
1

X WEB PUBLISHING: An Extreme,
Agile Experience

Mark Toleman
Fiona Darroch

Mustafa Ally
University of Southern Queensland

Toowoomba, QLD Australia

Abstract The proponents of agile methodologies suggest that many of the inhibitors to
system development methodology adoption have largely been addressed in the
underlying principles of agile methods. This paper reports the experience of
a small team developing Web publishing software tools for use in building
Web sites for online delivery of tertiary education study materials. These
early adopters successfully used eXtreme Programming (XP) practices for this
tool development exercise. Almost all XP practices were adopted, although
some were adhered to more rigorously than others and some proved to be
more successful than others. Continued use of XP and communication of its
benefits to others has been a consequential focus for the developers.

Keywords Agile methodology, eXtreme Programming, experience report, Web
publishing

1. INTRODUCTION

According to Fitzgerald (1998), practitioners have been reluctant to adopt software/
system development methodologies (SDMs), with more than 60 percent of them
abstaining. Furthermore, he noted that nearly 80 percent of the non-adopters intended
to stay that way. Fitzgerald identified a number of arguments from practitioners against
the use of methodologies, and pressures preventing their adoption. It has been argued
that the so-called agile methodologies may provide a solution.

Extreme programming (XP) (Beck 1999), perhaps the most well known agile
methodology (Fowler and Highsmith 2001), is currently receiving much attention, parti-
cularly by practicing software developers. There are now at least two major inter-

2 Part #: TItle

1International Conference on eXtreme Programming and Agile Processes in Software Engi-
neering (http://www.xp2005.org) and XP Agile Universe (http://www.xpuniverse.com/home).

2See “Extreme Programming Core Practices” at http://c2.com/cgi/wiki?Extreme
ProgrammingCorePractices.

3See “Manifesto for Agile Software Development” at http://www.agilemanifesto.org/.

national conferences annually1 and there have been several special issues of journals on
the topic (for example IEEE Software, November/December 2001, Journal of Defense
Software Engineering, October 2002, IEEE Computer, June 2003, Journal of Database
Management, April 2004). The Giga Information Group predicted that, by 2004, agile
processes will be incorporated in two-thirds of corporate IT departments (Barnett 2002).
Also, with software development luminaries such as Tom DeMarco (cited in Beck and
Fowler 2001) making statements such as

XP is the most important movement in our field today. I predict that it will be
as essential to the present generation as the SEI and its Capability Maturity
Model were to the last.

there can be little doubt this is no passing fad, but in fact a topic worthy of serious
research from Information Systems academics and the software development
community.

XP is centered on 12 core practices, also known now as Xp Xtudes, which guide the
software development process.2 These practices reflect the sentiment and intent of the
12 principles underpinning the agile manifesto.3 Most of these practices are not new but
the way they are presented as a package in XP represents to many software developers
how they really develop software systems (Sleve 2002) or, in some cases, desire to
develop software for clients.

XP has been successfully applied in many projects. A range of experience reports
have been published which demonstrate the wide variety of situations considered
suitable for trials of agile methods. These reports fall into several categories including
academic teaching (Lappo 2002; Mugridge et al. 2003), tertiary student projects
(Karlström 2002), small-scale industry developments (Bossi and Cirillo 2001), and
large-scale industry developments (C3 Team, 1998; Elssamadisy 2001; Grenning 2001;
Pedroso et al. 2002; Schuh 2001). However, there has been little attempt to grapple with
the factors affecting the adoption of this new methodology. Toleman et al. (2004) con-
tributed by examining adoption of a relatively new methodology in a specific environ-
ment. The extent to which agile methodologies might address the shortfalls in method-
ology uptake was examined as were the characteristics that influenced adoption of a
particular methodology.

This report and the project reported here had several distinguishing features.

• The system under construction was not a typical business application, but a
software infrastructure development with difficult to define, abstract requirements.

• The complexity of the system development environment required the use of
multiple software products for development.

Toleman et al./Web Publishing 3

• Much of the current debate on using agile methods centers on whether it is devel-
opers or management who resist their adoption. The situation under review was
notable in that the impetus initially came from management, but the development
team were also very keen to conduct a trial of the XP methodology.

