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Abstract

Modelling stochastic systems has many important applications.
Normal form coordinate transforms are a powerful way to untan-
gle interesting long term macroscale dynamics from insignificant de-
tailed microscale dynamics. We explore such coordinate transforms of
stochastic differential systems when the dynamics has both slow modes
and quickly decaying modes. The thrust is to derive normal forms
useful for macroscopic modelling of complex stochastic microscopic
systems. Thus we not only must reduce the dimensionality of the
dynamics, but also endeavour to separate all slow processes from
all fast time processes, both deterministic and stochastic. Quadratic
stochastic effects in the fast modes contribute to the drift of the im-
portant slow modes. Some examples demonstrate that the coordinate
transform may be only locally valid or may be globally valid depending
upon the dynamical system. The results will help us accurately model,
interpret and simulate multiscale stochastic systems.
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1 Introduction

Normal form coordinate transformations provide a sound basis for simplifying
multiscale nonlinear dynamics [15, 12, e.g.]. In systems with fast and slow
dynamics, a coordinate transform is sought that decouples the slow from the
fast. The decoupled slow modes then provide accurate predictions for the
long term dynamics. Arguably, such normal form coordinate transformations
provide a much more insightful view of simplifying dynamics than other,
more popular, techniques. Averaging is perhaps the most popular technique
for simplifying dynamics [38, Chapters 11–13, e.g.], especially for stochastic
dynamics that we explore here [26, 17, e.g.]. But averaging fails in many
cases. For example, consider the simple, linear, slow-fast system of stochastic
differential equations (sdes)

dx = εydt and dy = −ydt+ dW , (1)
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1 Introduction 3

where for small parameter ε the variable x(t) evolves slowly compared to
the fast variable y(t). Let us compare the predictions of averaging and
a ‘normal form’ coordinate transform. First consider averaging: the fast
variable y, being an Ornstein–Uhlenbeck process, rapidly approaches its
limiting pdf that is symmetric in y. Then averaging the x equation leads to
the prediction dx̄ = 0 dt ; that is, averaging predicts nothing happens. Yet
the slow x variable must fluctuate through its forcing by the fast y. Second,
and similar to illuminating coordinate transforms explored in in this article,
modify the x and y variables to new coordinates X and Y where

x = X− εY + ε

∫ t
−∞ e

τ−t dWτ and y = Y +

∫ t
−∞ e

τ−t dWτ . (2)

In the X and Y coordinates the sde system (1) decouples to simply

dX = εdW and dY = −Y dt . (3)

In these new coordinates Y → 0 exponentially fast. Thus in the long term
the only significant dynamics occurs in the modified slow variable X which
system (3) shows undergoes a random walk. The method of averaging
completely misses this random walk: true, the mean x̄ remains at zero;
but the growing spread about the mean is missed by averaging. Stochastic
coordinate transforms such as (2) decouple fast and slow variables to empower
us to extract accurate models for a true slow variable X. They are called
‘normal form’ transformations because this decoupling of stochastic dynamics
is analogous to corresponding simplifications in deterministic systems [23, 3,
e.g.]. This article establishes useful properties for such stochastic normal
form coordinate transformations in modelling multiscale nonlinear stochastic
dynamical systems.

One great advantage of basing modelling upon coordinate transforms is
that exactly transformed dynamics fully reproduce the original dynamics for
all time and all state space. It is only when we approximate the transformed
dynamics that errors occur. Consequently, modelling errors can be much
better controlled.

Stochastic odes and pdes have many important applications. Here we re-
strict attention to nonlinear sdes when the dynamics of the sde has both long
lasting slow modes and decaying fast modes [4, e.g.]. The aim underlying all
the exploration in this article is to derive normal forms useful for macroscopic
modelling of stochastic systems when the systems are specified at a detailed
microscopic level. Thus we endeavour to separate all fast time processes
from all slow processes [10, 30, e.g.]. Such separation is especially intriguing
in stochastic systems as white noise has fluctuations on all time scales. In

Tony Roberts, July 25, 2007



1 Introduction 4

contrast, almost all previous approaches have been content to derive normal
forms that support reducing the dimensionality of the dynamics. Here we go
further than other researchers and additionally and systematically separate
fast time processes from the slow modes.

Arnold and Imkeller [4, 3] developed a rigorous body of theory to support
stochastic coordinate transforms to a normal form. They comment that the
normal form transformation involves anticipating the noise processes, that is,
involving integrals of the noise over a fast time scale of the future. However,
in contrast to the examples of Arnold and Imkeller [4] [3, corrected], Sections
2 and 3 argue that such anticipation can be always removed from the slow
modes with the result that no anticipation is required after the fast transients
decay. Furthermore, Sections 2 and 3 argue that on the stochastic slow
manifold all noise integrals can be removed from terms linear in the noise
to leave a slow mode system, such as the simple dX = εdW of the normal
form (3), in which there are no fast time integrals at all. The arguments
demonstrate that, except for some effects nonlinear in the noise, all fast time
processes can be removed from the slow modes of a normal form of stochastic
systems.

The theory of Arnold and Imkeller [4, 3] applies only to finite dimensional
stochastic systems. Similarly, Du and Duan [14]’s theory of invariant man-
ifold reduction for stochastic dynamical systems also only applies in finite
dimensions. But many applications are infinite dimensional; for example,
the discretisation of stochastic pdes approximates an inertial manifold of
stochastic dynamics [30]. Following the wide recognition of the utility of
inertial manifolds [37, e.g.], Bensoussan and Flandoli [6] proved the existence
of attractive stochastic inertial manifolds in Hilbert spaces. The stochastic
slow manifolds obtained in Sections 2–4 via stochastic normal forms are
examples of such stochastic inertial manifolds, albeit still in finite dimensions.

