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An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this
paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under
obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for
dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune
clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators.
Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clusteringmodel
based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical
applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies,
the AICOE algorithm is able to achieve the global optimum and better clustering effect.

1. Introduction

Spatial clustering analysis is an important research problem
in data mining and knowledge discovery, the aim of which is
to group spatial data points into clusters. Based on the simi-
larity or spatial proximity of spatial entities, the spatial dataset
is divided into a series of meaningful clusters [1]. Due to the
spatial data cluster rule, clustering algorithms can be divi-
ded into spatial clustering algorithm based on partition [2, 3],
spatial clustering algorithm based on hierarchy [4, 5], spatial
clustering algorithm based on density [6], and spatial cluster-
ing algorithm based on grid [7].

The distance measure between sample points in object
space is an important component of a spatial clustering algo-
rithm. The above traditional clustering algorithms assume
that two spatial entities are directly reachable anduse a variety
of straight-line distance metrics to measure the degree of
similarity between spatial entities. However physical barriers
often exist in the realistic region. If these obstacles and facil-
itators are not considered during the clustering process, the
clustering results are often not realistic. Taking the simulated

dataset in Figure 1(a) as an example, where the points repre-
sent the location of consumers, the clustering result shown
in Figure 1(b) can be obtained, when the rivers and hill as
obstacles are not considered. If the obstacles are taken into
account and bridges as facilitators are not considered, the
clustering result in Figure 1(c) can be gained. Considering
both the obstacles and facilitators, Figure 1(d) demonstrates
the more efficient clustering patterns.

At present, only a few clustering algorithms consider
obstacles and/or facilitators in the spatial clustering process.
COE-CLARANS algorithm [8] is the first spatial clustering
algorithm with obstacles constraints in a spatial database,
which is an extension of classic partitional clustering algo-
rithm. It has similar limitations to the CLARANS algorithm
[9], which has sensitive density variation and poor efficiency.
DBCluC [10] extends the concepts of DBSCAN algorithm
[11], utilizing obstruction lines to fill the visible space of
obstacles. However, it cannot discover clusters of different
densities. DBRS+ is the extension of DBRS algorithm [12],
considering the continuity in a neighborhood. Global
parameters used by DBRS+ algorithm make it suffer from
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Figure 1: Spatial clustering with obstacle and facilitator constraints: (a) spatial dataset with obstacles; (b) spatial clustering result ignoring
obstacles; (c) spatial clustering result considering obstacles; (d) spatial clustering result considering both obstacles and facilitators.

the problem of uneven density. AUTOCLUST+ is a graph-
based clustering algorithm, which is based on AUTOCLUST
clustering algorithm [13]. For the statistical indicators used
by AUTOCLUST+ algorithm, it could not deal with planar
obstacles. Liu et al. presented an adaptive spatial clustering
algorithm [14] in the presence of obstacles and facilitators,
which has the same defect as AUTOCLUST+ algorithm.

Recently, the artificial immune system (AIS) inspired by
biological evolution provides a new idea for clustering anal-
ysis. Due to the adaptability and self-organising behaviour
of the artificial immune system, it has gradually become a
research hotspot in the domain of smart computing [15–20].
Bereta and Burczyński performed the clustering analysis by
means of an effective and stable immune𝐾-means algorithm
for both unsupervised and supervised learning [21]. Gou et al.
proposed the multielitist immune clonal quantum clustering
algorithm by embedding a potential evolution formula into
affinity function calculation of multielitist immune clonal
optimization and updating the cluster center based on the
distance matrix [22]. Liu et al. put forward a novel immune
clustering algorithm based on clonal selection method and
immunodominance theory [23].

In this paper, a path searching algorithm is firstly pro-
posed for the approximate optimal path between two points
among obstacles to achieve the corresponding obstacle dis-
tance. It does not need preprocessing and can deal with both

linear and planar obstacles. Based on the path searching algo-
rithm, a spatial clustering algorithm is proposed to the spatial
data clustering in the presence of both obstacles and facili-
tators. A case study is also carried out to apply our method
to the problem of public facility optimization.

The remainder of this paper is organized as follows. Sec-
tion 2 at first presents the path searching algorithm and then
elaborates the details of AICOE algorithm, including analysis
of population partition, the design of affinity function, and
immune operators. Section 3 shows the experimental results.
Section 4 presents the conclusions and main findings.

