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Abstract

The study explores the feasibility of optical flow‐based neural network from real‐

world thermal aerial imagery. While traditional optical flow techniques have shown

adequate performance, sparse techniques do not work well during cold‐soaked low‐

contrast conditions, and dense algorithms are more accurate in low‐contrast

conditions but suffer from the aperture problem in some scenes. On the other hand,

optical flow from convolutional neural networks has demonstrated good perform-

ance with strong generalization from several synthetic public data set benchmarks.

Ground truth was generated from real‐world thermal data estimated with traditional

dense optical flow techniques. The state‐of‐the‐art Recurrent All‐Pairs Field

Transform for the Optical Flow model was trained with both color synthetic data

and the captured real‐world thermal data across various thermal contrast conditions.

The results showed strong performance of the deep‐learning network against

established sparse and dense optical flow techniques in various environments and

weather conditions, at the cost of higher computational demand.
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1 | INTRODUCTION

Autonomous navigation is a crucial requirement for unmanned

aerial vehicles (UAVs) to be integrated more deeply into the

economy and society. Currently, UAVs rely on Global Navigation

Satellite Systems (GNSS) for many navigation applications.

However, despite being cost effective and widely available,

GNSS can be unreliable in built‐up urban areas, or in environ-

ments with lots of vegetation, and it is not available underground.

Furthermore, GNSS does not intrinsically provide any

environment or obstacle‐sensing capabilities, making the solution

unreliable in dynamic environments.

Many researchers have attempted to solve this problem using

vision‐based systems with promising results (Chahl et al., 2004a;

Conroy et al., 2009; Lu et al., 2018; Miller et al., 2018; Popov

et al., 2016; Rosser & Chahl, 2019). Unlike GNSS which is based on

off‐board navigation signals, vision‐based systems can provide

information in real‐time about obstacles in dynamic environments.

Vision‐based systems do not rely on artificial sources of information

which makes them more resistant to jamming of navigation signals
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(Nguyen et al., 2021). On the other hand, there are challenges to use

a vision‐based system on UAVs for guidance and control due to

spatial and temporal limitations of sensors, such as motion blur

caused by high angular rates of the platform and low rates of ground

movement at high altitude (Gan & Sukkarieh, 2011; Ross et al., 2013;

Tran et al., 2022, 2021; Zuo et al., 2022). Furthermore, due to the

high number of DOF of UAVs, there are also problems in dealing with

various viewing angles transformed in roll, pitch, and yaw which may

affect captured images (Perera et al., 2018; Tran et al., 2020).

Since the introduction of AlexNet (Krizhevsky et al., 2012) in

2012, many researchers have applied neural networks to solve many

computer vision tasks with great success (Ciregan et al., 2012). Some

neural networks even surpass human's benchmark in the image

classification ImageNet competition, such as Inception v4 (Szegedy

et al., 2016) and ResNet (He et al., 2016). Some of the recent

applications of neural networks in the literature include object

detection (Liu, Ouyang, et al., 2020; Pathak et al., 2018; Wu

et al., 2020; Zhao & Zheng, 2019), image segmentation (Ghosh

et al., 2019; Goceri, 2019; Guo et al., 2019; Minaee et al., 2021),

autonomous driving (Feng et al., 2018; Kocić et al., 2019; Wu

et al., 2017; Zhang et al., 2022), recognition of human activities and

emotions (Negi, Kumar, Chaudhari, et al., 2021; Sharma, Kumar, &

Kumar, 2017; Sharma, Kumar, & Singh, 2017; Vijayvergia &

Kumar, 2018), human's disease's prediction (Alok et al., 2021;

Chowdhury & Iraj, 2020; Haq et al., 2018; Kumar et al., 2020; Reddy

et al., 2021), diseases detection in agriculture (Jasim & Al‐

Tuwaijari, 2020; Lu et al., 2017; Negi & Kumar, 2021a; Negi, Kumar,

and Chauhan, 2021), real‐time face mask detection (Kodali &

Dhanekula, 2021; Militante & Dionisio, 2020; Negi et al., 2020; Negi

& Kumar, 2021b; Sethi et al., 2021).

Optical flow is defined as motions of brightness patterns across

two consecutive frames, caused by movement of objects or the

camera, or both (Horn & Schunck, 1981). Optical flow in flight control

was inspired to some extent by observations of flying insects (Chahl

& Mizutani, 2010). For example, honeybees rely on optical flow for

grazing landings (Chahl et al., 2004b; Srinivasan et al., 2000) and

obstacle sensing (Srinivasan, 2010). Furthermore, in the field of

computer vision, optical flow can be used for tracking (Li et al., 2016;

Rosser & Chahl, 2019), environmental reconstruction (Godard

et al., 2015), autonomous driving (Shah & Xuezhi, 2021) or face

recognition (Ranftl et al., 2017). Optical flow has been proposed to

have roles in medical imagery, including medical image registration

(Hermann & Werner, 2013), breast tumor analysis (Abdel‐Nasser

et al., 2017), and diagnosis of bladder cancer (Weibel et al., 2012).

Previously, the techniques to determine optical flow have been

dominated by traditional methods of spatiotemporal image proces-

sing, such as the Horn and Shuck algorithm (Horn & Schunck, 1981)

and the Farnedback technique (Farnebäck, 2003). Another class of

optical flow techniques is typified by the gradient‐based

Lucas–Kanade (LK) techniques (Baker & Matthews, 2004) and their

optimization (Bouguet, 2001; Sharmin & Brad, 2012), correlation and

block matching (Dabov et al., 2006), and the image interpolation

technique (Srinivasan, 1994).