To derive a normal form we have to implement a coordinate transfor-
mation that simplifies a stochastic system. But the term ‘simplify’ means
different things to different people depending upon how they wish to use the
‘simplified’ stochastic system. Our aim throughout this article is to create
stochastic models that may efficiently simulate the long term dynamics of
multiscale stochastic systems. This aim is a little different to that of previous
researchers and so the results herein are a little different. For example,
Coullet, Elphick and Tirapegui [11] and Arnold and Imkeller [4, 3] do not
avoid fast time integrals because their aim is different. Principles that we
require are the following:

1. Avoid unbounded (secular) terms in the transformation and the evolu-
tion (ensures uniform asymptotic approximations);
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2. Decouple all the slow processes from the fast processes (ensures a valid
long term model);

3. Insist that the stochastic slow manifold is precisely the transformed
fast modes being zero;

4. Ruthlessly eliminate as many as possible of the terms in the evolution
(to simplify at least the algebraic form of the sdes);

5. Avoid as far as possible fast time memory integrals in the evolution (to
endeavour to remove all fast time processes from the slow modes).

In general we can meet all these principles, although the last two are are
only phrased as ‘as far/many as possible’: Section 2 explores the issues in
a particular example stochastic system; whereas Section 3 presents general
theory for finite dimensional, nonlinear, stochastic differential systems. The
broad applicability of coordinate transforms empowers a web service to con-
struct for you such stochastic normal forms [32]: enter any suitable system
of sdes into the web page and it will provide you with the stochastic normal
form constructed according to the above principles to separate slow and fast
stochastic dynamics.

Sri Namachchivaya, Leng and Lin [35, 36] emphasise the importance of
effects quadratic in the stochastic noise “in order to capture the stochastic
contributions of the stable modes to the drift terms of the critical modes.”
Sections 2–4 also address such important quadratic effects. The generic result
of this normal form approach is that not all the memory integrals can be
removed from the evolution of the stochastic slow variables: some terms
quadratic in the noise retain fast time scale memory integrals.

Section 4 explores the implications of these results for macroscale sim-
ulation of stochastic systems. The normal form approach empowers us to
address the effect of anticipatory integrals, the influence of the noise on
averages, especially noise induced drift, and the failure of averaging to provide
a systematic basis for macroscale simulation.

Lastly, Section 5 discusses in detail a normal form of a stochastically
forced Hopf bifurcation, not because it is a Hopf bifurcation, but instead
because it is a generic example of stochastic effects interacting nonlinearly
with oscillatory dynamics. A complex valued, time dependent, coordinate
transform can, with considerable care, derive a model sde that is valid for
simulating the long term evolution of the stochastic oscillating dynamics.
A future application could be to the modelling of atmospheric white noise
forcing of oceanic modes: Pierce [27] discusses this situation from an oceanog-
rapher’s perspective.
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Figure 1: trajectories of the example stochastic system (5) from different
initial conditions for different realisations of the noise, intensity σ = 0.05 .

2 Explore in detail a simple nonlinear

stochastic system

This section considers the dynamics of one of the most elementary, nonlinear,
multiscale stochastic systems:

dx = −xydt and dy = (−y+ x2 − 2y2)dt+ σdW . (4)

Figure 1 plots some typical trajectories of the sde system (5). In this finite
domain near the origin the y variable decays exponentially quickly to y ≈ x2 ;
whereas the x variable evolves relatively slowly over long times. Our challenge
is to separate, amid the noise, the slow x(t) from the fast y(t). The modelling
issues raised, and their resolution, in this relatively simple stochastic system
are generic as seen in Section 3. I emphasise that the detailed analysis of this
simple example demonstrates the inevitability of the proposed methodology
when you set out, as we do here, to systematically separate slow and fast
processes in nonlinear stochastic systems.

Throughout this article I adopt the Stratonovich interpretation of sdes,
as does Arnold and Imkeller [4, 3], so that the usual rules of calculus apply.
To ease asymptotic analysis I also adopt hereafter the notation of applied
physicists and engineers. Thus I formally explore the sde system (4) in the
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equivalent form of

ẋ = −xy and ẏ = −y+ x2 − 2y2 + σφ(t) , (5)

where overdots denote formal time derivatives and the ‘white noise’ φ(t) is
the formal time derivative of the Wiener processW(t). Both the Stratonovich
interpretation and the adoption of this formal notation empowers the use of
computer algebra to handle the multitude of details in examples.

The challenge is to adapt the deterministic normal form transformation,
Section 2.1, to the stochastic system (5) in order to not only decouple the
interesting slow modes, but to simplify them as far as possible, Section 2.2.
The analysis and argument is detailed in order to demonstrate in a simple
setting how Principles 1–5 are realised at the expense of having to anticipate
future noise. Those familiar with the concept of stochastic normal forms
could skip to Section 3 for generic arguments of the new results.