2. Theoretical Framework

2.1. Obstacles Representation. Physical obstacles in the real
world can generally be divided into linear obstacles (e.g.,
river, highway) and planar obstacles (e.g., lake). Facilitators
(e.g., bridge) are physical objects which can strengthen
straight reachability among objects. In processing geospatial
data, representation of the spatial entities needs to be firstly
determined [14]. In this paper, the vector data structure is
used to represent spatial data. Obstacles entities are approxi-
mated as polylines and polygons. A facilitator is abstracted as
a vertex on an obstacle.

Relevant definitions are provided as follows.
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Figure 2: Construction of approximate optimal path between two points with obstacle constraints: (a) intersect with a linear obstacle; (b)
intersect with the last planar obstacle; (c) intersect with a planar obstacle and obstacles behind it are all planar; (d) intersect with a planar
obstacle and the obstacle behind it is linear.

Definition 1 (linear obstacles). Let 𝐿 = {𝐿
𝑖
| 𝐿
𝑖
= (𝑉
(𝐿)

𝑖
, 𝐸
(𝐿)

𝑖
),

𝑖 ∈ 𝑍
+
} be polyline obstacles set, where 𝑉

(𝐿)

𝑖
is the set of

vertices of 𝐿
𝑖
; 𝐸(𝐿)
𝑖

= {(V
𝑖𝑘
, V
𝑖𝑘+1

) | V
𝑖𝑘
, V
𝑖𝑘+1

∈ 𝑉
(𝐿)

𝑖
, V
𝑖𝑘
is the

adjacent vertex of V
𝑖𝑘+1

, 𝑘 = 1, . . . ,𝑀
𝑖
−1,𝑀

𝑖
is the number of

𝑉
(𝐿)

𝑖
}.

Definition 2 (planar obstacles). Let 𝑆 = {𝑆
𝑖
| 𝑆
𝑖
= (𝑉
(𝑆)

𝑖
, 𝐸
(𝑆)

𝑖
),

𝑖 ∈ 𝑍
+
} be polygon obstacles set, where 𝑉

(𝑆)

𝑖
is the set of

vertices of 𝑆
𝑖
; 𝐸(𝑆)
𝑖

= {(V
𝑖𝑘
, V
𝑖(𝑘+1) mod 𝑁𝑖

) | V
𝑖𝑘
, V
𝑖(𝑘+1) mod 𝑁𝑖

∈ 𝑉
(𝑆)

𝑖
,

V
𝑖𝑘
is the adjacent vertex of V

𝑖(𝑘+1) mod |𝑁𝑖|
, 𝑘 = 1, . . . , 𝑁

𝑖
, 𝑁
𝑖
is the

number of 𝑉(𝑆)
𝑖

}.

Definition 3 (facilitators). Let 𝑉
𝑐
= {𝑉
(𝐶)

𝑖
| 𝑉
(𝐶)

𝑖
is the set of

facilitators on the 𝑖th obstacle}.

Definition 4 (direct reachability). For any two points 𝑝, 𝑞 in a
two-dimensional space, 𝑝 is called directly reachable from 𝑞,
if segment 𝑝𝑞 does not intersect with any obstacle; otherwise,
𝑝 is called indirectly reachable from 𝑞.

2.2. The Obstacle Distance between the Spatial Entities. Cur-
rently, the method of distance calculation often computes
Euclidean distance between two clustering points. When
physical obstacles exist in the real space, obstacles constraints
should be taken into account to solve the distance between the
two entities in the space. The algorithm handles linear obsta-
cles and planar obstacles, respectively.When traversing linear
obstacles, facilitators are also taken into account for path
construction. Figure 2(a) illustrates the process of construct-
ing approximate optimal path for linear obstacle, which
presents a schematic view of Step 4 of the algorithm. When
traversing planar obstacles, path is generated by the method
to construct the minimum convex hull. In the case of no
more than 100,000 two-dimensional space data samples, the
calculation of the minimum convex hull can be finished
within a few seconds [24]. Here Graham algorithm is used
to produce the minimum convex hull [25]. Figures 2(b) and
2(c) and Figure 2(d), respectively, illustrate the construction
process of the approximate optimal path for planar obstacles.

