
FullyQuanvolutional Networks for Time Series Classification
Nabil Anan Orka
n.orka@uq.edu.au

The University of Queensland
Brisbane, Australia

Ehtashamul Haque
ehtashamul.haque@bracu.ac.bd

BRAC University
Dhaka, Bangladesh

Md. Abdul Awal
m.awal@uq.edu.au

The University of Queensland
Brisbane, Australia

Mohammad Ali Moni∗†
mmoni@csu.edu.au

Charles Sturt University
Orange, Australia

Abstract
Despite the advancements in quantum convolution or quanvo-
lution, challenges persist in making quanvolution scalable, effi-
cient, and applicable to multi-dimensional data. Existing quan-
volutional networks heavily rely on classical layers, with mini-
mal quantum involvement due to inherent limitations in current
quanvolution algorithms. Moreover, the application of quanvo-
lution in the domain of 1D data remains largely unexplored. To
address these limitations, we propose a new quanvolution algo-
rithm–Quanv1D–capable of processing arbitrary-channel 1D data,
handling variable kernel sizes, and generating a customizable num-
ber of feature maps, along with a classification network–fully
quanvolutional network (FQN)–built solely using Quanv1D layers.
Quanv1D is inspired by the classical Conv1D and stands out from
the quanvolution literature by being fully trainable, modular, and
freely scalable with a self-regularizing feature. To evaluate FQN, we
tested it on 20 UEA and UCR time series datasets, both univariate
and multivariate, and benchmarked its performance against state-
of-the-art convolutional models (both quantum and classical). We
found FQN to outperform all compared models in terms of average
accuracy while using significantly fewer parameters. Additionally,
to assess the viability of FQN on real hardware, we conducted a
shot-based analysis across all the datasets to simulate statistical
quantum noise and found our model robust and equally efficient.

CCS Concepts
•Computingmethodologies→Machine learning algorithms;
Supervised learning by classification.

Keywords
quanvolution, quantum deep learning, time series
ACM Reference Format:
Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali
Moni. 2025. Fully Quanvolutional Networks for Time Series Classification.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery

∗Corresponding author
†Also with Washington University of Science and Technology.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736972

and Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3736972

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15486109.

1 Introduction
As Moore’s law approaches its physical limits in a classical setting,
a global shift is underway toward quantum computing to overcome
the limitations of classical computers [32].With companies like IBM
and Google actively testing and developing quantum computers
[1, 6], researchers are exploring themigration of classical algorithms
to the quantum domain in anticipation of a future where quantum
computing is commercially accessible. Given the fundamentally
different operating paradigms of quantum and classical systems, not
all classical algorithms can be directly implemented on quantum
computers [32]. However, achieving a semblance of performance
and functionality is highly desirable in most cases.

One prominent family of algorithms for which quantum equiv-
alents are being actively developed is machine learning (ML). ML
algorithms are computationally expensive, making them ideal can-
didates to benefit from the "quantum advantage" that quantum
computing promises. As a result, quantum machine learning (QML)
has emerged as a promising field, with progress in quantum adap-
tations of support vector machines [27, 37] and neural networks
[45, 46]. Quantum convolution, sometimes referred to as "quanvo-
lution" in some cases (the demarcation is elaborated in the next
section), has also undergone some development in recent years
[8, 17, 19, 30]. However, compared to their classical counterparts,
existing quanvolution modules often fall short in terms of perfor-
mance and utility. As such, further research and the development
of more robust quanvolutional frameworks are necessary.

This paper introduces a novel 1D quanvolutional framework that
demonstrates performance on par with classical convolution (and,
in some cases, outperforms it) while offering greater scalability and
modularity than existing quanvolutional models.

1.1 Background
In the literature, there are two variants of quantum convolution:
circuit-based and kernel-based. The circuit-based variant mimics
Conv2D and pooling layers with different quantum operations to
turn a convolutional neural network (CNN) into a quantum circuit
[8, 19]. However, unlike a typical convolution operation, this variant

2210

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3736972
https://doi.org/10.1145/3711896.3736972
https://doi.org/10.5281/zenodo.15486109
https://doi.org/10.5281/zenodo.15486109
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736972&domain=pdf&date_stamp=2025-08-03

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

works with the entire flattened input instead of individual input
patches. Although the entire process can be executed on a quantum
computer, the scalability of circuit-based quantum convolution
compared to classical CNNs remains open for debate. For instance,
this variant struggles to encode large, complex image datasets in
this noisy intermediate-scale quantum (NISQ) era. Additionally,
the reliance of neural networks on nonlinearities conflicts with
quantum mechanics incapable of nonlinear operations.

In contrast, kernel-based quantum convolution, also known as
quanvolution, functions similarly to a single classical convolutional
layer [17]. Essentially, the quanvolution operation results from
quantum circuits substituting for typical filters or kernels inside a
convolutional layer. This approach offers greater flexibility than the
circuit-based variant, enabling the development of hybrid models
and training schemes. In a classical-quantum hybrid model, a quan-
tum computer deals with the primary computations–interactions
between input patches and filters–while classical computers handle
tasks like processing loss values and applying nonlinear activations
[35]. Owing to its versatility, the algorithm’s introduction remains
a staple in quantum-based computer vision with a wide range of
applications [22, 34, 49, 51, 53].

Our study focuses on the kernel-based quantum convolution, or
quanvolution, and aims to address various limitations outlined in
the following section.

1.2 Motivation
Quanvolutional neural networks are implemented as hybrid sys-
tems, where learning is achieved through the combined effort of
quantum and classical layers. In such architectures, the initial con-
volution layer in models like LeNet-5 [25] is replaced with a quan-
volutional layer, while the rest of the network remains unchanged.
Even when such models perform well, questions arise about the
valid contribution of quanvolutional layers—whether they play a
meaningful role or if the classical layers are doing the heavy lifting.
Additionally, with only one quantum layer, as is typical in quan-
volutional neural networks, it is uncertain if the model can truly
achieve the "quantum advantage."

The original quanvolution algorithm was initially designed to
work only with single-channel image patches [17]. Although some
studies have managed to extend its application to RGB or three-
channel images [21, 40], the algorithm still lacks the ability to
process data with an arbitrary number of channels. This limitation
restricts the placement of a quanvolutional layer deeper within
the network, as the number of channels typically increases in later
layers (observed in architectures like ResNet [16], EfficientNet [47],
Inception [44], and DenseNet [18]). Moreover, existing quanvolu-
tional algorithms can only produce a limited and fixed number of
feature maps because they rely on just one filter. In contrast, in
classical convolution, a layer utilizes multiple kernels or filters to ex-
tract varied but pertinent patterns from the same input, improving
the model’s generalization ability [24]. Additionally, owing to the
reliance on angle embedding or similar linear encoding, the existing
quanvolutional algorithms have to keep their kernel size small, or
the algorithm gets too computationally expensive. A smaller kernel
restricts the effective receptive fields [29], hindering the layer from
capturing broader contextual features. In the literature, the limited

number of output features resulting from a single filter has been
partially addressed by mapping the output of each wire to separate
output channels. However, the number of output features remains
relatively low due to the small kernel sizes, as the kernel size in-
fluences the number of wires in the circuit, consequently affecting
the number of feature maps. Furthermore, most implementations
do not use trainable weights for the quanvolutional layer, limiting
proper representation learning.

The 1D variant of quanvolution has received even less attention
in existing research. We found only two articles on 1D quanvo-
lution [39, 42]. Since these two studies drew inspiration from the
original 2D quanvolution, the limitations of the 2D variant, mainly
related to scalability, limited feature maps, and rigid kernel size,
carry over to the 1D variant. For instance, in the implementation
of Rivera-Ruiz et al. [39], the authors replaced the 2D kernel of
Henderson et al. [17] with a fixed-length, trainable 1D kernel and
kept the rest of the model as is by changing 2D convolutional layers
to 1D convolutional layers. Soltani et al. [42] used the same 1D
quanvolutional algorithm as Rivera-Ruiz et al. [39] while keeping
the weights of the quantum layer untrainable and replacing the
rest of the model with an echo state network. Aside from these two,
some studies also worked with quanvolution applied to 1D data
[26, 36, 40, 43, 51]. However, instead of adapting to a 1D variant
of quanvolution, they converted the 1D data into visual represen-
tations such as scalograms or spectrograms and then applied 2D
quanvolution.

Given all the restrictions and shortcomings of existing quanvo-
lutional algorithms, our motivation for this work was to create a
learnable, scalable, and modular quanvolutional layer that works
like modern convolutional layers and gives users the freedom to
choose the kernel size, the number of output feature maps, and
other common hyperparameters. We aimed to ensure that this layer
could be seamlessly integrated into any neural network, provided
the input dimensions were compatible, mirroring the versatility
of conventional convolution. In this study, we opted to work with
1D quanvolution to establish a strong foundational understanding
before advancing to the 2D variant. Moreover, given the constraints
of simulating quantum computing on classical hardware, 1D data
presents a practical advantage as it involves less computational
overhead compared to 2D. We evaluated our 1D quanvolutional
algorithm on 1D time series data, including univariate and multi-
variate datasets, to analyze the differences between quanvolution
and convolution in representation learning.