With the ease of access to more powerful graphic processing

units (GPUs), scientists have been experimenting with optical flow

implementations based on deep learning concepts with great success.

FlowNet (Dosovitskiy et al., 2015) was the first model but its

performance was worse than traditional algorithms. FlowNet2 (Ilg

et al., 2017) was an improved version by stacking multiple FlowNet

layers, which greatly increased the performance and outperformed

most traditional techniques, but is very expensive to run.

The next‐generation models have better efficacy and smaller

memory footprint by borrowing some of the concepts from

traditional techniques. For example, SpyNet (Ranjan & Black, 2017)

relies on a coarse‐to‐fine and spatial‐pyramid to deal with small and

larger movements. LiteFlowNet (Hui et al., 2018), LiteFlowNet2 (Hui

et al., 2020), and LiteFlowNet3 (Hui & Loy, 2020) rely on an inference

approach at each pyramid level through a lightweight cascaded

network and a feature‐driven local convolution, with later models are

more refined and are smaller and have better efficacy than the

former. Additionally, pyramid, warping, and cost (PWC)‐Net (Sun

et al., 2018) utilizes pyramidal processing, warping, and the use of a

cost volume which results in 17 times smaller size compared with

FlowNet2. Most recently, the Recurrent All‐Pairs Field Transform

(RAFT) (Teed & Deng, 2020b) and its lighter version, RAFT‐s, were

introduced that achieved state‐of‐the‐art efficacy while also having

one of the lowest memory requirements. The RAFT models were

inspired by optimization‐based approaches from traditional optical

flow techniques.

In the field of autonomous navigation, the vast majority of

attempts so far have only been done with optical visual reflected light

sensors (Nguyen et al., 2021) during daytime with abundant natural

lights, which leads to a substantial gap in knowledge about

approaches for night operation. Given night and use of thermal

payloads typically accounts for half of long missions, it is necessary to

understand the performance and behavior of the night sensor suite.

There are many reasons why it is more difficult to test a sensor suite

designed for night, including higher cost for thermal sensors, the

difficulty to operate the aircraft after dark due to regulation

restriction and challenges of launching and recovering small aircraft

at night.

The paper is organized into nine sections. Section 2 summarizes

related works with thermal sensors in the field of robotic navigation.

Section 3 outlines our motivations and the contributions made in this

paper. Section 4 presents the theory behind optical flow including

optical flow equation and algorithms to estimate the optical flow

field. Section 5 outlines the construction of the payload including

components, the configuration of long wave infrared (LWIR) thermal

sensor, a rescaling technique that satisfies the constraints imposed

when computing optical flow and the conditions of the environment

where new data were collected. Section 6 outlines how the data were

divided into training and evaluation sets, how the optical ground

truth was generated, how the model was trained and our assessment

methodology. Section 7 presents the results of this experiment.

Section 8 presents the lessons learned and Section 9 concludes the

paper and outlines future research.
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2 | RELATED WORKS

Thermal imaging has certain advantages over visual spectrum

reflected light in various applications such as to reveal hidden details

that cause changes in surface temperature and aid navigation in low

light conditions that are not visible to the naked eye. The

fundamental concepts of thermal sensor, their advantages and

disadvantages, as well as their usage are well documented in Nguyen

et al. (2021).

Beside being utilized for navigation, thermal sensor has been

used in agriculture to monitor crops (Speth et al., 2022), infra-

structuremonitoring (Chokkalingham et al., 2012; Fuentes et al., 2021;

Stypułkowski et al., 2021; Wu et al., 2018), objects detection and

tracking (Leira et al., 2021; Liu, Li, et al., 2020; Liu et al., 2017, 2022).

For navigation applications, some researchers have demon-

strated early promise from combined LWIR thermal and optical light

sensors to enhance and detect hidden features in low light

conditions. Maddern and Vidas (2012) used LWIR thermal data to

compensate for adverse effects such as sun‐induced lens flare in RGB

images during daylight, and to enhance hidden features after dark.

The result showed that the extra data from the LWIR sensor

improved the resilience of the tested system over longer operating

periods. Brunner et al. (2013) made use of thermal data to more

efficiently detect and reject bad features such as dust and reflective

surfaces that appear in the visible spectrum.

Mouats et al. (2014) proposed multispectral stereo odometry for

unmanned ground vehicle. Mouats et al. (2015) later developed a purely

thermal approach to the problem. Another study (Poujol et al., 2016)

showed that combining thermal and visible data, the performance of the

system greatly improved in various lighting conditions.

While the above work has shown the potential of thermal sensor

in the field, they struggled to some extent due to the lack of a truly

radiometric LWIR sensor. Early sensors were built with Automatic

Gain Control (AGC) systems that would maximize, and in so doing,

substantially disrupt the contrast of the output when a relatively hot

or cool object would enter or exit the scene. A radiometric sensor is

calibrated against the standard black body (Nguyen et al., 2021)

leading to greatly improved accuracy and consistency of thermal

data. Furthermore, a radiometric sensor can output pre‐AGC thermal

data representing thermal emissivity in 14‐ or 16‐bit depth that can

be handled differently to maintain contrast between two frames.

Furthermore, with the introduction of modern small and low

power consumption radiometric LWIR sensors such as those from

FLIR Corporation, the sensor can now be embedded into small UAVs.

Saputra et al. (2020) proposed a thermal–inertial network

hallucinating features from thermal data and fusing them with an

inertial sensor for pose estimation. The results showed the proposed

network outperform their visual counterparts under various lighting

conditions. However, the network was limited to a frame rate of

4–5 fps, with accuracy severely degraded at higher or lower frame

rates.

