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Abstract. Effectively identifying anomalous nodes within networks is
crucial for various applications, such as fraud detection, network intru-
sion prevention, and social network activity monitoring. Existing graph
anomaly detection methods based on contrastive learning have shown
promising results but often suffer from limitations due to their local
focus, such as community blindness (overlooking the inherent commu-
nity structure of networks), limited anomaly scope (focusing solely on
the local perspective), and high computational cost. To address these
challenges, we propose a novel and efficient graph anomaly detec-
tion method called MCEN-GAD, which leverages a multi-level con-
trastive learning approach to identify anomalies across multiple network
dimensions. Specifically, MCEN-GAD incorporates three contrastive net-
works: a patch-level contrastive network for local anomaly detection,
a community-level contrastive network for identifying anomalies within
specific communities, and a global-level anomaly detection network for
exploring more global anomalous information. MCEN-GAD integrates
the anomaly scores from these three levels using a weighted sum app-
roach, achieving a comprehensive understanding of anomalous activity
within the network. This multi-level integration allows MCEN-GAD to
effectively capture anomalies across different network dimensions and
provide a more robust anomaly detection framework. The experimental
results clearly demonstrate the remarkable effectiveness and efficiency of
our method compared with the state-of-the-art approaches on six bench-
mark datasets.
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1 Introduction

Anomaly detection is a data mining process aimed at identifying uncommon
patterns within datasets [16]. While traditional methods use feature vectors to
detect outliers [18,20], they often overlook the relationships between objects,
which can limit their effectiveness. Recently, graph anomaly detection has
become prominent [10] as it represents real-world objects and their intercon-
nections as nodes and edges, capturing essential structural information. This
approach allows graph-based anomaly detection methods to identify anomalies
that might not be obvious when only considering individual objects or their
attributes. Currently, these methods have been effectively applied in various
domains, including finance [3,19], network security [1], and social media [11,21],
demonstrating their potential in preventing various harmful events.

Supervised learning can effectively differentiate between normal and anoma-
lous patterns using labeled data, achieving high accuracy in anomaly detection.
However, the lack of prior knowledge about anomalies and the extensive effort
needed to label data make these techniques less suitable for graph anomaly detec-
tion. In contrast, unsupervised methods emerge as more appropriate for this
task, as they do not rely on labeled data and are capable of uncovering patterns
and identifying anomalies based solely on the inherent information of the graph
itself. Recent advancements have seen the rise of many unsupervised approaches
[4,5,7,12,15], including self-supervised methods like contrastive learning, which
excels by modeling the relationships between samples to create more informative
representations. This allows contrastive learning to more effectively distinguish
between normal and anomalous patterns in graphs, enhancing anomaly detection
performance.

Although these methods have shown promising results, current contrastive
learning-based approaches [6,8,14,17,22,24] typically assess anomalies from a
local perspective, presenting several issues that need to be addressed: (1) These
methods overlook the significance of community structures, thus posing the risk
of incorrectly labeling two nodes from the same community as negative pairs.
However, community structures are quite common across many real-world net-
works. For example, in social networks, users sharing similar interests typically
have close connections, whereas those with differing interests tend to maintain a
certain distance from each other. Therefore, users within the same interest com-
munity possess similar characteristics, and identifying them as negative pairs
would significantly weaken the model’s ability to recognize normal patterns. (2)
Due to complex interactions between structures and attributes, anomalous nodes
display diversity and manifest across different scales. For instance, a user in a
social network who posts gambling content in a community focused on healthy
living would be deemed a community anomaly due to the deviation from the
community’s theme and norms. Globally, a node with extensive connections to
unrelated communities could indicate an abnormal role, such as serving as a
‘middleman’ in a botnet. Relying solely on local data for anomaly detection
often leads to suboptimal results. Thus, it is crucial to develop a comprehensive
approach that assesses graph anomalies from multiple dimensions. (3) Moreover,
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these models often require numerous iterations of batch sampling during both
training and testing phases, as well as multiple rounds of anomaly score calcu-
lation. Consequently, the runtime rises rapidly with the size of the dataset and
the number of training and evaluation rounds, leading to substantial time costs.