1.3 Contributions
As a main contribution, this study introduces the Quanv1D layer, a
quantum analog to the Conv1D layer. Similar to Conv1D, Quanv1D
supports multichannel data, variable kernel lengths, and adaptable
feature map generations. While designing this layer, we prioritized
efficiency and practicality, considering the limitations of current
quantum hardware and aiming to minimize computational costs.
For instance, based on the input requirements and desired out-
put, the layer adjusts itself by either using a higher number of
qubits with fewer circuits or reducing the number of qubits while
increasing the number of filters. Additionally, we reduced the qubit
usage with amplitude embedding for scalable data encoding, which

2211

Fully Quanvolutional Networks for Time Series Classification KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

a b Input channels,

Se
qu

en
ce

 le
ng

th
,

K
er

ne
l l

en
gt

h,

Last channels are
dropped

 la
ye

rs

A
m

pl
itu

de
 e

m
be

dd
in

g
bl

oc
k

Repeated
 times

M
ea

su
re

m
en

t b
lo

ck
Figure 1: (a) FQN’s overall architecture. It has three main parts–embedding, propagation, and projection–consisting of Quanv1D
layers. We included batch normalization and ReLU activation in the architecture for learning stability and non-linearity. GAP
denotes global average pooling. (b) Workflow inside the Quanv1D layer. Unlike a conventional filter found in a convolutional
layer, Quanv1D uses quantum circuits to generate feature maps.

resulted in a single filter requiring 𝑙𝑜𝑔2 (𝐶𝑖𝑛 ∗ 𝑘) qubits instead
of 𝐶𝑖𝑛 ∗ 𝑘 qubits stemming from linear mapping methods. Here,
𝐶𝑖𝑛 represents the input channel size, and 𝑘 represents the ker-
nel length. Furthermore, thanks to our carefully chosen ansatz,
Quanv1D exhibits a self-regularizing property that enhances train-
ing performance.

Our secondary contribution lies in designing an efficient quanvo-
lutional neural network for time series classification. We deviated
from the standard design where there is an overreliance on classical
layers and instead built a fully quanvolutional network (FQN) built
only with our Quanv1D layer. This design demonstrates the poten-
tial of stacked quantum layers to enhance representation learning
in temporal data without relying on classical layers. Moreover,
FQN is very lightweight, requiring substantially fewer trainable
parameters than its quantum and classical counterparts.

The following section provides detailed technical explanations
of Quanv1D and FQN’s design specifics. In Appendix A, we discuss
some quantum computing basics to help readers follow along.

2 Method
2.1 Quanv1D
In general, Conv1D accepts input in the form (𝑁,𝐶𝑖𝑛, 𝐿𝑖𝑛), where
𝑁 represents the batch size, 𝐶𝑖𝑛 is the number of input channels

or dimensions, and 𝐿𝑖𝑛 refers to the sequence length. The output
shape is (𝑁,𝐶𝑜𝑢𝑡 , 𝐿𝑜𝑢𝑡), where 𝐶𝑜𝑢𝑡 is a user-defined parameter
specifying the number of output channels following the quanvolu-
tion operation. The value of 𝐿𝑜𝑢𝑡 is computed using the following
equation:

𝐿𝑜𝑢𝑡 =

⌊
𝐿𝑖𝑛 + 2 × 𝑝 − 𝑑 × (𝑘 − 1) − 1

𝑠
+ 1

⌋
(1)

Here, 𝑘 stands for the kernel size, 𝑠 for the stride, 𝑝 for the
padding on both sides of the input, and 𝑑 for the spacing between
kernel points. Quanv1D has been designed to mimic a Conv1D
layer and follows the same patching operations [7]. For this reason,
we use the hyperparameters presented in Equation (1) to determine
the patches that will be input to the quanvolutional filters. These
hyperparameters, such as the kernel length, also affect quantum-
related calculations inside the layer, like how many quantum filters
there are, how many qubits are in a single filter, how many unitary
operations are in an ansatz, and so on.

This study uses amplitude embedding to convert the classical
information from the extracted patches into a quantum feature
space [41]. This method encodes 2𝑛 features into the amplitude
vector of 𝑛 qubits, as shown in the following equation:

2212

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

Table 1: Descriptions of the datasets used in the study.

Code Dataset Sample Length Dim Type Domain

D1 Chinatown 363 24 1 Traffic Urban planning
D2 SharePriceIncrease 1931 60 1 Financial Stock market
D3 SyntheticControl 600 60 1 Simulated Synthetic data analysis
D4 PhalangesOutlinesCorrect 2658 80 1 Image Osteology
D5 ECG200 200 96 1 ECG Cardiovascular diagnostics
D6 PowerCons 360 144 1 Device Smart grid
D7 ToeSegmentation2 166 343 1 Motion Biomechanics
D8 DiatomSizeReduction 322 345 1 Image Microbiology
D9 Earthquakes 461 512 1 Sensor Seismology
D10 InsectEPGRegularTrain 311 601 1 EPG Entomology
D11 StarLightCurves 9236 1024 1 Sensor Astronomy
D12 NerveDamage 204 1500 1 EMG Neurophysiology
D13 BinaryHeartbeat 409 18530 1 Audio Cardiovascular diagnostics
D14 Epilepsy 275 206 3 Sensor Human activity recognition
D15 EthanolConcentration 524 1751 3 Spectroscopy Chemical analysis
D16 Blink 950 510 4 EEG Brain-computer interface
D17 SelfRegulationSCP2 380 1152 7 EEG Brain-computer interface
D18 HandMovementDirection 234 400 10 EEG Brain-computer interface
D19 FingerMovements 416 50 28 EEG Brain-computer interface
D20 MotorImagery 378 3000 64 EEG Brain-computer interface
ECG: electrocardiogram; EPG: electrical penetration graph; EMG: electromyogram; EEG: electroencephalogram

|𝜓 ⟩ =
2𝑛∑︁
𝑖=1

𝛼𝑖 |𝑖⟩ (2)

In this equation, 𝛼𝑖 are the elements of the amplitude vector
𝛼 , and |𝑖⟩ represent the computational basis states. Each quanvo-
lutional filter takes an input of 𝐶𝑖𝑛 × 𝑘 features, requiring 𝑛 =⌈
log2 (𝐶𝑖𝑛 × 𝑘)

⌉
qubits for encoding. Before encoding, the features

are normalized using
√︁
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛼) to ensure |𝛼 |2 = 1. Addition-

ally, if𝐶𝑖𝑛 ×𝑘 is smaller than 2𝑛 , the features are padded with zeros
after normalization to match the required dimension size. We chose
amplitude embedding over the usual linear mapping method, such
as angle encoding, to reduce qubit usage and achieve compact data
representation. This approach ensures the modularity we tried to
achieve, which, otherwise, would be difficult to achieve with angle
encoding due to its requirement for an impractically large number
of qubits (even in simulations).

The matrix form of the chosen unitary operator, 𝑈 , is given by:

𝑈 (𝜃, 𝜙, 𝜆) =
(

cos(𝜃 𝜋
2) −𝑒𝑖𝜆 sin(𝜃 𝜋

2)
𝑒𝑖𝜙 sin(𝜃 𝜋

2) 𝑒𝑖 (𝜙+𝜆) cos(𝜃 𝜋
2)

)
(3)

Here, 𝜃 and 𝜆 are trainable, while 𝜙 is fixed but initialized ran-
domly. This is because, although𝜙 is essential for introducing phase
shifts within the circuit, its gradient during parameter updates is
theoretically derived to be zero (refer to Appendix F). Consequently,
it remains static throughout the optimization process.

For an 𝑛-qubit circuit, the unitary operator is applied to each
qubit, forming a layer of unitaries, and this layer is repeated 𝑘 times.
The total unitary operations can be expressed as follows:

𝑈total =
𝑘∏
𝑙=1

(
𝑛⊗
𝑖=1

𝑈𝑖𝑙 (𝜃𝑖𝑙 , 𝜙𝑖𝑙 , 𝜆𝑖𝑙)
)

(4)

Here,𝑈𝑖𝑙 (𝜃𝑖𝑙 , 𝜙𝑖𝑙 , 𝜆𝑖𝑙) represents the unitary operation acting on
the 𝑖-th qubit in the 𝑙-th layer. Let |𝜓𝑜 ⟩ represent the quantum state
of the circuit after the unitary operations have been applied. The
following equations describe our decoding process:

𝐸𝑖 = ⟨𝜓𝑜 |𝑍𝑖 |𝜓𝑜 ⟩ (5)

𝑍𝑖 = 𝐼⊗(𝑖−1) ⊗ 𝑍 ⊗ 𝐼⊗(𝑛−𝑖) (6)

𝑍 =

(
1 0
0 −1

)
(7)

𝐼 =

(
1 0
0 1

)
(8)

Wemeasure each qubit in the circuit using Equation (5), where 𝐸𝑖
represents the expectation value and 𝑍𝑖 is the observable for the 𝑖-
th qubit. Although the circuit or filter’s operations and calculations
occur in the complex domain, the resulting expectation values are
real and fall within the range of [−1, 1]. For instance, an expectation
value close to −1 suggests a high probability of the qubit being in
the |1⟩ state and vice versa.