Figure 2(b) shows a schematic view of the first case of Step 5.
Figures 2(c) and 2(d) demonstrate a schematic view of the
second case of Step 5.

For the sake of easy presentation of the path searching
algorithm, the relevant symbols are defined as follows. Let
𝑜
𝑖
∈ 𝐿∪𝑆 be an obstacle, and𝑉(𝑙)

𝑖
(
→
𝑝𝑞) ⊂ 𝑉

𝑐
is the vertex subset

of 𝑜
𝑖
on your left hand when you walk along vector →𝑝𝑞 from

point 𝑝 to 𝑞. Similarly, 𝑉(𝑟)
𝑖
(
→
𝑝𝑞) ⊂ 𝑉

𝑐
is the vertex subset

of 𝑜
𝑖
on the right hand. 𝐺𝑟𝑎(𝑈, 𝑝, 𝑞) is the smallest convex

hull which is constructed from the start point 𝑝 to the end
point 𝑞 containing all the points of the vertex set 𝑈.
𝑃𝑎𝑡ℎ
(𝑐)
(𝐺𝑟𝑎(𝑈, 𝑝, 𝑞)) denotes the path from the start point 𝑝

to the end point 𝑞, which is constructed by the adja-
cent edges of 𝐺𝑟𝑎(𝑈, 𝑝, 𝑞) in the clockwise direction;
𝑃𝑎𝑡ℎ
(𝑐𝑐)

(𝐺𝑟𝑎(𝑈, 𝑝, 𝑞)) denotes the path from the start point 𝑝
to the end point 𝑞, which is constructed by the adjacent edges
of 𝐺𝑟𝑎(𝑈, 𝑝, 𝑞) in the counterclockwise direction. path1 and
path2, respectively, are the obstacle paths on the left and right
hand of →𝑝𝑞. When new segments are added to path1 and
path2, the start points of the added segments are denoted by
𝑝1 and 𝑝2, respectively. Similarly, the end points are denoted
by 𝑞1 and 𝑞2. 𝑑

𝑜
(𝑝, 𝑞) represents the obstacle distance

between two spatial entities. If 𝑝 is directly reachablefrom
𝑞, 𝑑
𝑜
(𝑝, 𝑞) is Euclidean distance between the two points,

denoted by 𝑑(𝑝, 𝑞); if 𝑝 is indirectly reachablefrom 𝑞, path is
configured to bypass the obstacles while 𝑝, 𝑞, respectively, are
taken as the start and end points.

The path searching algorithm for the approximate opti-
mal path between two points among obstacles can be elabo-
rated as follows.

Step 1. If 𝑝 is directly reachable from 𝑞, then 𝑑
𝑜
(𝑝, 𝑞) =

𝑑(𝑝, 𝑞), and the algorithm is terminated; otherwise, go to Step
2.

Step 2. Find the obstacles intersect with →𝑝𝑞, which in turn are
represented as 𝑜

1
, 𝑜
2
, . . . , 𝑜

𝑚
∈ 𝐿 ∪ 𝑆, where 𝑚 is the number

of the obstacles.

Step 3. Consider 𝑝𝑎𝑡ℎ1 = 𝜙, 𝑝𝑎𝑡ℎ2 = 𝜙, 𝑝1 = 𝑝2 = 𝑝, and
𝑖 = 0.
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Step 4. If 𝑜
𝑖
∈ 𝐿, execute the following steps.

(i) Select the vertex 𝑢 ∈ 𝑉
(𝑙)

𝑖
(
→
𝑝𝑞) which has the smallest

distance to →𝑝𝑞.

(ii) Select the vertex V ∈ 𝑉
(𝑟)

𝑖
(
→
𝑝𝑞) which has the smallest

distance to →𝑝𝑞.

(iii) Consider 𝑞
1
= 𝑢, 𝑞

2
= V, 𝑝𝑎𝑡ℎ1 = 𝑝𝑎𝑡ℎ1 ∪

→
𝑝
1
𝑞
1
, and

𝑝𝑎𝑡ℎ2 = 𝑝𝑎𝑡ℎ2 ∪
→
𝑝
2
𝑞
2
.

(iv) Consider 𝑖 + +, 𝑝
1
= 𝑞
1
, and 𝑝

2
= 𝑞
2
.