Khattak et al. (2019b) proposed a fusion of visual light,

radiometric LWIR sensors with an inertial sensor to help small UAVs

navigate in a dark tunnel filled with fog and dust. The drone carried a

short‐range light source to illuminate the environment for the optical

sensor while the thermal sensor provided data beyond visible

wavelengths. They later developed a direct thermal system without

the optical sensor (Khattak et al., 2019a).

The same team (Khattak et al., 2018) also proposed the use of

thermal fiducial markers as a low‐cost and reliable solution for robot

localization in known but visually degraded environments. More

recently, Khattak, Papachristos et al. (2020) proposed a thermal

inertial system that utilized full 14‐bit radiometric data for a small

UAV. The study indicated that using full unprocessed radiometric

data can not only bypass the troublesome AGC, but can also be more

resilient against loss of track of features over time, which results in

more consistent performance. Most recently, Khattak,

Nguyen et al. (2020) proposed the fusion of thermal and visual

inertial with light detection and ranging (LiDAR) to improve reliability

for pose estimation.

Some research groups have been attempting to enhance

simultaneous localization and mapping (SLAM) vision‐based systems

with thermal data (Chen et al., 2017; De Pazzi et al., 2022; Saputra

et al., 2021; Zhao et al., 2020). Shin and Kim (2019) proposed a direct

thermal‐infrared algorithm that utilized full 14‐bit radiometric

thermal data to measure six degrees of freedom (DOF) motion. They

demonstrated that the system was more robust under various

lighting conditions across both day and night. Chen et al. (2022)

developed an edge‐based infrared/LiDAR SLAM framework to

reliably generate a dense depth network throughout the day.

3 | MOTIVATIONS AND CONTRIBUTION

The materials in this paper is a continuation of our program (Nguyen,

Rosser, & Chahl, 2022; Nguyen, Rosser, Perera, et al., 2022; Rosser

et al., 2021) to systematically explore the application of optical flow

from thermal imaging, “thermal flow,” for airborne navigation with an

LWIR microsensor. Our first study in Rosser et al. (2021) explored the

use of an LWIR optical flow sensor to reduce lateral drift in a closed‐

loop control system instead of an optical reflected light sensor, the

PX4Flow (Honegger et al., 2013), for fixed‐wing UAVs.

In our second study in Nguyen, Rosser, Perera et al. (2022), we

investigated the performance of thermal flow over 24 h from one test

site. We learned that thermal flow with the LK sparse technique,

performs comparably to the PX4Flow during daylight, while suffering

during cold‐soaked conditions when there are few features in the

thermal image.

In a recent study by Nguyen, Rosser, and Chahl (2022), a

comparison between a dense optical flow technique, the Image

Interpolation Algorithm (I A2 ) (Srinivasan, 1994), to the sparse

technique, the LK, showed that the I A2 performs well to the LK in

normal conditions, better in cold‐soaked condition while suffering

from the aperture problem in some scenes.

In this study, we investigate the feasibility of deep‐learning

neural networks being used to compute thermal flow from real‐world

NGUYEN ET AL. | 1819
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aerial data. The Recurrent All‐Pairs Field Transform for the Optical

Flow (RAFT‐s) model (Teed & Deng, 2020b) was chosen due to its

ability to achieve state‐of‐the‐art accuracy on a standard synthetic

data set, with substantially less of parameters at 990M with a small

memory footprint of 4MB.

Two synthetic data sets, the flying chairs (Dosovitskiy et al., 2015)

and MPI‐Sintel (Butler & Wulff, 2012), and our own real‐world

thermal data set including some that were captured from our

previous studies (Nguyen, Rosser, & Chahl, 2022; Nguyen, Rosser,

Perera, et al., 2022; Rosser et al., 2021) were used to train the RAFT‐

s network to answer these questions:

• Can a network designed for and trained on RGB images works on

thermal data?

• Can this modern deep‐learning network outperform traditional

techniques in variable conditions, with high‐ and low‐contrast

thermal data?

• Does the network suffer from the aperture problem without being

explicitly trained for it?

Our contribution is significant because:

• We will show that the modern neural network performs

comparatively well, or even outperform the traditional techniques

under several operating conditions.

• A transfer learning modern neural network from synthetic data,

can be retained with real‐world thermal data to detect very low‐

contrast thermal features in cold‐soaked conditions.

• Optical flow ground truth can be generated with traditional

techniques to deal with real‐world problems.

4 | OPTICAL FLOW EQUATION

Most traditional optical flow techniques operate based on three

assumptions (Horn & Schunck, 1981):

• Brightness constancy: Pixel brightness and contrast do not change

between two consecutive frames.

• Small displacement: Pixel movements between two frames must

not be too large.

• Spatial coherence: Neighboring pixels move together across two

consecutive frames.

Considering the first assumption, with pixel I x t y t( ( ), , ) in the first

frame displaced by u v( , ) pixels in the next frame. We have

f x I x y I x u y v( ) ≡ ( , ) = ( + , + ). (1)

Since the pixel intensity does not change over time:

f x

t

∂ ( )

∂
= 0. (2)

The second assumption, small movements, which is the

movement of pixels is small across two frames. Applying

the Taylor series approximation to the right‐hand side then

simplify

⇒I x u y v I x y
I

x
u

I

y
v HigherOrderTerms

I x y
I

x
u

I

y
v

( + , + ) = ( , ) +
∂

∂
+

∂

∂
+

≈ ( , ) +
∂

∂
+

∂

∂
.

