ (98 wt% in H₂O), HNO₃ (69 wt% in H₂O), H₃PO₄ (85 wt% in H₂O), FeSO₄·7H₂O, phenolphthalein (C₂₀H₁₄O₄), N-Phenylanthranilic acid (C₁₃H₁₁NO₂), ethylene diamine tetra acetic acid (EDTA, C₁₀H₁₆N₂O₈), sulfosalicylic acid (C₇H₆O₆S·2H₂O), and NH₃•H₂O (25 wt% in H₂O) were obtained

from Shanghai Chemical Reagents Co., Lit. All reagents without additional purification and deionized (DI) water were used in all processes.

2.2. Sintering and leaching of the spent SCR catalysts

The sintering and leaching process is shown in Fig. 1. The spent SCR catalysts were firstly shredded to screen through mesh size of 200 after air swept to remove the dust from the surface. The mixtures, consisted of the as-shredded spent SCR catalysts, Na₂CO₃ and NaOH at a mass ratio of 11:10:1, were sintered for 90 min at 500 °C in a muffle furnace. The sintered products were transferred to a beaker in which a certain volume of DI water was added. The beaker was agitated on a magnetic stirrer at room temperature for 2 h, and the filtration was adopted for solid-liquid separation.

2.3. Preparation of TiO₂ nanospheres

The filter residue was added into DI water and pH of the solutions was controlled using HCl solution. The mixture was agitated on magnetic stirrer at room temperature for 2 h, and ions including Fe³⁺, Ca²⁺, Mg²⁺, etc., were dissolved in water and separated from TiO₂ nanospheres. TiO₂ nanospheres were washed repeatedly with a dilute solution of HCl to remove excess residues, and further dried at 120 °C for 2 h followed by calcining at 500 °C for 2 h.

2.4. Evaluation of photocatalysis

To evaluate the photocatalytic performance of TiO₂ nanospheres prepared from the spent SCR catalysts, photocatalytic degradation of 2,4dinitrophenol was performed under Xenon light. 10 mg TiO₂ nanospheres were dispersed in 100 mL aqueous solution of 2,4-dinitrophenol (20 mg L⁻¹). The mixture was irradiated under Xenon light. The residual concentration of 2,4-dinitrophenol solution (c_t) was analyzed by spectrophotometry during photocatalysis. The degradation ratio of 2,4-dinitrophenol was calculated by Equation (1).

Degradation ratio =
$$\frac{c_e - c_t}{c_e} \times 100 \%$$
 (1)

The equation of the first-order kinetics (Equation (2)) was adopted to simulate the degradation kinetics of 2,4-dinitrophenol.

Fig. 2. (a-b) TEM images of the spent SCR catalysts (a) and as-prepared TiO_2 nanospheres (b). (c) HRTEM image of the as-prepared TiO_2 nanospheres. (d) XRD patterns of the spent SCR catalysts and as-prepared TiO_2 nanospheres. (e) Illustration of the preparation of TiO_2 nanospheres. (f) Photocatalytic performance and degradation kinetics of the as-prepared TiO_2 nanospheres for 2,4-dinitrophenol. (g) Schematic descriptions the migration of photo-excited electron/hole in the as-prepared TiO_2 nanospheres.

where k is the rate constant of the first-order kinetics in the process of photocatalysis of 2,4-dinitrophenol.

2.5. Preparation of V2O5 microrods

pH of alkaline filtrate was firstly adjusted to 11–12 by using a solution of H₂SO₄, and then MgCl₂ was added to filtrate to separate MgSiO₃ precipitation from the filtrate. The precipitate was filtered after 2 h. Secondly, pH of above filtrate was adjusted to 1.8 by using a solution of H₂SO₄ [18], and then the filtrate was transferred to a 100 mL Teflon-lined kettle and heated at 120 °C for 36 h. The hydrothermal products were collected by centrifugation, washed with DI water, and dried in an oven. After calcination at 500 °C for 2 h in a muffle furnace, brown V₂O₅ microrods were obtained.

