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 Abstract- As a typical cyber-physical system, dispersed Phasor 
Measurement Units (PMUs) are networked together with 
advanced communication infrastructures to record the 
Distribution Synchrophasor (DS) which represents the states and 
dynamics of distribution power networks. Source information of 
DS is critical for many DS-based applications which is potentially 
vulnerable to data integrity attacks. To ensure the reliability of DS-
based applications, it is imperative to efficiently authenticate the 
DS source locations before any DS data analytics is initiated. This 
letter presents a cost-effective method for accurate source 
identification by realising the multifractality of DS data. First, 
Multiscale Adaptive Multifractal Detrended Fluctuation Analysis 
(MSA-MFDFA) is executed to reveal the scale which possesses the 
most significant multifractality of the time-series DS. 
Subsequently, Adaptive Multifractal Interpolation (AMFI) is 
proposed to generate quasi high-resolution DS where unique time-
frequency signatures are extracted. Such signatures are further fed 
into a deep learning model - deep forest for source identification. 
Experimental results using real-life DS of a distribution network 
illustrate the excellent performance of the proposed approach. 

Index Terms- Source identification, synchrophasor, distribution 
power networks, cybersecurity, PMU. 

I.  INTRODUCTION 
n increasing deployment of PMUs into modern power 
networks has been witnessed in recent decades. Through the 

high-resolution DS recorded by PMUs, system-wide states and 
dynamics can be synchronously captured which enables various 
DS-based applications (e.g., event identification and localisation, 
dynamic stability assessment, et al [1]). The DS-based 
applications are highly dependent on the source information of 
recorded DS which could be altered maliciously [2]. Therefore, it 
is imperative to verify the source information of DS data and 
determine whether the DS is coming from the genuine 
measurement locations before they become actionable signals. 

In general, the mainstream approaches of DS source 
identification in the literature can be classified into two groups. 
The first group is model-based methods. By utilising state 
estimation, these methods take advantage of DS redundancy 
and network model and parameters to recognise DS anomalies 
and authenticate source information [3]. However, unavoidable 
errors may be introduced into network modelling and system 
identification which could severely affect their performance. 
The second group generally refers to data-driven alternatives. 
Without the need of any network models or parameters, these 
methods identify DS source locations through spatio-temporal 
DS signature extraction and various artificial intelligence 
algorithms (e.g., support vector machine [4], neural networks 

 
 

[2], random forest [5] and deep learning methods [6]).  However, 
completely realising the above signatures and achieving 
accurate identification remains challenging in the research 
community. 

The performance of DS source identification by data-driven 
methods is highly dependent on the reporting rate of PMUs as 
DS with a high resolution contains more time-frequency 
information that could be separated by the artificial intelligence 
algorithms. However, collecting DS with fine granularity 
requires a substantial effort to improve the PMU hardware, 
communication networks and server storage, which may not be 
feasible for network operators. Therefore, reconstructing quasi 
high-resolution DS through data interpolation becomes a more 
promising method in practical power grids. Previous studies 
realised that multifractality is an intrinsic characteristic that is 
widely observed in DS [7]. By utilising the multifractality, the 
quasi high-resolution DS can be generated through traditional 
multifractal interpolation or Weighted Multifractal Surface 
Interpolation (WMFSI) [8]. However, the multifractality of DS 
varies from point to point along with the signal and existing 
methods use a fixed scale parameter (usually it is the whole data 
length) to estimate the multifractality which may oversimplify 
the more complex, multiscale, multifractal structures of DS. In 
addition, the WMFSI heavily relies on the neighbouring 
locations of which the DS quality may severely degrade the 
overall performance. Therefore, the aim of this letter is to 
propose a cost-effective data-driven method by characterising 
the multifractality of DS in a wide range of scales 
simultaneously through MSA-MFDFA and generating quasi 
high-resolution data through AMFI of DS at individual 
locations. The proposed method can achieve accurate source 
identification of DS without the knowledge of power networks 
and costly upgrading of existing PMUs. 