(v) Go to Step 6.

Step 5. If 𝑜
𝑖
∈ 𝑆, there are the following two cases.

(I) If 𝑖 == 𝑚, execute the following steps.

(i) If →𝑝
1
𝑞 intersects with 𝑜

𝑖
, add 𝑉

(𝑙)

𝑖
(
→
𝑝
1
𝑞) to 𝑈

1
,

𝑝𝑎𝑡ℎ1 = 𝑝𝑎𝑡ℎ1 ∪ 𝑃𝑎𝑡ℎ
(𝑐)
(𝐺𝑟𝑎(𝑈

1
, 𝑝
1
, 𝑞)).

(ii) If →𝑝
2
𝑞 intersects with 𝑜

𝑖
, add 𝑉

(𝑟)

𝑖
(
→
𝑝
2
𝑞) to 𝑈

2
,

𝑝𝑎𝑡ℎ2 = 𝑝𝑎𝑡ℎ2 ∪ 𝑃𝑎𝑡ℎ
(𝑐𝑐)

(𝐺𝑟𝑎(𝑈
2
, 𝑝
2
, 𝑞)).

(iii) Consider 𝑖 + +, 𝑝
1
= 𝑞, and 𝑝

2
= 𝑞.

(iv) Go to Step 6.

(II) If 𝑖 < 𝑚, execute the following steps.

(i) If 𝑜
𝑘
(𝑘 = 𝑖, 𝑖 + 1, . . . , 𝑚) ∈ 𝑆, execute the

following steps.

(a) Add 𝑉
(𝑙)

𝑘
(
→
𝑝
1
𝑞) to 𝑈

1
, 𝑝𝑎𝑡ℎ1 = 𝑝𝑎𝑡ℎ1 ∪

𝑃𝑎𝑡ℎ
(𝑐)
(𝐺𝑟𝑎(𝑈

1
, 𝑝
1
, 𝑞)).

(b) Add 𝑉
(𝑟)

𝑘
(
→
𝑝
2
𝑞) to 𝑈

2
, 𝑝𝑎𝑡ℎ2 = 𝑝𝑎𝑡ℎ2 ∪

𝑃𝑎𝑡ℎ
(𝑐𝑐)

(𝐺𝑟𝑎(𝑈
2
, 𝑝
2
, 𝑞)).

(c) Consider 𝑖 = 𝑚, 𝑝
1
= 𝑞, and 𝑝

2
= 𝑞.

(ii) If 𝑜
𝑖
, 𝑜
𝑖+1

, . . . , 𝑜
𝑘
(𝑘 < 𝑚) ∈ 𝑆 and 𝑜

𝑘+1
∈ 𝐿,

execute the following steps.

(a) Select the vertex 𝑢 ∈ 𝑉
(𝑙)

𝑘+1
(
→
𝑝𝑞) which has

the smallest distance to →𝑝𝑞.
(b) Select the vertex V ∈ 𝑉

(𝑟)

𝑘+1
(
→
𝑝𝑞) which has

the smallest distance to →𝑝𝑞.
(c) Consider 𝑞

1
= 𝑢 and 𝑞

2
= V.

(d) Add 𝑉
(𝑙)

𝑖
(
→
𝑝
1
𝑞
1
), 𝑉
(𝑙)

𝑖+1
(
→
𝑝
1
𝑞
1
), . . . , 𝑉

(𝑙)

𝑘
(
→
𝑝
1
𝑞
1
)

to 𝑈
1
. Consider 𝑝𝑎𝑡ℎ1 = 𝑝𝑎𝑡ℎ1 ∪

𝑃𝑎𝑡ℎ
(𝑐)
(𝐺𝑟𝑎(𝑈

1
, 𝑝
1
, 𝑞
1
)).

(e) Add 𝑉
(𝑟)

𝑖
(
→
𝑝
2
𝑞
2
), 𝑉
(𝑟)

𝑖+1
(
→
𝑝
2
𝑞
2
), . . . , 𝑉

(𝑟)

𝑘
(
→
𝑝
2
𝑞
2
)

to 𝑈
2
. Consider 𝑝𝑎𝑡ℎ2 = 𝑝𝑎𝑡ℎ2 ∪

𝑃𝑎𝑡ℎ
(𝑐𝑐)

(𝐺𝑟𝑎(𝑈
2
, 𝑝
2
, 𝑞
2
)).

