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Abstruct- Shortest path routing schemes like Open Shortest 
Path First (OSPF) have shortcomings when networks are highly 
loaded. Traffic engineering of IP networks is required to avoid 
this problem. Current efforts suggest the optimisation of OSPF 
weights to balance the network load more evenly. Also more ad- 
vanced technologies like Multiprotocol Label Switching (MPLS) 
are proposed. One major problem of dynamic routing efforts 
that are using OSPF is the fact that many traffic flows are 
influenced by single weight changes. The Scheme for Alternative 
Packet Overflow Routing (SAPOR) which is introduced in this 
paper, realises a methodology that can remember the routing 
of packets for the duration of a micro flow. This allows the 
rerouting of overflow traffic. In this case, well known concepts 
and methodologies from conventional circuit switched teletraffic 
engineering can be adapted for IP networks. 

I. INTRODUCTION 

IP networks are a major technology for the transport of data. 
More than half of the transported traffic is already IP based. 
The core backbone network delivers the IP packets to their 
destination. Core routers and the interconnecting bearers form 
these networks. Most topologies allow many alternative paths 
in such backbone networks. Shortest path routing, in particular 
OSPF [l], is widely used to select the appropriate paths 
for origin destination pairs. Over a wide range of operating 
conditions, OSPF provides optimal solutions, in particular, in 
Internet Service Provider (ISP) grade Internet environments. 
The principal problem of shortest path routing, which many 
efforts try to solve, is that by definition all traffic is routed 
on the shortest path. If the load of the network increases, 
the shortest path links will be highly loaded, whereas other 
altemative network resources are potentially unused. 

On the other hand, many current initiatives work on the 
migration of telephony and other carrier grade services to 
all IP next generation transport networks (e.g. 3GPP [2]). In 
such a context, the Internet philosophy of “best effort” service 
and “over provisioning” are not satisfactory any more. Even 
current QoS ensuring methodologies like DifServ and IntServ 
do not address all problems. In particular, traffic-engineering 
problems are not solved by these QoS technologies. But the 
major selling points of carrier grade services are guaranteed 
service levels. Traffic engineering efforts are necessary to pro- 
vide carrier grade services using IP network bearers. Mutipro- 
tocol Label Switching (MPLS) [3] is one possible approach, 
to engineer the current networks and allow arbitrary routes, 

although, MPLS requires the migration of whole network 
regions to MPLS. Recent research also targets QoS routing and 
MPLS (e.g. Ying-Dar Lin [4]). Other research efforts directly 
target the optimisation of OSPF protocol weights to adapt the 
cost metric for given traffic demand matrices. This includes 
the Equal Cost Multi Path (ECMP) effort which is now part 
of OSPF Version 2. ECMP splits the traffic between paths with 
equal cost. Fortz and Thorup [5] use Tabu search techniques 
to optimise OSPF weights. Murphy et al. [6] use a linear 
programming approach and the fast solver CPLEX to generate 
optimised OSPF weights. Other approaches by Harmatos [7] 
use a heuristic and by Ye et al. [8] use online simulation to 
get to similar results. 

One major disadvantage of all OSPF rerouting techniques is 
that all have an impact on existing traffic flows. For example, 
if weights of links are changed, all existing flows will be 
rerouted. It can introduce major traffic shifts and instabilities 
in the network. This is one of the major arguments in [5 ]  
“why weight changes are bad”. A second argument stresses 
the importance that the network operators are in charge. This 
paper introduces a Scheme for Altemative Packet Overflow 
Routing (SAPOR). In this case, only new flows are redirected 
by this scheme, the routing of existing flows remains the same. 
This is in particular interesting, since a few long living flows 
carry a large fraction of the traffic and a growing number of 
real-time services would profit from persistent packet routing. 
In principle, this scheme can be combined with any of the 
above-mentioned efforts. It extends existing methods with the 
possibility of dynamic routing without the negative side effects 
of weight changes. SAPOR is rather an enabling technology 
than a new optimisation effort. 