2.1 Decouple the deterministic dynamics

Initially consider the example toy system (5) when there is no noise, σ = 0 .
A deterministic, near identity, normal form coordinate transform decouples
the deterministic slow and fast dynamics:

x = X+ XY + 3
2
XY2 − 2X3Y + 5

2
XY3 + · · · , (6)

y = Y + X2 + 2Y2 + 4Y3 − 4X2Y2 + 8Y4 + · · · . (7)

Figure 2 shows the coordinate curves of this (X, Y) coordinate system. In the
new (X, Y) coordinate system, the evolution of the toy system (5) becomes

Ẋ = −X3 and Ẏ = −(1+ 2X2 + 4X4)Y + · · · . (8)

Observe the Y-dynamics are that of exponentially quick decay to the slow
manifold Y = 0 at the X dependent rate (1+ 2X2 + 4X4 + · · · ). Substituting
Y = 0 into the transform (6) and (7) shows this slow manifold is the curve
x = X and y = X2 [15]. The dynamics on this slow manifold, Ẋ = −X3

from (8), form the accurate, macroscopic, long term model.
The slow X dynamics are also independent of the Y variable and thus

the initial value Y(0) and subsequent Y(t) are immaterial to the long term
evolution. Thus to make accurate forecasts, project onto the slow manifold
Y = 0 along the coordinate curves of constant X seen in Figure 2 [12].
Equivalently, because the slow X dynamics are independent of the Y variable,
the dynamics of the system (5) map the curves of constant X in Figure 2 into
other curves of constant X. Thus initial conditions on any one curve of
constant X all evolve towards the same trajectory on the slow manifold.
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Figure 2: coordinate curves in the xy-plane of the (X, Y) coordinate system
that simplifies to (8) the algebraic description of the dynamics of the
deterministic (σ = 0) system (5).

But these comments are all for deterministic dynamics, σ = 0 . The
next subsection answers the question: how can we adapt this beautifully
simplifying coordinate transform to cater for stochastic dynamics?

2.2 Simplify stochastic evolution as far as possible

Now explore the construction of a coordinate transform that decouples the
fast and slow dynamics of the toy sde (5) in the presence of its stochastic
forcing. In order to cater for the stochastic fluctuations, the coordinate
transform must be time dependent through dependence upon the realisation
of the noise, as shown schematically in Figure 3. This subsection is detailed
in order to argue that no alternatives go unrecognised. The method is to
iteratively refine the stochastic coordinate transform based upon the residuals
of the governing toy sde (5).

Although our focus is on the case when φ(t) is a white noise, because we
use the usual calculus of the Stratonovich interpretation, the algebraic results
also apply to smoother processes φ(t). For two examples, the forcing φ(t)
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Figure 3: four different (coloured) meshes represent either four realisations
sampled at one instant or one realisation sampled at four instants of the
coordinate curves in the xy-plane of the stochastic (X, Y) coordinate system
that simplifies to (26) and (23) the algebraic description of the dynamics of
the stochastic (σ = 0.2) system (5).

could be the output of a deterministic chaotic system [19, e.g.], or the
forcing φ(t) could be even as regular as a periodic oscillator. Thus the
algebraic expressions derived herein apply much more generally than to
just white noise φ. However, the justification for the particular coordinate
transform often depends upon the peculiar characteristics of white noise.
For forcing φ which is smoother than white noise, although our results herein
apply, other coordinate transforms may be preferable in order to achieve other
desirable outcomes in the transformation (outcomes not attainable when
φ is white noise). These possibilities are not explored. Instead, throughout
this article the forcing φ(t) denotes a white noise process in a Stratonovich
interpretation of sdes.

Let us proceed to iteratively develop a stochastic coordinate transform of
the sde (5) via stepwise refinement [28].
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First, simplifying fast dynamics introduces memory With x ≈ X

and Ẋ ≈ 0 , seek a change to the y coordinate of the form

y = Y + η ′(t, X, Y) + · · · and Ẏ = −Y +G ′(t, X, Y) + · · · , (9)

where η ′ and G ′ are small, O
(
ε2
)
, corrections to the transform and the

corresponding evolution. I introduce the parameter ε to provide a convenient
ordering of the terms that arise in the algebra: formally set ε = |(X, Y, σ)|

with the effect that ε counts the number of X, Y and σ factors in any
one term. In this section all errors are measured in orders of ε: thus all
asymptotic expressions are local to (X, Y, σ) = (0, 0, 0), that is, valid in some
neighbourhood of the origin; later sections give examples globally valid in
one or more variables. Substitute (9) into the y sde (5) and drop products
of small corrections to recognise we need to solve

G ′ +
∂η ′

∂t
+ η ′ − Y

∂η ′

∂Y
= σφ(t) + X2 − 2Y2 + · · · ; (10)

partial derivatives are here done keeping constant the other two variables of
X, Y and t.

First, keep the deterministic evolution as simple as possible (Principle 4)
by not changing the evolution, G ′ = 0 , and by modifying the coordinate
transform by η ′ = X2 + 2Y2 .

Second, consider the remaining stochastic term σφ(t) in the right-hand
side of (10). Keep the Y dynamics as simple as possible (Principle 4) by
choosing the convolution σe−t ? φ , defined in (12), to be part of the correc-
tion η ′ to the coordinate transform. Consequently the new approximation of
the coordinate transform and the dynamics is

y = Y + X2 + 2Y2 + σe−t ? φ+ · · · and Ẏ = −Y + · · · . (11)

In these leading order terms of the coordinate transform, see the stochastic
slow manifold (ssm) Y = 0 corresponds to the vertically fluctuating parabola
y ≈ X2+σe−t?φ as seen in the overall vertical displacements of the coordinate
mesh in Figure 3.