(f) Consider 𝑖 = 𝑘 + 1, 𝑝
1
= 𝑞
1
, and 𝑝

2
= 𝑞
2
.

Step 6. If 𝑖 < 𝑚, go to Step 4; otherwise if 𝑝
1
! = 𝑞 and 𝑝

2
! = 𝑞,

then 𝑝𝑎𝑡ℎ1 = 𝑝𝑎𝑡ℎ1 ∪
→
𝑝
1
𝑞, 𝑝𝑎𝑡ℎ2 = 𝑝𝑎𝑡ℎ2 ∪

→
𝑝
2
𝑞 ⋅ 𝑑
𝑜
(𝑝, 𝑞) =

𝑚𝑖𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎ1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎ2)).

2.3. Spatial Clustering Algorithm with Obstacle Constraints
Based on Artificial Immune System. Computational intelli-
gence techniques have been widely applied to data engineer-
ing research, including classification, clustering, deviation, or
outlier detection [19]. Artificial immune system (AIS) is an
intelligent method, whichmimics natural biological function
of the immune system. For its promising performance in
immune recognition, the ability of immune learning and
immune memory, AIS gradually becomes an important
branch of intelligent computing [26–29]. In order to solve the
problems of the traditional cluster algorithm in sensitivity to
the initial value and the tendency to fall into local optimum,
while maintaining its advantages of fast convergence speed, a
novel spatial clustering algorithm with obstacle constraints is
proposed in this paper.

2.3.1. The Clustering Problem. Given 𝑉, the goal of a cluster-
ing algorithm is to obtain a partition 𝐼 = {𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑘
} (i.e.,

𝐼
𝑖

̸= 𝜙, for all 𝑖; ⋃𝑘
𝑖=1

𝐼
𝑖
= 𝑉; 𝐼

𝑖
∩ 𝐼
𝑗
= 𝜙, for all 𝑖 ̸= 𝑗) which

satisfies that objects classified as the same cluster are as similar
to each other as possible, whereas objects classified as the
different clusters are as dissimilar as possible.

2.3.2. Antibody Encoding. Let 𝑉 = {V
1
, V
2
, . . . , V

𝑀
} be a set

of 𝑀 sample points, corresponding to the antigen set 𝐴𝑔𝑠 =
{𝑎𝑔
1
, 𝑎𝑔
2
, . . . , 𝑎𝑔

𝑀
}. The antibody set 𝐴𝑏𝑠 = {𝑎𝑏

1
, 𝑎𝑏
2
, . . . ,

𝑎𝑏
𝑁
}, where𝑁 is the number of antibodies. Each antibody 𝑎𝑏

𝑖

consists of 𝑘 cluster centers, and each cluster center can be
expressed as a real-value 𝑑-dimensional profile vector which
is represented as 𝑎𝑏

𝑖
= {𝑎

11
𝑎
12
. . . 𝑎
1𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐1

⋅ ⋅ ⋅ 𝑎
𝑖1
𝑎
𝑖2
. . . 𝑎
𝑖𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐𝑖

⋅ ⋅ ⋅

𝑎
𝑘1
𝑎
𝑘2
. . . 𝑎
𝑘𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐𝑘

}, where 𝑐
𝑖
corresponds to the center of the 𝑖th-

cluster.

2.3.3. Affinity Function Design and Immune Operators. In
most occasions, the most used similarity metric in a clus-
tering algorithm is distance metric. The total within-cluster
variance or the total mean-square quantization error (MSE)
[30] is calculated as follows:

Perf (𝑉, 𝐶) =
𝑚

∑

𝑖=1

{

V
𝑖
− 𝑐
𝑗



2

, 𝑗 = 1, . . . , 𝑘} , (1)

where ‖V
𝑖
− 𝑐
𝑗
‖ denotes the similarity between sample point

V
𝑖
and clustering center 𝑐

𝑗
and the obstacle distance is used as

a distance metric in this paper. Obstacles constraints should
be taken into account for clustering algorithms in the paper.
On this basis, cluster centers set 𝐶 = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑘
} and the

corresponding partition 𝐼 = {𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑘
} are achieved by

applying the rule that the nearer sample points are apart from
a cluster center in obstacle distance.