The principal concept of overflow routing is not new and 
widely known by the teletraffic engineering community. Con- 
ventional circuit switched network operators have used these 
methods for years. Dynamic non-hierarchical routing (DNHR) 
[9] which uses different path sets for different times of the 
day, for voice carriers, was initially developed by AT&T. 
Other examples of these efforts include works on Dynamically 
Controlled Routing (DCR) [lo], Dynamic Altemative Routing 
(DAR) [ 111 and State- and Time-Dependent Routing STR [ 121. 
Gerald Ash’s book [9] presents a comprehensive discussion of 
this topic. 

The discussion in this paper will use the notion of traffic 

0-7803-7710-9/03/$17.00 0 2003 IEEE. 269 



flows. A flow is the aggregate of a large number of packets 
that are directed from the same origin node to the same 
destination node in the observed network. These flows can be 
measured in bytes per second. A micro flow is the aggregate 
of packets between the same IP packet endpoints, i.e. the 
same source and destination IP addresses. To further diversify 
flows, port and protocol numbers can additionally be used to 
define micro flows. The remainder of this paper is organised 
as follows: The next section introduces the concept of SAPOR 
and Section I11 describes the different functional components 
in more detail. Section V discusses issues like the performance 
and the requirements of SAPOR. The paper concludes with a 
discussion of hrther work. 

11. CONCEPT 

A router on the network layer has to route all incoming 
packets on the appropriate links of the paths to the destination 
node. The SAPOR scheme is located in routers. Figure 1 
depicts the concept of SAPOR, i.e. the way outgoing links 
are chosen for incoming packets. Compared to a conventional 
system, SAPOR is located in between the router function 
that switches the packets on the links and the routing table 
that is generated by the shortest path algorithm. The main 
functional groups of SAPOR are the Hash Function, the Token 
System and the Routing Tables. The hash function consists 
of two parts: the actual function (2) and the hash space (3). 
The token system consists of the token buffers (6), the token 
scheduler (5) and the token list (4) which is equivalent to the 
hash space. The routing tables (7) are a selection of different 
tables. The incoming packets are accumulated (1) and routed 
on the emanating arcs (8). The dotted lines indicate the token 
flows, the dash dotted lines indicate requests to the routing 
tables and the solid line shows the virtual packet flow in this 
scheme. Every outgoing link has an associated token buffer. 
To distinguish the different links and buffers in the discussion, 
colours are used to indicate their affiliation. 

This paragraph describes the operation of SAPOR. The 
incoming buffer receives new packets (1). As a first step, 
the hash space is calculated for a packet of the origin and 
destination address by a hash function (2). In the second step, 
a token buffer is selected (6). This selection is firstly based on 
the primary routing table (7). If the table indicates an outgoing 
link (e.g. red) and an available (red) token (6), the token is 
assigned to the hash space (3) and the number of tokens in the 
token buffer is reduced. In the case where the space already 
has an assigned token, this step is skipped. The current packet 
and all subsequent packets are routed on the link with the 
same colour (red). If the token buffer is empty, the secondary 
routing table is considered and the same procedure is used for 
the second table. If new packets arrive that are mapped on the 
same hash space that already holds a token, the packets are 
sent on the outgoing link with the appropriate colour. Tokens 
have a finite time to live. If no new packets arrive within the 
specified time, these tokens are selected and returned to the 
appropriate token buffer by the token scheduler (5). If a packet 
amves before the time has expired the timer is reset. 

Fig. 1. SAPOR Scheme 

111. BUILDING BLOCKS 

SAPOR uses three major building blocks: The hash func- 
tion, the token system and the routing tables. This section 
discusses the functional blocks in more detail. 