2.6. H_2S removal performance

100 mg V_2O_5 microrods were dispersed in 100 mL sour water (provided by Luoyang Sinopec Technologies Co., Lit) with the initial concentration of 1300 mg L⁻¹. The mixture was agitated on a magnetic stirrer at room temperature and solid-liquid separation was achieved by centrifugation. The residual concentration of H₂S in sour water was analyzed by iodometry [18].

2.7. Sample characterization

The phase compositions of TiO_2 nanospheres and V_2O_5 microrods were studied by X-ray diffraction (XRD, D8 Focus, Bruker, Germany), and morphology of TiO_2 nanospheres and V_2O_5 microrods were assessed by field-emission scanning electron microscope (FESEM, Sigma HD, Zeiss, Germany) and high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20, FEI, America).

3. Results and discussion

3.1. Preparation and evaluation of TiO₂ nanospheres

Fig. 2(a) presents a typical TEM image of the spent SCR catalysts. As can be seen, the spent SCR catalysts compose of TiO2 nanospheres and their surface is wrapped by other ingredients, exhibiting core-shell nanostructure with a thickness of \sim 2.5 nm for the shell. Fig. 2(b) presents a typical TEM image of the as-prepared TiO₂ products after the recycling. Compared with the spent SCR catalysts, the surface of the asprepared TiO₂ products is very clean and uniform without any impurities. Especially, most of them remain the nanosphere morphology. This is different from the other recycled TiO₂ rods [14,17], sheets [16], and particles [19] because of the agglomeration and meltdown of original TiO₂ nanospheres. The agglomeration of TiO₂ nanosphere deteriorates the liberation of soluble species during the leaching process, and further reduces the purity of the recycled TiO₂ products. The results suggest that our "NaOH + Na₂CO₃" sintering system can not only help to maintain the nanosphere morphology of TiO₂ in the spent SCR catalysts, but also recycle 99.2% of TiO₂ from the spent SCR catalysts. The diameter of the as-prepared TiO₂ nanospheres is slightly less than that of the spent SCR catalysts due to the removal of the impurity shell.

Fig. 2(c) presents a HRTEM image of the as-prepared TiO₂ nanospheres. 0.35 nm and 0.32 nm lattice fringes affiliate to the d spacings of (101) plane of anatase TiO_2 and (110) crystal plane of rutile TiO_2 [20]. Fig. 2(d) displays the XRD patterns of the spent SCR catalysts and as-prepared TiO2 nanospheres. In the XRD pattern of the spent SCR catalysts, the diffraction peaks can be indexed to the anatase TiO₂ (No. 21-1272), and no additional peak is indexed to other ingredients, because of the low crystallinity and well dispersion of other ingredients on the TiO₂ surface [21–24]. The as-prepared TiO₂ nanospheres comprise of anatase phase (No. 21-1272) and rutile phase (No. 21-1276) [25], which is in agreement with the HRTEM analysis. The diffraction peaks at 25.4° and 27.4° can be indexed to (101) planes of anatase and (110) plane of rutile TiO2. XRD patterns of the spent SCR catalysts and as-prepared TiO₂ products indicate that anatase TiO₂ partially transform into rutile at 500 °C [26,27]. In addition, the phase content was calculated according to XRD patterns of the as-prepared TiO₂ nanospheres using Jade analysis software. The content of anatase and rutile phase TiO₂ are 69.8 wt% and 30.2 wt% in the as-prepared TiO₂ nanospheres, respectively. The phase conversion of TiO₂ nanospheres helps the liberation of soluble species occupied interstitial positions of TiO₂ lattice and improves the purity of recycled TiO₂ products. The results of XRD and HRTEM consistently indicate that anatase/rutile TiO₂ nanospheres can be completely separated from the spent SCR catalysts. According to above results, a synthetic processing of anatase/rutile TiO2 nanospheres is illustrated in Fig. 2(e). As previously discussed, our "NaOH + Na₂CO₃" system is used to transform impurity shell including vanadate and metasilicate into soluble species in a muffle furnace. The reaction mechanism can be expressed by the following equations:

$$V_2O_5 + 2NaOH \xrightarrow{\Delta} 2NaVO_3 + H_2O$$
(3)

$$\begin{split} M_{2}(\text{SiO}_{3})_{n} + n\text{N}a_{2}\text{CO}_{3} \xrightarrow{\Delta} n\text{N}a_{2}\text{SiO}_{3} + M_{2}\text{O}_{n} + n\text{CO}_{2} &\uparrow (\text{M} \\ &: \text{Fe}, \text{Al}, \text{ Ca}, \text{ Mg} \cdots) \end{split} \tag{4}$$

As can be seen, the insoluble vanadium and metasilicate react with NaOH and Na₂CO₃ at high temperatures to form soluble species, leading to the volumetric expansion of impurity shell during alkaline sintering. The shell of soluble vanadate and metasilicate breaks into pieces and anatase/rutile TiO₂ nanospheres are released from the spent SCR catalysts during the leaching process.

Photocatalytic performance and degradation kinetics of the asprepared TiO_2 nanospheres for 2,4-dinitrophenol were evaluated and the results are shown in Fig. 2(f). As can be seen in Fig. 2(f), the

Table 2

A comparison of photocatalytic performance of anatase/rutile TiO_2 nanospheres with other TiO_2 recovered from the spent SCR catalysts, commercial TiO_2 and chemosynthetic TiO_2 photocatalysts.

Samples	Solution	Light source	Rate constant of first-order kinetic	Ref.
0.2 g L ⁻¹ , anatase/rutile TiO ₂ nanospheres, recovered from spent SCR catalvst	20 mg L ⁻¹ , 2,4- dinitrophenol, 100 mL	150 W Xenon light	$\begin{array}{l} k=0.0603\\ min^{-1} \end{array}$	Our sample
WO ₃ -TiO ₂ sheet, recovered from spent SCR catalyst	10 mg L ⁻¹ , methyl orange, 50 mL	30-W UV lamp (365 nm)	0.03721 min ⁻¹	[16]
1.3 g L ⁻¹ , TiO ₂ rods, recovered from spent SCR catalyst	10 mg L ⁻¹ , rhodamine B, 150 mL	450 W xenon lamp	0.0035 min ⁻¹	[17]
0.2 g L ⁻¹ , P25, commercial TiO ₂ from Evonik-Degussa	25 mg L ⁻¹ , reactive red 2, 50 mL	150W xenon lamp	0.00263 min ⁻¹	[39]
0.2 g L ⁻¹ , anatase TiO ₂ , commercial TiO ₂ from Ishihara Sangyo	20 mg L ⁻¹ , phenol, 500 mL	20W fluorescent lamp	0.00168 min ⁻¹	[40]
0.2 g L^{-1} , TiO ₂ particles, prepared by precipitation	10 mg L ⁻¹ , methylene blue, 100 mL	150 W halogen lamp	0.0050 min ⁻¹	[41]
0.2 g L^{-1} , bean- like TiO ₂ particles, prepared by solvothermal method	10 mg L ⁻¹ , methylene blue, 100 mL	150 W Xenon lamp with the filter of 420 nm	0.03013 min ⁻¹	[42]
8.0 g L^{-1} , TiO ₂ particles, prepared by sol- gel method	38.8 mg L ⁻¹ , 2,4-dinitro- phenol, 150 mL	Sunlight	$\begin{array}{l} k=0.0286\\ min^{-1} \end{array}$	[43]

concentration of 2,4-dinitrophenol solution (c_t) decreases when the reaction time is prolonged and 99.9% of 2,4-dinitrophenol was oxidized in 120 min. The oxidation reaction of 2,4-dinitrophenol complies with first-order kinetics and the first-order kinetics rate constant of photocatalysis is 0.0603 min⁻¹. The result indicates that anatase/rutile TiO₂ nanospheres possess powerful photocatalytic ability and can be utilized as photocatalysts for practical applications.

