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Abstract - This paper studies the data missing and make-

up work over a PIDn networked control system (NCS). We 

start with the simplest method by replacing the missed data 

with the previous one, then move to the linear interpolation 

and the numerator polynomial method. The study shows 

that these data make-up work can be rewritten in one 

formula. For a given PIDn controller, different data make-

up work only give different parameter and the system 

performances will be the same. This conclusion is verified 

in our simulations. 

Keywords: Networked Control System, Missing Data, 

Data Make-up. 

1 Introduction 

  Networked control system (NCS) is a feedback 

control systems wherein the control loops are closed 

through a real-time network. When data travel along 

unreliable communication channels, the effect of 

communication delays and loss of data in the control loop 

degrade system performance and even cause stability 

problems. Michael S. Branichy et al analyzed the influence 

of the sampling rate and network delay on system stability 

[1]. Johan Nilsson et al addressed modeling and analysis of 

real-time control systems subject to random time delays in 

the communication network. In his study, the state of the 

network is modelled by a Markov chain and Lyapunov 

equations for the expected LQG performance are presented 

[2-3]. Feng-Li Lian et al characterized the asynchronous 

sampling mechanisms of distributed sensors within a NCS 

to obtain the actual time delays between sensors and the 

controller [4]. Mikael Pohjola presented a discrete-time 

PID controller optimization tuning method for varying 

time-delay systems over NCS in simulation [5]. In [6-9] 

Luca Schenato studied the optimal estimation design for 

sampled linear systems with communication network, 

where the sensor measurements were subject to random 

delay or be lost. They modeled the process by assigning 

probabilities to successfully receive packets, and the 

stability did not depend on packet delay only on packet loss 

probability. Algorithms to compute critical packet loss 

probability and estimators performance in terms of their 

error covariance were given.  

 M. Sahebsara et al studied the problem of optimal 

filtering of discrete-time systems with random sensor delay, 

multiple packet dropout and uncertain observation. 

Stochastic H2-norm of the estimation error is used as a 

criterion for the filter design. The relations derived for the 

new norm definition are used to obtain a set of linear matrix 

inequalities (LMIs) to solve the filter design problems [10]. 

Qing Ling et al derived an equation for a networked control 

system’s performance as a function of the network’s 

dropout process, which is governed by Markov chain [11]. 

Vijay Gupta et al considered the problem of optimal Linear 

Quadratic Gaussian control of a networked control system 

across a packet-dropping link without any statistical model 

of the packet drop events [12].  In [13] Peter J. Seiler 

addressed the performance of the system as measured by 

the H∞ gain was represented as a function of packet loss.  

 When packet drops, the dropped measurements can be 

replaced with the estimated data. In [14] Christoforos N. 

Hadjicostiss et al modeled a packet dropping network as an 

erasure channel and replaced the dropped measurements 

with zeros. In [15] Qiang Ling et al used the last received 

sample to compensate the dropped measurements, based on 

the power spectral density (PSD). Qiang Ling also 

addressed error correction mechanism and concluded that 

by adding carefully adjusted redundancy to transmitted data 

at the sender, it is possible to recover lost data at the 

receiver and thereby improve effective throughput [16].  

 Most of these research focuses on general design of 

the packet loss compensator or estimator via different 

models. In this paper we take a further study of the system 

performance using different compensation approaches for 

data loss over unreliable networked real-time 

communication links. A Magnetic Levitation System is 

employed as our platform, and a PIDn controller is adopted 

in the system as the compensator. The influences of data 

make-up methods on system stability and performance are 

studied in simulations using MatLab and Simulink.  

 The paper is organized as follows. In section 2, the 

effects of time delays and packet drops in NCS are 

analysed. In section 3, the system model has been setup and 

a physical platform, Magnetic Levitation System, is 



introduced as our platform. Three methods are studied to 

make up the missing data. The optimization is carried out 

using Matlab. The results and conclusions are drawn in 

section 4.  

2 Time Delay and Packet Drop in NCS 

 From the point of view of control theory, significant 

delay is equivalent to loss, as data needs to arrive to its 

destination in time to be used for control. 

2.1 Time Delays 

 The important time delays in NCS occur when 

sensors, actuators, and controllers exchange data across the 

network. In an NCS, message transmission delay can be 

broken into two parts: device delay and network delay. A 

time diagram in Figure 1 shows time spent on sending a 

message from a source node to a destination node. Time 

delay includes the time delays at source and destination 

nodes and the transmission time. The time delay at source 

node includes the processing time, τpre, and the waiting 

time, τwait. The time delay at the destination node is the 

post-processing time, τpost. The network time delay, τtx, 

includes the total transmission time of the message and the 

propagation delay of the network. The total time delay 

equals the sum of the time delays τdelay=τpre+τwait+τtx+τpost. 