Each expectation value is mapped to a distinct output channel.
A filter with 𝑛 qubits will produce 𝑛 feature maps, and the total
number of filters required is

⌊
𝐶out+𝑛−1

𝑛

⌋
. However, if the total num-

ber of feature maps exceeds the user-defined number of output
channels, we discard the extra maps, retaining only 𝐶𝑜𝑢𝑡 feature
maps. Finally, we add a bias term to the generated features for each
output channel, just like in a classical convolutional layer.

2.2 FQN
The FQN architecture is designed to be parameter-efficient, built
exclusively with Quanv1D layers, as shown in Fig. 1. It consists of
three primary components: embedding, propagation, and projec-
tion. In summary, the embedding layer transforms the input into a

2213

Fully Quanvolutional Networks for Time Series Classification KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 2: Classification performance across datasets. Each experiment is repeated five times. We present the mean and standard
deviation for test accuracy (%). Bold indicates the best performance.

Dataset FQN FCN QuanvNet* ESQN* OS-CNN ROCKET InceptionTime ModernTCN TimesNet†

D1 96.4 (1.2) 96.4 (0.8) 93.2 (5.1) 63.8 (17.1) 97.0 (0.6) 97.3 (0.0) 96.4 (1.2) 97.5 (0.6) 98.1 (0.8)
D2 59.5 (1.0) 59.0 (1.1) 58.0 (2.6) 48.2 (5.5) 61.9 (0.9) 57.6 (0.5) 62.3 (1.8) 61.3 (0.9) 62.0 (1.1)
D3 99.0 (0.4) 99.3 (0.4) 96.0 (2.0) 39.5 (4.8) 100.0 (0.0) 99.8 (0.4) 99.5 (0.5) 96.8 (0.7) 99.3 (0.4)
D4 78.7 (1.0) 82.0 (2.0) 70.9 (1.8) 61.2 (4.2) 81.0 (0.8) 82.6 (1.1) 80.5 (0.8) 82.5 (1.4) 81.3 (0.6)
D5 80.5 (4.1) 74.5 (2.7) 76.0 (7.2) 63.5 (4.5) 82.5 (3.1) 84.0 (1.4) 80.5 (2.1) 82.0 (3.3) 79.0 (3.8)
D6 93.3 (1.2) 99.2 (0.8) 87.2 (3.3) 62.8 (28.4) 92.2 (2.1) 95.8 (1.0) 97.2 (1.0) 99.4 (0.8) 99.2 (1.2)
D7 95.8 (1.7) 90.3 (3.3) 81.8 (8.6) 66.1 (6.9) 93.3 (3.3) 95.8 (1.7) 90.3 (2.5) 76.4 (5.0) 77.6 (8.2)
D8 98.1 (1.3) 100.0 (0.0) 89.1 (5.3) 59.4 (20.3) 92.2 (7.2) 100.0 (0.0) 98.8 (2.0) 100.0 (0.0) 99.4 (0.9)
D9 75.7 (2.3) 73.3 (4.5) 66.5 (12.3) 71.7 (9.3) 76.1 (2.4) 75.2 (2.1) 67.6 (4.7) 70.2 (3.7) 75.2 (2.7)
D10 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 49.4 (13.8) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
D11 96.9 (0.3) 97.6 (0.2) 95.6 (0.6) 42.0 (6.2) 97.5 (0.3) 97.4 (0.2) 97.0 (0.3) 92.1 (1.9) 92.7 (0.5)
D12 99.5 (1.1) 99.5 (1.1) 98.5 (1.1) 28.8 (4.7) 100.0 (0.0) 97.6 (0.0) 100.0 (0.0) 55.1 (5.6) 78.5 (7.0)
D13 72.7 (1.1) 74.1 (3.4) 73.7 (4.1) 63.9 (8.8) 67.8 (1.4) 58.3 (2.0) 72.7 (3.5) 60.0 (6.8) –
D14 99.3 (1.0) 98.9 (1.0) – – 99.6 (0.8) 100.0 (0.0) 100.0 (0.0) 94.5 (3.6) 86.2 (4.2)
D15 30.9 (2.1) 26.1 (3.1) – – 36.0 (1.7) 36.2 (0.7) 33.0 (4.5) 26.7 (3.8) 28.6 (2.7)
D16 99.2 (0.3) 99.6 (0.2) – – 99.9 (0.2) 99.8 (0.3) 99.5 (0.4) 99.5 (0.0) 98.3 (0.8)
D17 56.8 (2.4) 44.7 (0.9) – – 53.2 (2.2) 56.1 (1.2) 53.4 (5.8) 51.1 (5.4) 49.2 (4.2)
D18 35.7 (3.5) 31.1 (6.3) – – 40.0 (6.6) 39.6 (2.4) 35.3 (4.1) 48.1 (7.3) 54.9 (2.8)
D19 56.1 (2.8) 55.7 (2.9) – – 53.0 (3.5) 56.4 (1.0) 52.5 (2.3) 57.4 (1.1) 53.7 (4.2)
D20 52.4 (1.1) 51.1 (6.6) – – 51.6 (3.1) 43.4 (0.0) 49.2 (2.4) 48.4 (7.1) 46.3 (5.2)

Average 78.8 77.6 – – 78.7 78.6 78.3 74.9 –
*The results for QuanvNet and ESQN are incomplete because these models can handle univariate data only.
†Due to its embedding scheme, TimesNet cannot handle sequence lengths larger than 5000. As such, TimesNet’s D13 performance is incomplete.

high-dimensional feature space, the propagation layers employ dila-
tion [52] to iteratively improve feature representations with longer
receptive fields, and the projection layer transfers these enhanced
features to a desired output space.

The embedding layer expands the raw input data into a learned
embedding dimension, 𝑑𝑖𝑚𝑒 , which helps aggregate local informa-
tion and prepares the data for more complex hierarchical feature
extraction. For long sequences, the kernel size 𝑘𝑒 can remain large
without shortening the sequence length, as padding is automatically
adjusted using

⌊
𝑘𝑒
2

⌋
. However, this adjustment is only applicable to

kernels with odd sizes. In addition, strides can reduce the input se-
quence length if necessary. For example, setting 𝑠𝑒 = 3 will shorten
the embedded feature sequence to one-third of the original input
length.

After the embedding stage, the propagation layers form the core
of the architecture. There are 𝑑𝑒𝑝𝑡ℎ propagation layers, each com-
posed of a Quanv1D layer, followed by batch normalization and
ReLU activation. These layers improve the embedded representa-
tion over time by reducing the internal covariate shift and adding
nonlinearity to the data. The dilation rate, 𝑑𝑖 = 𝑖 (where 𝑖 is the
layer index), linearly increases the network’s receptive field as the
depth grows. This allows the model to capture dependencies at
multiple scales–from local interactions in the lower layers to long-
range dependencies in the deeper layers–without increasing the
number of parameters. In the propagation layers, no padding was
applied, and 𝑠𝑝𝑟𝑜𝑝 was set to one. However, the kernel size, 𝑘𝑝𝑟𝑜𝑝 ,
was adjusted based on the specific dataset.

Following the propagation layers, the projection layer maps the
multi-scale, transformed features to a space corresponding to the

target classes. This allows the network to produce class-specific
feature maps. For this layer, the kernel size is set to 𝑘𝑝𝑟𝑜 𝑗 = 1,
with a stride of 𝑠𝑝𝑟𝑜 𝑗 = 1, no padding (𝑝𝑝𝑟𝑜 𝑗 = 0), and a dilation
rate of 𝑑𝑝𝑟𝑜 𝑗 = 1. We then apply global average pooling (GAP)
across the channel dimension and pass the pooled features to a
softmax classifier for final prediction. Using GAP instead of linear
layers helps prevent overfitting by reducing the number of trainable
parameters and acts as a form of regularization.

3 Experiments
3.1 Datasets and Models
To evaluate the performance of FQN (and Quanv1D), we utilized
20 datasets from the UEA and UCR time series archives [3, 10]. We
randomly selected the datasets but ensured a broad spectrum of
practical applications. As such, the selected binary and multi-class
datasets cover 15 different fields, with inputs that have different
sizes (up to 64 channels) and lengths (up to 18530). Table 1 provides
a detailed description of these datasets, and Appendix C outlines
the selection process used in this study.