• This trial was conducted without any expenditure on mentoring, training, etc.—it
was all based on internal research.

• The implementation of XP was a success story.

• Most industry experience reports are quite subjective, having been authored from
within the development team. In contrast, this report is an objective analysis under-
taken for the purposes of furthering research on the use of agile methods and by
researchers who were external to the development.

This paper provides a retrospective on the experiences of developers building Web-
based publishing software tools using XP. The next section describes the approach used
in this study, followed by the background to the project, the actual experience of using
XP in this project, issues for discussion, and conclusions.

2 RESEARCH APPROACH

Most of the data for this experience report were gathered through interviewing
members of the development team. Interviews were tape recorded and transcribed, and
then edited by the interviewees. Follow-up interviews were conducted to clarify and
expand on specific issues related to the project context and use of XP. Quotations or
indented text italicized throughout the rest of this paper are either verbal or written
statements from these primary data sources (denoted in the text as N1, N2, and N3).

3 SITUATION BACKGROUND

NextEd Limited is a Hong Kong based provider of Web-based software infra-
structure. It services mainly tertiary education providers in the Asia-Pacific region,
including the University of Southern Queensland, by providing platforms for delivery
of study materials and communication services to students who study, principally, in
online modes.

The project discussed in this paper required the development of a suite of tools for
a scalable, flexible, and efficient continuous publishing system. The tools facilitated the
generation of print and Web-based study materials provided by content experts. The
target operating system was Windows NT and the languages used included Delphi,
XSLT, and XML. Visual Source Safe was used for configuration management and,
although not ideal, proved effective (CVS is now used throughout the organization).

The newly formed project team felt that an iterative methodology was most suited,
and according to N1 it was fundamental to the project to produce “a constant stream of

4 Part #: TItle

outputs and engage the customer on a regular basis.” Initially made aware of XP by
the organization’s chief technical officer, the team took on the initiative to study this
approach to software development and considered the project a suitable candidate for
the use of XP. No particular development methodology for this type of project was in
place in the organization. There was also recognition that management’s requirements
of the project were not well defined, that the project size was not expected to be large
(a few thousand lines of code), and its development time was expected to be relatively
short (about six months). XP provided an alternative to a traditional, heavyweight
approach since there was a small team and less need to follow a process-oriented
methodology. Being a small team meant members had multiple roles (project leader,
proxy customer, system architect, and programmer). Management was unconcerned
with the product development approach adopted for the project but was concerned with
the product outcome and monitored progress accordingly. They did not put limitations
on the trial of XP but noted the method required the developers to regularly deliver
working software which could be given trials and tested by the customer.

4 EXPERIENCES OF THE XP CORE PRACTICES

This section reports on the information gathered during the interviews. Table 1
shows a summary of the level of adoption of the XP core practices for this project.

The discussion that follows is an analysis of the case study within the framework
of the relevant XP practices.

4.1 The Planning Game

The project leader and proxy customer were in charge of functional requirements.
A tool was needed to automate as much of the electronic publishing process as possible.
The customers had a view of what was required. The members of the development team
contributed ideas for the functionality as well. Initially, story cards were used to com-
municate functional requirements among the team members but this became un-
manageable:

N1: We put all the stories on cards, a big pile of cards, and the piles get
bigger—what you can see are the piles getting bigger and bigger. So we
had to overcome that. Basically we have a document and in the bottom of
the document we have a bundle of card…at the end of that meeting, we
publish that.