The convolution For any non-zero parameter µ, and consistent with the
convolution in the example transform (2), define the convolution, for suffi-
ciently well behaved stochastic processes V(t),

eµt ? V =

{∫t
−∞ exp[µ(t− τ)]V(τ)dτ , µ < 0 ,∫+∞
t

exp[µ(t− τ)]V(τ)dτ , µ > 0 ,
(12)
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so that the convolution is always with a bounded exponential (Principle 1).
Such convolutions are used throughout this article. Five useful properties of
this convolution are

eµt ? 1 =
1

|µ|
, (13)

d

dt
eµt ? V = − sgnµV + µeµt ? V , (14)

E[eµt ? V ] = eµt ? E[V] , (15)

E[(eµt ? φ)2] =
1

2|µ|
, (16)

eµt ? eνt? =


1

|µ−ν|

[
eµt ? +eνt ?

]
, µν < 0 ,

− sgnµ
µ−ν

[
eµt ? −eνt ?

]
, µν > 0 and µ 6= ν .

(17)

Also remember that although with µ < 0 the convolution eµt? integrates over
the past, with µ > 0 , as we will soon need, the convolution eµt? integrates
into the future; both integrate over a time scale of order 1/|µ|.

Second, split noise to eliminate memory from slow dynamics Seek
a correction to the slow component of the stochastic coordinate transform of
the form

x = X+ ξ ′(t, X, Y) +O
(
ε3
)

and Ẋ = F ′(t, X, Y) +O
(
ε3
)
. (18)

where ξ ′ and F ′ areO
(
ε2
)

corrections to the transform and the corresponding
evolution. Substitute into the x equation of sde (5) and omit small products
to recognise we need to solve

F ′ +
∂ξ ′

∂t
− Y

∂ξ ′

∂Y
= −XY + σXe−t ? φ+O

(
ε3
)
. (19)

First, keep the deterministic evolution unchanged, F ′ = 0 , by choosing ξ ′ =
XY in the coordinate transform. Second, consider the stochastic part of
the equation: F ′ + ξ ′t − Yξ ′Y = σXe−t ? φ . The ξ ′Y cannot help us solve this
stochastic part as there is no Y factor in the right-hand side term. We cannot
integrate the forcing φ into the coordinate transform ξ ′ as then terms would
grow like the Wiener process W =

∫
φdt (Principle 1). To avoid a fast time

convolution in the slow evolution F ′ (Principle 5), formally integrate by parts
to split e−t ? φ = −φ + e−t ? φ̇ and hence choose components F ′ = −σXφ

and ξ ′ = σXe−t ? φ . Consequently,

x = X+ XY + σXe−t ? φ+O
(
ε3
)

and Ẋ = −σXφ+O
(
ε3
)
. (20)
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Observe that the slow dynamics being Ẋ ≈ −σXφ is one example of additive
noise appearing as multiplicative noise in the true slow variable.

In contrast, earlier approaches to stochastic bifurcation do not split the
noise and consequently they derive more complicated normal forms that
additionally have fast time memory processes. For example, Arnold [3]
analyses a two variable fast/slow stochastic system, and presents in his
equation (8.5.47) a normal form for the slow mode. Whereas his normal
form is perfectly good for exploring bifurcations, it is inadequate for long
time, macroscale modelling as it contains several fast time scale memory
integrals of the sort we avoid (Principle 5).

Third, split noise to avoid memory in fast dynamics Seek correc-
tions, η ′ and G ′, to the y transform and Y evolution driven by the updated
residual of the y equation in sde (5):

G ′ +
∂η ′

∂t
+ η ′ − Y

∂η ′

∂Y
= −4σYe−t ? φ− 2σ2(e−t ? φ)2 +O

(
ε3
)
. (21)

Separately consider the two stochastic forcing terms on the right-hand side.

• To solve G ′ + η ′t + η ′ − Yη ′Y = −4σYe−t ? φ we must seek G ′ and η ′

proportional to Y, whence η ′ − Yη ′y = 0 . Integration by parts enables
us to choose G ′ = −4σYφ and η ′ = 4σYe−t ? φ to avoid secular terms
in η ′ (Principle 1), and to avoid fast time convolution in the Y evolution
(Principle 5).

• The quadratic noise term on the right-hand side is no problem: keep
evolution unchanged, G ′ = 0 (Principle 4), and then the convolution
η ′ = −2σ2e−t ? (e−t ? φ)2 corrects the coordinate transform.1

Consequently, the fast time transform and dynamics are more accurately

y = Y + X2 + 2Y2 + σ
[
e−t ? φ+ 4Ye−t ? φ

]
− 2σ2e−t ? (e−t ? φ)2 +O

(
ε3
)
, (22)

Ẏ = −Y − 4σYφ+O
(
ε3
)
. (23)

1The right-hand side of this correction η ′ has non-zero mean. We could assign the
mean, −σ2, into the Y evolution as a mean (downwards) forcing, but then this destroys
Y = 0 as being the slow manifold, contradicting Principle 3.

Tony Roberts, July 25, 2007



2 Explore in detail a simple nonlinear stochastic system 13

Fourth, quadratic noise normally appears in the slow dynamics
Seek corrections to the transform and evolution, ξ ′ and F ′, driven by the
updated residual of the x equation of sde (5):

F ′ +
∂ξ ′

∂t
− Y

∂ξ ′

∂Y
= −X3 − 3XY2 + σXY(5φ− 6e−t ? φ)

+ σ2X
[
φe−t ? φ− (e−t ? φ)2 + 2e−t ? (e−t ? φ)2

]
+O

(
ε4
)
. (24)

Consider the right-hand side term by term:

• We choose F ′ = −X3 and ξ ′ = 3
2
XY2 in the traditional deterministic

approach.

