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ABSTRACT

Context. Aerial surveys are widely used for estimating the abundance of wildlife over large areas.
The failure to count all animals within survey transects is commonly acknowledged and there are
many techniques to measure and correct for underestimation. However, the possibility of animals
being counted more than once in intensive surveys, which leads to overestimation, is rarely
examined. Animals can move in response to observers or vehicles, and bias can occur when
animals move before or after detection. Movement of animals immediately prior to and
associated with observation processes is methodologically accommodated in distance sampling
but bias attributable to responsive movement after observation platforms have passed requires
investigation. Aims. We sought to investigate potential biases caused by animal movement
during intensive helicopter surveys of feral goats, and to quantify the probability that animals are
available for recounting because of their responsive movements. Methods. Using ground-based
behavioural studies simultaneous with intensive helicopter strip surveys of feral goats, we
measured the extent of responsive movement, distances and directions moved, and sampling
design parameters, and contrasted those with random movements. Key results. Feral goats did
not move randomly in response to helicopters. Animals within the transect strips, and therefore
potentially visible from the aircraft, were more likely to move than those outside the transect.
Considerable responsive movement (flushing) occurred between transects and more animals
(64%, n = 448) moved towards unsampled transects than towards transects already sampled.
Because of the spatial separation of transects, 21% of goats were available for recounting in
adjacent transects, leading to potential overestimation. Conclusions. Although most extensive
surveys of macropods and other wildlife in Australia account for overestimation in their design,
surveys that sample intensively and apply valid corrections for undercounting are likely to
produce positively biased estimates of abundance where flushing occurs. Likewise, intensive
thermal surveys could be subject to positive bias for animals prone to flushing. This is routinely
ignored in wildlife management and research where close transects are used to estimate
abundance. Implications. Responsive movement requires consideration when designing
intensive aerial surveys of wildlife. Randomised transects without replacement or larger
distances between transects will counteract recounting bias.

Keywords: aerial survey, antipredator response, Capra hircus, density, feral goat, responsive
movement, ungulate, wildlife management.

Introduction

Estimating population variables is a fundamental process for wildlife management and the 
methods used affect accuracy, precision, reliability and utility of ecological knowledge 
(Elton 1927; Elphick 2008; Fryxell et al. 2014). Strip and delimited and unbounded transect 
surveys are commonly used to aerially estimate wildlife abundance and each methodology 
and analysis depends on various assumptions. Transect surveys have used distance 
sampling (van Hensbergen et al. 1996; Walter and Hone 2003; Buckland et al. 2004), 
multiple observers (Rice and Harder 1977; Caughley and Grice 1982; Tracey et al. 2005; 
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Melville et al. 2008), radio-tagging (e.g. Rice and Harder 
1977; Packard et al. 1985; Ries et al. 1998), regression 
techniques (e.g. Caughley et al. 1976; Hone 1986), indices 
(e.g. Tracey et al. 2005), and comparison with independent 
population estimates (Short and Hone 1988; Jachmann 
2002; Greene et al. 2017). 

When sampling without replacement, most estimators 
implicitly or explicitly assume that animals are not counted 
more than once, nor consistently missed (e.g. distance 
sampling, Buckland et al. 2004), or that they are detected 
prior to any movement in response to the observer. Line-
transect and strip-transect sampling are instantaneous 
methods that assume that objects are in a fixed location at 
the time of the survey, are all detected on the transect line and 
are detected at their initial location (Buckland et al. 2001, 
2004; Fewster et al. 2005). Whereas plants and inanimate 
objects are stationary (e.g. beans, Hone 1986), animals 
move at various rates and directions, which instils potential 
responsive movement biases for animal surveys. In most 
transect surveys, observers or their observation platform 
will cause animals to move, particularly walked line transects 
(e.g. Southwell 1994) and low-level aerial surveys (e.g. 
Fleming and Tracey 2008). 

In distance sampling and strip-transect sampling, 
movements prior to detection have been considered and 
accommodated (Buckland et al. 2004; Fewster et al. 2008). 
Borchers et al. (1998) used a capture–recapture method from 
two survey platforms to correct for both the failure to observe 
animals on the line and the effects of responsive movement. 
Palka and Hammond (2001) estimated the distance at which 
responsive movement commenced by using animal orienta-
tion, then applied a capture–recapture method separately 
for observations within (‘close’) and beyond (‘far’) this 
distance. 