(3)

From Equations (1) and (3), we get the optical flow equation:

I u I v I+ + = 0,x y t (4)

where It is the time derivative of the image at pixel x y( , ).

Equation (4) cannot be solved with one equation as there are two

unknowns, u and v , per pixel. This is a geometrical constraint for

drone imagery, where the speed of the aircraft and height above

ground will define the amount of movement.

The optical flow equation has traditionally been solved

as a mathematical energy minimization problem over the last

decades. With the emergence of the deep‐learning approach

in the field, combined with some advanced data sets, optical

flow estimation with neural network has demonstrated good

results.

4.1 | Traditional methods

Traditional optical flow estimation techniques can be divided into

three broad categories: pixel based (Chen & Koltun, 2016; Menze

et al., 2015), feature based (Brox & Malik, 2010; Bruhn et al., 2005;

Farnebäck, 2003), and energy based (Brox et al., 2004; Stein-

brücker et al., 2009). In practice, there are further two variants

which are dense and sparse optical flow techniques. The dense

technique will compute optical flow for every pixel in a frame

while a sparse technique only computes for selective pixels. The

advantage of sparse techniques is that they are generally less

computationally demanding and can work on embedded systems

(Nguyen et al., 2021), where the entire optical flow field is not

required. The Pyramidal LK spare implementation in OpenCV

library (Bradski, 2000) is a very popular choice for real‐time

embedded systems.

Additionally, while the first condition: brightness constancy, must

be met for traditional methods, it also applies on deep‐learning‐based

technique due to all available data sets maintaining the same

conditions across the images.

4.2 | Deep‐learning‐based methods

On the basis of the concept of deep‐learning and convolutional

neural networks (CNNs), these types of techniques learn to

compute optical flow from sequences of images, and have been

showing promising results. Some of the notable optical flow
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deep‐learning network, such as FlowNet (Dosovitskiy et al., 2015),

FlowNet2 (Ilg et al., 2017), LiteFlowNet (Hui et al., 2018), PWC‐

Net (Sun et al., 2018), and RAFT (Teed & Deng, 2020b).

Instead of relying on predefined features or energy minimization

like traditional techniques, deep‐learning methods rely on a large

amount of quality labeled data for training. This is a major issue in

real‐world applications since it is extremely difficult to obtain

accurate dense airborne optical flow ground truth in real scenes

(Shah & Xuezhi, 2021). So far, researchers have relied on synthetic

data such as Middlebury (Baker et al., 2011), KITTI (Geiger et al., 2012;

Menze & Geiger, 2015), MPI‐Sintel (Butler & Wulff, 2012), and flying

chairs (Dosovitskiy et al., 2015) to train and evaluate neural networks.

Although these synthetic data sets display movement, they do not

reproduce realistic effects, such as noise, blur, fog, shadows, contrast

disparity, and so forth. Many state‐of‐the‐art models that were

trained on synthetic data may experience challenges in real situations

with more complex image sequences (Shah & Xuezhi, 2021). Hence,

the lack of a quality labeled real‐world data set currently remains a

challenge for deep‐learning optical flow approaches under field

conditions.

4.2.1 | The RAFT and RAFT‐s model

With limited size and weight options for UAVs, the overall techniques

should have the least computational demand possible. The RAFT‐s

model was chosen for this study due to its low footprint of 4MB and

low parameter count of 990K, while still achieving state‐of‐the‐art

accuracy in several benchmark standard data sets (Teed &

Deng, 2020b). Another reason is that the model is open‐source and

its implementation in Pytorch is available on Github (Teed &

Deng, 2020a).

RAFT is a composition of CNN and recurrent neural network

architectures, consisting of three main blocks: a feature/context

encoder, a convolution layer, and a recurrent Gated Recurrent Unit

(GRU)‐based layer.

F IGURE 1 The model was used in this study (Teed & Deng, 2020b).

F IGURE 2 Sample thermal images show vertical and horizontal lines from data set (Nguyen, Rosser, Perera, et al., 2022).
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In a feature extractor layer, the input consists of two

consecutive frames, which are similar to the FlowNetCorr

architecture, where features are extracted from two images

separately. In this layer, per‐pixel features are extracted both

input frames and along side with one context encoder layer that

only extracts features from the first frame. In a convolution layer,

a four‐dimensional (4D) correlation volume contains high values

pixels and then processed by average pooling the last two

dimensions with kernel sizes of 1, 2, 4 then 8.

The CNN architecture is inspired by ResNet, which consists

of six residual layers with the resolution is reduced by haft while a

number of channels increase. The only difference between

RAFT and RAFT‐s models is that the small model only uses a

single GRU with 3 × 3 filter instead of two convolutional GRU

F IGURE 3 X and Y displacements with pretrained RAFT‐s networks. Low normalized cross‐correlation indicates the RAFT‐s trained with
RGB data set alone does not work well with thermal data. (a) X displacement and (b) Y displacement. RAFT‐s, Recurrent All‐Pairs Field
Transform for the Optical Flow.

F IGURE 4 A block diagram of the payload
showing the selected components. CSI, Camera
Serial Interface; USB, Universal Serial Bus.

1822 | NGUYEN ET AL.
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update blocks. Figure 1 shows the model adapted from Teed and

Deng (2020b).

4.2.2 | Thermal frames with pretrained RAFT‐s
model

This section investigates how the RAFT‐s network trained on RGB

synthetic data performs with aerial thermal data. We used a

pretrained model on the flying chairs three‐dimensional (3D) and

MPI‐Sintel data set, and the test sequence was from Nguyen, Rosser,

Perera et al. (2022) above a wheat field during a period with good

thermal contrast. Some of the images are shown in Figure 2.