A.  Hash Function 
The purpose of the hash function is to separate single micro 

flows on the basis of flow specific parameters like the source 
IP address, the destination IP address and other parameters. 
A wide range of possible hash functions exist. The work by 
Cao et al. [13] discusses hashing based schemes for Internet 
load balancing and investigates the performance of different 
methods. Most of their results can be applied in this context 
as well. The important attributes of a hashing scheme for 
SAPOR can be summarised as follows: The results have to 
be evenly distributed over the hash space and the hash space 
should be large enough that no frequent overlapping occurs. 
For example, a 16 bit hash function yields 65536 hash spaces. 
If link specific hash functions are used (See the alternative 
Section V-F) the overlapping is less critical and smaller hash 
spaces can be used. For the purpose of SAPOR, the XOR 
folding of the source and destination address is sufficient. 
Equation (1) shows this calculation. 

The ith bytes of the source and the destination IP address 
are denoted by Si and Di respectively. N limits the size of 
the hash space. [13] indicates a sufficient spreading and this 
scheme is simple to implement. Alternative hash functions can 
also be used. 

If the mapping of the hash space changes, disruptions can 
occur since the mapping has to be reorganised. The concept of 
robust hashing was introduced in [ 141 to combat this setback. 
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However, this problem does not occur in this context, since the 
token mapping is persistent, even when new links are added 
or they disappear. For further discussion of failure modes see 
Section V-B. 

B. Token System 

The token system in combination with the hash function 
is a major part of SAPOR. The number of available tokens 
defines the size of the aggregated flows that are allowed on 
outgoing links. This behaviour is similar to the token buffers 
that are used for the leaky bucket scheme (e.g. [15]). The 
number of tokens depends on the (statistical) properties of 
the flow aggregates and the interval in which the token list is 
updated. A token buffer is associated with a link and it has 
a limited number of tokens. Every time a flow is transported 
on this link a token is assigned to the flow. If no tokens are 
available no more flows can be routed on this link. Tokens 
have a (token) time to live (TTTL). If a flow transmits no more 
packets and the TTTL has expired the tokens are returned to 
the appropriate buffer. 

I) Token Buffers: The token buffers can be simply imple- 
mented by a counter that indicates the number of tokens in a 
buffer. If a token is removed, the number decreases; if a token 
is returned, the number increases. Under normal operating 
conditions, this number is positive, but if the bucket size 
changes during operation, the bucket count can be negative. 
No tokens are available if the token count is less than one. 

2) Number of Tokens: The major parameter that specifies 
a token buffer is the number of available tokens v. It defines 
the maximum number of flows on the associated link. The 
calculation that is shown in this section uses the assumption 
that many micro flows exist and the measure of average flow 
size is a valid approximation. This requires, in particular, that 
no micro flow dominates over others, i.e. no single flow peaks 
the flow aggregates. The average micro flow size is denoted by 
7 and is measured in bytes per seconds. The average duration 
of a flow is denoted by ? and measured in seconds. The flow 
arrival rate is denoted by 29 and measured per second. The 
number of active flows A can be calculated by Equation (2). 

A=29.t (2)  

Equation (3) shows the calculation of the number of required 
tokens vl for link 1. The first tokens are determined by the 
number of flows on the link, the second sum calculates the 
number of tokens that are required due to the TTTL of the 
tokens and the delayed reset of r .  

(3) 

where I,,, is the number of outgoing links and Sv is the 
average flow change rate measured in new flows per sec. The 
second product is necessary to scale the change rate to the 
single emanating links. The possible number of flows A,,, 
depends on the capacity Cl, the average flow size 7 and the 

utilisation ul. A,,, is depicted in Equation (4). 

(4) 

For example, an average flow size of 102.4bytes/sec, an 
average duration of a flow of 30 seconds, an average flow 
arrival rate of 207.8Flows/sec, a token update every 10 
seconds and a utilisation of 60% yields 8144 tokens for one 
single outgoing link (Equation (5)). 

vl = 204.8 .30 + 200 l / sec .  10 sec = 8144 ( 5 )  

The required link capacity can be calculated using Equation 
(6). 