To address these challenges, we propose a MaGnitude-ContrastivE frame-
work for Unsupervised Graph Anomaly Detection, named MGCE-GAD. This
model is capable of effectively capturing anomalous nodes at different levels while
maintaining efficient runtime performance. Specifically, we initially construct
multi-level contextual information, enabling MGCE-GAD to detect anomalies
from multiple perspectives by considering local neighborhood patterns, com-
munity structures, and global attribute distributions. Following this, MCEN-
GAD learns normal patterns through an elaborately designed multi-level con-
trastive learning networks for patch-level and community-level anomaly detec-
tion and incorporates a novel unsupervised anomaly detection approach for
detecting global anomalies. Finally, we evaluate the anomaly scores of each
node by jointly considering the patch-level, community-level, and global-level
anomaly scores, comprehensively capturing anomalies. Experimental results on
six datasets demonstrate the effectiveness of our method, while also exhibiting
competitive efficiency. In summary, our main contributions are as follows:

– We propose MGCE-GAD, an effective and efficient magnitude-contrastive
learning framework that comprehensively captures anomalous nodes using a
multi-level contrastive approach and a novel unsupervised anomaly detection
method.

– We develop a novel unsupervised approach for detecting global anomalies.
Once trained, we can quantify the anomaly scores of each node by simply
comparing the nodes’ attributes and structural properties with the overall
patterns observed in the network.

– We compare MGCE-GAD with SOTA benchmarks on six datasets. The
results show that MGCE-GAD significantly improves accuracy while main-
taining competitive runtime efficiency, making it a valuable tool for anomaly
detection in large-scale graphs.

The rest of this paper is laid out as follows: Sect. 2 reviews the related work.
The research problem of this study is defined in Sect. 3.1. Our proposed approach
is detailed in Sect. 3.2. Section 4 discusses the experimental results, and the paper
is concluded in Sect. 5.

2 Related Work

Unsupervised deep learning methods can learn the intrinsic structures and pat-
terns from the graph itself, making them highly suitable for scenarios where
labels are scarce. These methods can be categorized into generative methods
and contrastive methods [13]. Generative methods primarily use graph autoen-
coders and identify anomalies by comparing the reconstruction errors between
original and reconstructed networks. Models like DOMINANT [5] encode and
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decode both structural and attribute matrix, calculating anomaly scores based
on these errors. AnomalyDAE [7] further considers interactions between struc-
ture and attributes using dual autoencoders. SpaceAE [12] combines spectral
autoencoders with density estimation for anomaly detection, while ComGA [15]
enhances detection by integrating community representations into the GCN
layer. AS-GAE [23] designs a location-aware graph autoencoder and uses a
supermodular function to assess anomalies. Although these methods can capture
biased patterns through reconstruction errors, their effectiveness largely depends
on the representations learned by the graph autoencoders, resulting in inade-
quate support for processing complex real-world data and potential anomaly
patterns.

Unlike generative anomaly detection methods, current contrastive methods
measure anomalies by evaluating the similarity between target nodes and their
neighbors. CoLA [14] is the first to apply contrastive learning to the task of
graph anomaly detection by introducing “node-subgraph” contrast. It pairs the
target node with its partial neighboring substructure as positive instances, and
contrasts it with other substructures as negative instances. ANEMONE [8] intro-
duces “node v.s. node” contrastive strategy to capture more anomaly informa-
tion. GRADATE [6] adds subgraph-subgraph contrast with augmented view. SL-
GAD [24] and Sub-CR [22] jointly detect anomalies by combining node-subgraph
contrast and node attribute reconstruction. The above methods employ a strat-
egy of batch training of nodes and multiple rounds of evaluation, which signif-
icantly extend the duration needed for both training and testing, consequently
imposing a notable cost in terms of time efficiency. Subsequently, PREM [17]
simplifies the detection process by calculating neighbor features through a pre-
processing module and using a linear discriminator. These methods focus on
detecting anomalous nodes with local information, neglecting both the presence
of anomalies in diverse amplitude spaces and the significant roles of community
structures and global information in graph anomaly detection.

3 Methodology

This section gives the overall introduction including the definition of the problem
and a detailed description of our models.