• To match the term linear in noise, F ′+ξ ′t−Yξ
′
Y = σXY(5φ−6e−t ?φ) ,

we must seek F ′ and ξ ′ proportional to XY, whence ξ ′t − Yξ ′y 7→ ξ ′t −

ξ ′ . Consequently foreknowledge, anticipation, of the noise appears.
Consider the two cases:

– allowing anticipation (implementing Principle 4) and in accord
with Arnold and Imkeller [4, 3], we assign all of this term to the
coordinate transformation with F ′ = 0 and ξ ′ = σXY(3e−t ? φ −

2e+t ? φ) ;

– disallowing anticipation, we must assign all of this term into the
X evolution by assigning F ′ = σXY(5φ−6e−t?φ) and ξ ′ = 0—the
difficulty here being that the evolution to the ssm then depends
undesirably upon Y, contradicting Principle 2. We have to allow
anticipation in the coordinate transformation.

Many more anticipatory convolutions appear in higher order terms,
namely those with Y factors. However, they need never occur in the
evolution on the ssm where Y = 0 (Proposition 2).

• For the quadratic noise term in (24), seek contributions to the solu-
tion which are proportional to X; consequently, on the left-hand side
−Yξ ′Y = 0 . At least part of the fluctuations cannot be assigned into the
transform ξ ′ as the integral of noise is a Wiener process which almost
surely is secular (Principle 1).

Now, as in the earlier integration by parts, separate these quadratic
noise terms into

(e−t ? φ)2 = φe−t ? φ− 1
2
d
dt

[(e−t ? φ)2] ,

e−t ? (e−t ? φ)2 = (e−t ? φ)2 − d
dt

[e−t ? (e−t ? φ)2]
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= φe−t ? φ− d
dt

[1
2
(e−t ? φ)2 + e−t ? (e−t ? φ)2] ,

and so these contribute corrections F ′ = σ2Xφe−t?φ and ξ ′ = −σ2X(1
2
+

2e−t?)(e−t ? φ)2 .

The upshot is that the x transformation and X evolution is more accurately

x = X+ XY + 3
2
XY2 + σ

[
Xe−t ? φ+ XY(3e−t ? φ− 2e+t ? φ)

]
− σ2X(1

2
+ 2e−t?)(e−t ? φ)2 +O

(
ε4
)
, (25)

Ẋ = −X3 − σXφ+ 2σ2Xφe−t ? φ+O
(
ε4
)
. (26)

Higher order modelling Further algebra constructs higher order stochas-
tic coordinate transform from the original (x, y) variables to the new (X, Y) vari-
ables. For later discussion, the web service [32] informs us that the dynamics
of the example sde (5) is

Ẋ = −X3 − σXφ+ 2σ2Xφe−t ? φ

− 4σ2X3φe−t ? e−t ? φ+O
(
ε6, σ3

)
, (27)

Ẏ = −(1+ 2X2 + 4X4)Y − 4σ(1+ X2)Yφ+ 8σ2Yφe−t ? φ

+ 4σ2X2Yφ
[
3e−t ? φ− e+t ? φ− 2e−t ? e−t ? φ

]
+O

(
ε6, σ3

)
. (28)

Expect that the series solutions we generate for a coordinate transform and
normal form are divergent. It is rare to find convergence of these sort of
asymptotic expansions of nonlinear dynamics. Nonetheless, there exist a
coordinate transform and normal form in a finite neighbourhood to which
they are the asymptotic approximations, see Section 3.

Irreducible fast time convolutions generate drift As is generally
true, the X and Y evolution equations, (27) and (28), contain algebraically
irreducible nonlinear noise such as φe−t ?φ, in defiance of Principle 5. Over
long times I recommend such irreducible noise be replaced by 1

2
+ 1√

2
φ(1)

for some effectively new white noise φ(1)(t) [10]. Such replacement was
also justified by Khasminskii (1996) as described by Sri Namachchivaya and
Leng [35]. Importantly, such quadratic noise, in effect, generates a mean
deterministic drift term in the slow dynamics [35, 36, e.g.]. In applications
such drifts can be vital.
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2 Explore in detail a simple nonlinear stochastic system 15

The average SSM is not the deterministic slow manifold For the
toy sde (5), Section 2.1 shows the deterministic slow manifold is y = x2 . In
general the ssm fluctuates about a mean location which is different to this
deterministic slow manifold. From (25) and (22) with fast variable Y = 0 ,
the ssm is

x = X+ σXe−t ? φ− σ2X(1
2

+ 2e−t?)(e−t ? φ)2 +O
(
ε4
)
, (29)

y = X2 + σe−t ? φ− 2σ2e−t ? (e−t ? φ)2 +O
(
ε3
)
, (30)

Take expectations, and using (15) and (16),

E[x] = (1− 5
4
σ2)X+O

(
ε4
)

and E[y] = X2 − σ2 +O
(
ε3
)
. (31)

Observe E[y] 6= E[x]2 , instead E[y] ≈ (1 + 5
2
σ2)E[x]2 − σ2 so that the

average ssm is a displaced steeper parabola shape than the deterministic
slow manifold. It is quadratic noise processes that deform the average ssm
from the deterministic.