Our goal was to compare FQN to a fully convolutional network
(FCN) with the same architecture and hyperparameters but with
classical convolutional layers. This comparison helped us examine
the differences between Quanv1D and Conv1D regarding training
and inference. We also added two 1D quanvolutional networks,
QuanvNet [39] and ESQN [42], in the mix. To assess FQN’s bench-
marking potential, we included ModernTCN [28], the current state-
of-the-art (SOTA) in time series classification, in the comparison,

2214

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

Input channel

Pa
ra

m
et

er
 c

ou
nt

Pa
ra

m
et

er
 c

ou
nt

Embedding dimension

Pa
ra

m
et

er
 c

ou
nt

Propagation depth

FCN FQN

Figure 2: Variation of model parameter count against hyperparameter change. The base hyperparameters are: 𝐶𝑖𝑛 = 3, 𝑘𝑒 = 3,
𝑠𝑒 = 2, 𝑑𝑖𝑚𝑒 = 16, 𝑘𝑝𝑟𝑜𝑝 = 3, and 𝑑𝑒𝑝𝑡ℎ = 4. The parameter change is then observed by varying one hyperparameter at a time. For
illustration, we used a Gaussian filter for line smoothing.

alongside previous SOTAs, including TimesNet [50], OS-CNN [48],
ROCKET [12], and InceptionTime [20].

3.2 Time Series Classification
According to the performance results outlined in Table 2, FQN
outperforms FCN despite having substantially fewer parameters
(refer to Table 6).While FQN and FCN outperformed othermodels in
four cases (resulting in a tie), FQN was better overall and surpassed
FCN in ten cases. Since our goal with FQN was to develop a model
comparable or equivalent to FCN, the results in Table 2 highlight the
potential of quantum-based representation learning. The advantage
of FQN over FCN comes from its efficient parameter management
and self-regularization, which we discuss in the next section.

FQN consistently outperforms the other quantum models across
all datasets. In terms of stability, QuanvNet and ESQN exhibit the
highest variance in accuracy. Their subpar performance stems from
two main limitations: (i) a fixed, small kernel length that restricts
their ability to capture temporal relationships effectively and (ii)
reliance on a single circuit as a filter, which limits their capacity to
extract diverse patterns. Furthermore, ESQN does not have a train-
able quanvolution layer, and its randomness significantly impairs
learning. Since both models can only handle univariate time series
data, we could not evaluate them on all 20 datasets.

Although it is a common notion that more parameters lead to
better performance, a model with sufficient parameters to fit the
data properly–provided it is well-suited to the task–should not
underperform compared to a model with significantly more pa-
rameters [2]. This parametric efficiency was evident with FQN,
which performed on par with OS-CNN, ROCKET, and Inception-
Time—and even surpassing them in some cases—despite being very
lightweight (refer to Table 6). FQN also significantly outperformed
the current SOTA in time series classification, ModernTCN.

3.3 Parameter Efficiency
Despite both models sharing the same architecture and hyperpa-
rameters, FQN is, on average, 6.5 times lighter than FCN (refer to
Table 6). Figure 2 illustrates the parameter differences between the
two models across various hyperparameter settings. As seen in

the graph, the primary difference comes from 𝑑𝑖𝑚𝑒 , where FCN’s
parameter count grows exponentially, while FQN shows only a
gradual linear increase. While both models experience linear scal-
ing in parameter count as 𝑑𝑒𝑝𝑡ℎ increases, the rate of increase is
significantly higher for FCN. Additionally, Quanv1D’s efficient en-
coding and decoding processes help keep FQN’s parameter count
nearly constant for increasing 𝐶𝑖𝑛 , in contrast to FCN’s steady
linear growth. A higher 𝐶𝑖𝑛 typically requires more qubits (and
hence, more parameters), but Quanv1D minimizes this by utilizing
all available qubits in its circuits, thereby reducing the total number
of filters needed. This synergistic approach makes Quanv1D (and
FQN) more efficient in managing parameters.

Table 3 shows that FQN consistentlymaintains comparable losses
across the training, validation, and test sets. This uniformity con-
trasts with its classical counterpart, FCN, which often overfits and
achieves almost zero training loss but much higher validation and
test losses. However, after closely looking at Table 3 and how FQN
behaves during training, we hypothesize that having more param-
eters is not the sole reason why FCN fell behind FQN in multiple
datasets. To test this hypothesis, we rerun the experiments, ad-
justing the hyperparameters of FCN to ensure that the trainable
parameter for both FCN and FQN is equal. While reducing parame-
ters lessened overfitting in six cases (dropping from 12 to six), the
test accuracy declined for ten cases, causing overall performance
degradation. Therefore, FQN offers more stable learning than FCN
despite the number of parameters used.

3.4 Self-Regularization
Table 3 provides empirical evidence of FQN’s self-regularization,
which enabled it to generalize more effectively in most test cases.
Although this implicit regularization is partly due to the reduced
number of parameters, we believe it stems from the fundamental
nature of quantum operations within the Quanv1D layer. To illus-
trate this, consider a single-wire quanvolutional kernel (or quantum
circuit) with a single unitary operator. The derivatives of the output,
𝑄𝑜𝑢𝑡 , with respect to 𝜃 and 𝜆 for a given patch are expressed as
follows:

2215

Fully Quanvolutional Networks for Time Series Classification KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 3: The mean loss values of FQN and FCN across datasets with different splits. For FCN*, the total number of trainable
parameters matches that of FQN.

FQN FCN FCN* FCN-FCN*

Dataset Train Val Test Train Val Test Overfitting? Train Val Test Overfitting? Change in accuracy (%)

D1 0.27 0.29 0.31 0.00 0.01 0.23 ✓ 0.00 0.01 0.17 ✓ 0.5
D2 0.61 0.68 0.68 0.01 2.87 2.51 ✓ 0.03 3.21 2.96 ✓ 0.5
D3 0.80 0.83 0.82 0.00 0.06 0.01 × 0.05 0.08 0.04 × -0.2
D4† 0.44 0.56 0.50 0.01 0.91 0.87 ✓ 0.48 0.53 0.51 × -5.2
D5 0.43 0.60 0.55 0.00 1.29 1.36 ✓ 0.01 1.09 0.59 ✓ 6.5
D6 0.40 0.44 0.43 0.00 0.00 0.02 × 0.00 0.02 0.02 × 0.0
D7 0.38 0.39 0.41 0.02 0.26 0.29 ✓ 0.13 0.48 0.27 ✓ 1.2
D8 0.68 0.54 0.59 0.17 0.00 0.00 × 0.17 0.08 0.08 × -2.2
D9† 0.48 0.82 0.57 0.00 4.19 1.70 ✓ 0.00 3.10 1.38 ✓ 0.7
D10 0.66 0.64 0.68 0.02 0.01 0.01 × 0.13 0.08 0.07 × 0.0
D11 0.36 0.38 0.38 0.00 0.36 0.17 ✓ 0.03 0.14 0.09 × -5.1
D12† 0.57 0.57 0.56 0.02 0.07 0.03 × 0.44 0.68 0.34 × -2.4
D13 0.58 0.67 0.58 0.01 2.14 1.19 ✓ 0.55 0.72 0.57 × -3.2
D14 0.50 0.53 0.51 0.00 0.07 0.03 × 0.01 0.08 0.07 × -2.2
D15 1.36 1.41 1.38 0.46 1.88 2.35 ✓ 0.96 1.52 1.67 ✓ 10.1
D16 0.15 0.19 0.17 0.00 0.01 0.02 × 0.08 0.21 0.21 × -3.5
D17 0.61 0.71 0.70 0.41 1.07 1.09 ✓ 0.64 0.75 0.71 × 7.6
D18 1.34 1.43 1.36 0.66 1.75 1.75 ✓ 1.36 1.40 1.36 × 2.6
D19 0.55 0.75 0.69 0.07 1.85 1.74 ✓ 0.61 0.85 0.75 × -2.9
D20† 0.67 0.71 0.70 0.39 1.12 1.14 × 0.68 0.70 0.71 × -3.7

Overall -0.1
†For these datasets, the grid search could not identify hyperparameters for FCN* that perfectly matched the parameter count of FQN.
As a result, FCN* has one additional trainable parameter for these cases–for instance, 3401 instead of the exact 3400 for D4.

𝑑𝑄𝑜𝑢𝑡

𝑑𝜃
= −𝜋 (𝑥21 − 𝑥22) sin(𝜋𝜃) − 2𝜋𝑥1𝑥2 cos(𝜆) cos(𝜃𝜋) (9)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜆
= 2𝑥1𝑥2 sin(𝜆) sin(𝜃𝜋) (10)

Both equations demonstrate a sinusoidal relationship between
the derivatives and the weight values: 𝜃 and 𝜆. A sinusoidal func-
tion, naturally bound between -1 and 1, inherently constrains the
gradient update due to its periodicity. Additionally, the amplitude
embedding restricts the input values to a range between 0 and 1.
As the inputs are the coefficients of the sinusoids, the input scaling
limits the magnitude of the gradient updates even further. Together,
these factors help prevent extreme gradient values, promoting self-
regularization.