Bearing in mind the measurement of the MSE in (1), we
design an affinity function 𝑓

𝑖,𝑗
in (2), which represents the

affinity of the antibody of 𝑖 with antigen 𝑗. Let 𝐷in-cluster =

∑
𝑘

𝑗=1
∑V𝑖∈𝑉∩𝐼𝑗 𝑑𝑜(V𝑖, 𝑐𝑗); then

𝑓
𝑖,𝑗
=

1

𝐷in-cluster + 𝜀
0

, (2)
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where 𝜀
0
is a small positive number to avoid illness (i.e.,

denominator equals zero). fmeans denotes the average value
of population affinity, which can be calculated as

𝑓𝑚𝑒𝑎𝑛𝑠 =

∑
𝑘

𝑖=1
∑
𝑚

𝑗=1
𝑓
𝑖,𝑗

𝑘
.

(3)

𝑀 ⊆ 𝐴𝑏𝑠 is memory cell subset.Threshold value of immuno-
suppression is calculated as

𝛼 =
1

𝑘2

𝑘−1

∑

𝑖=1

𝑘

∑

𝑗=𝑖+1

𝑓


𝑖,𝑗
, (4)

where 𝑓


𝑖,𝑗
= 𝑑
𝑜
(𝑐
𝑖
, 𝑐
𝑗
), which represents the affinity of the

antibody of 𝑖 with antibody 𝑗.
The antibody selection operations, cloning operations,

and mutation operations of AICOE algorithm were defined
in the literature [31].

2.3.4. Artificial Immune Clustering with Obstacle Entity
(AICOE) Algorithm. F 𝐴𝑔𝑠 = {𝑎𝑔

1
, 𝑎𝑔
2
, . . . , 𝑎𝑔

𝑀
}, the

algorithm is described as follows.

Step 1. Initialize antibody set 𝐴𝑏𝑠(0) = {𝑎𝑏
1
, 𝑎𝑏
2
, . . . , 𝑎𝑏

𝑁
},

where𝑁 is the number of antibodies. Consider 𝑡 = 0.

Step 2. For all 𝑎𝑔
𝑖
∈ 𝐼
𝑘
(1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝑁), calculate the

value of 𝑓
𝑖,𝑘
according to (2).

Step 3. According to the affinity calculations by Step 2, opti-
mal antibody subset 𝑏𝑠𝑡𝐴𝑆 is composed of top 𝐾(𝐾 ≤ 𝑁)

affinity antibodies where 𝑏𝑠𝑡𝐴𝑆 ⊆ 𝐴𝑏𝑠(𝑡). Add 𝑏𝑠𝑡𝐴𝑆 to𝑀.

Step 4. Generation of the next generation antibody set is
elaborated as follows.

(I) Obtain bstAS1 via performing clone operation on
bstAS.

(II) Obtain bstAS2 via performing mutation operation on
bstAS1. Add bstAS2 to𝑀.

(III) Implement the immunosuppression operation on𝑀.
Calculate the value of 𝛼 according to (4). For all 𝑎𝑏

𝑖
,

𝑎𝑏
𝑖
∈ 𝑀, if the value of 𝑓

𝑖,𝑗
is less than 𝛼, randomly

delete one of the two antibodies.
(IV) Randomly generate antibody subset to update the

next generation antibody set, denoted by rdmAS.
(V) Add𝑀 and 𝑟𝑑𝑚𝐴𝑆 to 𝐴𝑏𝑠(𝑡 + 1). Consider 𝑡 = 𝑡 + 1.

Step 5. Calculate the value of the fmeans of contemporary
population by using (3). If the difference fmeans in certain
continual iterations does not exceed 𝜀, stop the algorithm;
otherwise go to Step 2.

3. Case Implementation and Results

This paper presents two sets of experiments to prove the
effectiveness of the AICOE algorithm. The first experiment

uses a set of simulated data, which are generated by the
simulation of ArcGIS 9.3. Experimental results are compared
with 𝐾-means clustering algorithm [2, 3]. The second exper-
iment is carried out on a case study on Wuhu city and
compares the results with the COE-CLARANS algorithm [8].
All algorithms are implemented in C# language and executed
on Pentium 4.3HZ, 2GB RAM computers. The main param-
eters of the algorithm are defined as follows: mutation rate
𝑝
𝑚

= 0.35, inhibition threshold 𝛼 = 0.05, and the iterative
stopping criteria parameter 𝜀 = 1.0𝑒 − 4.