Figure 3 shows the overlaid signal of the RAFT‐s and the LK

technique. The signals of the model in both X and Y displacements

show that the model does not provide a good optical flow field

with thermal data despite achieving good results from the color

synthetic data set.

Hence, it is necessary to retrain the RAFT‐s network on a real‐

world thermal aerial data set. In this study, we use real aerial thermal

data collected from our previous studies to train and test the RAFT‐s

model.

5 | SYSTEM IMPLEMENTATION

This section outlines our selected components, their configurations,

thermal sensor, and AGC issue that affects the optical flow

assumption.

The system block diagram is shown in Figures 4 and 5 illustrating

inside and outside of the constructed payload. The system consists of

a Raspberry Pi 4 (Pi 4) as the main processor, a radiometric FLIR

Lepton 3 thermal sensor, and an RGB Picam 2. The payload is

powered by the Li‐Po battery through an Ultimate Battery Elimina-

tion Circuit voltage regulator at providing 3 A at 5 V. The FLIR Lepton

3 was mounted into the Purethermal 2 board which connects to the

Raspberry Pi 4 via Universal Serial Bus connector. The Picam 2

connects to the Pi 4 via onboard CSI‐2 bus. The purpose of the Picam

2 is to collect color images for terrain analysis and completeness of

the data set.

F IGURE 5 Inside (on the left) and outside (on the right) of the payload. The outside shows the Lepton 3 and the Picam, and the inside shows
the Pi 4 with CSI and USB connections to the Picam and Lepton 3, respectively. CSI, Camera Serial Interface; USB, Universal Serial Bus.

F IGURE 6 AGC changes the contrast in an image when a hot cup exits a scene: 1–2. (a) Frame 1 and (b) Frame 2. AGC, Automatic Gain
Control.
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5.1 | Thermal sensor configuration

The FLIR Lepton 3 (FLIR Corporation, 2018) is an LWIR‐calibrated

radiometric microthermal sensor. The sensor can output thermal

image data at 160 × 120 resolution and 14‐bit depth at 8.7 Hz. The

sensor was shown to be sufficient for navigation application with

small angular movement errors without further calibration (Rosser

et al., 2021).

A Purethermal 2 board was used to interface with the Lepton 3,

it provides raw radiometric data in 14‐bit depth to the onboard

computer. Its firmware was modified to be in HY16 mode and to

disable the Flat Field Correction process since the sensor was

mounted on a constantly moving platform (Khattak et al., 2019b;

Nguyen, Rosser, Perera, et al., 2022) to ensure the output is not

interrupted. The saved full radiometric 14‐bit data will later be used

for training and validation.

5.2 | AGC with optical flow assumption

AGC is a closed‐loop feedback system that is built into many modern

thermal sensors (Nguyen et al., 2021), including the FLIR Lepton 3.

The AGC is essential when converting 14‐bit raw thermal data to

8‐bit data. The purpose of the AGC is to enhance thermal contrast

when there is a substantial change in the temperature of a pixel in the

image, when a hottest or coolest object enters or exits the scene. This

issue is particularly troublesome for many navigation and feature‐

based techniques that rely on pixel intensities matching between two

frames. Figure 6 shows the change in contrast between a pair of

thermal images when a hot cup exits the scene.

Due to the brightness being inconsistent between two frames, the

optical flow condition of brightness constancy as described in Section 4

is violated. Due to the current implementation of the RAFT‐s network

designed to work with 8‐bit data, this is a major issue.

5.3 | Rescaling technique

This section revisits our proposed technique in Nguyen, Rosser,

Perera et al. (2022), to downsampling 14‐bit to 8‐bit data based on
F IGURE 7 The 14–8‐bit downsampling technique from Nguyen,
Rosser, Perera et al. (2022).

F IGURE 8 A pair from Figure 6 with our technique with small artifacts are circled in red. (a) Frame 1 and (b) Frame 2.
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F IGURE 9 Color images of the testing site showing the left and right of the field as well as the image of the drone with the payload mounted
underneath. (a) Left side of the field, (b) right side of the field, and (c) the SOLO on the ground.

F IGURE 10 Some collected 8‐bit thermal images of the site over a vineyard, an empty field, a large tree, and over a house with solar panels.
(a) Frame 1: over a vineyard, (b) Frame 2: over an empty field, (c) Frame 3: over a large tree, and (d) Frame 4: over a house with solar panels.
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the maximum and minimum pixel intensity of each pair. The

technique is demonstrated in Figure 7.

Figure 8 shows the results with our technique from Figure 6. The

results show no change in image contrast across the pair with minimal

artifacts in this extreme case. The artifacts normally appear at

otherwise undetected optical flow regions, so its impact is minimal.

5.4 | Flying platform

The payload as described in Section 5 was mounted underneath the

3DR SOLO quadrotor. The drone can take off with the maximum

payload of up to 500 g, with flight endurance is up to 10min. We did

a total of two flights to collect our data, which is around 20min in

mid‐air. The drone was flown randomly under manual control with

different altitudes, heading, and velocities over a field.

5.4.1 | Field experiment

An empty field and a house were chosen as a site for this study.

The site provides a clear view of the sky, flat terrain, thermal

texture from the artificial objects, such as house, solar panels, car,

and so forth. The flight was conducted in the afternoon at 4 p.m.

for maximize thermal emissivity. The temperature at the site was
∘27 C (Bureau of Meteorology, 2022) with clear and sunny

conditions. Figure 9 shows some of the images of the field on

the day of the experiment, Figure 10 shows some collected 8‐bit

TABLE 1 Information about the training and evaluation sets.