The photocatalytic degradation of the as-prepared TiO_2 nanospheres for 2,4-dinitrophenol has been repeated 5 times, the standard deviation was calculated to evaluate the photocatalytic stability of the as-prepared TiO_2 nanospheres. As shown in Fig. 2(f), the standard deviation is less than 0.63, indicating photocatalytic activity of the as-prepared TiO_2 nanospheres hardly change for 5 cycles. The results show that the asprepared TiO_2 nanospheres achieve high stability and activity, which can be ascribed to the higher dispersibility and photochemical stability of the as-prepared TiO_2 nanospheres.

The transfer of photo-excited electron/hole in anatase/rutile TiO_2 nanospheres is shown in Fig. 2(g). Anatase and rutile TiO_2 construct a direct Z-scheme homostructure system [7,20,28–32]. The electrons in the conduction band of anatase TiO_2 recombine with the holes in the valence band of rutile TiO_2 . Therefore, electrons in the conduction band of rutile TiO_2 and holes in the valence band of anatase TiO_2 are spatially separated. The photo-excited hole in the valence band of anatase TiO_2 reacts with H₂O to form •OH. Simultaneously, photo-excited electrons in the conduction band of rutile TiO_2 react with O₂ to form $\bullet \text{O}_2^-$. $\bullet \text{OH}$ and

H.-J. Chen et al.

Fig. 3. (a–b) Effect of hydrothermal temperature and time on recycle rate of V_2O_5 microrods during hydrothermal process. (c) XRD pattern of the as-prepared V_2O_5 microrods. (d) SEM image of the as-prepared V_2O_5 microrods. (e) TEM image of the as-prepared V_2O_5 microrods. (f) HRTEM image of the as-prepared V_2O_5 microrods. (g) The comparison of conversion rate of H_2S in sour water between the as-prepared V_2O_5 microrods and commercial V_2O_5 powder. (h) The H_2S removal kinetics of the as-prepared V_2O_5 microrods and commercial V_2O_5 powders.

 $\bullet O_2^-$ can directly/indirectly oxidize 2,4-dinitrophenol into CO₂, H₂O, and others [33–38].

In addition, photocatalytic performance of anatase/rutile TiO_2 nanospheres was compared with the reported photocatalysts and summarized in Table 2. As can be seen, the first-order kinetics rate constant of anatase/rutile TiO_2 nanospheres is faster than that of the reported photocatalysts including other TiO_2 recovered from the spent SCR catalysts [16,17], commercial TiO_2 [39,40], and chemosynthetic TiO_2 photocatalysts [41,42]. The higher photocatalytic performance of the as-prepared TiO_2 nanospheres is mainly derived from their higher

specific surface areas and separation rate of photo-excited electron/hole. Firstly, the specific surface area of as-prepared TiO_2 nanospheres is greater than that of TiO_2 rods, TiO_2 sheets, and TiO_2 particles. Secondly, a direct Z-scheme homostructure system constructes in the as-prepared TiO_2 nanospheres. Namely, the electrons in the conduction band of anatase TiO_2 recombine with the holes in the valence band of rutile TiO_2 , then electrons in the conduction band of rutile TiO_2 and holes in the valence band of anatase TiO_2 are spatially separated. Therefore, the photocatalytic performance of the as-prepared TiO_2 nanospheres is better than that of commercial TiO_2 and chemosynthetic TiO_2 photocatalysts.

The results indicate that our anatase/rutile TiO_2 nanospheres possess powerful photocatalytic ability and could be utilized as photocatalyst for practical applications.