Similarly, we can extend this illustration to a two-qubit, two-
unitary circuit. The gradients for each wire with respect to the
weights are as follows:

𝑑𝑄𝑜𝑢𝑡

𝑑𝜃1
= −𝜋 (𝑥21 + 𝑥22 − 𝑥23 − 𝑥24) sin(𝜃1𝜋)

−2𝜋 (𝑥1𝑥3 + 𝑥2𝑥4) cos(𝜆1) cos(𝜋𝜃1)
(11)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜃2
= −𝜋 (𝑥21 − 𝑥22 + 𝑥23 − 𝑥24) sin(𝜃2𝜋)

−2𝜋 (𝑥1𝑥2 + 𝑥3𝑥4) cos(𝜆2) cos(𝜋𝜃2)
(12)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜆1
= (𝑥1𝑥3 sin(𝜆1) + 𝑥2𝑥4 sin(𝜆1)) sin(𝜋𝜃1) (13)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜆2
= (𝑥1𝑥2 sin(𝜆2) + 𝑥3𝑥4 sin(𝜆2)) sin(𝜋𝜃2) (14)

𝜃𝑖 and 𝜆𝑖 represent the weights of the 𝑖-th wire. The regular-
ization effect is also evident in Equations (11, 12, 13, and 14). The
gradient update value discussed here applies to a single layer, but
because the model is fully quanvolutional, adding more layers will
not affect this behavior. Since gradient updates occur via a multi-
plicative chain rule, a similar regularization effect will propagate
across all layers. The derivation for the single-wire circuit can be
found in Appendix F, and the equations for the two-wire circuit
were derived using SymPy [31]. Note that the derivatives with
respect to 𝜙 are always zero.

3.5 Impact of Finite Shots
Despite the promise of FQN to classify real-world data, its im-
plementation on actual quantum computers remains a challenge.
Quanv1D is primarily theoretical, as we rely on analytical or raw
expectation values. In practice, this approach is not feasible be-
cause expectation values must be measured using a finite number
of shots. To assess our model’s performance under such conditions,
we conducted experiments starting with 1000 shots and continued
until FQN achieved the analytical benchmark.

Due to the high computational cost of simulating individual
measurement shots, we approximated their effects as sampling er-
rors. Specifically, we introduced stochastic perturbations to the
probability amplitudes to model the uncertainty from finite-shot
measurements. These perturbations were drawn from a normal

2216

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

Table 4: FQN’s performance under statistical noise. The model is evaluated five times for each shot count on the test sets. We
present the mean and standard deviation for test accuracy (%).

Number of shots

Dataset 1000 10000 100000 1000000 10000000 Analytical

D1 95.1 (0.8) 96.4 (0.8) – – – 96.4 (1.2)
D2 56.3 (0.3) 60.3 (0.7) – – – 59.5 (1.0)
D3 96.8 (0.4) 99.0 (0.4) – – – 99.0 (0.4)
D4 72.7 (0.9) 75.6 (0.6) 77.1 (0.4) 78.2 (0.2) 78.8 (0.1) 78.7 (1.0)
D5 80.5 (2.1) – – – – 80.5 (4.1)
D6 93.9 (0.8) – – – – 93.3 (1.2)
D7 95.2 (1.7) 95.8 (1.7) – – – 95.8 (1.7)
D8 97.5 (1.4) 98.1 (0.7) – – – 98.1 (1.3)
D9 76.1 (1.1) – – – – 75.7 (2.3)
D10 32.3 (1.1) 53.5 (2.1) 71.0 (0.0) 100.0 (0.0) – 100.0 (0.0)
D11 96.2 (0.1) 96.9 (0.1) – – – 96.9 (0.3)
D12 85.4 (0.0) 99.5 (1.1) – – – 99.5 (1.1)
D13 72.9 (1.8) – – – – 72.7 (1.1)
D14 96.0 (0.8) 98.2 (1.3) 100.0 (0.0) – – 99.3 (1.0)
D15 30.9 (0.5) – – – – 30.9 (2.1)
D16 98.4 (0.5) 99.3 (0.3) – – – 99.2 (0.3)
D17 57.4 (3.0) – – – – 56.8 (2.4)
D18 26.4 (1.9) 28.5 (1.2) 32.8 (1.2) 34.5 (1.0) 35.7 (1.0) 35.7 (3.5)
D19 54.7 (1.6) 56.2 (0.7) – – – 56.1 (2.8)
D20 52.4 (1.4) – – – – 52.4 (1.1)

distribution, N(0, 𝑝 (1−𝑝)𝑛), where the variance corresponds to the
squared standard error of a Bernoulli process over 𝑛 shots. Since
each shot outcome follows a Bernoulli distribution, this formula-
tion approximately captures the statistical fluctuations. With this
method, we significantly reduced computational time and memory
usage compared to explicitly simulating each shot or employing
parallel processing, allowing us to simulate any number of shots
efficiently. The results of the shot-based analysis are presented in
Table 4.

Since we begin with a sufficiently large number of shots (1000),
FQN achieves analytical accuracy in the first run for some cases.
However, a consistent trend is that FQN converges as the number
of shots increases, aligning with the law of large numbers [15].
Interestingly, the introduced noise can sometimes enhance per-
formance, even surpassing the noise-free analytical baseline, as
observed across multiple datasets. This result is in accordance with
previous studies on QML [9, 13, 14] and classical neural networks
[4, 38], which suggest that noise can, in certain cases, enhance data
learning, promote robustness, and improve generalizability.

3.6 Ablation Study
Although FQN primarily uses a quantum layer, Quanv1D, the model
itself is a classical-quantum hybrid, as we had to use batch normal-
ization and ReLU activation in our implementation. We have used
the batch normalization layers to help maintain an even distribution
over the limited working range of [-1, 1] of Quanv1D by mitigating
the covariance shift and ReLU activations to add nonlinearity in the
otherwise linear model to facilitate better training. We found that
removing batch normalization layers reduces the accuracy of the
model by 32%, while removing ReLU decreases performance by 6%

on average, highlighting the importance of their functionalities. In
particular, batch normalization plays a critical role in stabilizing the
outputs, which otherwise exhibit low variance or skewed/biased
means. Without batch normalization layers, the model simply fails
to converge.

4 Concluding Remarks
The primary objective of this study was to introduce a QML algo-
rithm for quantum computers, aiming to create a quantum equiv-
alent of a well-established and widely used classical method, 1D
convolution. We designed our proposed quanvolution algorithm,
an analog to convolution, with NISQ-related constraints in mind,
and it proved effective in temporal data learning tasks. In fact, it
was able to outperform contemporary classical models in some
cases, thanks to its efficient parameter management and inherent
regularization. Despite our model being a theoretical framework,
it remained effective when we simulated a realistic scenario with
statistical noise. Our proposed model, FQN, incorporates nonlin-
ear activation functions, which present a challenge in a quantum
environment. But the computational overhead for these activation
functions is negligible, and the network should, in theory, work well
in a classical-quantum hybrid framework. Previous studies have
demonstrated promising results for similar hybrid approaches with
smaller models [45, 46]. As the world moves toward fault-tolerant
quantum computing with increased qubits, we are optimistic that,
under the right conditions, our model will achieve performance
close to its theoretical potential. Nonetheless, much progress is still
required before reaching that point.

2217

Fully Quanvolutional Networks for Time Series Classification KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

4.1 Limitations
For this study, we tested our FQN only on classification tasks and
have yet to explore regression and data imputation problems. Using
a fully quanvolutional structure for these tasks will be challenging,
as Quanv1D’s output is in the range of -1 to 1, which limits its
applicability for tasks that require output values beyond this range.
Additionally, for multi-class problems, we noticed that training
FQN gets complicated due to the limited number of parameters
and/or the usage of classical optimizers on a quantum model.

In addition to these limitations, we believe it is important to
address the constraints related to hardware implementation. Our
quanvolutional layer is mainly theoretical and is simulated using
classical computers. Given the constraints associated with the NISQ
era, it remains uncertain whether we can achieve this level of im-
plementation, as we did not have access to real hardware to ver-
ify our algorithm. Moreover, although amplitude encoding offers
improved parameter efficiency for the model, it significantly in-
creases circuit depth [22, 41], posing further challenges. Finally, the
high computational complexity of FQN makes classical simulation
difficult. For comparison, the time complexity of quanvolution is
O(𝑘2×𝑐2

𝑖𝑛
×𝑐𝑜𝑢𝑡), whereas that of convolution is O(𝑘 ×𝑐𝑖𝑛 ×𝑐𝑜𝑢𝑡),

where 𝑘 is the kernel length, 𝑐𝑖𝑛 is the input dimension, and 𝑐𝑜𝑢𝑡 is
the number of output channels. Optimizing the design to reduce
simulation complexity remains an area for future exploration.