Responsive movement bias is assumed to be small if 
animals move at random and if the animal movement is 
slow relative to the speed of the observer (Buckland et al. 
2001; Glennie et al. 2015). Most estimators will not be 
adversely affected if animals have an equal chance of 
moving into or out of a transect. However, bias can occur 
when animals consistently move away from observers 
(Palka and Hammond 2001; Linklater and Cameron 2002; 
Tracey and Fleming 2007) or towards observers (Palka and 
Hammond 2001; Ca ̃nadas et al. 2004). 

Aerial surveys of wildlife are usually designed by using 
standard random (e.g. Choquenot 1995) or systematic (e.g. 
Walter and Hone 2003) sampling procedures. Systematic 
designs with a random start usually provide more robust 
estimates and are easier to implement in the field than are 
designs where transects are placed randomly without 
replacement (Buckland et al. 2015) A common practice is 
to saturate the study area with a grid of transects and select 
a subset randomly without replacement (Choquenot 1995; 
Pople et al. 1998a; Fleming et al. 2000). However, in both 
designs, transects are typically flown consecutively from 

one edge of the study site to the other to reduce ferry time and 
operational costs (e.g. Tracey et al. 2005). In such situations, 
assumptions are likely to be violated by individuals flushing 
unidirectionally between transects. 

We could find only one reference relating to animal 
movements into other sampled areas after detection or the 
passage of observers or observation platforms (Terletzky 
and Koons (2016) found 4.4% mean duplicate observations 
of GPS-collared bison, Bison bison, aerially surveyed with 
topography-following flight paths), and none investigating 
potential positive survey bias or cumulative bias with subse-
quent passes. Here, we sought to investigate the possibility of 
recounting bias in helicopter counts of feral goats (Capra 
hircus) and used independent ground observations to 
quantify any such biases. 

Materials and methods

Study site

The study site with a high density of feral goats was chosen 
near the Coolah Tops National Park (−32°0 0S, 149°58 0E) in 
central-eastern New South Wales, Australia. The region has 
high rainfall (739 mm average annual rainfall, s.e. = 23.2, 
n = 55 years) and medium to high elevation (620–1190 m). 
The topography is rugged, encompassing gorges, narrow 
creeklines, wide valley floors, undulating to steep hillsides, 
narrow ridge tops and broad plateaux. Vegetation communi-
ties ranging from open grasslands to tall forests are supported 
by the fertile soils derived from basalt (Banks 1998). The 
overstorey associations are mainly woodlands of Eucalyptus 
goniocalyx, E. melliodora, E. viminalis, and E. albens, and 
gallery forests of Casuarina cunninghamiana are interspersed. 
High densities of feral goats, eastern grey kangaroos (Macropus 
giganteus), common wallaroos (Osphranta robustus), Australian 
merino sheep (Ovis aries) and  cattle  (Bos taurus) occurred at  
the site. 

Aerial surveys

Methods follow those described in Tracey et al. (2005) and 
Tracey and Fleming (2007). Between 1997 and 2002, 34 
surveys were flown over the study area in either a Hughes 
500 or Bell Jetranger (206B) helicopter. During surveys, 
the helicopter maintained an approximately constant height 
of 150 ft (~46 m) above ground level (agl) and a constant 
airspeed of 45 knots (~85 km h−1). Strip transects of 100 m 
on each side were delimited by right-angled poles attached 
to the helicopter and transects were spaced 300 m apart. 
Doors were removed and observers, one behind the pilot 
and two on the passenger (double) side, looked to the side 
of the helicopter and forward vision was obscured for 
consistency of search area on the double-observer side. 
Subsequently, there was a blind strip of 60 m below the 
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helicopter where animals could not be observed by on-board 
observers. Transects (6–14 km) were selected at random 
without replacement and oriented east–west, which was 
perpendicular to the orientation of the major valley 
systems, and first passes progressed from north to south. No 
adjacent transects were flown consecutively, so randomly 
selected transects that were consequently omitted on first 
pass were subsequently flown in a second pass from north 
to south. The whole site was flown in one session for each 
survey. Surveys were flown within 3 h of either sunrise or 
sunset, and each survey was sampled between 40% and 
70% of the site area. 