 The processing time at the source node is the time 

needed to acquire data from the external environment and 

encode it into the appreciate network data format. This time 

depends on the device software and hardware 

characteristics. In many cases, it may be assumed that the 

pre-processing time is constant or negligible. In fact, there 

may be noticeable differences in processing time 

characteristics between similar devices and these delays 

may be significant. 

 A message may spend time waiting in the queue at the 

sender’s buffer and could be blocked from transmitting by 

other messages on the network. Depending on the amount 

of data the source node must send and the traffic on the 

network, the waiting time may be significant. The main 

factors affecting waiting time may be protocol, message 

connection type and network traffic load. 

 The post-processing time at the destination node is the 

time taken to decode the network data into the physical data 

format and output to the external environment. 

 The transmission time is the most deterministic 

parameter in a network system. It only depends on the data 

rate, the message size and the distance between two nodes. 

The transmission time can be described as τtx=N×τbit+ τprop, 

where N is the message size in terms of bits, τbit the bit 

time, τprop the propagation time between any two devices. 

The propagation time is negligible in a small scale control 

network (100m or shorter) because of the high transmission 

speed (2×10
8
m/s). 

 

2.2 Analysis Time Delay Effects in NCS 

 In a NCS, network is used to transmit data among 

control system devices. When sensors, actuators and 

controllers are interconnected by one common-bus 

network, all devices need to share the transmission 

medium, and the application signals are discretized. Hence, 

digital control approach is used for analysis of these types 

of systems. To guarantee the system stability and control 

performance, phase margin can be used. 

 

 Phase margin measures how far the closed-loop 

system is from stable/unstable conditions. It is the amount 

of extra phase shift that the system can tolerate before the 

closed-loop becomes unstable. It is the amount by which 

the phase shift of an open-loop system exceeds -180° when 

the gain equals one. For the system to be stable, the phase 

margin must be positive. The primary effect of time delay is 

additional phase-lag. It does not affect the magnitude 

frequency response curve. The typical effects of time delay 

are shown in Figure 2. The phase-lag caused by the time 

delay reduces the phase margin. If the phase margin 

becomes negative, the system becomes unstable. 
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Figure 2.  Time Delay Effects in NCS 
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3 Missing Data and Make-up Work 

 When using an NCS, one must consider not only 

network-induced delays, but also data packet dropout. The 

messages to be transmitted can be lumped into one network 

packet (Single-packet Transmission). Due to the bandwidth 

and packet size constrains of the network, the 

measurements may be transferred using multiple network 

packets (Multiple-packet Transmission). Because of 

network access delays, the controller may be to receive 

all/parts/none of the packets by the time of control 

calculations. The network can be designed to re-transmit 

message for a limited time on the protocols with 

transmission-retry mechanism, but the packet are dropped 

after this time. For real-time feedback control data such as 

sensor measurements and calculated control signals, it may 

be advantageous to discard the old, un-transmitted message 

and transmit a new packet if it is become available. In this 

way, the controller always receives updated data for 

control. Normally, feedback-controlled plants can tolerate a 

certain amount of data loss. 

 
 We will consider a simple structure with just one 

controller and one process connected via network Figure 3. 

The information is exchanged using a network among 

control system components such as sensors, actuators, and 

controllers. The plant variable y(k) to be controlled is 

measured and the measurement is transmitted to the 

controller via the network. The controller compares it with 

a reference r(k), a desired response, and calculates the 

control output u(k) based on the error signal e(k). The 

controller output is transmitted to the plant to adjust the 

controlled variable. In the case of packet loss the prediction 

can makeup the data ŷ(k) to replace the lost packet y(k). 

3.1 Plant Analysis Using Root Locus 

 In this study, we use Magnetic Levitation System 

(MLS), characterized by open-loop instability and non-

linear dynamics, as the plant. This MLS suspends a hollow 

steel sphere with the aid of electro-magnetism inside an 

operating region. It can be modeled as: 
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 The discrete-time transfer function GHP(z) of the plant 

model can be obtained using z-transform as follows 
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 where m=e
-30.5T

+e
30.5T

-2, m1=e-30.5T, m2=e
30.5T

, and 

T is the sampling time. 