Source Training set Evaluation set Site condition Total images

Data set 1 Rosser et al. (2021) Yes: 10,894 Yes: 2000 High contrast 12,894

Data set 2 This study Yes: 5792 No High contrast 5792

Data set 3 Nguyen, Rosser, Perera et al. (2022) No Yes: 9892 High and low contrast 9892

Data set 4 Nguyen, Rosser, and Chahl (2022) No Yes: 2800 High and low contrast 2800

Total images 16,686 14,692 27,586

F IGURE 11 Some thermal frames from Data set 1, over some interesting features of the field includes dry creek beds, a runway, and a dirt
road. (a) Frame 1: above dry creek beds, (b) Frame 2: over a runway, (c) Frame 3: above different dry creek beds at different angles, and (d) Frame
4: over a dirt road.
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thermal frames of the test site. In total, 5792 images were

collected during this flight.

6 | DATA AVAILABILITY

Our data set consists of 14‐bit full radiometric data across three

different locations: an empty wheat field, an arid desert, and an

empty top hill. The data set contains images from our previous

studies in Nguyen, Rosser, and Chahl (2022), Nguyen, Rosser,

Perera et al. (2022), and Rosser et al. (2021) and our newly collected

thermal data from Section 5.4.1. To the best of my knowledge, there

is currently no public 14‐bit aerial thermal data set available. There is

one available data set provided by FLIR Corporation (2021) for object

detection for night driving. However, the data set cannot be used for

this study because the data set is not airborne, and there is no optical

flow ground truth provided either.

Perfect ground truth from real‐world data is difficult to

obtain, yet it is essential to train the network. To overcome this

issue, ground truths were generated from our data with

traditional dense techniques, the implementation of the dense

optical flow Farneback technique in OpenCV. The Farneback

technique was chosen as it is one of the most reliable techniques

for generating dense optical flow fields. Furthermore, only high‐

contrast sequences of our data set were used for training to

achieve the best possible ground truth for the network. For

validation, both the high‐ and low‐contrast sequences will

be used.

One limitation is that due to the ground truth being generated

from traditional techniques, the trained model may not show its full

potential, and may not be better than the traditional techniques. On

the other hand, both the sparse and dense traditional techniques

have proven to be superior to the PX4Flow (Nguyen, Rosser, &

Chahl, 2022; Nguyen, Rosser, Perera, et al., 2022), hence the

comparison is still valid.

6.1 | Data set division

In total, there were four different data sets collected over three sites

at different times, varying from Summer through Autumn to Winter.

We divided our data into two sets: the training and evaluation sets.

F IGURE 12 Features of the ground at some interesting locations including the wheat field, the top corner, and the dirt road over 24 h of the
data set. Only sequences at 4 p.m., 2 a.m., 12 a.m., and 4 a.m. were chosen. (a) Features over the wheat field, (b) features over the top left corner,
and (c) features over the main road.
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Table 1 shows a summary of our data sets, including which data set

and how many images were dedicated to train and evaluate the

model and conditions of each site.

6.2 | Training set

The training set contains sequences captured during high

thermal contrast condition to generate the best optical flow field

possible. The set contains two data sets which we labeled “Data

set 1” from Rosser et al. (2021) and “Data set 2” which was

newly captured at the site under the conditions described in

Section 5.4.1.

6.2.1 | Data set 1

Data set 1 includes 12,894 thermal frames, showing images of an arid

expanse with sparse knee‐high vegetation. The data were captured

during late Summer under clear conditions and the temperature was
∘34 C (Bureau of Meteorology, 2020). Due to its remoteness, there are

minimal artificial objects present on the site. Figure 11 shows some

images from the data set.

We also reserved some sequences for the evaluation set: 10,894

images for training and 2000 for the evaluation set.

6.2.2 | Data set 2

Data set 2 was described in Section 5.4.1. The whole data set

contains 5792 images that were all used for training.

6.3 | Evaluation set

The evaluation set consists of “Data set 3” from Nguyen, Rosser,

Perera et al. (2022), “Data set 4” from Nguyen, Rosser, and

Chahl (2022), and approximately 2000 images from “Data set 1.”

6.3.1 | Data set 3

Data set 3 was collected over 24 h as described in Nguyen, Rosser,

Perera et al. (2022). The data set exhibited strong parallel lines across

the horizontal and vertical frames, the two‐dimensional (2D) motion

of which cannot be determined unambiguously due to the presence

F IGURE 13 Some of the images from Data set 4. Frames 1 and 2 show the field during high‐contrast condition, and frames 3 and
4 show thermal images at approximately at the same location but in low‐contrast conditions. (a) Frame 1: above a big tree with high contrast, (b)
Frame 2: over an empty field with high contrast, (c) Frame 3: over a big tree during low contrast, and (d) Frame 4: over an empty field during low
contrast.
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of information on only one axis, which is commonly known as the

“aperture problem” (Binder et al., 2009). Dense techniques suffer

from this issue as shown in Nguyen, Rosser, and Chahl (2022), so it

cannot be used to generate reliable ground truth. On the other hand,

this data set can be used to evaluate the network to analyze if it

suffers from the aperture problem over time.