6144.204.8 bytes/sec 
0.6 

Cl = = 1 Il.lbyte/sec (6) 

3) Token Scheduler: The token scheduler is the hnction 
that determines “expired tokens”, clears the token list and 
returns them to the token buffers. The token scheduler is 
the most expensive finction of the SAPOR scheme, but it 
is not frequently used. It requires two major sub functions: 
The traversing of the token list and the implementation of the 
TTTL. The discussion in this section gives possible implemen- 
tations, although there are many different ways for how the 
same hnctionality could be achieved. 

The token list can be implemented by using a combined 
array-linked-list data structure. This avoids the requirement 
that all spaces have to be traversed for the price of additional 
memory. Every time a storage space is assigned, the “next 
pointer” of the last added space, is pointed to the current space. 
The current “next pointer” is set to a dummy end node. A 
global pointer remembers the end of the list space. During 
the iteration-step, the array-list is traversed in the sequence 
of the linked list. The iteration-step also remembers the last 
space it visited. In this way it is possible to delete a space 
by connecting the “next pointer” of the previous space to the 
space that is indicated by the “next pointer” of the current 
space. Other implementations are also possible. 

The TTTL can be implemented with a simple counter 
variable. Every token list item has one such variable associated 
with it. Zero indicates that the space is empty, i.e. no flows 
are using this space, Empty spaces are skipped by the iteration 
operation. If the number is positive it is increased every 
time it is traversed by the iteration hnction. If a packet 
arrives during the update interval the number is reset by this 
event. The iteration fimction is executed every T, seconds. 
If n reaches the maximum count n,,, the counter is set 
to zero and the token is returned to the appropriate token 
buffer. n,,, is a positive integer that is larger than one. 
In this case, the minimum time before a token is deleted is 
( n m a x  - 1) 9 T, and the maximum time before a token is 
returned is n,,% . T,, where T, is the time interval between 
two iterations. This difference is due to the resolution which is 
defined by the number of count steps 0 .  , . nmaz for the timer. 
Larger n,,, yield smaller differences between the minimum 
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and the maximum values. The mean time 7 before a buffer is 
delated is therefore defined by Equation (7). 

It is obvious that for large n the fraction approximates n. 
4) Token Update Interval: Since the token scheduler is the 

most expensive function, the token update interval T, should 
be as long as possible. On the other hand, long intervals require 
more tokens, a larger token list and the traversing of more 
active tokens in the token list. The number should be chosen 
on the basis of the evaluation of the given constraints. For the 
discussions in this paper an arbitrary number of 10 seconds 
has been chosen. 

IV. ROUTING TABLES 

The actual routing hnction of SAPOR uses a number of 
possible alternative routing tables. They are denoted by pri- 
mary, secondary, tertiary, ... n-ary table etc. These tables can be 
generated by any means that are appropriate and useful for the 
network configuration. SAPOR uses one primary routing table 
per node and subsequent routing tables can be link specific. 
If all routing tables are the same and built by a standard 
routing algorithm (e.g. OSPF), the SAPOR scheme behaves in 
exactly the same way as the original OSPF implementation. 
In general, the mechanisms of the legacy systems should be 
used for the primary routing table, for example, the original 
shortest path routing tables. The routing decisions for the n-ary 
routing tables and therefore paths can be based on any factors, 
e.g. administrative decisions by human network operators. In 
the case of SAPOR, the administrator can stay in charge of 
any (overflow) routing decision. A simple automatic way of 
generating these secondary routing tables is to remove the 
outgoing link in the shortest path calculation and recalculate 
the shortest path tree without the first link for the relevant 
secondary routing table. The same principle can be applied 
for all subsequent emanating links. 

Secondary routing tables could also define a complete 
redundant link system that is only used if the primary system 
is overloaded or fails. As mentioned before in this paper, 
existing teletraffic engineering methodologies can be applied 
and used. The engineering efforts are reflected in the selection 
of primary, secondary, etc. paths. Note that the path choices 
are arbitrary but it has to be ensured that the primary and all 
n-ary paths do not build loops. This is particularly important 
since this scheme is node-local. 

V. REMARKS 

This section discusses some further issues that concern the 
SAPOR scheme, in particular, requirements and performance 
issues. 