3.1 Problem Definition

Consider an attribute network G = (V,E), where V = {v1, v2, ..., vn} is a set of
nodes, with n = |V | representing the number of nodes, and E is a set represent-
ing the edges. Let X ∈ R

n×p denote the node attribute matrix, where the i − th
row vector xi ∈ R

p is the attribute information for the node vi. In addition,
we define A ∈ R

n×n to represent the adjacency matrix. Specifically, Aij = 1
indicates the presence of an edge connecting nodes vi and vj , otherwise Aij = 0.

Given an attributed graph G, the purpose of this paper is to detect nodes
that exhibit patterns or features significantly different from the majority of nodes
under strictly unsupervised settings.
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Fig. 1. The framework of MGCE-GAD consists of two main components: the
Magnitude-Contrastive module and the Anomaly Estimator. Our objective is to pre-
dict the anomaly score of a target node (highlighted in red). Within the Magnitude-
Contrastive module, the Patch-level Contrastive Network (depicted with gray dashed
lines), the Community-level Contrastive Network (depicted with orange dashed lines),
and the Global-level Anomaly Detection Network (depicted with blue dashed lines)
respectively learn the consistency between nodes and their neighbor-net, community-
net, and global-net. Finally, in the rightmost section, we calculate the anomaly score
for each node from three sources. (Color figure online)

3.2 Description of MGCE-GAD

In this section, we introduce our proposed MGCE-GAD. The overall architecture
is illustrated in Fig. 1. MGCE-GAD determines the anomaly score by leveraging
two primary components: magnitude-contrastive module and Anomaly Estima-
tor. Within the magnitude-contrastive module, the networks learn alignment
between nodes and different levels of context, ensuring a comprehensive capture
of prevalent patterns. Subsequently, we determine the anomaly score s via a scor-
ing mechanism that consolidates three scores, wherein higher scores indicate the
presence of anomalies. In the following subsections, we introduce MGCE-GAD
in detail.

Patch-Level Contrast Network. In this module, we establish the local nor-
mal patterns of nodes by analyzing the similarity between the nodes and their
patch-net. To this end, our initial step involves the formulation of both raw
features and neighbor features. Specifically, we leverage the attribute informa-
tion X of the nodes as the raw features X(s), thus preserving the integrity and
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originality of node. Furthermore, to acquire the neighbor features, we adopt an
anonymous message-passing scheme, which can be defined as follows:

X(n) = M(D̃−1/2ÃD̃−1/2)kX, (1)

where M is a self-anonymous mask matrix, with all diagonal elements being 0
and the remaining elements being 1. Ã = A + I is the adjacency matrix with
self-loops. D̃ is the degree matrix of Ã. k is the number of message passing steps.

Different from previous methods that require multiple rounds of sampling
and aggregating neighbor information through trained graph neural networks,
our approach operates on all nodes in one pass and captures the neighbor features
through a certain number of message passing steps (k steps), without the need
for training, making it more convenient and efficient.

After obtaining the raw features and neighbor features, for the target node vi,
we utilize a linear layer to map its feature vectors x

(s)
i and x

(n)
i to representations

h(s)
i and h(n)

i , which can be described as follows:

h(s)
i = x(s)

i W1 + b1,

h(n)
i = x(n)

i W2 + b2,
(2)

where W1, W2, b1, and b2 are learnable parameters.
To train the discriminative contrastive network, we define raw feature embed-

ding h(s)
i and neighbor feature embedding h(n)

i of node vi as positive pairs, and
their similarity l

(pos)
i represents the positive score:

l
(pos)
i = cos(h(s)

i ,h(n)
i ), (3)

where cos denotes the cosine similarity function. Besides, h(s)
j of randomly sam-

pled node vj and h(n)
k of randomly sampled node vk are designated as negative

samples, so the negative term in contrastive learning can be expressed as:

l
(negs)
i = cos(h(s)

i ,h(s)
j ),

l
(negn)
i = cos(h(s)

i ,h(n)
k ).