3.2. Preparation and H₂S removal of V₂O₅ microrods

After removal of silicate from filtrate, V₂O₅ can be prepared by a hydrothermal method from filtrate. Fig. 3(a-b) plot the effect of hydrothermal temperature and time on recovery rate of V₂O₅ during hydrothermal process. The recovery rate of V2O5 increases from 33.3% to 99.6% as temperature increases from 60 $^\circ C$ to 120 $^\circ C$ and then remains steady. With the increase of hydrothermal time, recycle rate of V₂O₅ increases rapidly and then levels off. Therefore, the optimum hydrothermal temperature and time are 120 °C and 36 h, respectively. The experimental results indicate that the recovery rate of hydrothermal method is higher than that of the reported recovery methods including NH₄VO₃ precipitation [44,45], solvent extraction [46-48], and their combination [49-51]. Fig. 3(c) presents the XRD pattern of the recovered products. The diffraction peaks at 15.3°, 20.3°, 21.7°, 26.1°, 31.0° and 34.3° can be indexed to (200), (001), (101), (110), (301) and (310) planes of V₂O₅ (No. 41–1426) according to the international centre for diffraction data. No additional peak can be detected in XRD patterns of V_2O_5 , indicating high purity of the recovered products. Fig. 3(d) shows a typical SEM image of the recovered products, which exhibit high dispersibility and a uniform rod-like morphology with diameters ranging from 300 to 400 nm. These results suggest high-purity V₂O₅ microrods can be efficiently prepared by the hydrothermal method. Firstly, V₂O₅ precipitation generates through the hydrolysis of vanadate under the hydrothermal condition. Then, driven by the minimization of the total energy of the system, the primary V₂O₅ precipitation aggregate together through Ostwald ripening to form the micrometer-sized V2O5 microrods under hydrothermal conditions [52]. Fig. 3(e) presents a typical TEM image of the as-prepared V2O5 microrods. As can be seen, a rod-like V2O5 with high dispersibility was recycled by hydrothermal method from filtrate. Fig. 3(f) presents a HRTEM image of the as-prepared V₂O₅ microrods, and a 0.44 nm lattice fringe affiliates to the d spacings of (001) plane of V₂O₅ microrods.

Sour water containing undesirable H₂S is mainly produced from atmospheric and vacuum columns of oil refineries. Activities of the asprepared V_2O_5 microrods and commercial V_2O_5 powders were compared in terms of eliminating H_2S from sour water and the results are plotted in Fig. 3(g). The as-prepared V₂O₅ microrods can eliminate completely H₂S within 100 s, whereas only 88.7% H₂S was eliminated by commercial V₂O₅ powders. Furthermore, the analysis of standard deviation was applied to evaluate the stability of the as-prepared V₂O₅ microrods. The experiments of eliminating H₂S from sour water have been repeated 5 times. As shown in Fig. 3(g), standard deviation is less than 2.5 and the activity of the as-prepared V₂O₅ microrods is almost unchanged for 500 s, indicating that the as-prepared V₂O₅ microrods can achieve a high stability and activity, which can be ascribed to the higher dispersibility and specific area of the as-prepared V₂O₅ microrods. The removal kinetic of H₂S from sour water was furthermore simulated to compare the activity of the as-prepared V2O5 microrods with commercial V₂O₅ powders. Fig. 3(h) shows that H₂S removal kinetics of the asprepared V₂O₅ microrods and commercial V₂O₅ powders complies with first-order kinetics [53]. The kinetic constant of the as-prepared V₂O₅ microrods is about 2.4 times greater than that of commercial V₂O₅ powders, indicating the recycled V₂O₅ microrods have great potentials in practical applications.

4. Conclusions

In this work, a "NaOH + Na₂CO₃" system is employed to recycle anatase/rutile TiO₂ nanospheres from the spent SCR catalysts via a simple sintering-leaching process. The results indicate that the "NaOH + Na₂CO₃" system can maintain nanospherical morphology of

 TiO_2 as well as recycle valuable metals from the spent SCR catalysts. Under the optimized condition of sintering and leaching, anatase/rutile TiO_2 nanospheres are prepared from the spent SCR catalysts and show higher photocatalytic performance than that of the other TiO_2 recovered from the spent SCR catalysts, commercial TiO_2 , and chemosynthetic TiO_2 photocatalysts. Such higher performance is ascribed to a direct Z-scheme in anatase/rutile TiO_2 homostructures that can significantly suppress the recombination of photo-excited electron/hole. In addition, high-purity V_2O_5 microrods with high H_2S removal performance can be also recycled from the low-grade filtrate by a hydrothermal method. Our study affords an environmentally-friendly disposal of the spent SCR catalysts to efficiently separate anatase/rutile TiO_2 nanospheres and V_2O_5 microrods with potential industrial applications as well as dispose environmental pollution of the spent SCR catalysts.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (51464020). ZGC thanks the financial support from the Australian Research Council.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do i.org/10.1016/j.pnsc.2021.10.002.