3.1. Simulation Experimental Results. The classical 𝐾-means
clustering algorithm has been widely used for its simplicity
and feasibility. The AICOE algorithm uses obstacle distance
defined in this paper for clustering analysis, and 𝐾-means
algorithm uses Euclidean distance as similarity measure of
samples. Simulated dataset of the first experiment is shown in
Figure 3(a).When cluster number 𝑘 = 6, the clustering results
of 𝐾-means clustering algorithm and AICOE algorithm are
shown in Figures 3(b) and 3(c), respectively. Experimental
results show that the clustering results of the AICOE algo-
rithm considering obstacles and facilitators are more efficient
than𝐾-means algorithm.

3.2. A Case Study on Wuhu City

3.2.1. Study Area and Data. In this test, the AICOE algo-
rithm is applied to an urban spatial dataset of the city of
Wuhu in China (Figure 4). This paper takes 994 residential
communities as two-dimensional points, where the points
are represented as (𝑥, 𝑦). In this case study, each residential
community is treated as cluster sample point, with its popu-
lation being an attribute. The highways, rivers, and lakes in
the territory are regarded as spatial obstacles, as defined in
Definitions 1 and 2, respectively. Pedestrian bridge andunder-
pass on a highway and the bridge on the water body serve
as connected points, and the remaining vertices are uncon-
nected points. Digital map of ChineseWuhu stored in ArcGis
9.3 was used. And automatic programming has been devised
to generate spatial points as cluster points to the address of
the residential communities. The purpose of this paper is to
find the suitable centers (medoids) and their corresponding
clusters.

3.2.2. Clustering Algorithm Application and Contrastive Anal-
ysis. The COE-CLARANS algorithm [8] and the AICOE
algorithm are compared by simulation experiment. The
AICOE algorithmuses obstacle distance defined in this paper
for clustering analysis. The comparison results of clustering
analysis using COE-CLARANS algorithm and AICOE algo-
rithm are shown in Figure 5, and the comparison results
of clustering analysis using COE-CLARANS algorithm and
AICOE algorithm considering clustering centers are shown
in Figure 6.

Given the covered range of different types of public
facilities, a clustering simulation is carried out to generate 5,
10, and 15 subclasses, respectively, in this paper. Because
Yangtze River is the main obstacle of Wuhu territory, the
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Table 1: Run time comparison of COE-CLARANS and AICOE (seconds).

Number of points
5 obstacles
(50 vertices)

10 obstacles
(100 vertices)

20 obstacles
(200 vertices)

COE-CLARANS AICOE COE-CLARANS AICOE COE-CLARANS AICOE
25 k 25.86 20.58 31.54 25.69 36.92 26.87
50 k 43.16 31.59 46.85 35.67 49.36 36.98
75 k 58.22 39.56 61.23 41.23 63.33 42.36
100 k 82.63 64.55 83.79 65.32 83.94 65.87

(a) (b) (c)

Figure 3: Clustering spatial points in the presence of obstacles and facilitators: (a) simulated dataset; (b) clustering results of 𝐾-means
algorithm with obstacles and facilitators; (c) clustering results of AICOE algorithm with obstacles and facilitators.

clustering result of its surrounding regions can demonstrate
the validity of the algorithm. Setting cluster number 𝑘 = 5, the
clustering results of the AICOE algorithm show that only one
clustered region 2 has been passed through by Yangtze River
whereWuhu Yangtze River Bridge plays a role as a facilitator.
While the clustering results of theCOE-CLARANS algorithm
show that Yangtze River has passed through two clusters,
the clustered region 2 does not have any facilitators. Setting
cluster number 𝑘 = 10, the clustering results of the COE-
CLARANS algorithm show that Yangtze River has passed
through three subclass regions and the clustered regions 3 and
4 do not have any facilitators. Setting cluster number 𝑘 = 15,
there does not exist any facilitator in the clustered region 11
obtained by the COE-CLARANS algorithm. In comparison,
the clustering results of the AICOE algorithm show that only
one clustering region has been passed through by Yangtze
River where the facilitator exists. The simulation results
demonstrate that the impacts of obstacles on clustering
results correspondingly reduce along with the increase in the
number of cluster regions.