(4)

Finally, we design the following loss function to ensure that normal nodes
resemble their corresponding neighbors while distinctly differing from negative
samples. Specifically, we first use a linear mapping to project the positive and
negative items l ∈ [−1, 1] to l̂ ∈ [0, 1] and then compute the loss:

L(p) = −
n∑

i=1

(log(l̂(pos)
i ) + α1 log(1 − l̂

(negs)
i ) + α2 log(1 − l̂

(negn)
i )), (5)

where α1 and α2 are two balancing factors used to weigh the importance of two
negative samples (h(s)

j and h(n)
k ).
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Community-Level Contrast Network. Nodes within the same community
usually have similar features, but previous studies [6,8,14,17,22,24] have largely
ignored this, focusing instead on local information. This oversight can lead to
the misclassification of nodes from the same community as negative pairs, signif-
icantly undermining the model’s ability to recognize normal patterns. Addition-
ally, the degree of anomaly is closely correlated with the consistency between a
target node and other nodes within the same community. Therefore, it’s crucial
to integrate community information to accurately identify node pairs within the
same community and understand community-specific patterns. To achieve this,
we use the METIS algorithm [9] with a readout function to extract community
information and a contrastive network to learn the community-level coherence.

Specifically, by using the METIS algorithm, we partition the graph G into c
communities based on the connections between nodes. Correspondingly, we use
the community information matrix C(c) ∈ R

c×p to record the features of each
community. C(c)[h, :] represents the features of the h-th community, which is
obtained via a readout function:

C(c)[h, :] =
1

|Vh|
∑

vi∈Vh

xi, (6)

where Vh represents the set of nodes in the h-th community, and xi represents
the attribute information of node i.

Similar to the Patch-Level contrastive network, we pass the community fea-
tures C(c) and node features X through different linear layer to obtain low-
dimensional embeddings Z(c) and H(c), which can be represented as:

Z(c) = C(c)W3 + b3,

H(c) = XW4 + b4.
(7)

Community anomalies refer to nodes that possess different attribute values
compared to other nodes within the same community [16]. Thus, our approach to
defining contrastive instance pairs in this segment concentrates on the relation-
ship between nodes and their community structure. Specifically, we introduce
a “node versus community-net” instance pairing strategy: a target node paired
with its own community network constitutes a positive instance, while pairing
it with networks from other communities forms negative pairs.

In order to find inherent normal patterns from a community perspective, we
train the community-level contrastive network by maximizing the consistency
between the target node and its community-net while minimizing its consistency
with others. The learning objective can be described as:

L(c) = −
n∑

i=1

log
ecos(h

(c)
i ,z

(c)
j )/τ

∑
z
(c)
k ∈Z(c)\z(c)

j

ecos(h
(c)
i ,z

(c)
k )/τ

, (8)

where h(c)
i represents the embedding of the target node vi, while z(c)j is the

feature embedding of the community to which vi belongs, τ is a hyper-parameter.
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Global-Level Anomaly Detection Network. Inspired by [2], we delve into
the capability of identifying anomalous by leveraging global features in an unsu-
pervised manner. The fundamental assumption is that features of normal nodes
tend to exhibit homogeneity, exerting minimal influence on the global features. In
contrast, features of anomalous nodes diverge markedly from the norm, thereby
having a significant impact on global features. This distinction enables the mod-
ule to more effectively discern the unique patterns inherent to anomalous nodes.
Based on the above assumption, we are empowered to leverage the global fea-
tures as a reliable tool to differentiate between normal and anomalous nodes.
The details of the implementation are outlined below.

Specifically, we first obtain the global features C(g) through a readout func-
tion, which can be represented as:

C(g) =
1
n

n∑

i=1

xi, (9)

where n denotes the number of nodes in the graph.
After that, we employ different linear layer to project the node features and

global features into the low-dimensional space, resulting in the acquisition of
H(g) and Z(g):

H(g) = XW5 + b5,

Z(g) = C(g)W6 + b6,
(10)

where H(g) ∈ R
n×p and Z(g) ∈ R

1×p.
To measure the similarity between nodes and their global-net, we first expand

Z(g) ∈ R
1×p to Z(g)′ ∈ R

n×p. Then, we construct the following loss function to
maximize the consistency between nodes and global-net:

L(g) = −cos(H(g),Z(g)′). (11)

Loss Function. To simultaneously learn shared patterns at different levels, we
optimize the joint loss function:

L = L(p) + βL(c) + γL(g), (12)

where β and γ are hyper-parameters that balance components’ importance.