II.  PROPOSED SOURCE IDENTIFICATION METHOD 
The proposed source identification method (illustrated in 

Fig. 1) consists of three components: (1) MSA-MFDFA is 
executed on the original DS to determine the scale which 
presents the strongest multifractality of DS; (2) Based on the 
identified multifractal scale, AMFI is proposed to dynamically 
assign the Vertical Scaling Factor (VSF) for generating high-
resolution DS data; (3) Informative time-frequency signatures 
are extracted by continuous wavelet transform from the 
interpolated high-resolution DS which are used by deep forest 
algorithm [9] for source identification.  
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Fig. 1 Proposed data-driven DS source identification method. 
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A.  MSA-MFDFA of DS Measurement 
For MSA-MFDFA, the cumulative DS deviation 

sequence ( )iθ is first derived as (1). 

 ( ) ( ) ( )
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i N
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i f l f f f l i N
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= =
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where f(l) is the DS measurement at time step l, f  denotes the 
average value of DS, N is the total sample number.  

Then ( )iθ is scanned using a series of moving windows with 
certain overlapping (i.e., 5 out of 11 data points) to capture the 
global smooth trend ˆ( )iθ . For each window, the original ( )iθ is 
fitted using a 2-order polynomial function. For the overlapping 
part in any two adjacent windows, the values are updated as a 
weighted summation of the original values of two windows 
using a linear weight as [10]. This makes the trend at the 
adjacent points of the two windows continuously smooth. Both 

( )iθ and ˆ( )iθ  are further non-overlappingly split into k segments 
with each having a sample number of T (i.e., /k N T=  ). For s-
th segment (s=1, 2,…,2k), the root mean square ( )2 ,F T s of each 
segment is obtained as (2). 
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Based on (2), the overall root mean square of all DS 
segments at the order of jq is determined as (3).   
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The overall root mean square is further non-overlappingly 
scanned using a series of moving windows with a length of c 
(i.e., scale). For ( )

jqF T in each window, if the multifractality 
exists in the DS, it can be expressed as a power-law function 
of the segment length within the window as (4) [11]. 

 ( ) ( ),, i

ii

H q cF q T T ω
ωω

∝   (4) 
where iω  is the i-th moving window, c is the length of the 
window (i.e., sample number of the window), ( ),

i
F q T

ω
, 
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i

H q c
ω

,
i

Tω are the overall root mean square, Hurst exponent 
and the segment length of the window. The Hurst exponent 
can be determined by calculating the slope of ( )log ,

i
F q T

ω
 
   

and ( )log
i

Tω using the least square method. Specifically, the 
Hurst exponent is above 0.5 when the DS contains multifractal 
structures. For random signals (such as white noise) without 
fractal structures, the Hurst exponent is 0.5. 

Once the Hurst exponent of each scale is determined, the 
multifractal spectrum can be calculated as (5)-(6)[11]. 

 ( ) ( ) ( ), , 1 , 1, 2,j j jt q c H q c q j m= − =    (5) 
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where ( ),t q c , ( ),h q c and ( ),D q c  are mass exponent, singularity 
exponent and singularity dimension at scale c. 

The strength of the multifractality of the DS data is 
quantified by the spectrum width which is a plot of 

( ),jh q c versus ( ),jD q c . Usually, the time series with stronger 

multifractal structures would have a bell shape spectrum with 
wider width (as shown in Fig. 3b). In contrast, the spectrum 
becomes a constant without width when monofractal 
structures exhibit in the time series. 
B.  Adaptive Multifractal Interpolation 

Based on MSA-MFDFA of DS data, AMFI is proposed to 
generate quasi high-resolution DS. Unlike the method in [8] 
which performs multifractal interpolation on the bulk DS data of 
each location using a constant VSF, the AMFI is piecewise 
implemented on the short DS fragments using a suitable scale 
(i.e., sample number) which preserves the strongest 
multifractality characteristic quantified by the MSA-MFDFA and 
dynamically adjust the VSF. Assuming the DS 
dataset ( ){ }', | 0,1,i it f i N=  , AMFI requires building an iterated 
function system { }'| 1, 2,n n Nϕ =   as (7) and (8) [12]. 
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where if  and it  denote the DS data at time instance i, N’+1 
denotes the total DS data points number, an, cn, dn ,en, gn are 
free parameters of nϕ which are determined by (9). 
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where ' 0N
L t t= − , dn is the VSF and it is subjected to 1nd < so 

that the iterated function system converges after multiple 
iterations. As the most significant parameter in AMFI, dn 
determines how to map the DS variation over the whole 
measurement time into two interpolation points. Usually, dn is 
a constant and it is empirically determined [8]. The advantage 
of AMFI is that it automatically determines dn by considering 
the overall trend of the DS signal which can better map the 
entire DS variation into each interpolation interval. In AMFI, 
the original DS data is decomposed into different intrinsic 
mode functions by empirical mode decomposition and the 
intrinsic mode function at the lowest frequency is selected to 
represent the general trend of the original DS data. Finally, di 
of each interpolation interval is calculated as (10) and (11). 