References

- [1] Z. Zhao, E. Li, Y. Qin, et al., J. Environ. Sci. 90 (2020) 119-137.
- [2] L. Chen, D. Weng, Z. Si, et al., Prog. Nat. Sci.: Mater 22 (4) (2012) 265-272.
- [3] L. Chen, J. Li, M. Ge, J. Phys. Chem. C 113 (50) (2009) 21177–21184.
- [4] K. Cheng, J. Liu, T. Zhang, et al., J. Environ. Sci. 26 (10) (2014) 2106-2113.
- [5] X. Chen, P. Wang, P. Fang, et al., Environ. Sci. Nano 4 (2) (2017) 437-447.
- [6] H. Chen, W. Tian, W. Ding, Sol. Energy 173 (2018) 1065–1072.
- [7] Y. Wang, M. Hong, W.-D. Liu, et al., Chem. Eng. J. 397 (2020) 125360.
- [8] Z. Ma, X. Wu, Y. Feng, et al., Prog. Nat. Sci.: Mater. 25 (4) (2015) 342-352.
- [9] E.A. Abdel-Aal, M.M. Rashad, Hydrometallurgy 74 (3) (2004), 189–19.
 [10] D. Chen, L. Zhao, Y. Liu, et al., J. Hazard Mater. 244 (2013) 588–595.
- [11] X.-S. Li, B. Xie, Int. J. Min., Met., Mater. 19 (7) (2012) 595–601.
- [11] A. O. E. D. Ale, Int. J. Mill, Meel, Match. 19 (7) (2012) 595 601.
 [12] D. Mishra, D.J. Kim, D.E. Ralph, et al., Hydrometallurgy 88 (1) (2007) 202–209.
- [13] I.-H. Choi, H.-R. Kim, G. Moon, et al., Hydrometallurgy 175 (2018) 292–299.
- [14] B. Yang, J. Zhou, W. Wang, et al., Colloid. Surface. A 601 (2020) 124963.
- [15] Y. Chen, Q. Feng, Y. Shao, et al., Int. J. Miner. Process. 79 (1) (2006) 42-48.
- [16] Q. Zhang, Y. Wu, L. Li, et al., ACS Sustain. Chem. Eng. 6 (9) (2018) 12502-12510.
- [17] Q. Zhang, Y. Wu, T. Zuo, ACS Sustain, Chem. Eng. 6 (3) (2018) 3091–3101.
- [18] N. Sahraeian, F. Esmaeilzadeh, D. Mowla, Ceram. Int. 47 (1) (2021) 923-934.
- [19] B. Ma, Z. Qiu, J. Yang, et al., Waste Biomass Valori 10 (10) (2019) 3037-3044.
- [20] X. Zou, Y. Yang, H. Chen, et al., Mater. Des. 202 (2021), 109542.
- [21] J. Yao, Y. Cao, J. Wang, et al., Hydrometallurgy 201 (2021), 1055766.
- [22] X.-L. Shi, H. Wu, Q. Liu, et al., Nanomater. Energy 78 (2020), 105195.
- [23] Y. Sun, Y. Yang, X.-L. Shi, et al., ACS Appl, Mater. Inter 13 (2021) 28359-28368.
- [24] Y. Deng, X. Gao, X.-L. Shi, et al., Chem. Mater. 32 (5) (2020) 2180–2193.
- [25] X. Zou, Y. Yang, H. Chen, et al., J. Colloid Interface Sci. 579 (2020) 463-469.
- [26] H.-J. Chen, Y.-L. Yang, M. Hong, et al., Sustain. Mater. Techno 21 (2019) e00105.
 [27] S. Agrawal, N. Dhawan, Sustain. Mater. Techno 27 (2021) e00246.
- [27] S. Agrawal, N. Dhawan, Sustain. Mater. Technol 27 (2021) e00246.
 [28] Y. Bi, Y. Yang, X.-L. Shi, et al., J. Mater. Sci. Technol. 83 (2021) 102–112.
- [20] H. Yang, C. He, L. Fu, et al., Ohn. Chem. Lett. (2021), https://doi.org/10.1016/j.cclet.2021.03.038. In press.
- [30] Y. Zheng, X.L. Shi, H. Yuan, et al., Mater. Today Phys. 13 (2020), 100198.
- [31] H. Wu, X.-L. Shi, W.-D. Liu, et al., Chem. Eng. J. 425 (2021), 130668.
- [32] J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. (2021), https://doi.org/10.1016/ i.cclet.2021.02.046. In press.
- [33] Y. Yang, H. Chen, X. Zou, et al., ACS Appl. Mater. Interfaces 12 (22) (2020) 24845–24854.
- [34] A. Zada, N. Ali, F. Subhan, et al., Prog. Nat. Sci.: Mater 29 (2) (2019) 138-144.
- [35] W. Yin, B. Wen, Q. Ge, et al., Prog. Nat. Sci.: Mater 29 (3) (2019) 335–340.
- [36] W. Ji, X.-L. Shi, W.-D. Liu, et al., Nanomater. Energy 87 (2021), 106171.
- [37] W. Meng, X. Liu, H. Song, et al., Nano Today 40 (2021), 101273.
- [38] L. Fu, R. Wang, C. Zhao, et al., Chem. Eng. J. 414 (2021), 128857.