2.3 Forecast from initial conditions

Suppose at time t = 0 we observe the state (x0, y0), what forecast can
we make with the ssm sde (27)? Revert the asymptotic expansion of the
stochastic coordinate transform (25) and (22) to deduce

X = x+ x3 − xy+ 3
2
xy2 + 2σxye+t ? φ

− 2σ2x(e+t ? φ)(e−t ? φ) +O
(
ε4
)
, (32)

Y = y− x2 − 2y2 − σe−t ? φ+ σ2(1+ e−t ? )(e−t ? φ)2 +O
(
ε3
)
.(33)

Then the correct initial condition for the long term dynamics on the ssm,
governed by the sde (27), is the X component of this reversion, (32), evalu-
ated at the observed state, namely

X(0) = x0+x
3
0−x0y0+

3
2
x0y

2
0+2σx0y0e

+t?φ−2σ2x0(e
+t?φ)(e−t?φ)+O

(
ε4
)
.

(34)
This is a projection of the observed initial state onto the ssm to provide an
initial condition X(0) for the slow mode. However, this projection involves
both memory and anticipatory convolutions of the noise. There are at
least three interesting issues with computing this initial X(0). First, at the
initial instant we do not know either the future nor the past, so the terms
involving the noise φ are unknown. Using the expectations (15) and (16),
the projection X(0) has known mean

E[X(0)] = x0 + x30 − x0y0 + 3
2
x0y

2
0 +O

(
ε4
)
,
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2 Explore in detail a simple nonlinear stochastic system 16

with known variance

Var[X(0)] ≈ 2σ2x20y20 + σ4x20 .

That is, a given observed state (x0, y0) corresponds to a stochastic state for
the evolution of the slow mode model on the ssm.

Second, but if this state X(0) for the slow mode is to be used in a simula-
tion to make forecasts of the future, then we know the future of the noise φ.
The future values of noise φ are just those we use in integrating the slow
mode sde (27). Thus for simulation, we do eventually know the anticipatory
convolutions e+t ?φ in (34), but not the memory convolution e−t ?φ. In this
case the mean of the projection

E[X(0)] = x0 + x30 − x0y0 + 3
2
x0y

2
0 + 2σx0y0e

+t ? φ+O
(
ε4
)
,

with variance Var[X(0)] ≈ 2σ4x20(e+t ? φ)2 .
Lastly, if we made additional observations for times t < 0 , then the addi-

tional information could partially determine the past history of the noise φ
and hence help us estimate the memory convolution e−t ? φ. These three
cases emphasise that the initial state X(0) of the slow variable depends upon
more than just the observed state (x0, y0) at an initial instant.

Avoiding anticipation is less useful Alternatively, suppose we disallow
anticipatory convolutions. Arguments show that we can reasonably abandon
only Principle 2, the requirement to completely decouple the slow modes
from the fast modes. But abandoning this principle also means we are no
longer able to use the slow model to make high accuracy forecasts from every
initial condition.

Suppose we specify some initial state (X0, Y0), either deterministic or
stochastic. What forecast can we easily make with the ssm model (27)?
In general, none. The reason is that in the evolution to the ssm, the slow
X dynamics are coupled to the fast Y dynamics. But the point of deriving
a slow model, for most purposes, is to avoid resolving the details of the
fast dynamics; thus we cannot rationally project from (X0, Y0) onto the ssm.
In contrast, the normal form of a deterministic system empowers rational
projection from nearby initial conditions onto the slow model for accurate
forecasts [12]. Abandoning Principle 2 means we cannot make accurate
forecasts.

Because it adheres to Principle 2, the stochastic normal form of Sec-
tion 2.2, similarly to the deterministic normal form, empowers rational pro-
jection from nearby initial conditions onto the ssm. But there is a catch:
in order to do the projection we need to anticipate the noise. Since we
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3 Normal forms of SDEs for long term modelling 17

generally will not know the future noise, the stochastic normal form of
Section 2.2 also cannot be used for accurate forecasting. In this sense the
two stochastic normal forms would have equivalent power. However, there
is a difference. The anticipatory stochastic normal form of Section 2.2 has
explicit convolutions for the projection: we may not know what they are, but
we could certainly use the convolutions to estimate bounds and distributions
for the projection of initial conditions. In contrast, stochastic normal forms
that couple the slow and the fast modes keeps such information encrypted in
the coupled fast and slow dynamics. Consequently, maintaining Principle 2,
decoupling the slow modes from the fast, appears more powerful than avoiding
anticipatory convolutions.

3 Normal forms of SDEs for long term

modelling

This section uses formal arguments to establish a couple of key generic
properties of stochastic normal forms seen in the example sde system of the
previous section. We establish firstly that a stochastic coordinate transform
can decouple slow modes from fast modes, to make the stochastic slow
manifold (ssm) easy to see, and secondly that although anticipation of the
noise may be necessary in the full transform no anticipation need appear on
the ssm.

Consider a general system of Stratonovich sdes in m+ n dimensions for
variables x(t) ∈ Rm and y(t) ∈ Rn :

ẋ = Ax+ f(x,y, t) , (35)

ẏ = By+ g(x,y, t) , (36)

where

• the spectrum of A is zero and for simplicity we assume A is upper
triangular with all elements zero except possibly Ai,j for j > i (such as
in the Jordan form appropriate for position and velocity variables of a
mechanical system);

• for simplicity assume matrix B has been diagonalised with diagonal
elements β1, . . . , βn, possibly complex, with <βj < 0 ;2

2If matrix B is in Jordan form, rather than diagonalisable, then extensions of the
arguments lead to the same results.
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3 Normal forms of SDEs for long term modelling 18

• f and g are stochastic functions that are “nonlinear”, that is, f and g
and their gradients in x and y are all zero at the origin;

• the stochastic nature of the system of sdes arises through the depen-
dence upon the time t in the nonlinearity f and g—assume the time
dependence is implicitly due to some number of independent white
noise processes φk(t) (which are derivatives of independent Wiener
processes).