 The root locus can be used to analyze the system 

behavior. The stability of the system may be determined 

from the locations of the closed-loop poles in the z-plane, 

or the roots of the characteristic equation. For all the root 

loci, there is a part inside the unit circle, i.e., a range of gain 

k can be found to assure all the close-loop poles inside the 

unit circle. The main idea of root locus method is to find 

the closed-loop response from the open-loop root locus 

plot.  

 

 

 
 Using Matlab we get the root locus plot of the 

uncompensated plant shown as Figure 4. Figure 5 should be 

of the same root locus magnified a little so that the root 

locus around 1 on the real axis can be seen. In Matlab 

command window, using the user-defined function rlpoba, 

which returns the values of breakaway/breakin points of the 

root locus [17], we obtained the breakaway point at 1.0009 

and the breakin point at -3.0009 on the real axis. Inspecting 

Figure 4 and Figure 5, only a small part of the root locus 

are inside the unit circle. At least one root is always outside 

the unit circle on a root loci which lies between the pole, 

1.0629, and the zero, -1. It is necessary to reshape the root 

locus by adding the additional controller GC(z) to the open-

loop transfer function. 

3.2 Compensation with PIDn Controller 

 We apply simplest PIDn controller, which has the 

structure of 

Figure 5. Root Locus of Uncompensated 

                Plant Zoomed in 
 

ŷ(k) 

Figure 3.  Networked Control System 

_ +  

Sensor 

Plant 

Predict 

y(k) u(k) 
Controller 

r(k) 

            T 

 

Network 

e(k) 
Figure 4. Root Locus of Uncompensated Plant 

                with Sampling Time 0.002s 



1

1n
1n

2
2

1
10

1C )(G −

−−
+

−−

−

+⋅⋅⋅+++=
z

zqzqzqq
z             (3) 

 The resulting difference equation is 
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 where u(k) is the output of controller, e(k), e(k-1), …, 

e(k-n-1) are the input errors. 

 Obviously, the controller is closely depending on the 

measurements or system errors.  

 With a PID3 controller, the open-loop transfer 

function of the system is given by: 
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 The characteristic equation is given by: 
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 The placement of the zeros in the controller is a 

matter of trial and error. The problem using root locus 

method does not necessarily have a unique answer. The 

poles of this compensating work can be placed along the 

real axis between ±1. Three poles at origin force a fast 

response. A pole at -1 is a part of this PID3 controller. The 

additional zeros of the compensator will be placed inside 

the unit circle to pull the root locus further into the unit 

circle. For instance, we chose the roots 0.2, 0.5, 0.8, 0.9, 

for the polynomial, q0+q1z
-1
+q2z

-2
+q3z

-3
+q4z

-4
, which makes 

q0=1.0000, q1=-2.4000, q2=2.0100, q3=-0.6740, q4=0.0720. 

The root locus diagram plotted with Matlab is shown as 

Figure 6. Figure 7 is a zoomed in diagram of Figure 6 

around origin area. From the diagram, the braches of the 

root locus all have at least a part inside the unit circle. We 

can obtain the range of gain k to make all the close-loop 

roots are inside the unit circle that makes the system stable. 

 We may select a gain that will satisfy our design 

requirement to make the system stable. We can use Matlab 

command rlocfind to help. Command rlocfind returns 

selected poles on the root locus and the corresponding gain 

k. This value can be put into the system and the closed-loop 

response to a step input can be obtained. The step response 

of the system with PID3 is shown as Figure 8, in which 

sampling time T=0.002s, the closed-loop gain k=100. 

 

 
 From this plot as shown in Figure 8, we can see the 

system is stable. 

3.3 Effect of Missing Data on System 

Performance 

 If any measurement packets from sensor are dropped, 

a make-up work should be done to estimate the dropped 

data. When packet drops, we can use previous received 

packets to replace the lost packet. Consider e(k) is missing, 

and being updated with e(k-1), the controller transfer 

function takes the form of 
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Figure 9. Step Response for 

                e(k) Replaced with e(k-1) 

 

Figure 8. Step Response 
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Figure 7. Root Locus with PID3 
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Figure 6.  Root Locus with PID3 Controller 



 If we keep the same values of qi, i=0, 1, 2, 3, 4, as of 

the case without packet loss, the system becomes unstable. 

The system step responses are as shown in Figure 9. 

 When packet drops, we can use linear interpolation 

methods. For updating e(k) with 2e(k-1)-e(k-2), we have 

the system transfer function: 
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 where 2e(k-1)-e(k-2) is e(k-1) plus the difference 

between e(k-1) and e(k-2). 

 Similar as addressed as the case of simple data make-

up method, if we keep the same values of qi, i=0, 1, 2, 3, 4, 

the system becomes unstable. The system step responses 

are as shown in Figure 10. 