Figure 12 shows thermal frames of the Data set 3 at some

interesting locations over 24 h. We only selected some sequences

F IGURE 14 A sample sequence of thermal data and its generated ground truth from dense optical flow from the Farneback
algorithm in OpenCV. (a) Frame 1, (b) Frame 2, (c) Frame 3, (d) Frame 4, (e) flow output from frames 1 and 2, (f) flow output from frames
2 and 3, and (g) flow output from frames 3 and 4.
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that exhibit vastly different thermal contrast conditions at 4 p.m.,

2 a.m., 12 a.m., and 4 a.m. to evaluate the performance of the neural

network.

6.3.2 | Data set 4

Our data set from Nguyen, Rosser, and Chahl (2022) contains

approximately 2800 usable frames at the same site as Data set 2 but

not at the same time. Additionally, it was captured during Autumn

and Winter which represent two distinct conditions: high and low

contrast. Figure 13 shows some of the thermal images of the site in

both conditions.

6.4 | Generated optical flow ground truth

Figure 14 shows one sequence from Data set 1 and its generated

flow ground truth. The sensor was mounted underneath a moving

aircraft and every pixel moved in the same direction and approxi-

mately at the same speed. However, there are “white” pixels in the

image indicating “no movement,” which were anomalies. Hence, the

generated ground truth is not entirely perfect with missing

movement in some pixels.

Additionally, our system mimics the output of the PX4Flow,

which is outputting optical flow as a 2D vector, that contains:

flow_x indicating movement in the X‐direction, and flow_y

indicating movement in the Y‐direction. Because all of the pixels

move with the aircraft, in theory, we only need one good

pixel movement (x, y) to get good optical flow measurement. This

is the case with our work in Nguyen, Rosser, Perera et al. (2022)

using the sparse technique, LK in OpenCV to compute optical

flow from a small number of pixels. Hence, missing a few pixels

movement is not an issue when outputting optical flow as a 2‐D

vector.

6.5 | Training the model

We trained the model with both color and the thermal data set

collected as described in Section 6.2. The model was trained

using the original weights from the flying chairs and Sintel (Teed

& Deng, 2020b). Batch sizes of 10, at 160,000 steps, with a

learning rate of 0.0001 and weight decay of 0.0001.

The network was trained using an Intel Core i7‐7700 CPU,

64 GB of RAM, and Nvidia GTX 1080 Ti GPU. The operating

system was Ubuntu 20.04, other programs, including Pytorch

version 1.6.0, torchvision 0.7.0, cudatoolkit 10.1, python 3.8, and

OpenCV 4.5.5.

6.6 | Model evaluation methods

We systematically evaluated the performance of the model based

on two conditions: The ideal conditions and cold‐soaked condi-

tions. In hot and high‐contrast conditions, the traditional

techniques worked very well, while in cold and low thermal

contrast conditions, thermal flow worked between reasonably

well to not working at all. High contrast indicates when strong

thermal emission values were present in the scene which usually

translates to good features that can be used for tracking. On the

other hand, low contrast means there are fewer features in the

scene for tracking.

Table 2 shows the data set divided into seven (7) test cases including

the traditional technique used and its operation status and if the scene

exhibits strong patterns that may cause the aperture problem.

TABLE 2 Our seven (7) test cases
with their characteristics including the
traditional technique used in various
thermal conditions.

Case From data set Compared with Operation status Aperture problem

High contrast

1 [1] LK Very well No

2 [4] I A2 Very well No

3 [3] at 4 p.m. LK Very well Yes

Low contrast

4 [4] I A2 Reasonably well No

5 [3] at 2 a.m. LK Somewhat operational Yes

6 [3] at 12 a.m. LK No Yes

7 [3] at 4 a.m. LK No Yes

Note: The operation status was determined by comparing the signals to the PX4Flow system.

Abbreviation: LK, Lucas–Kanade.
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7 | RESULTS

This section outlines the results of thermal from the RAFT‐s network

and versus the LK and the I A2 . The normalized cross‐correlation value

between each signal in both X and Y axes, will indicate how closely

matched the two signals are. The normalized cross‐correlation range

is between [−1; +1], where the closer the positive value near (+1), the

more closely two signals correlate to each other and vice versa.

7.1 | Ideal conditions, high contrast

7.1.1 | Test case (1)

Figure 15 shows the result for test case (1). A high correlation

of value 0.83 in both X and Y displacements shows the

RAFT‐s model works well compared with the sparse LK in this

scenario.

F IGURE 15 X and Y displacements for test case (1). The high normalized cross‐correlation value indicates the two signals are similar.

F IGURE 16 X and Y displacements for the test case (2). The high normalized cross‐correlation value indicates the two signals are the same.
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7.1.2 | Test case (2)

Figure 16 shows the result for test case (2). A high correlation of

value 0.97 in X and 0.87 in Y displacements shows the RAFT‐s model

also performs well compared with the dense I A2 in this scenario.

7.1.3 | Test case (3)

Figure 17 shows the result for test case (3). A high correlation of

0.527 in X and 0.33 in Y displacements shows the model works

comparatively to the LK in this case. Additionally, the results

F IGURE 17 X and Y displacements for the test case (3). The high normalized cross‐correlation value indicates the two signals are the closely
correlated.

F IGURE 18 X and Y displacements for the test case (4). The high normalized cross‐correlation value indicates the two signals are the same.
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indicate that the RAFT‐s model does not suffer from the aperture

problem.

7.2 | Cold‐soaked condition

7.2.1 | Test case (4)

Figure 18 shows the result for test case (4) in cold‐soaked

condition. A high correlation value of 0.571 in X and 0.8246 in Y

displacements show the model works well compared with the I A2

in this case.

7.2.2 | Test case (5)

Figure 19 shows the result for test case (5). A good correlation

value of 0.269 in X and 0.3891 in Y displacements shows the

model works comparatively well compared with the LK in cold‐

soaked low‐contrast conditions.