In fact, the project team used the organization’s intranet to communicate progress
and system development priorities:

N1: What we started doing was…building a weekly newsletter which detailed
our problems and functionality [set] on the internet…for the organization
so they could see the progress of their actual requirements…we said if you

Toleman et al./Web Publishing 5

Table 1. XP Core Practices Experience Summary
XP Core
Practices

Implementation
Level Comment

The Planning Game Full Worked well for both developers and
client

Small Releases Full Successful
System Metaphor Nil Developers would like this
Simple Design Full Successful
Test Driven
Development

Full Very beneficial for development

Design Improvement
(was Refactoring)

Partial No tools and not regular

Pair Programming Partial Useful for developers to cross-train
Collective Code
Ownership

Full Very successful for developers—aided
skill transfer

Continuous
Integration

Full Successful—infrastructure can be
reused

Sustainable Pace
(was 40-Hour Work
Week)

Nil Would be desirable for developers

Whole Team
(was On-site
Customer)

Full At least during business hours

Coding Standards Full Worked well
Note: Full = full adoption; Partial = partial adoption; Nil = not adopted.

want anything to do with this product you must submit your requirements
to us, we will manage those requirements…we handle every cycle…

Because the customer determined the priority of software functionality, project
progress was transparent and there was continuous customer involvement from the
project’s inception. By requiring the customer to be involved in selecting the required
business functionality for implementation, the customer knew what would be provided,
the project team provided it, and management could see progress being made. Com-
munication back to the project team included specific details of the features to be
included in the next software release. The project team developed a points system for
features to indicate degree of difficulty and time to complete which the customers could
understand and use.

N1: What we really want is we want you to be these five [features], and that
adds up to 300 points for the two weeks.

6 Part #: TItle

So the customers (and management) were able to drive the system development but
through the process of setting priorities, the project team felt it had some control too.

N1: …which meant that we are driving the development of it, we are forcing
our company to drive….The other advantages are when you have this
prioritized, your customers are going to say, “Well I really only need that,
I did need it 10 minutes ago but it is not that important now.”

N3: Yes, it is less complex. Mainly in the area of planning. Typical planning
processes for software development are pure fiction. A lot of up-front
effort goes into creating charts and dependencies graphs, but I have never
seen a plan like this actually followed up or kept up-to-date.

In the case study, the customer was involved in selecting the business functionality
required for implementation. The customer knew what would be provided, the project
team provided it, and management could see the progress being made. Hence the
customers (and management) were able to drive the system development but, through
the process of setting priorities, the project team felt it had some control too.

4.2 Small Releases

After the initial build process (of about three months), releases were made available
every two weeks:

N1: …beside the requirements we had…levels of difficulty…okay, you have
two weeks which ones do you want.

N2: Incremental progress and updates ensured everyone who was interested
knew where we were and why [we] completed or failed to complete
certain tasks.

N3: …the key is regular releases of working software and along with that
getting people using a product from as early as possible.

N3: …it is better to get the bugs out early than to release all the bugs at once.

In the case study, after the initial build process (of about three months), the release
cycle was fortnightly. This was considered advantageous because it was much easier
to identify whether the project was on schedule. This is in contrast to traditional SDMs
which tend to focus on delivering larger chunks of functionality much later in the
development schedule.

4.3 System Metaphor

This was perhaps the least successfully implemented core practice of XP in this
project. However it is not a surprising finding given that no metaphor was created at the

Toleman et al./Web Publishing 7

start of system development. N1’s view was that “…in hindsight that [a metaphor]
would have been really helpful because we really struggled to get the idea/concept for
the system out of the head of the customer.”

In the case study, a metaphor, or common view of the project, emerged as the
project developed and as the team discussed implementation of stories week-by-week.
Having a clearer concept earlier would have speeded progress and facilitated
communication.

4.4 Simple Design

At all times, the developers avoided unnecessary complication with respect to
software architecture and coding, staying with the stories agreed with the customer each
cycle. Keeping the design simple means that change, as and when it is required, is less
problematic.

In this way, the team took a minimalist approach to the addition of functionality and
ensured the customer received what they considered essential in the priority order they
required. In traditional methodologies, design architecture is usually predefined, which
does not offer the same flexible approach.

4.5 Test Driven Development

All Delphi code had tests included because a testing framework existed already. An
XSL testing framework had to be developed because, at the time none was available.
In fact, according to the developer, test-driven development assisted in the code
development:

N1: If you cannot write those [test] unit specs up front, then you will fail the
test runner…so writing those sort of tests helps you map out your design
in the first place and you get a much better design.