Progress in Natural Science: Materials International 31 (2021) 858-864

- [39] D. Chatterjee, V.R. Patnam, A. Sikdar, et al., J. Hazard Mater. 156 (1) (2008) 435-441.
- [40] B. Tryba, A.W. Morawski, M. Inagaki, et al., Appl. Catal. B Environ. 63 (3) (2006) 215-221.
- [41] F. Bekena, D.-H. Kuo, Mater. Sci. Semicond. Process. 116 (2020), 105152.
- [42] Y. Ge, H. Luo, J. Huang, et al., Opt. Mater. 115 (2021), 111058.
- [43] H. Wang, H.-L. Wang, W.-F. Jiang, et al., Water Res. 43 (1) (2009) 204–210.
- [44] R.K. Biswas, M. Wakihara, M. Taniguchi, Hydrometallurgy 14 (2) (1985) 219-230. [45] L. Luo, T. Miyazaki, A. Shibayama, et al., Miner. Eng. 16 (7) (2003) 665–670.
- [46] J.R. Kumar, S.M. Shin, H.S. Yoon, et al., Separ. Sci. Technol. 49 (6) (2014) 819-828.
- [47] F. Yang, X. Li, L. Han, et al., Mining, Metall. Explor 37 (5) (2020) 1667-1672.
- [48] G.S.d. Rosa, T.R. Martiny, G.L. Dotto, et al., Sustain. Mater. Techno 28 (2021) e00276.
- [49] Z.-G. Deng, C. Wei, G. Fan, et al., T. Nonferr, Metal. Soc. 20 (1) (2010) 118-122.
- [50] R. Navarro, J. Guzman, I. Saucedo, et al., Waste Manag. 27 (3) (2007) 425-438.
- [51] Z. Liu, Y. Zhang, Z. Dai, et al., Front. Chem. Sci. Eng. 14 (5) (2020) 902–912.
- [52] H. Chen, D. Li, W. Ding, Sci. Adv. Mater. 10 (9) (2018) 1241–1249.
 [53] A. Houas, H. Lachheb, M. Ksibi, et al., Appl. Catal. B Environ. 31 (2) (2001) 145-157.