Ground observations

During aerial surveys, 6–12 experienced ground-based 
observers located, counted and monitored behaviour and 
movements of free-ranging goats before, during and after 
helicopter passes. To reduce disturbance, the ground observers, 
assisted by radio-telemetry, spotted herds of goats from high 
vantage points and approached them on foot behind cover 
and as quietly as possible. Observations were not conducted 
on the rare occasions that goats were noticeably affected 
by ground observers, that is, where goats exhibited any 
alert response to the presence of an observer. Independent 
behaviour data suggest that fewer than 7% of observed 
groups were disturbed by observers (n = 22 184, P. Fleming, 
unpubl. data). Because ground observers could not predict 
whether a particular group of goats would occur within 
transect areas simultaneously with survey overflights, many 
observations of feral goat groups were obtained (>1500), but 
we could use only 784 in analyses. Although macropods 
were aerially counted at the same time as goats, lack of local 
knowledge of macropod dispersion throughout the site and 
limited available personnel precluded deployment of observers 
to take simultaneous ground observations of macropods. 

Observers recorded date, time and site of the observation, 
and the number, colour, sex and age ratio, location, activity, 
vegetation type, and movements of goat groups, and other 
variables. Horizontal distances to the helicopter from observed 
goats were also recorded using line-of-sight, 1:25 000 topo-
graphic maps, grid locations and a global positioning system 
(GPS). Prior to the helicopter being heard or becoming 
visible to the observer, grid locations of animals were mapped, 
their activity recorded, and horizontal distances were subse-
quently estimated with simultaneous helicopter locations 
that were calculated from its on-board GPS. All observations 
were conducted during aerial surveys and helicopters used 
radar altimeters to maintain a fixed height and therefore 
the recorded horizontal distance was directly proportional to 
the actual distance between the observed animals and the 
helicopter. When individual feral goats within a group behaved 
differently, the activity of most animals in the group was 
recorded. 

� �
p2spsðFirst passÞ = ps − and
2 

p2spsðSecond passÞ = :
2 
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Probability that animals are available for
recounting

Here we estimated the probability that animals once available
for detection in a sampling area were available again in
adjacent sample areas. This probability relies on information
about the extent of responsive movement, the direction of
movement, the distances between transects and the sampling
design (sample intensity, transect width, distance between
transects, and distance unobservable beneath the aircraft).

The probability that an animal or group is available for
recounting (pa) was estimated using the following equation:

pa = pm1ps1 + pm2ps2 + : : : + pmi psi

where pmi is the probability an animal moves to i other
transects; psi is the probability Transect i is sampled; and
the maximum value for i is the maximum perpendicular
distance moved divided by the distance between transects.

The probability of an animal moving into another transect
(pmi) is dependent on the transect width, the distance between
the transects, the proportion of animals that move, how far
they travel (dm) and in which direction they travel (θm).
These parameters were observed or later estimated for
feral goats known from observations to be within sampled
transects during surveys. We converted dm and θm to the
perpendicular distance moved in relation to east–west
transects (dp, Fig. 1).

We selected a Weibull distribution ðy = e½−ðλxÞy �Þ for
describing the relationship between the probability of goats
moving into another transect (y = pmi) and the perpen-
dicular distance moved (x = dp; Evans et al. 1993). This
relationship was selected over the simple exponential
function because its shape could be altered according to the
γ-value. Scale (λ) and shape (γ) parameters were optimised
using maximum log-likelihood estimation, assuming a multi-
nomial error structure.

The probability of sampling a transect depends on survey
design and the initial sampling rate. If parallel transects are
sampled consecutively from one edge of the study site to
the other, as is common practice (e.g. Reilly et al. 2017),
only animals that move in one direction are able to be
recounted. However, if multiple passes are made, or transects
are sampled in a random order, the calculations of pmi need to
be adjusted, as animals that move in either direction may be
available during subsequent passes.

Therefore, the sampling probability for two passes can be
estimated by calculating separate probabilities for the first
and second pass, where:

www.publish.csiro.au/wr
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360° 
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dp dp 

θp θp270° 90° 
θp θp 
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Fig. 1. Representation for calculating the perpendicular distance goats moved (dp) from the
transect during aerial surveys. Notation: dp = (sin θp) dm, where dp = perpendicular distance
moved dm = distance moved, as recorded by ground observers, and angle θp is calculated using
angle θm (direction moved, 0–360°) and the following formulae: (a) if θm < 90, then
θp = 90 − θm; (b) if 90 < θm < 180, then θp = θm − 90; (c) if 180 < θm < 270, then
θp = 270 − θm; (d) if θm > 270,then θp = θm − 270. Direction of helicopter travel is from left to right.