Nevertheless, writing tests prior to code was a significant change of habit for the
developers, and was thus a visible difference for both them and customers who develop
acceptance tests. This was a highly observable element associated with the implemen-
tation of XP where the role of the customer is extended well beyond the bounds of a
traditional project.

4.6 Design Improvement (was Refactoring)

Refactoring was applied in this project but not in any automatic or systematic way
using any specific tools. There is no such equivalent practice in traditional method-
ologies that tend to indulge in big, up-front design setting the application architecture
early, and making it relatively inflexible.

In the case study, redesign and reimplementation occurred at irregular intervals,
usually after normal office hours, when developers modified and improved their system

8 Part #: TItle

designs. This was advantageous because it encouraged developers to improve their
system designs. It was a manual process of noticing the need for improvements,
removal of duplication, and making adjustments.

4.7 Pair Programming

Pair programming was used for certain types of problem solutions or to help another
developer learn a certain procedure or gain an understanding of some part of the system.
Given that the developers often worked outside normal office hours or away from the
office, the continual use of pair programming was not practical for this project. The
developers had no prior experience of pair programming but the team was relatively
cohesive, so the concept had some acceptance.

N1: A lot of the time we did operate this way but there were many times when
we worked alone.

Traditional methodologies do not support this type of productive exchange and
review of coding, and the nearest process is that of code walkthroughs, a form of quality
assurance. Unfortunately, walkthroughs only identify problems after the code has been
developed, and are typically abandoned as soon as schedules become tight. Further-
more, there is no risk management explicit in traditional methodologies to defray the
exposure to the loss of key technical staff. One problem noted, however, was deter-
mination of appropriate remuneration for the efforts of the various participants in the
project where this practice was used.

4.8 Collective Code Ownership

The inherent characteristics of the object-oriented (OO) software development
methodology facilitates code sharing and component reuse, and as the OO paradigm
becomes more pervasive the need for such mutual cooperation should become even
more compelling.

In the case study, all developers were free to work on all code and were encouraged
to do so. Any code may be changed provided it is done by pairs of developers,
complying with coding standards and subject to a satisfactory run of all tests. This
assisted in building the expertise of all involved in the project and was a particularly
successful aspect of the project from the developers’ perspectives.

4.9 Continuous Integration

Within the development environment of the case study, the integration of new code
into the project was a natural process with system builds and all automated unit tests
conducted every time code was checked into the source repository. A batch system con-
trolled the build process, including compilation and testing, and notified the developers,
by e-mail, if errors occurred.

Toleman et al./Web Publishing 9

While some initial effort was required by the development team to create an
environment supportive of this XP practice, the view taken was that, once established,
it would form the basis for other systems and make maintenance much simpler.

4.10 Sustainable Pace (was 40-Hour Week)

To avoid burnout so common in the IT industry, developers are restricted to about
40 hours of work per week. This also improves the accuracy of time and resource
estimates for the development effort required.

The developers in the case study did not comply with this practice. The developers
worked as and when they saw fit and certainly did not adhere to a 40-hour week work
regime. This is not unusual in such projects.

4.11 Whole Team (was On-Site Customer)

Customer availability in an XP project gives developers continuous access, thereby
lessening the need for extensive requirements documents. They can ask the customer
about functionality, test cases, interfaces, etc. at any time.

N2: …our close contact with most clients requires a certain degree of
structured feedback and our version of XP helped us in this regard.

An on-site customer was available in the case study project, at least during normal
office hours. This represents a very visible difference to the traditional methodologies
where customers tend to play a background role.

4.12 Coding Standards

A coding standard was developed during the project and is used currently within the
organization. It is essentially language independent but some languages, such as XML
because of its case-sensitive naming conventions, dictate certain attributes.

Since code may be worked on by any programmer at any time, coding standards are
essential and must be rigorous. Coding standards have also long been incorporated into
projects run under traditional methodologies although the imperative for them might
seem less since code ownership is usually not collective.

5 ISSUES FOR DISCUSSION AND
PROJECT INSIGHTS

The project at NextEd was a success story that applied many of the core practices
(see Table 1) of XP. From both customer and developer perspectives, it delivered on the
requirements, limited as they were in initial detail, to produce a publishing system for
documents to the Web.