Figure 7 demonstrates that the COE-CLARANS algo-
rithm is sensitive to initial value, while the AICOE algorithm
avoids this flaw effectively. Meanwhile, the AICOE algorithm
can get global optimal solution in fewer iterations.

Table 1 shows the results of scalability experiments for
the comparison of the COE-CLARANS algorithm and the
AICOE algorithm. The synthetic dataset in the following
experiments is generated from a Gaussian distribution. The
size of dataset varies from 25,000 to 100,000 points. The
obstacles and facilitators are generatedmanually.Thenumber
of the obstacles varies from5 to 20, and the number of vertices

of each obstacle is 10. The number of the facilitators accounts
for 20% of the number of the obstacles. Table 1 illustrates
that the AICOE algorithm is faster than the COE-CLARANS
algorithm.

By comparison of the COE-CLARANS algorithm and the
AICOE algorithm for handling spatial clustering with physi-
cal constraints, the experimental results show that the COE-
CLARANSalgorithmcauses grouping biases due to itsmicro-
clustering approach. Correspondingly, the AICOE algorithm
operates with all the data with less prior preprocessing. The
quality of clustering results achieved by theAICOE algorithm
surpasses the results of the COE-CLARANS algorithm. Next,
the simulation results also indicate that the AICOE algorithm
overcomes the COE-CLARANS shortcoming of sensitivity
to initial value. The reason for this drawback is that COE-
CLARANS algorithm selects the optimum set of represen-
tatives for clusters with a two-phase heuristic method. Last,
the results of scalability experiments illuminate that theCOE-
CLARANS algorithm which is affected by the low efficiency
of preprocessing runs slower than the AICOE algorithm.

4. Conclusions

Artificial immune clustering with obstacle entity algorithm
(i.e., AICOE) has been presented in this paper. By means
of experiments on both synthetic and real world datasets,
the AICOE algorithm has the following advantages. First,
through the path searching algorithm, obstacles and facil-
itators can be effectively considered with less prior pre-
processing compared to the related algorithm (e.g., COE-
CLARANS). Then, by embedding the obstacle distance
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Figure 4: The spatial distribution of Wuhu city: (a) administrative map of Wuhu city; (b) the spatial distribution of communities in Wuhu.
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Figure 5: Comparison of clustering analysis using the COE-CLARANS algorithm and the AICOE algorithm: (a) 5 subclasses (COE-
CLARANS algorithm); (b) 15 subclasses (AICOE algorithm); (c) 10 subclasses (COE-CLARANS algorithm); (d) 15 subclasses (AICOE
algorithm); (e) 15 subclasses (COE-CLARANS algorithm); (f) 15 subclasses (AICOE algorithm).
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Figure 6: Comparison of clustering analysis using the COE-CLARANS algorithm and the AICOE algorithm considering clustering center:
(a) 5 subclasses (COE-CLARANS algorithm); (b) 15 subclasses (AICOE algorithm); (c) 10 subclasses (COE-CLARANS algorithm); (d) 15
subclasses (AICOE algorithm); (e) 15 subclasses (COE-CLARANS algorithm); (f) 15 subclasses (AICOE algorithm).
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Figure 7: Comparison of clustering analysis using the COE-CLARANS algorithm and the AICOE algorithm by intercluster distances: (a)
cluster number 𝑘 = 5; (b) cluster number 𝑘 = 10; (c) cluster number 𝑘 = 15.

metric into affinity function calculation of immune clonal
optimization and updating the cluster centers based on the
elite antibodies, the AICOE algorithm effectively solves the
shortcomings of the traditional method. The comparative
experimental and case study with the classic clustering
algorithms has demonstrated the rationality, performance,
and practical applicability of the AICOE algorithm.

Due to the complexity of geographic data and the differ-
ence of data formats, present researches on spatial clustering
with obstacle constraint mainly aim at clustering method for
two-dimensional spatial data points [8, 10, 12–14]. There are
two directions for future work. One is to extend our approach
for conducting comprehensive experiments onmore complex
databases from real application. The other is to take nonspa-
tial attributes into account for a comprehensive analysis of
spatial database.
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