Graph Anomaly Scoring. By optimizing the loss function, the target node
has a higher matching degree with its positive pairs and a lower one with its
negative pairs. At the patch-level, the compatibility between the target node
and its positive pair describes the similarity between the node and its neighbors.
Based on the homogeneity assumption, we directly use it as a measure of normal-
ity in the local perspective, where the anomaly score s(p) for node vi equals to
−l

(pos)
i . Similarly, at the community-level, the anomaly score s(c) for node vi is

obtained by −cos(h(c)
i , z(c)j ), where z(c)j is the feature embedding of the corre-

sponding community. At the global-level, as analyzed in Sect. 3.2, after training,
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a node that is more similar to global features is considered more anomalous. So
we obtain the global-level anomaly score s(g) by cos(H(g),Z(g)′).

The final anomaly score is the weighted sum of the scores of three levels:

s = s(p) + βs(c) + γs(g), (13)

where β and γ are shared with Eq. (12).

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the performance of the proposed method and compare
it in various scenarios, we tested it on six different datasets: Citation, CiteSeer,
Cora, EAT, Flickr, and WebKB. Since these datasets lack natural anomalies, we
injected structural anomalies and attribute anomalies into each dataset, follow-
ing the methods described in [5,14].

Baselines. In this section, we compare the proposed model with cur-
rent SOTA benchmarks, including four contrastive learning methods: CoLA [14],
ANEMONE [8], GRADATE [6] and PREM [17], as well as SL-GAD [24] and Sub-
CR [22], two hybrid methods that combine generative learning and contrastive
learning.

Evaluation Metric. We evaluate our method with the common graph anomaly
detection metric, AUC, which ranges from 0 to 1, with higher values denoting
better performance. In addition, we also recorded the time needed for training
and evaluating different GAD methods.

Implementation Details. We set the number of propagation steps k to 2
for all datasets. On the Citation, CiteSeer, Cora, EAT, Flickr, and WebKB
datasets, we set the epochs to 400, 100, 100, 200, 1500 and 200, and set the
learning rates to 2e-4, 3e-4, 3e-4, 3e-4, 5e-4, and 1e-4, respectively. The patch-
level hyper-parameters α1 and α2 are selected from {0.1, 0.2,...,1} and {0.1, 0.2,
0.3, 0.4, 0.5}. In addition, we choose the balance factor β in {1, 10, 20, 50, 100}
and γ in {1, 10, 20, 50, 100}. The details of the selection are shown in section
??. For the baseline, we follow the settings in their paper to obtain the reported
results.
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4.2 Result and Analysis

Accuracy. We evaluated the anomaly detection performance by comparing
MGCE-GAD with six baselines. The results recorded in Table 1 demonstrate
the superiority of our proposed approach, consistently achieving the best results
across all datasets. The primary reason is that, unlike baseline methods that
solely focus on the local scale, MGCE-GAD can analyze across three differ-
ent levels, thereby possessing stronger modeling capability for normal data and
achieving superior anomaly detection performance.

Table 1. AUC values (%) on six datasets.

Method Citation Citeseer Cora EAT Flickr WebKB

CoLA 0.7519 0.8944 0.9051 0.6853 0.7466 0.9167

ANEMONE 0.7816 0.9266 0.9206 0.7038 0.7563 0.9238

GRADATE 0.7603 0.8921 0.8973 0.7258 0.7444 0.9326

PREM 0.8655 0.9782 0.9541 0.8207 0.8636 0.9574

SL-GAD 0.7834 0.9235 0.9148 0.6903 0.7888 0.9244

Sub-CR 0.7674 0.9257 0.9068 0.6735 0.7909 0.9029

MGCE-GAD 0.9213 0.9883 0.9580 0.8743 0.8730 0.9686

Efficiency. We evaluated the efficiency of MGCE-GAD by directly compar-
ing its total runtime (training plus testing) with all baselines. Table 2 records
the runtime of each model. It is worth noting that the runtime of MGCE-
GAD has remained competitive: (1) Compared to its closest competitor PREM,
the runtime of MGCE-GAD is comparable to PREM and exhibits significant
advantages in the Citation, Flickr and EAT datasets, indicating that our model
is more suitable for dense graphs where nodes are closely connected to each
other. (2) MGCE-GAD runs in much less time than other methods (CoLA,
ANEMONE, GRADATE, SL-GAD and Sub-CR). This is mainly because other
methods require multiple rounds of sampling, with the rounds increasing signif-
icantly with dataset size, training, and testing iterations. In contrast, our model
avoids sampling operations, thus reducing time costs.
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Table 2. The total time (s) for training and testing with different GAD models.