On the second pass, goats that moved in either direction 
may be available for sampling, hence 

� � � � � �
p2 p2 p2 
s s spaðFirst passÞ = pm1 ps − + pm2 ps − + pm3 ps −2 2 2 � �
p2 
s+ pm4 ps − 
2 

� � � � � �
p2 p2 p2s s spaðSecond passÞ = pm1 + pm2 + pm32 2 2 � �

p2s+ pm4 2 

The Weibull function was used to estimate the probability 
that a group moved into another transect in relation to the 
transect spacing, i.e. 

1. east–west transects were placed 300 m apart,
2. 100 m was sampled on either side of the helicopter,
3. 60 m was unavailable directly underneath the helicopter

(i.e. 30 m each side of the centre line), and
4. because of 1 and 2, 40 m was unsampled between

transects.

Results
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Feral goat movement patterns�
Goats were significantly more likely to move south if they
were initially south of the helicopter (χ2 = 16.6, d.f. = 1,
P < 0.001) and more likely to move north when they
were initially north of the helicopter (χ2 = 16.8, d.f. = 1,
P < 0.001). Combining these ratios, 64% of individual
goats moved away from the helicopter and 36% moved
towards it (n = 448).

Probability that animals are available for
recounting

For groups of goats that occurred within sampled transects,
the probability of moving, pm, decreased with the perpen-
dicular distance travelled, d (Fig. 2, p = e½−ð0.017d Þ0.483pp m

�).
Over 60% of groups moved, but only 30% moved further
than 100 m and 8% further than 400 m.

Because consecutive transects were omitted on the first
pass, the probability of sampling an adjacent transect was 0
and probabilities of moving into more than one transect
were calculated only for those animals that moved in one
direction. Because the probability of goats moving was ≠1
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Fig. 2. The probability that a group of goats (y) will move x distance
perpendicular to the transect direction in response to intensive
helicopter aerial surveys.

when the perpendicular distance = 0, the Weibull function 
was adjusted using the observed proportion of goats moving 
when the helicopter was directly overhead (i.e. 0.61). The 
maximum recorded perpendicular distance moved was 
1200 m (mean = 104 m, median = 12 m). The probabilities 
of goats moving (pm) perpendicular to the helicopter were 
estimated using the proportion of goat groups observed; 
hence, these calculations assumed that the distance moved 
was not a function of group size (Tracey and Fleming 2007). 

As goats moved unevenly in southern and northern 
directions relative to the helicopter, probabilities were 
estimated separately for each side and were weighted for 
direction moved according to the observed proportions 

(i.e. 0.64 ‘away’ and 0.36 ‘towards’). The probability of a 
group moving into another transect was estimated by 
averaging probabilities predicted for perpendicular distance 
moved (Fig. 2). These predicted probabilities were calculated 
separately for the range of distances to each adjacent transect 
(Table 1). 

Assuming that transects are flown consecutively from 
one edge of the study site to the other, as is usually the 
case, the probability of animals moving into an adjacent 
transect occurs in only one direction. For example, if 
transects are flown from north to south, goats that move 
north will not be available in another transect. Hence the 
probability of animals moving south is 0.18 for goats on 
the northern side (1/2 of 0.36) and 0.32 for goats on the 
southern side (1/2 of 0.64). 

We sampled all available transects and so the probability of 
sampling an adjacent transect (ps) was 1. Despite sampling all 
transects, 100 m of every 300 m transect was unavailable 
(60 m underneath plus 40 m between transects), which 
translates to an achieved sampling rate of 67%. Using the 
pa and pm values (Table 1), and assuming that transects 
were sampled consecutively, the probability that a group of 
goats was available for recounting (pa) would be 0.18. 
When estimating seasonal abundance for the whole site, we 
sampled 18 of 28 possible transects. Hence, the probability 
of sampling a transect (ps) was 0.64 (=18/28), which 
translates to a sampling rate of 43% when considering the 
area unavailable under the aircraft and between transects. 
In this case, the probability that goats were available for 
recounting (pa) was 0.12 (=0.64 × 0.18). 

Table 1. Predicted probabilities (pm) of groups of goats, once available for sampling, moving to additional transects in annual abundance surveys in
Coolah Tops National Park.