4.2 Future Work
Our immediate priority is to improve the model’s performance
with a larger number of classes and streamline its design to min-
imize time complexity. After completing the classification phase,
we will address the output range limitation of -1 to 1 for regression
and forecasting tasks. While the output of the quantum layer can-
not be altered, we aim to design an activation function that maps
outputs to a higher range while preserving distinct quantum prop-
erties. Evaluating the model on diverse temporal data learning tasks
will help establish the true operational scope of 1D quanvolution.
Additionally, we plan to integrate quantum-aware optimizers to
enable more informed gradient updates, promoting stable and ro-
bust learning. Finally, considering the aforementioned constraints,
transitioning from 1D to 2D quanvolution while maintaining this
level of modularity will be a significant challenge. Nevertheless, we
believe that this progression is the logical next step, especially for
expanding applications into image processing and computer vision.

References
[1] Google Quantum AI and Collaborators. 2024. Quantum Error Correction Below

the Surface Code Threshold. Nature 638, 8052 (2024), 920.
[2] Constantin Aliferis and Gyorgy Simon. 2024. Overfitting, Underfitting and

GeneralModel Overconfidence and Under-Performance Pitfalls and Best Practices
in Machine Learning and AI. In Artificial Intelligence and Machine Learning in
Health Care and Medical Sciences: Best Practices and Pitfalls. Springer, , 477–524.

[3] Anthony Bagnall et al. 2018. The UEA Multivariate Time Series Classification
Archive, 2018. arXiv:1811.00075 Retrieved from https://arxiv.org/abs/1811.00075.

[4] Christopher M Bishop. 1995. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, England.

[5] Katherine S Button et al. 2013. Power Failure:Why Small Sample Size Undermines
the Reliability of Neuroscience. Nat. Rev. Neurosci. 14, 5 (2013), 365–376.

[6] Davide Castelvecchi. 2023. IBM Releases First-Ever 1,000-Qubit Quantum Chip.
Nature 624, 7991 (2023), 238–238.

[7] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance
Convolutional Neural Networks for Document Processing. In Tenth International

Workshop on Frontiers in Handwriting Recognition, Guy Lorette (Ed.). Université
de Rennes 1, Suvisoft, La Baule (France).

[8] Iris Cong, Soonwon Choi, and Mikhail D Lukin. 2019. Quantum Convolutional
Neural Networks. Nat. Phys. 15, 12 (2019), 1273–1278.

[9] Andrew W Cross, Graeme Smith, and John A Smolin. 2015. Quantum Learning
Robust Against Noise. Phys. Rev. A 92, 1 (2015), 012327.

[10] Hoang Anh Dau et al. 2019. The UCR Time Series Archive. IEEE/CAA J. Auto-
matica Sinica 6, 6 (2019), 1293–1305.

[11] Saeideh Davoudi, Tyler Schwartz, Aurélie Labbe, Laurel Trainor, and Sarah Lippé.
2023. Inter-Individual Variability During Neurodevelopment: An Investigation of
Linear and Nonlinear Resting-State EEG Features in an Age-Homogenous Group
of Infants. Cereb. Cortex 33, 13 (2023), 8734–8747.

[12] Angus Dempster, François Petitjean, and Geoffrey I Webb. 2020. ROCKET: Ex-
ceptionally Fast and Accurate Time Series Classification Using Random Convo-
lutional Kernels. Data Min. Knowl. Discov. 34, 5 (2020), 1454–1495.

[13] Laia Domingo, G Carlo, and F Borondo. 2023. Taking Advantage of Noise in
Quantum Reservoir Computing. Sci. Rep. 13, 1 (2023), 8790.

[14] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. 2021.
Quantum Noise Protects Quantum Classifiers Against Adversaries. Phys. Rev.
Res. 3, 2 (2021), 023153.

[15] Michael J Evans and Jeffrey S Rosenthal. 2004. Probability and Statistics: The
science of Uncertainty. Macmillan, United Kingdom.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, Las Vegas, USA, 770–778.

[17] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook.
2020. Quanvolutional Neural Networks: Powering Image Recognition with
Quantum Circuits. Quantum Mach. Intell. 2, 1 (2020), 2.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu, USA,
4700–4708.

[19] Tak Hur, Leeseok Kim, and Daniel K Park. 2022. Quantum Convolutional Neural
Network for Classical Data Classification. Quantum Mach. Intell. 4, 1 (2022), 3.

[20] Hassan Ismail Fawaz et al. 2020. InceptionTime: Finding AlexNet for Time Series
Classification. Data Min. Knowl. Discov. 34, 6 (2020), 1936–1962.

[21] Yu Jing et al. 2022. RGB Image Classification with Quantum Convolutional
Ansatz. Quantum Inf. Process. 21, 3 (2022), 101.

[22] Ruba Kharsa, Ahmed Bouridane, and Abbes Amira. 2023. Advances in Quan-
tum Machine Learning and Deep learning for Image Classification: A Survey.
Neurocomputing 560 (2023), 126843.

[23] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 Retrieved from https://arxiv.org/abs/1412.6980.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc., Lake Tahoe, USA.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[26] Yue Li et al. 2024. Detection and Identification of Power Quality Disturbance
Signals in New Power System Based on Quantum Classic Hybrid Convolutional
Neural Networks. In International Conference on Data Security and Privacy Pro-
tection. Springer, Xi’an, China, 187–203.

[27] Zhaokai Li, Xiaomei Liu, Nanyang Xu, and Jiangfeng Du. 2015. Experimental
Realization of a Quantum Support Vector Machine. Phys. Rev. Lett. 114, 14 (2015),
140504.

[28] Donghao Luo and Xue Wang. 2024. ModernTCN: A Modern Pure Convolu-
tion Structure for General Time Series Analysis. In The Twelfth International
Conference on Learning Representations. , Vienna, Austria, 1–43.

[29] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. 2016. Understanding the
Effective Receptive Field in Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc., Barcelona, Spain.

[30] Denny Mattern, Darya Martyniuk, Henri Willems, Fabian Bergmann, and Adrian
Paschke. 2021. Variational Quanvolutional Neural Networks with Enhanced Im-
age Encoding. arXiv:2106.07327 Retrieved from https://arxiv.org/abs/2106.07327.

[31] Aaron Meurer et al. 2017. SymPy: Symbolic Computing in Python. PeerJ Comput.
Sci. 3 (2017), e103.

[32] Michael ANielsen and Isaac L Chuang. 2010. QuantumComputation and Quantum
Information. Cambridge University Press, .

[33] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc., Vancouver, Canada.

[34] David Peral-García, Juan Cruz-Benito, and Francisco José García-Peñalvo. 2024.
Systematic Literature Review: Quantum Machine Learning and Its Applications.
Comput. Sci. Rev. 51 (2024), 100619.

2218

https://arxiv.org/abs/1811.00075
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2106.07327

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

[35] Frank Phillipson, Niels Neumann, and Robert Wezeman. 2023. Classification of
Hybrid Quantum-Classical Computing. In International Conference on Computa-
tional Science. Springer, Prague, Czech Republic, 18–33.

[36] Sharanya Prabhu, Shourya Gupta, Gautham Manuru Prabhu, Aarushi Vishal
Dhanuka, and K Vivekananda Bhat. 2023. QuCardio: Application of Quantum
Machine Learning for Detection of Cardiovascular Diseases. IEEE Access 11
(2023), 136122–136135.

[37] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum Support
Vector Machine for Big Data Classification. Phys. Rev. Lett. 113, 13 (2014), 130503.

[38] Russell Reed and Robert J MarksII. 1999. Neural Smithing. Bradford Books,
Cambridge, MA.

[39] Mayra Alejandra Rivera-Ruiz, Sandra Leticia Juárez-Osorio, Andres Mendez-
Vazquez, José Mauricio López-Romero, and Eduardo Rodriguez-Tello. 2023. 1D
Quantum Convolutional Neural Network for Time Series Forecasting and Classi-
fication. In Mexican International Conference on Artificial Intelligence. Springer,
Yucatán, Mexico, 17–35.

[40] Aansh Savla, Ali Abbas Kanadia, Deep Mehta, and Kriti Srivastava. 2022. GQNN:
Greedy Quanvolutional Neural Network Model. In International Conference on
Image Processing and Capsule Networks. Springer, Bangkok, Thailand, 397–410.

[41] Maria Schuld and Francesco Petruccione. 2018. Supervised Learning with Quantum
Computers. Springer, .

[42] Rebh Soltani, Emna Benmohamed, and Hela Ltifi. 2024. Hybrid Quanvolutional
Echo State Network for Time Series Prediction. In Proceedings of the 16th Inter-
national Conference on Agents and Artificial Intelligence (ICAART 2024), Vol. 2.
SCITEPRESS, Rome, Italy, 40–46.