 '/ , 1, 2,i id r r i N= =    (10) 
 { }' ', max | 1,2,i i i ir f f r r i N ε= − = = +   (11) 

where '
if  is the overall trend at time i, ε  is infinitesimal. In 

this way, a large di is assigned if the difference between the 
DS and the general trend is large (or vice versa). It also meets 
the requirement of 1id < . 

C.  Signature Extraction and Source Identification 
The DS reconstructed by AMFI is subsequently processed by 

DS detrending and continuous wavelet transform as described in 
[6] to extract informative time-frequency signatures which 
quantify the non-stationary and nonlinearity characteristics of 
DS in both the time and frequency domains. The extracted 
signatures are fed into the deep forest algorithm with a multi-
grain scanning and cascade forest structure [9] for identifying the 
source locations. Compared with the convolutional neural 
network, the deep forest has superior or comparable 
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performance with an easier configuration than the convolutional 
neural network. 

III.   CASE STUDIES AND PERFORMANCE VALIDATION 
A.  Description of the Experimental Data 

The proposed method is validated using a DS dataset which 
contains 3-months data of seven intra-state locations (detailed 
in [8]) of a distribution network in Queensland. The DS data is 
collected at multiple 11 kV feeders which significantly 
improve the situational awareness capability of distribution 
network operators for better network management. All 
measurement locations reside within 90km which are 
significantly closer than those used by most existing studies. 
The sampling time of the DS is 20ms and no extra noise is 
added to the DS data for the experiment. For each location, 
1000 segments are used to construct an experimental dataset 
and each segment has 20-seconds DS measurements. 80% of 
segments are randomly selected for the deep forest training 
while the rest 20% of segments are used for testing. The 
identification accuracy of the testing segments is calculated 
for evaluating the performance of the algorithm
B.  Results of MSA-MFDFA and AMFI 

Fig. 2 depicts the Hurst exponent after MSA-MFDFA of DS 
at one measurement location. It shows that the Hurst exponent 
is not a constant but varies at different scales. By examining the 
variation of the Hurst exponent, two regions are identified 
which are marked as numbers in circles in Fig. 2a. In region 1, 
an increasing trend is presented in the Hurst exponent when the 
scale increases and the maximum Hurst exponent (i.e., 0.75) is 
located at the scale of 147. The difference between the 
maximum and minimum Hurst exponent also attains the peak 
(i.e., 0.55) at this scale (Fig. 2b). Beyond this scale, the general 
Hurst exponent (i.e., order q=2) in Fig. 2b gradually decreases. 
This indicates the vanishment of the multifractality when a 
larger scale of the data is used to examine the multifractality.  
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Fig. 2 (a) Maximum, minimum, mean Hurst exponent, the difference between 
the maximum and minimum Hurst exponent and general Hurst exponent at 
multiple scales and (b) Hurst exponent obtained by MSA-MFDFA. 

After Hurst exponent calculation, the multifractal spectrum 
of DS at different scales is computed as Fig. 3a. It is clear that 
MSA-MFDFA is capable of quantifying the multifractality of 
DS at different granularities as the multifractal spectrum at 
different scales has different shapes, positions and variation 
ranges.  Fig. 3b depicts the multifractal spectrum at scale 147 
where hq(c)min, hq(c)max and hq(c)0 represent the minimum, 
maximum singularity exponents and the singularity exponent 
with maximum singularity dimension. The width of the half-
left spectrum (i.e., WL) and the half-right spectrum (i.e., WR) is 
added to calculate the total width W(c) of the spectrum. By 
evaluating the spectrum width over all scales, the largest 
spectrum width of 0.81 appears at the scale of 147 (shown in 
Fig. 3c), indicating the strongest multifractal strength at this 
scale. Therefore, the proposed AMFI will be implemented for 
every 147 samples to construct the quasi high-resolution data. 