F IGURE 19 X and Y displacements for the test case (5). The high normalized cross‐correlation value indicates the two signals are the same.

F IGURE 20 X and Y displacements for the test case (6). The results show that the model is still functional while the LK does not appear to
be. LK, Lucas–Kanade.
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7.2.3 | Test case (6)

Figure 20 shows the result for test case (6). The signals show that the

model still works to some degree in this case while the LK does not. It

demonstrates that the neural network was more reliable than the LK

in this test.

7.2.4 | Test case (7)

Figure 21 shows the result for test case (7). The measured X and Y

displacements are very low and fluctuate around 0.5 pixels which

shows both the neural network and the traditional technique do not

work in this case.

F IGURE 21 X and Y displacements for the test case (7). It shows that both the neural network and the LK do not work in this case. LK,
Lucas–Kanade.

F IGURE 22 Signals from the model as contrast of the scene worsens through the night over time from the highest at 4 p.m.–2 a.m.–12 a.m.
to the lowest at 4 a.m.
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7.3 | RAFT‐s signals from high‐ to low‐contrast
conditions

Figure 22 shows the result for overlaid signals from tests (3), (5), (6),

and (7), which demonstrates how the model performs over time at

the same site. We can see the model performs very well at 4 p.m.

(test 3) then slowly decays in cold‐soaked conditions at 2 a.m. (test 5),

giving some signals at 12 a.m. (test 6), and completely stops

functioning at 4 a.m. (test 7).

Table 3 shows a summary of maximum correlation values in X

and Y displacements of the neural network over seven test cases.

Figure 23 shows the change over the ground across 24 h adapted

from Nguyen, Rosser, Perera et al. (2022). There are few thermal features

over the ground in test (6) when the LK does not function. The RAFT‐s,

on the other hand, appears to pick up high‐level information that allows it

to compute optical flow successfully in some instances in this case. Since

the network was not trained with low‐contrast thermal frames

specifically, it can be argued that the color synthetic data set helps the

network somewhat with strong generalization to determine optical flow

across two very low‐contrast scenes in test (6).

In test (7), however, both the LK and the network do not function

in this extremely low thermal contrast condition.

TABLE 3 Maximum cross‐correlation value of X and Y displacements of seven test cases with their thermal conditions and data set.

Case Thermal condition Data set Maximum cross correlation of X displacement Maximum cross correlation of Y displacement

1 High contrast [1] 0.8308 0.8301

2 High contrast [4] 0.9752 0.8699

3 High contrast [3] at 4 p.m. 0.5276 0.3306

4 Low contrast [4] 0.5711 0.8246

5 Low contrast [3] at 2 a.m. 0.2697 0.3891

6 Low contrast [3] at 12 a.m. −0.2835 −0.3669

7 Low contrast [3] at 4 a.m. −0.4990 −0.3997

F IGURE 23 Features of the ground over 24 h of the field, with the used sequences are highlighted in red squares.
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8 | DISCUSSION

The study shows that the RAFT‐s model trained on both RGB

synthetics with perfect ground truth, and trained on real‐world

thermal aerial frames with ground truth generated from traditional

techniques, works comparatively well compared with both sparse and

dense traditional techniques during hot, high thermal contrast

conditions. Very high normalized cross‐correlation values shown in

Figures 15–17 indicate a very high relation between the two signals.

During the cold‐soaked low‐contrast conditions, the model

works well compared with the I A2 as shown in Figures 18 and 19.

Relatively strong normalized cross‐correlation values indicate a

strong relation between the two signals.

In test (6), the results in Figure 20 show that the model is still

functional to some degree, while the LK does not work. In test (7),

Figure 21 both the LK and the model do not work in this cold‐soaked

low thermal condition.

Importantly, the model does not suffer from the aperture problem

without being specifically trained for that behavior. This can be explained

as the model having strong generalization from the synthetic RGB data.

While the model shows strong performance against the test

algorithms, it comes at much higher computational cost. Although the

RAFT‐s model has the fewest parameters and smallest memory footprint,

it cannot be deployed on low‐cost and lightweight embedded systems,

such as the Pi 4, which limits its use on small UAVs.

It would be interesting to see how the model runs on specific

embedded boards designed for deep‐learning application.

Limitations are due to the ground truth which is learned from

traditional techniques, it may not allow the full potential of the network to

be expressed. With good labeled thermal data, the network may

outperform traditional techniques in extremely low‐contrast condition.

9 | CONCLUSION

This study compares the performance of a thermal flow‐based neural

network trained with synthetic color and our collected thermal data

sets versus traditional optical flow techniques in real‐world condi-

tions. The results show that thermal flow from deep‐learning network

can work well in high‐contrast conditions, and even outperforms

existing techniques in low‐contrast environments.

The pretrained neural network that was trained on the RGB data set

must be retrained with thermal data to work well. Imperfect ground truth

from traditional dense technique could be used to train the network,

possibly with some consequence to ultimate performance.

The results also show that the neural network has strong

generalization from synthetic RGB data sets to detect very low

thermal contrast features where the traditional optical flow tech-

niques fail to detect.

On the other hand, like other deep‐learning models, the RAFT‐s

neural network requires a dedicated GPU to work well. This potentially

limits its use with low‐cost and lightweight systems such as the Raspberry

Pi 4 or other systems suited to small and micro‐UAVs.

Future studies will focus on implementing a much smaller model

for thermal aerial application with the goal to further reduce

computational requirements while maintaining accuracy.
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