[43] S Sridevi, T Kanimozhi, K Issac, andM Sudha. 2022. QuanvolutionNeural Network
to Recognize Arrhythmia from 2D Scalogram Features of ECG Signals. In 2022
International Conference on Innovative Trends in Information Technology (ICITIIT).
IEEE, Kottayam, India, 1–5.

[44] Christian Szegedy et al. 2015. Going Deeper with Convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Boston,
USA, 1–9.

[45] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tav-
ernelli, Dario Gerace, and Daniele Bajoni. 2020. Quantum Implementation of
an Artificial Feed-Forward Neural Network. Quantum Sci. Technol. 5, 4 (2020),
044010.

[46] Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni.
2019. An Artificial Neuron Implemented on an Actual Quantum Processor. npj
Quantum Inf. 5, 1 (2019), 26.

[47] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proceedings of the 36th International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research, Vol. 97),
Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, California, USA,
6105–6114.

[48] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, and Jing
Jiang. 2022. Omni-Scale CNNs: A Simple and Effective Kernel Size Configuration
for Time Series Classification. In The Tenth International Conference on Learning
Representations. , Virtual, 1–17.

[49] Ubaid Ullah and Begonya Garcia-Zapirain. 2024. Quantum Machine Learning
Revolution in Healthcare: A Systematic Review of emerging perspectives and
applications. IEEE Access 12 (2024), 11423–11450.

[50] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. 2023. TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis. In The Eleventh International Conference on Learning Representations. ,
Kigali, Rwanda, 1–23.

[51] Chao-Han Huck Yang et al. 2021. Decentralizing Feature Extraction with Quan-
tum Convolutional Neural Network for Automatic Speech Recognition. In 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, Toronto, Canada, 6523–6527.

[52] Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated
Convolutions. arXiv:1511.07122 Retrieved from https://arxiv.org/abs/1511.07122.

[53] Juping Zhang, Gan Zheng, Toshiaki Koike-Akino, Kai-Kit Wong, and Fraser A.
Burton. 2024. Hybrid Quantum-Classical Neural Networks for Downlink Beam-
forming Optimization. IEEE Trans. Wirel. Commun. 23, 11 (2024), 16498–16512.

A Preliminaries
Quantum bits, or qubits, are the fundamental units of quantum
computation. Unlike classical bits, which can only exist in one of
two definite states (0 or 1), qubits can be in the 0 state (|0⟩), the 1
state (|1⟩), or any linear combination (superposition) of these states,
expressed as |𝜓 ⟩ = 𝛼 |0⟩ +𝛽 |1⟩. Here, 𝛼 and 𝛽 are complex numbers
that satisfy the condition |𝛼 |2+|𝛽 |2 = 1. This superposition property
allows quantum operations to act on multiple states simultaneously,
which classical computers cannot achieve. When combined with

the phenomena of entanglement and interference, superposition
forms the basis of "quantum advantage"–the ability of quantum
systems to solve specific problems more efficiently than classical
systems.

Quantum circuits provide the framework for modeling quan-
tum computations; wires represent qubits, and gates correspond to
quantum operations that manipulate these qubits. In the context of
applying QML to classical data, quantum circuits typically consist
of three main phases: encoding, manipulation, and measurement.

(1) Encoding: In this phase, classical information is mapped
into a quantum Hilbert space, preparing the quantum system
for computation. Two widely used encoding methods are
angle encoding and amplitude encoding. Angle encoding
represents classical values as angles of rotation gates applied
to qubits, typically starting from the |0⟩ state. This method
requires 𝑛 qubits to encode 𝑛 classical features. Amplitude
encoding or embedding, in contrast, stores classical data
in the amplitudes of a quantum state, allowing 𝑛 qubits to
represent up to 2𝑛 classical values.While amplitude encoding
is highly efficient in terms of qubit usage, preparing such
states can be computationally intensive.

(2) Manipulation: After encoding, the quantum data is pro-
cessed using a sequence of quantum gates. Researchers often
design parameterized quantum circuits, known as ansatz,
which include gates such as Hadamard, Controlled-NOT
(CNOT), and rotations around the X, Y, and Z axes. These
gates enable critical quantum phenomena for quantum ad-
vantage. For example, the Hadamard gate creates superposi-
tion, while the CNOT gate establishes entanglement.

(3) Measurement: The final stage involves measuring quantum
states to extract classical outcomes. Measurement causes
the quantum state to collapse into one of its basis states
(either 0 or 1). Due to the probabilistic nature of quantum
measurement, multiple repetitions (referred to as "shots")
are performed to gather sufficient statistics. With enough
measurements or experimental reruns, the outcomes reliably
reflect the expected or analytical results of the quantum
computation.

B Experimental Setup
In this study, we conducted the experiments on an NVIDIA GeForce
RTX 4060 Ti 16GB GPU using PyTorch [33].

C Dataset Setup
The datasets used in this experiment were taken from the UEA
and UCR archives [3, 10]. Among the 150+ datasets available in the
archive, we have considered a subset of 20. The selected datasets,
alongwith their descriptions, are provided in Table 1. Our dataset se-
lection criteria were primarily based on the domain and its real-life
applicability, i.e., we wanted to cover as many domains as possible
to test our proposed model. The considered datasets come from
15 different domains and include a mix of both binary and multi-
class classification tasks. A major portion of the selected datasets is
univariate, as QuanvNet [39] and ESQN [42], two of our baselines,
only work on univariate data. One exception to the criteria was
the selection of multiple EEG datasets. This was due to the high

2219

https://arxiv.org/abs/1511.07122

Fully Quanvolutional Networks for Time Series Classification KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 5: Total trainable parameters of FQN with its hyperparameters.

Dataset Batch size Parameters LR decay factor 𝑘𝑒 𝑠𝑒 𝑑𝑖𝑚𝑒 𝑘𝑝𝑟𝑜𝑝 𝑑𝑒𝑝𝑡ℎ

D1 64 856 0.85 9 1 16 3 4
D2 256 908 0.85 15 3 16 3 3
D3 128 2988 0.85 15 2 48 3 4
D4 256 2576 0.75 21 2 32 3 4
D5 32 1808 0.75 31 4 16 3 4
D6 64 4434 0.75 33 2 32 7 4
D7 32 3200 0.75 31 5 24 5 5
D8 32 6098 0.8 45 4 32 9 4
D9 64 3400 0.9 21 5 32 5 5
D10 32 2796 0.75 33 5 16 9 5
D11 128 3400 0.8 21 8 32 5 5
D12 32 3440 0.85 41 10 16 7 6
D13 32 1166 0.9 15 20 8 7 5
D14 64 6072 0.85 25 3 64 3 5
D15 128 4858 0.85 45 10 24 7 7
D16 128 3618 0.85 41 5 24 5 5
D17 64 4882 0.85 41 9 32 5 5
D18 128 1488 0.75 9 2 8 5 9
D19 64 728 0.75 5 2 16 3 4
D20 16 524 0.9 3 25 16 3 3

Table 6: Parameter counts across datasets. The table shows the ratio of total trainable parameters for each model relative to
FQN. Bold indicates the least number of parameters.

Dataset FQN FCN QuanvNet* ESQN* OS-CNN ROCKET InceptionTime ModernTCN TimesNet†

D1 ×1.0 ×4.0 ×108.0 ×1.2 ×567.4 ×23.4 ×552.2 ×11.8 ×203.6
D2 ×1.0 ×3.0 ×101.8 ×1.1 ×377.3 ×22.0 ×520.5 ×13.7 ×194.5
D3 ×1.0 ×9.1 ×23.4 ×0.8 ×85.3 ×29.8 ×117.4 ×5.0 ×45.7
D4 ×1.0 ×7.9 ×27.2 ×0.3 ×91.3 ×5.9 ×139.0 ×4.0 ×52.3
D5 ×1.0 ×2.1 ×51.1 ×0.6 ×161.1 ×11.1 ×261.4 ×8.1 ×99.0
D6 ×1.0 ×6.8 ×20.8 ×0.2 ×61.4 ×4.5 ×106.6 ×4.0 ×41.0
D7 ×1.0 ×4.9 ×28.9 ×0.3 ×71.6 ×6.3 ×147.7 ×9.5 ×60.9
D8 ×1.0 ×6.4 ×15.2 ×0.3 ×37.6 ×13.1 ×77.6 ×8.7 ×35.6
D9 ×1.0 ×7.9 ×27.2 ×0.3 ×69.3 ×5.9 ×139.0 ×12.2 ×60.5
D10 ×1.0 ×4.4 ×33.2 ×0.5 ×84.3 ×21.4 ×169.1 ×23.7 ×82.4
D11 ×1.0 ×6.4 ×23.3 ×0.4 ×59.0 ×15.0 ×118.4 ×26.8 ×67.9
D12 ×1.0 ×3.4 ×27.0 ×0.4 ×68.5 ×17.4 ×137.4 ×44.4 ×92.1
D13 ×1.0 ×2.2 ×79.3 ×0.9 ×202.2 ×17.2 ×405.4 ×1024.4 –
D14 ×1.0 ×11.1 – – ×54.2 ×13.2 ×78.0 ×17.3 ×32.8
D15 ×1.0 ×6.1 – – ×53.6 ×18.0 ×106.7 ×157.5 ×89.6
D16 ×1.0 ×4.0 – – ×80.9 ×6.8 ×160.4 ×56.2 ×69.7
D17 ×1.0 ×7.2 – – ×49.5 ×4.1 ×97.1 ×118.8 ×50.6
D18 ×1.0 ×2.9 – – ×207.9 ×68.0 ×403.6 ×516.1 ×191.2
D19 ×1.0 ×7.6 – – ×7195.1 ×27.5 ×656.4 ×576.4 ×245.3
D20 ×1.0 ×10.6 – – ×565.8 ×38.2 ×925.1 ×25452.0 ×707.7
Average ×1.0 ×6.5 – – ×174.3 ×14.3 ×157.2 ×292.7 –
*The results for QuanvNet and ESQN are incomplete because these models can handle univariate data only.
†Due to its embedding scheme, TimesNet cannot handle sequence lengths larger than 5000. As such, TimesNet’s D13 performance
is incomplete.