10 Part #: TItle

Greater customer collaboration in the experience at NextEd reflected a much
improved client-developer relationship in a number of aspects and a much stronger sense
of developer credibility was established. The XP planning game core practice promoted
good resource planning, and placed the power of decision making on functionality in the
hands of the customer. The ability to monitor progress and respond to change were
highly attractive characteristics of the methodology. Test-driven development, design
improvement (refactoring), and continuous integration were other core practices that
delivered tangible benefits, including work practices and software tools, immediately
and for future projects.

On the other hand, there were challenges associated with pair programming, the
implementation of which proved to be useful but problematic. While pair programming
aimed to address the problem of developers working in isolation and independently from
the rest of the team, there was strong resistance to the practice from certain quarters.
One difficulty arising from pair programming and collective code ownership is assessing
an individual’s relative worth, for example, for purposes of remuneration, promotion,
etc. Also, this project, in common with many other XP trials, failed to implement the
system metaphor although it was recognized that such would have been useful.

6 CONCLUSIONS

There has been much debate about the type of projects that are suitable for agile
methodologies. Practitioner experience suggests that they are particularly suitable for
projects where requirements are more abstract and difficult to define, as in this study.
It is not surprising that organizations in this situation have either not adopted or moved
away from traditional approaches.

While the opinion of NextEd upper management was not sought in relation to their
perception of the success of this trial project, an appropriate product was delivered and
used as a prototype for their current publishing system. Any decision relating to the
further use of XP at NextEd will depend on the nature of the project and the develop-
ment team structure. Appropriate characteristics suggesting the suitability of XP for
particular situations are still unclear. There needs to be more research that produces
empirical evidence about size and type of projects suitable for XP. However, many of
the practices, such as test-driven development, pair programming, and sustainable pace,
are clearly suited for implementation regardless of the project characteristics. In
response to the question, Do you see the adoption of extreme programming in the
industry? N1 echoed Tom DeMarco’s sentiment: “I can in my career.” Since the
completion of this project, members of the development team have participated in local
meetings of software developers explaining the role XP played in this and other projects
on which they are engaged. A more detailed study, reported in Toleman et al. (2004),
aligns diffusion theory (Rogers 1995) and adoption models (Riemenschneider et al.
2002) with an explanation of the acceptance of XP.

When examining any aspect of the software development process, anything other
than actual experience is at best intelligent conjecture. Indeed, while there has been a
great deal of interest and support from the developer ranks, the IS teaching and research
community appears to have been a little slow to embrace this new direction in software
development methodologies. Our current research includes experiments involving the

Toleman et al./Web Publishing 11

use or otherwise of XP, further case studies of several groups, and projects imple-
menting agile methods. This research is also informing our teaching curriculum and
practice.

ACKNOWLEDGMENTS

We wish to thank our colleagues from NextEd who gave freely of their time in
helping us understand the potential role of an agile method such as XP.

REFERENCES

Barnett, L. “IT Trends 2003: Application Development Methodologies and Processes,”
IdeaByte, September 2002 (available online at http://www.forrester.com/Cart?addDocs=
28123; accessed November 2004).

Beck, K. Extreme Programming Explained: Embrace Change, Boston: Addison Wesley, 1999.
Beck, K., and Fowler, M. Planning Extreme Programming, Boston: Addison Wesley, 2001.
Bossi, P., and Cirillo, F. “Repo Margining System: Applying XP in the Financial Industry,” in

Proceedings of the 2nd International Conference on eXtreme Processing and Agile
Processing Software Engineering (XP 2001), Villasimius, Italy, May 2001 (available online
at http://www.xp2003.org/conference/papers/Chapter35-Bossi+ alii.pdf; accessed January
7, 2005).

C3 Team. “Case Study: Chrysler Goes to ‘Extremes,’” Distributed Computing, October 1998
(available online at http://www.xprogramming.com/publications/dc9810cs.pdf; accessed
January 7, 2005).