A.  Speed of Changes 
If the routing tables in the SAPOR scheme are changed, the 

traffic flows do not change instantly, they are smoothly shifted 
onto new links. The change speed is defined by the number of 

new arrivals per second and therefore departures per second. 
Equation (8) shows the duration of a change bt. 

6 t  = 6.6v (8) 

Where 19 is the flow arrival rate in flows per second and 6u 
is the number of existing flows that have to be rerouted. For 
example, if 6 = 20QFlows/sec and bv = 1000 existing flows 
have to be rerouted this will take 5 seconds. 

B. Network Topology Changes 

In the case of network topology changes, e.g. connection 
or nodes disappear or become operational, the scheme has to 
adapt to these changes. When new connections come online, 
SAPOR will simply shift flows onto new capacities as they 
become available. This will occur according to the speed of 
change philosophy outlined in the previous section. 

If nodes are no longer reachable, the speed of change might 
not be fast enough, since packets will be still routed on 
obsolete links. The failure mode for adjacent nodes is fairly 
simple. If an adjacent link is failing, the corresponding token 
buffer is emptied and all tokens in the token list that belong 
to this link are flushed. In this way all existing flows will be 
assigned to new links. 

If ”non adjacent” links or nodes disappear, there are several 
possible actions. Firstly, no specific action is taken and the 
flows rearrange with the speed of change. Flows that are 
routed to nodes that have lost their connectivity are disrupted. 
Secondly, the token list is completely flushed if major routing 
table changes occur. In this case flows that are routed by the 
primary routing table end up on the same links as before, 
the overtlow routing however may be disrupted. Thirdly, only 
tokens are flushed that belong to links that are the root to 
changed network parts. These can be identified by comparison 
of the different routing tables. 

Lastly, only tokens of links are flushed that have lost their 
connectivity. To identify changes in connectivity a simple 
method can be used. Routing tables in nodes are written as 
vectors, where every dimension identifies one emanating link. 
The elements consist of a collection of nodes nzyz that are 
reachable via this link. Equation (9) depicts an example of a 
vector PTl which reflects a primary routing table. 

{ n a ,  n b )  

RT1= ( { n c i ; ; 4 )  (9) 

All other routing tables can be written in the same way as 
PT2, PT3 etc. The connectivity vector PT can be calculated 
by using the logical “or” function on the vector elements. 
Equation (1 0) shows this calculation. 

RT = RTi V RT2 V . . . V RT, (10) 

The elements of RT in one dimension identify nodes that 
can be reached via the link that represents this dimension. 
To find links that have lost their connectivity, the RT values 
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before and after the table changes have to be compared. This 
calculation is depicted in Equation (1 1). 

L = RTt A PTt+st (1 1) 

The logical "and" operator results in differences in connec- 
tivity that existed in the first vector but not in the second 
vector. All links in vector L that are not empty have changed 
connectivity and have to be flushed. 

The fourth option is the least disruptive, but it also requires 
the most effort. Further research has to identify the right 
approach for specific networks and operating conditions. For 
instance, the topology in the core part of backbone networks 
will change far less frequently than the topology in access 
parts of IP networks and the problems will therefore require 
different strategies. 

C. Requirements and Performance 
I )  Complexity: The complexity of SAPOR is twofold. All 

operations that are required during packet routing are of the 
order of one: 0(1) i.e. the hash function, the check if a token 
is assigned, the lookup of the routing table, the assignment of 
a new token and the changes in the token buffer, therefore, 
it is possible that all packets are routed in 0(1) time. If a 
token is already assigned to the buffer less O(1) steps are 
required. The second operation is more complex, and therefore 
more expensive, but it is less frequently required. To clear 
and update the token list, all spaces have to be traversed. The 
complexity of this process is therefore O(2) where 1 indicates 
the size of the token list. 1 is equivalent to the hash space. 
Using more memory and intelligent data structures can reduce 
the number of spaces that have to be traversed. 