Item 1 transect 2 transects 3 transects 4 transects

(a) Move in one direction

θmx weighting 0.32 0.18 0.32 0.18 0.32 0.18 0.32 0.18

Range (m) 40–140 200–300 340–440 500–600 640–740 800–900 940–1040 1100–1200

Average pmx 0.307 0.135 0.082 0.051 0.036 0.025 0.019 0.014

Av pmx × wt. 0.09824 0.0243 0.02624 0.00918 0.01152 0.0045 0.00608 0.00252

Weighted pmx 0.12254 0.03542 0.01602 0.0086

pm = ∑ pmx 0.18

(b) Move in both directions

θmx weighting 0.64 0.36 0.64 0.36 0.64 0.36 0.64 0.36

Range (m) 40–140 200–300 340–440 500–600 640–740 800–900 940–1040 1100–1200

Average pmx 0.307 0.135 0.082 0.051 0.036 0.025 0.019 0.014

Av pmx × wt. 0.19648 0.0486 0.05248 0.01836 0.02304 0.009 0.01216 0.00504

Weighted pmx 0.24508 0.07084 0.03204 0.0172

pm = ∑ pmx 0.37

For each transect adjacent to the initially sampled transect (i = 1–4), the column on the left is for the first pass and the column on the right is for the second pass. Final
values are weighted for direction moved (θm). Calculations assume goats that are available for sampling are those that (a) move in one direction or (b) move in both
directions, i.e. towards and away from the transect.
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However, because consecutive transects were omitted on 
the first pass and sampled on a second pass, probabilities 
were calculated separately. 

paðFirst passÞ = 0 + 0.03542ð0.5Þ + 0.01602ð0.5Þ 
+ 0.0086ð0.5Þ = 0.03, 

where pm is calculated using Table 1a, ps = 1, ps (First 
pass) = 0.5 

paðSecond passÞ = 0.24508ð0.5Þ + 0.07084ð0.5Þ 
+ 0.03204ð0.5Þ + 0.0172ð0.5Þ = 0.183, 

where pm is calculated using Table 1b, ps = 1, ps (Second 
pass) = 0.5 

pa = paðFirst passÞ + paðSecond passÞ = 0.21. 

Discussion

The failure to count all animals within a defined sample 
area or distance classes has dominated discussions about 
limitations of aerial survey methods, and correction for 
underestimation is ubiquitous (e.g. Caughley et al. 1976; 
Barker 2008; Laake et al. 2008). Even when duplicate 
counting has been identified, estimates were still inflated 
to account for overall under-detection (Terletzky and Koons 
2016). However, we have shown overestimation as a poten-
tial problem that needs to be designed for in aerial surveys. 
Although the potential for recounting animals has often been 
assumed to be negligible (Seber 1982; Beasom et al. 1986; 
Linklater and Cameron 2002) or not considered because 
of small movements (e.g. Lethbridge et al. 2019), our results 
showed that under intensive sampling, movement between 
transects can be substantial (here 18–21%, depending on 
sampling rate) and, consequently, can cause large overesti-
mates of density and abundance. 

Assuming that animal movement is independent of the 
observer, bias from that movement is related to the distance 
animals travel during survey passage (Glennie et al. 2015). 
Negative bias in line-transect and strip sampling is smaller 
when mean animal speed is less than observer speed and 
larger when animal speed is greater than observer speed 
(Glennie et al. 2015). However, animal movement is not 
independent of observers and flight responses to observers 
and observer platforms are common (Clancy et al. 1997; 
Stankowich 2008), particularly among large herbivorous prey 
animals such as ungulates and macropods (e.g. Krausman 
et al. 1986; Pople et al. 1998b; Grigg et al. 1999; Tracey 
and Fleming 2007). We also showed that the direction of 
feral goat movements was not uniform. 

The distance ungulates travel in response to aerial distur-
bance, and hence the potential for recounting, is difficult to 
compare across studies because elevation, aircraft speed, 

distance to the aircraft and type of aerial activity are widely 
varied and, in some cases, not reported. During very low-
flying helicopter surveys (10–15 m agl), Beasom et al. 
(1986) reported resightings of marked white-tailed deer 
(Odocoileus virginianus) between 0% and 13% of total deer 
seen. Intensive sampling resulted in multiple sightings of 
individual deer, but it was concluded that this rendered 
total counts less conservative (Beasom et al. 1986). 
However, the proportion of marked deer in the population 
was not reported, and only 26–40% of deer were observed. 
Hence, the reported figure of 13% for a 100% sampling 
intensity would indicate that a higher proportion was 
actually available for recounting (i.e. between 33% and 
50%). The low altitudes flown (e.g. DeYoung et al. 1989) 
and the recorded flushing behaviour of ungulates in other 
studies (e.g. Linklater and Cameron 2002; Stankowich 2008; 
Glennie et al. 2015) would also suggest greater movement 
between transects than has been reported. 