 

 
 The missing packets, we can also use the polynomial 

method to do the make-up work. The polynomial is given 

by 
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 For sequences e(k-1), e(k-2),…,e(k-v), we have: 
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 With the solution of 
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 We obtained polynomial of e(k-1), e(k-2), e(k-3) and 

e(k-4) to make up a datum to update e(k). For example, 

v=4, we can derivate values of ai, i=0, 1, 2, 3, in 

01

2

2

3

3 axaxaxay +++= . Then, we can compute 

y=e(k) for x=k, i.e. e(k)=4e(k-1)-6e(k-2)+4e(k-3)-e(k-4). 

 We obtained the transfer function: 
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 The system is unstable if qi, i=0, 1, 2, 3, 4, are the 

same as cases without packet drops. The system step 

responses are as shown in Figure 11. 

 Viewing the diagrams as shown in Figure 11, when 

packet drops some make-up methods can make the system 

instable if we keep the same PID3 controller parameters as 

without packet dropping. Some data make-up methods will 

degrade the system performance, but the system can still be 

stable. We can also see from the diagrams, the polynomial 

interpolation method has best system performance amongst 

the three methods. The more the interpolation points and 

the better approximation polynomial, the better system 

performance will be. 

 

 
 

3.4 Controller Design 

 All these three methods can be written up in one 

formula as: 

1

4
4

3
3

2
2

1
1

1C )(G −

−−−−

−

+++
=

z

zpzpzpzp
z            (12)  

 where  pj, j=1, 2, 3, 4, are functions of  qi, i=0, 1, 2 , 

3, 4. The relationship is shown as Table 1. 

Table 1.  Relationship between pj and qi 
Equations Parameters 

Equation (7) 

p1=q0+q1 

p2=q2 

p3=q3 

p4=q4 

Equation (8) 

p1=2q0+q1 

p2=q2-q0 

p3=q3 

p4=q4 

Equation (11) 

p1=4q0+q1 

p2=q2-6q0 

p3=4q0+q3 

p4=q4-q0 

 

 Then we have the open-loop transfer function as: 
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Figure 11. Step Response by Polynomial 

                  Interpolation Method Figure 10. Step Response for e(k)  

                 Replaced with 2e(k-1)-e(k-2) 

 



 Using similar procedure in section 3.2, we chose the 

roots 0.2, 0.95, 0.95, for the polynomial 
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 which makes the system stable. Then we have 

p1=1.0000, p2=-2.1000, p3=1.2825, p4=-0.1805. The root 

locus diagram plotted with Matlab is shown as Figure 12. 

The system step response is shown as Figure 13, in which 

the sampling time T=0.002s, and the closed-loop gain 

k=75. 

 

 

 

 
 Then, we adjust qi, i=0, 1, 2, 3, 4, to keep the same pj, 

j=1, 2, 3, 4. For the case e(k) is updated with e(k-1), we 

adjust q0=-1.0000, q1=2.0000, q2=-2.1000, q3=1.2825, q4=-

0.1805, to get the same system step response as shown in 

Figure 13. Similarly, for e(k) updated with 2e(k-1)-e(k-2), 

we adjust q0=-1.0000, q1=-1.0000, q2=-1.1000, q3=1.2825, 

q4=-0.1805; for e(k) updated with polynomial 

e(k)=4e(k-1)-6e(k-2)+4e(k-3)-e(k-4) 

 We adjust the parameters q0=1.0000, q1=-3.0000, 

q2=3.9000, q3=-2.7175, q4=0.8195, we can have the same 

result as shown in Figure 13. 

 The optimization result shows that as long as the PID3 

controller parameters are adjusted to obtain a set of 

optimized parameters, better system performances can 

always been achieved. These methods can be expended to 

PIDn controller. 

4 Conclusions 

 The time-delay and packet drop problems have been 

investigated in a PIDn NCS system over unreliable network 

links. First, we analyze the impact of time delay on control 

system performance, and conclude that the time delay will 

reduce system phase margin and gain margin, and degrade 

system stability. For packet drop and data missing problem, 

we investigates three data-making up techniques. We find 

that, the more the interpolation points and the better 

approximation polynomial, the better system performance 

will be. The polynomial interpolation method has best 

system performance amongst the three methods. Further 

study shows that the three data make-up methods can be 

modeled in one formula. The system performance only 

depends on the numerator polynomial coefficients of the 

formula. If the PIDn controller parameters are optimized to 

keep the same coefficients for this formula, the system 

performances will be the same for the three different data 

make-up methods. 
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