Fig. 4 compares the performance of two methods (i.e., 
WMFSI and proposed AMFI) by interpolating the 
downsampled DS (i.e., 10Hz) with a data length of 2.94s 

(147×0.02s) back to the original reporting rate (i.e., 50Hz). 
The interpolation errors and corresponding error distribution 
are shown in Fig. 4. It is clear that the proposed method 
outperforms the WMFSI as the error distribution of the 
proposed method shows a narrow width centred near zero 
indicating that most interpolation errors have small 
magnitudes. By calculating the root mean square error 
between the measured DS and interpolated DS, the proposed 
AMFI has a much smaller error (i.e., 2.6mHz) compared with 
WMFSI (i.e., 4.9mHz) due to its dynamic adjustment of the 
VSF during multifractal interpolation. 
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Fig. 3 (a) A multifractal spectrum surface, (b) multifractal spectrum at the 
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spectrum width at multiple scales. 
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Fig. 4 Comparison of (a) interpolation error and (b) error distribution by 
WMFSI and AMFI. 

C.  Performance Comparison of Source Identification 
TABLE I compares the source identification performance of 

the proposed method with the other six methods in the existing 
literature in terms of the overall identification accuracy and 
testing time required for each sample. It should be noted that the 
proposed method and [8] use quasi high-resolution DS with a 
reporting rate of 1.25kHz for source identification while other 
methods use the original DS with a 50Hz reporting rate. It is 
clear that although Ref [4] takes the least time to perform the 
source identification, it is hard to recognise the source locations 
of DS (i.e., overall accuracy is only 53%) as it only uses 
correlation coefficients of DS segments as input features for the 
artificial intelligence algorithms. By incorporating more 
informative spatio-temporal signatures (e.g., mean value, 
variance of DS segments and signatures extracted by wavelet-
based signal decomposition), Ref [13] shows a certain 
improvement in the accuracy which is 68%. The performance of  
Refs [2], [5] and [6] is comparable as they all extract the spatio-
temporal signatures from 50Hz reporting rate DS. Both [8] and 
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the proposed method achieve a reasonable identification 
accuracy above 90% where the proposed method outperforms 
[8] in terms of higher identification accuracy and less 
computation time. The superior identification accuracy of the 
proposed method is mainly due to the better reconstruction of 
the quasi high-resolution DS by taking advantage of the proper 
multifractal scale indicated by MSA-MFDFA and the dynamic 
VSF determined by AMFI. The faster computation of the 
proposed method is achieved since the proposed method does 
not need to examine the cross-correlation of each pair of PMU 
locations for DS interpolation. Besides, compared with [8], the 
proposed method also has better tolerance of unsatisfied DS 
data quality of neighbouring locations which makes it more 
applicable in practical power grids. 

TABLE I 
COMPARISON OF IDENTIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS 

Reference Overall accuracy (%) Testing time per sample (ms) 
[4] 53 0.3 
[2] 85 825 
[5] 80 1.8 
[6] 88 97 
[8] 93 90 
[13] 68 1.2 

Proposed 95.08 45 

IV.  CONCLUSION 
This letter proposes an intelligent data-driven approach for 

accurate DS source identification. With the help of MSA-
MFDFA, it first recognises the scale of DS which possesses 
the most significant multifractal structures. Then it adaptively 
adjusts the VSF during the multifractal interpolation for 
constructing the high-resolution DS data. Essentially, this 
approach is performed by exploring distinguish time-
frequency signatures of the high-resolution DS data and 
integrating them with the advanced deep forest algorithm. 
Numerical experiment results with actual DS collected from 
Queensland distribution networks comprehensively 
demonstrate its good performance. Compared with other 
representative methods, it is capable of performing reliable DS 
source identification in a more cost-effective manner. Given 
that the frequency measurements of the distribution system 
and transmission system share the same characteristics and 
multiple formats of malicious data integrity attacks may 
happen to synchrophasor data, the proposed source 
identification method also has the potential to protect part of 
the synchrophasor data of transmission systems from 
sophisticated data spoofing attacks.   
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