Our probability of recounting was negatively correlated 
with sampling rate and positively correlated with the distance 
feral goats moved between transects. Both correlations are 
likely to hold true for any intensive aerial transect survey 
of large mobile animals involving species with a fleeing 
antipredator response. Despite some species- and situation-
specific flushing responses, recounting is highly unlikely 
in aerial surveys that have widely spaced transects (e.g. 
macropod surveys; Cairns et al. 1991; Pople et al. 2006; 
Lunney et al. 2018), and undercounting persists in those 
cases. However, studies that sample intensively to achieve 
higher accuracy in low-density populations or localised 
high-density populations (e.g. Melville et al. 2008; Reilly 
et al. 2017), and apply valid corrections for an inability to 
detect all animals are likely to produce positively biased 
estimates of density. Recounting is more likely for intensive 
or low-level surveys of large ungulates that flush large 
distances, such as, for example, caribou (Rangifer tarandus; 
Calef et al. 1976; Harrington and Veitch 1991), mule deer 
(Odocoileus hemionus; Krausman et al. 1986), and mountain 
goats (Oreamnos americanus; Côté 1996). Linklater and 
Cameron (2002) found that recounting of feral horses 
(Equus caballus) resulted in overestimates of 15–32% in the 
Kaimanawa Ranges of New Zealand. Their Hughes 500 
helicopter was flown at 60 m agl and horses were reported 
moving 0.1–2.75 km in response to the helicopter, but their 
sampling intensity was maximised to achieve a census. 

All the above ungulate species and feral goats are 
gregarious, and, although detectability is associated with 
groups size (e.g. Samuel and Pollock 1981; Melville 
et al. 2008; Tracey et al. 2008), it is possible that flight 
responses to human disturbance are greater in larger groups 
(Stankowich 2008). Unmanned aerial vehicles (UAVs) 
cause greater flight distances in larger groups of guanacos 
(Lama guanicoe) than in small groups or solitary animals 
(Schroeder and Panebianco 2021). Other solitary larger 
herbivores, including ungulates such as the Japanese serow 
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(Capricornis crispus), might be less likely to flush great 
distances in response to human disturbance, particularly 
once cover is reached (Takada et al. 2019). Different social 
organisation and antipredator responses in ungulates 
(Jarman 1974) and macropods (Jarman 1991) might affect 
flushing behaviour and probability of recounting during 
aerial surveys, but further study is required to elucidate and 
quantify resultant estimation biases. 

If transects are close relative to the distance that an animal 
can traverse in responsive movement, then the measurements 
of interest are the speed of the animal and the observer 
between successive transects, and the direction of movement. 
The threshold below which feral goats are more likely to flush 
is 150 m from the helicopter (Tracey and Fleming 2007), 
which is within the observable range of observers and 
close to the outer-strip boundary for transects sampled in 
our study. If the helicopter was within this distance, goats 
travelled further (>150–2500 m) from the point of 
disturbance, which has implications for the probability that 
animals are available for recounting. We concluded that 
goats did not have an equal chance of moving into or out 
of a transect, because those that were potentially visible 
moved significantly further than those that were outside 
the transect area. Full randomisation of transect placement, 
without replacement, has potential to reduce the possibil-
ity of directional responsive movement or to increase the 
likelihood that movements into and out of subsequent 
transects are homogenous: there is software available to 
facilitate logistically efficient random placement of transects 
(e.g. Marshall 2019). However, because flushing is often in 
response to the noise of low-level aerial survey platforms, 
including drones (e.g. Brunton et al. 2019), there is an 
increased likelihood of animals moving away from surveyed 
areas where transect lines randomly fall close together, 
thereby interfering with the assumptions of fixed location 
and sighting at initial locations. 

Most of the few studies comparing aerial survey estimates 
with actual numbers confirm underestimation (Caughley 
1974), for a review; e.g. Tracey et al. 2008), which suggests 
that recounting animals is uncommon and that conservative 
estimates of density prevail (e.g. Beasom et al. 1986; Lunney 
et al. 2018). However, as technologies, such as surveys using 
thermal imagery (e.g. Havens and Sharp 1998; Cox et al. 
2021) and videography (e.g. Catling and Coops 2004), UAV-
assisted thermal imagery surveys (e.g. Lhoest et al. 2015; 
Witt et al. 2020) and estimation procedures improve, 
elimination of recounting is of increasing importance to 
ensure that estimates are not positively biased, which is 
especially relevant under high-intensity sampling regimes. 
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