2) Memory: The memory requirements for the routing 
tables are equivalent to the requirements for tables of legacy 
systems. The token buffers are simple counters and require 
only several bytes per buffer. The token list is of size I and 
requires therefore 2 bytes. However, a more advanced token 
list requires IC . 1 bytes. 

D. Eficiency 
As previously mentioned, SAPOR is an enabling technology 

and not a routing methodology in the principal sense, there- 
fore, actual performance improvements or comparisons with 
existing technologies are not possible. The efficiency in terms 
of improved utilisation etc. depends solely on the method- 
ologies that are used to generate the alternative routing tables, 
although SAPOR enables the use of these new methods. Future 
research will have to focus on adaptation and development of 
efficient routing methodologies for the SAPOR scheme. 

E. Statistical Efects 
All calculations in this paper are undertaken with the 

mean values of the appropriate parameters. In practice these 
simplifications will be sufficient, since many hundreds of flows 
are observed. If SAPOR is used in very specific environments, 
e.g. where many long-term flows exist, some of the parameters 
might require adaptation to these networks. 

c3 ci) I= 

Fig. 2. Alternative SAPOR Scheme 

i? Modijied Scheme 
Figure 2 depicts a simple modification of the original 

SAPOR scheme. Most of the function blocks are the same 
as previously described. The major difference is the location 
of the primary routing table. It is situated before the hash 
function. The modified scheme also uses separate hash spaces 
for all emanating links. The principal functionality of both 
schemes is the same. The latter requires more separate building 
blocks and can use shorter hash spaces, whereas the former 
uses fewer building blocks and requires one larger hash space. 
The modified scheme has the disadvantage that it requires a 
lookup of the primary routing table every time a packet has 
to be routed. The complexity is therefore slightly higher than 
that of the original scheme. 

G. Implementation 
One minor disadvantage of SAPOR compared to pure 

management efforts is that SAPOR has to be implemented 
in existing routers, although it uses methods that are already 
implemented in existing routers. Simple changes to software 
modules can implement SAPOR. It has to be noted that the 
migration is a simple process, since SAPOR is a local router 
function and can easily coexist with legacy systems. In fact, the 
nodes can be updated one by one. Improvements are already 
enabled with the first migrated node. 

VI. FURTHER STUDY 
Recent years have seen major efforts to develop QoS routing 

schemes (e.g. Ying-Da Lin et al. [4]). The version of SAPOR 
that was discussed in this paper does not directly target 
different traffic classes, constraint based routing and QoS rout- 
ing. Future schemes can support different QoS technologies. 
Decisions within the scheme can be further separated and the 
routing can be based on the type of service, for example. 

Secondly, as indicated above, there are a wide range of 
methodologies and schemes available from circuit switched 
networks. Further research efforts will have to focus on the 
investigation of the applicability of these schemes for packet 
switched networks that use SAPOR. 
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Thirdly, research efforts will have to focus on the further 
development and the testing of SAPOR with existing and 
new routing methodologies. Then, more extensive performance 
analysis and the simulation of realistic traffic scenarios will be 
possible. 

Lastly, the generic concept that was introduced in this paper 
could also be adapted to other scenarios as well. Examples in- 
clude distributed caching systems and load sharing in between 
different processors. 

VII. CONCLUSION 

Under normal operating conditions in conventional Internet 
environments, shortest path routing provides good results, 
although the use of IP networks for carrier grade services 
place new challenges for QoS provisioning. Recent years 
have seen many efforts to enable the engineering of IP based 
backbone networks. One of these initiatives is multiprotocol 
label switching. On the other hand recent research indicates 
that OSPF weight engineering allows traffic management and 
improved network utilisation. The scheme SAPOR that has 
been proposed in this paper can be located between pure 
OSPF routing and MPLS network engineering. SAPOR allows 
that once chosen routes are persistent for the duration of 
micro flows and aggregated flows can still be redirected. 
SAPOR is less of a scheme that competes with existing 
efforts in OSPF weight optimisation and more of an enabling 
technology. Overflow traffic routing and SAPOR can use many 
existing schemes and therefore lays the groundwork for future 
developments. 
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