variability and low statistical power of EEG datasets [5, 11], along
with their high dimensionality.

All datasets were processed following the same procedure. We
first applied Z-normalization to the entire dataset, followed by
a 60:20:20 split for training, validation, and testing. For multi-
dimensional data, we performed Z-normalization on each input

channel individually. We saved the normalization factors and data
splits to ensure reproducibility and fair comparisons among mod-
els trained on the same datasets. Additionally, we calculated class
weights and integrated them into the cross-entropy loss function
to address class imbalances in several datasets.

2220

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni

D Training Setup
We trained each model for 200 epochs, opting for a learning rate
scheduler instead of early stopping. As mentioned before, our objec-
tive was to evaluate the differences in learning between Quanv1D
and traditional convolutional layers. The scheduler had a patience
of 5 epochs and a relative threshold of 0.001, monitoring the val-
idation loss to reduce the learning rate by different factors when
performance plateaued. We varied the decay factor to ensure stable
training and minimize overfitting. However, for consistency, the
decay factor remained the same across all comparison models for
each dataset. The data specific factors are presented in Table 5.

We optimized all the models using Adam [23], starting with de-
fault values set by PyTorch. The initial learning rate for all datasets
was 0.01, except for D10 and D12, where it was 0.001. We repeated
all the experiments five times without using any specific seeds.

E Model Setup
Table 5 presents FQN’s hyperparameters for each dataset. Note that,
for fairness, we also use the same batch size for other models under
comparison. In the case of FCN, the hyperparameters are identical
to the values presented in Table 5. In the table, 𝑑𝑒𝑝𝑡ℎ refers to the
number of propagation layers.

We utilized the official implementations retaining the hyperpa-
rameters recommended by respective authors for the SOTA convo-
lutional models. Since no code was available, we implemented the
quantum models from scratch based on the approach outlined in
the respective papers.

F Gradient Derivation
Let us consider a one-wire, one-unitary quantum circuit where the
number of inputs is 2. Before being processed by the circuit, the
inputs undergo amplitude embedding, such that the input vector is
given by:

|𝑥𝑖𝑛𝑝𝑢𝑡 ⟩ =
(
𝑥1
𝑥2

)
(15)

The output state of the quantum circuit after applying a unitary
transformation parameterized by angles 𝜃 , 𝜙 , and 𝜆 is described as:

|𝜓𝑜 ⟩ = 𝑈 (𝜃, 𝜙, 𝜆) ∗ 𝑥𝑖𝑛𝑝𝑢𝑡

=

(
𝑥1 ∗ cos(𝜃 𝜋

2) − 𝑥2 ∗ 𝑒𝑖𝜆 sin(𝜃 𝜋
2)

𝑥1 ∗ 𝑒𝑖𝜙 sin(𝜃 𝜋
2) + 𝑥2 ∗ 𝑒𝑖 (𝜙+𝜆) cos(𝜃 𝜋

2)

) (16)

After passing through the measurement block, the output 𝑄𝑜𝑢𝑡

is computed as the expectation value of the Pauli-Z operator:

𝑄𝑜𝑢𝑡 = ⟨𝜓𝑜 |𝑍 |𝜓𝑜 ⟩ (17)
Substituting |𝜓𝑜 ⟩ into this expression and simplifying, we obtain:

𝑄𝑜𝑢𝑡 = 𝑥21 cos
2 (𝜃 𝜋

2
) + 𝑥22 sin

2 (𝜃 𝜋
2
) − 𝑥1𝑥2 cos 𝜆 sin(𝜋𝜃)

−𝑥21 sin
2 (𝜃 𝜋

2
) − 𝑥22 cos

2 (𝜃 𝜋
2
) − 𝑥1𝑥2 cos 𝜆 sin(𝜋𝜃)

= (𝑥21 − 𝑥22) cos
2 (𝜃 𝜋

2
) − (𝑥21 − 𝑥22) sin

2 (𝜃 𝜋
2
) − 2𝑥1𝑥2 cos 𝜆 sin(𝜋𝜃)

(18)

Now, the derivatives of 𝑄𝑜𝑢𝑡 with respect to 𝜃 , 𝜆, and 𝜙 are:

𝑑𝑄𝑜𝑢𝑡

𝑑𝜃
= −2𝜋

2
(𝑥21 − 𝑥22) cos(𝜃

𝜋

2
) sin(𝜃 𝜋

2
)

−2𝜋
2
(𝑥21 − 𝑥22) sin(𝜃

𝜋

2
) cos(𝜃 𝜋

2
) − 2𝜋𝑥1𝑥2 cos(𝜆) sin(𝜋𝜃)

= −𝜋 (𝑥21 − 𝑥22) sin(𝜋𝜃) − 2𝜋𝑥1𝑥2 cos(𝜆)𝑐𝑜𝑠 (𝜋𝜃)

(19)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜆
= 2𝑥1𝑥2 sin(𝜆) sin(𝜋𝜆) (20)

𝑑𝑄𝑜𝑢𝑡

𝑑𝜙
= 0 (21)

G Parameter Efficiency (Extended)
Compared to SOTA convolutional models such as InceptionTime,
OS-CNN, TimesNet, and ModernTCN, FQN is over 150 times lighter
(refer to Table 6). It is about 14 times more parameter-efficient than
ROCKET, the widely recognized industry-standard lightweight time
series model. The only model with fewer parameters than FQN is
ESQN, which achieves this by having no trainable layers aside from
a single linear layer.

H FQN vs Quantum Noise
Related to practical deployment, we introduced finite-shot analysis
for realistic measurement scenarios. However, considering only
measurement error provides an incomplete picture of the noise
present in real-world quantum systems. As such, after the review
comments, we extended our noise model beyond measurement
error by incorporating three complementary mechanisms: ampli-
tude perturbation, coherent unitary misrotations, and depolarizing
noise. Amplitude perturbation simulates numerical imprecision
and partial decoherence by adding small Gaussian noise (𝜖 = 0.001)
and dropout (𝑝 = 0.01) to the state amplitudes, modeling gate infi-
delity and depth-induced noise. Coherent unitary noise captures
analog control errors through systematic gate misrotations, imple-
mented by perturbing rotation angles with Gaussian noise of the
same scale. This models calibration drift and hardware inaccura-
cies. Depolarizing noise is approximated by randomly applying
a single-qubit Pauli operator (X, Y, or Z) with 1% probability, in-
troducing stochastic errors similar to environmental decoherence.
While this approach does not capture the full statistical mixing of a
true depolarizing channel, it serves as a lightweight, differentiable
approximation compatible with state-vector simulation. Together,
these mechanisms offer a practical and expressive model of NISQ-
era noise. We recognize that actual hardware may introduce further
complications, but we aimed to simulate its behavior as closely as
possible. Even under these noisy conditions, FQN showed robust-
ness (around 3% overall performance degradation), which is still
comparable to some SOTA architectures.

2221

	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions

	2 Method
	2.1 Quanv1D
	2.2 FQN

	3 Experiments
	3.1 Datasets and Models
	3.2 Time Series Classification
	3.3 Parameter Efficiency
	3.4 Self-Regularization
	3.5 Impact of Finite Shots
	3.6 Ablation Study

	4 Concluding Remarks
	4.1 Limitations
	4.2 Future Work

	References
	A Preliminaries
	B Experimental Setup
	C Dataset Setup
	D Training Setup
	E Model Setup
	F Gradient Derivation
	G Parameter Efficiency (Extended)
	H FQN vs Quantum Noise