Method Citation Citeseer Cora

train test total train test total train test total

CoLA 3374.4873 2441.0346 5815.5219 379.8038 763.3216 1143.1254 201.8765 554.7965 756.6730

ANEMONE 6244.4578 2295.5294 8539.9872 462.8005 844.5614 1307.3619 245.7012 545.8040 791.5052

GRADATE 1670.3446 1476.9883 3147.3329 1376.8534 1215.7249 2592.5783 1682.0033 1018.9400 2700.9433

PREM 23.0920 0.0040 23.0960 1.0184 0.0010 1.0194 1.0648 0.0010 1.0658

SL-GAD 3212.3100 1970.6843 5182.9943 307.6172 1312.9743 1620.5915 159.6807 406.1497 565.8304

Sub-CR 2110.2807 1887.7300 3998.0107 256.4191 1880.2020 2136.6211 147.4676 926.8223 1074.2899

MGCE-GAD 20.1780 0.0141 20.1921 1.4315 0.0060 1.4375 1.0437 0.0050 1.0487

Method EAT Flickr WebKB

train test total train test total train test total

CoLA 40.8901 69.7986 110.6887 454.6967 269.1792 723.8759 256.3872 225.5874 481.9746

ANEMONE 8.8649 86.0592 94.9241 500.5351 295.0420 795.5771 275.2657 193.1283 468.3940

GRADATE 56.3361 29.6570 85.9931 772.5452 403.7988 1176.3440 504.5110 331.5318 836.0428

PREM 1.6627 0 1.6627 95.7373 0.0184 95.7557 1.1306 0 1.1306

SL-GAD 68.4590 48.0875 116.5465 1339.1638 759.0519 2098.2157 333.5034 142.0280 475.5314

Sub-CR 89.9699 168.5871 258.5570 815.9356 620.7275 1436.6631 211.9687 387.6281 599.5968

MGCE-GAD 1.3040 0.0040 1.3080 88.5366 0.0200 88.5566 1.3372 0.0040 1.3412

4.3 Ablation Study

In order to verify the effectiveness of the proposed community-level contrast net-
work and global-level anomaly detection network, we conducted ablation exper-
iments. The experimental results are shown in Table 3. NP denotes that only
patch-level contrast network are included, i.e. model PREM [17], NP+NC and
NP+NG refer to adding community-level and global-level networks to the patch-
level network, respectively. NP+NC+NG denotes MGCE-GAD, which consists
of three networks.

Observing the experimental results, we can draw the following conclusions.
First, our full model excelled on four datasets and performed well on others,
confirming its effectiveness. Second, data from the first three rows highlight
the significant impact of both community and global-level modules, validating
the effectiveness of each component. Third, integrating these modules typically
improves performance compared to using them individually, as they help detect
anomalies at their respective scales for more comprehensive detection.

Table 3. Results of ablation study.

Citation Citeseer Cora EAT Flickr WebKB

NP 0.8655 0.9782 0.9541 0.8207 0.8636 0.9574

NP+NC 0.8670 0.9834 0.9574 0.8615 0.8664 0.9554

NP+NG 0.9220 0.9885 0.9571 0.8484 0.8693 0.9657

NP+NC+NG 0.9213 0.9883 0.9580 0.8743 0.8730 0.9686
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5 Conclusion

This paper focuses on the critical problem of detecting anomalous nodes under
unsupervised settings. We propose an effective and efficient novel graph anomaly
detection method named MGCE-GAD, which learns normal patterns through
a elaborate designed multi-level contrastive learning framework for patch-level
and community-level anomaly detection and incorporates a novel unsupervised
anomaly detection approach for detecting global anomalies. By jointly consid-
ering information from three sources, we provide reasonable anomaly scores for
nodes. Extensive experiments on six benchmark datasets demonstrate the supe-
riority of our method over baseline approaches, while also exhibiting competitive
runtime efficiency. Future work will focus on extending MGCE-GAD for hetero-
geneous graphs, adjusting the learning framework to handle varied node and
edge types and their distinctive features.
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