For such systems, Boxler [8] guarantees the existence, relevance and approx-
imability of a stochastic centre manifold for (35–36) in some finite neighbour-
hood of the origin. We call this a stochastic slow manifold (ssm) because
we assume matrix A does not have complex eigenvalues (an extension to
oscillatory dynamics is explored in Section 5).

For example, the toy sde system (5) takes the form (35–36) with variables
x = (

√
σ, x) and y = y , then

A =

[
0 0

0 0

]
, B = −1 , f =

[
0

−xy

]
, g = x2 − 2y2 +

√
σ
2
φ(t) .

In principle, the matrices A and B could also depend upon the realisation
of the noise. When the Lyapunov exponents of the corresponding linear
dynamics are zero and negative respectively, then a stochastic centre manifold
still exists and has nice properties [8, 3]. However, here I restrict attention to
the algebraically more tractable case when the basic linear operators A and B
are deterministic.

Stochastic singular perturbation systems such as those explored by
Berglund and Gentz [7], are a subset of the systems encompassed by (35–36).
For example, let us transform the deterministic singular perturbation system

ẋ = f(x, y) , ẏ =
1

ε
g(x, y) , (37)

into the form (35–36). First, change to the fast time τ = t/ε so that

dx

dτ
= εf(x, y) ,

dy

dτ
= g(x, y) .

Then change to a coordinate system ξ and η, where η = 0 is the curve
g(x, y) = 0 , in which the system takes the form

dξ

dτ
= εF(ξ, η) ,

dη

dτ
= β(ξ)η+G(ξ, η) .
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3 Normal forms of SDEs for long term modelling 19

Consequently, in variables x = (
√
ε, ξ) and y = η , the curve (x,y) =

(0, ξ, 0) is a set of equilibria, at each equilibria the dynamics are of the
form (35–36). Consequently there exists a slow manifold around each point
of the curve, which as a whole forms a slow manifold in a neighbourhood of
the curve [9]: consequently, an asymptotic approximation to a normal form
coordinate transform is global in variable ξ and local in parameter

√
ε and

variable η. The analysis of this section also applies to singular perturbation
problems by a change in time scale and coordinate system.

A stochastic coordinate transform We transform the sde (35–36) in
(x,y) to a new (X,Y) coordinate system by a stochastic, near identity,
coordinate transform

x = X+ ξ(X,Y , t) and y = Y + η(X,Y , t) . (38)

This stochastic coordinate transform is to be chosen such that the sde (35–
36) transforms to a ‘simpler’ form for multiscale modelling. Based upon
the experience of Section 2.2, we seek to simplify the sdes according to
Principles 1–5, and allowing anticipation.

3.1 Transform the fast dynamics

Suppose (38) is some approximation to the desired coordinate transform.
Iteratively we seek corrections ξ ′ and η ′ to the transform, namely

x = X+ξ(X,Y , t)+ξ ′(X,Y , t) and y = Y+η(X,Y , t)+η ′(X,Y , t) . (39)

Find corrections such that the corresponding updates to the evolution, say
F ′ and G ′ in

Ẋ = AX+ F(X,Y , t) + F ′(X,Y , t) , (40)

Ẏ = BY +G(X,Y , t) +G ′(X,Y , t) , (41)

are as simple as possible (Principle 4).
For the fast dynamics, the iteration is to substitute the corrected trans-

form (39) and evolution (40)–(41) into the governing sde (36) for the fast
variables. Then drop products of corrections as being negligible, and ap-
proximate coefficients of corrections by their leading order term. Then the
equation for the jth component of the correction to the transform of the fast
variable and the new fast dynamics is the stochastic version of the usual
homological equation

G ′j +
∂η ′j

∂t
− βjη

′
j +

n∑
`=1

β`Y`
∂η ′j

∂Y`
= Res36,j , (42)

Tony Roberts, July 25, 2007



3 Normal forms of SDEs for long term modelling 20

where Res36,j denotes the residual of the jth component of the sde (36). In
constructing a coordinate transform we repeatedly solve equations of this
form to find corrections.

We find what sort of terms may be put into the transformation η and
what terms have to remain in the Y evolution by considering the possibilities
for the right-hand side. The transform is constructed as a multivariate
asymptotic expansion about the origin in (X,Y) space. Suppose the right-
hand side, the residual Res36,j, has, potentially among many others, a term
of the multinomial form

c(t)XpYq = c(t)

m∏
i=1

X
pi

i

n∏
j=1

Y
qj

j ,

for some vectors of integer exponents p and q. Because of the special form of
the homological operator on the left-hand side of (42), seek contributions to
the corrections of G ′j = a(t)XpYq and η ′j = b(t)XpYq . Then this component
of (42) becomes

a+ ḃ− µb = c where µ = βj −

n∑
`=1

q`β` . (43)

Three cases arise.

1. In the resonant case µ = 0 , we need to satisfy a+ ḃ = c where we want
to put as much into b as possible (Principle 4). Neither of the mean
and stochastically fluctuating components of the forcing c(t) can be
integrated into b as they both give rise to secular terms (Principle 1):
the stochastically fluctuating part of c almost surely generates square-
root growth.3 Thus the generic solution is a = c and b = 0 , that is,
assign c(t)XpYq to the Y evolution and nothing into the coordinate
transform η.