Elssamadisy, A. “XP on a Large Project—A Developer’s View,” in Proceedings of the XP
Universe Conference, Raleigh, NC, July 2001 (available online at http://www.
xpuniverse.com/2001/pdfs/EP202.pdf; accessed January 7, 2005).

Fitzgerald, B. “An Empirical Investigation into the Adoption of Systems Development
Methodologies,” Information and Management (34), 1998, pp. 317-328.

Fowler, M., and Highsmith, J. “The Agile Manifesto,” Software Development, August 2001
(available online at http://www.sdmagazine.com/documents/s=844/sdm0108a/0108a.htm;
accessed November 1, 2004).

Grenning, J. “Launching Extreme Programming at a Process-Intensive Company,” IEEE
Software (18:6), November/December 2001, pp. 27-33.

Karlström, D. “Introducing Extreme Programming—An Experience Report,” in Proceedings of
the 3rd International Conference on eXtreme Processing and Agile Processing Software
Engineering (XP02), Alghero, Italy, 2002 (available online at http://www.xp2003.org/
xp2002/atti/DanielKarlstrom--Introducing ExtremeProgramming. pdf; accessed January 7,
2005).

Lappo, P. “No Pain, No XP Observations on Teaching and Mentoring Extreme Programming to
University Students,” Agile Aliance, 2002 (available online at http://www.agilealliance.org/
articles/articles/PeterLappo--ObservationsonTeachingandMentoringXP.pdf; accessed
January 7, 2005).

Mugridge, R., MacDonald, B., Roop, P., and Tempero, E. “Five Challenges in Teaching XP,”
in Proceedings if the 4th International Conference on eXtreme Processing and Agile
Processing Software Engineering (XP203), Genova, Italy, 2003, pp. 406-409 (available
online at http://www.cs.auckland.ac.nz/~rick/5ChallengesTeachingXP.pdf; accessed
January 7, 2005).

12 Part #: TItle

Pedroso Jr., M., Visoli, M. C., and Antunes, J. F. G. “Extreme Programming by Example,” in
Proceedings of the 3rd International Conference on eXtreme Processing and Agile
Processing Software Engineering (XP02), Alghero, Italy, 2002, (available online at
http://www.xp2003.org/xp2002/atti/Pedroso-Marcos--ExtremeProgrammingbyExample.pdf;
accessed January 7, 2005).

Riemenschneider, C., Hardgrave, B. C., and Davis, F. D. “Explaining Software Developer
Acceptance of Methodologies: A Comparison of Five Theoretical Models,” IEEE
Transactions on Software Engineering (28:12), 2002, pp. 1135-1145.

Rogers, E. Diffusion of Innovations (4th ed.), New York: Free Press, 1995.
Schuh, P. “Recovery, Redemption, and Extreme Programming,” IEEE Software (18:6),

November/December 2001, pp. 34-41.
Sleve, G. “Agile Before Agile was Cool,” The Journal of Defense Software Engineering (15:10),

2002, pp. 28-29.
Toleman, M., Ally, M. A., and Darroch, F. “Aligning Adoption Theory with Agile System

Development Methodologies,” in Proceedings of the 8th Pacific-Asia Conference on
Information Systems, C. P. Wei (Ed.), Shanghai, China, July 2004, pp. 458-471.

ABOUT THE AUTHORS

Mark Toleman is an associate professor of Information Systems at the University of
Southern Queensland where he has taught computing subjects to engineers, scientists, and
business students for 18 years. He has a Ph.D. in computer science from the University of
Queensland and has published more than 60 articles in books, refereed journals and refereed
conference proceedings. Mark can be reached at markt@usq.edu.au.

Fiona Darroch is a lecturer in Information Systems at the University of Southern
Queensland. Her computing career has been spent mainly in industry in the areas of project
management, business analysis, and applications development, with a move to academia two
years ago. She is currently pursuing a research Master’s degree. Fiona can be reached at
darroch@usq.edu.au.

Mustafa Ally is a lecturer in Information Systems at the University of Southern Queensland
where he is currently teaching Java and Visual Basic .NET. His research interests are in the field
of Internet Payment Systems and he has written several papers in the area of trust and security.
Mustafa can be reached at allym@usq.edu.au.