In general, since <β` are all negative,4 this case of µ = 0 can only
arise when at least one of the exponents q is positive in order for the
sum in (43) to be zero. Hence, there will be at least one Y` factor in
updates G ′ to the Y evolution, and so we maintain that Y = 0 is the
ssm.

3In contrast, when the forcing c(t) is periodic, instead of stochastic, then the the
forcing c(t) may be integrated into the coordinate transform b, instead of being assigned
to the evolution a.

4More generally, provided the eigenvalues βj are all non-zero whether real or complex,
the argument still holds. Thus we can maintain Principle 3 over a very wide range of
circumstances.
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2. When <µ < 0 , a solution of (43) is to place all the forcing into the ssm,
b = eµt ? c , and do not introduce a component into the Y evolution,
a = 0 . As <µ < 0 , the convolution is over the past history of the
noise affected forcing c(t); the convolution represents a memory of the
forcing over a time scale of 1/|<µ|.

However, for large enough exponents q, that is for high enough order
in Y, the rate <µ must eventually become positive. In the transition
from negative to positive, the rate <µ may become close to zero.
Then the time scale 1/|<µ| becomes large and may be as large as
the macroscopic time scale of the slow dynamics of interest. In that
case set the transform b = 0 and assign this term in the forcing into
the Y evolution with a = c . The intended use of a macroscopic model
defines a slow time scale and consequently affects which terms appear
in the model.

3. When <µ > 0 , and accepting anticipation in the transform, we simply
set b = eµt ? c , and do not change the Y evolution, a = 0 .

Consequently, we are always able to find a coordinate transform which main-
tains that Y = 0 is the ssm.

You may have noticed that I omit a term in (42): the term
∂η ′

j

∂X`
A`,iXi

should appear in the left-hand side. However, my omission is acceptable
when the matrix A is upper triangular, as specified earlier, as then any term
introduced which involves X` only generates extra terms which are lower
order in X`. Although such extra terms increase the order of Xi for i > ` ,
successive iterations generate new terms involving only fewer factors of X`
and so iteration steadily accounts for the introduced terms. Similarly for the
Y variables when the linear operator B is in Jordan form due to repeated
eigenvalues. Discussing equation (42) for corrections is sufficient. Analogous
comments apply to the the slow dynamics to which we now turn.

3.2 Transform the slow dynamics

For the slow dynamics, each iteration towards constructing a stochastic
coordinate transform substitutes corrections to the transform (39) and the
evolution (40–41) into the governing sde (35) for the slow variables. Anal-
ogous to the fast dynamics, the equation for the jth component of the
correction to the transform of the slow variable is the homological equation

F ′j +
∂ξ ′j

∂t
+

n∑
`=1

β`Y`
∂ξ ′j

∂Y`
= Res35,j , (44)
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where Res35,j denotes the residual of the jth component of the sde (35)
evaluated at the current approximation. The crucial difference with the
previous discussion of the fast variables is that the left-hand side of (44)
does not have an analogue of the −βjη

′
j term.

Consider the range of possibilities for the right-hand side. In general, the
right-hand side residual Res35,j is a sum of terms of the form c(t)XpYq for
some vectors of integer exponents p and q. Because of the special form of
the ‘homological’ operator on the left-hand side of (44), seek corresponding
corrections F ′j = a(t)XpYq and ξ ′j = b(t)XpYq . Then (44) becomes

a+ ḃ− µb = c where µ = −

n∑
`=1

q`β` . (45)

Two cases typically arise.5

1. The resonant case µ = 0 only arises when the Y exponents q = 0 as
the exponents have to be non-negative and <β` < 0 . We need to solve
a+ḃ = c where we want to put as much into b as possible (Principle 4).
Since the forcing c(t) generally has mean and stochastically fluctuating
components, at first sight the generic solution is a = c and b = 0 ,
that is, assign c(t)

∏m
i=1 X

pi

i to the X evolution and nothing into the
coordinate transform.

But recall Principle 5: we want to avoid fast time integrals in the slow
evolution. Consider the case when the forcing has the form of a fast
time convolution c = eνt ? C(t) for some C(t). From (14) deduce

c = eνt ? C =
1

|ν|
C+

1

ν

d

dt
(eνt ? C) =

1

|ν|
C+

1

ν

dc

dt
.

Hence to avoid fast time memory integrals in the slow X evolution
(Principle 5), set a = C/|ν| and b = c/ν . If C(t) in turn is a fast
time convolution, then continue the above separation. This separation
corresponds to the integration by parts that Section 2.2 uses to avoid
fast time, memory convolutions in the slow evolution.

When the forcing c is a quadratic product of convolutions, then similar
transformations and integration by parts eliminates all memory from
the slow variables except terms of the form c(1)(t)eνt ? c(2)(t) where
c(1) has no convolutions. Algebraic transformations cannot eliminate

5The case <µ < 0 cannot arise as all the decay rates −<βj > 0 when there are no fast
unstable modes.
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such terms; for now accept the violation of Principle 5 in such quadratic
forcing terms.

Since the case µ = 0 can only arises for terms in the residual with no
Y dependence, we maintain that the slow evolution of the X variables
are independent of Y , and this holds both on and off the ssm.6

2. The remaining case when <µ > 0 occurs when at least one of the
exponents q is positive. Accepting anticipation in the transform, we
simply assign b = eµt ? c , and do not change the X evolution, a = 0 .

By anticipating noise we are always able to find a coordinate transform which
maintains a slow X evolution that is independent of whether the system is on
or off the ssm. Thus the projection of initial conditions and the exponential
approach to a solution of the slow variables, called asymptotic completeness
by Robinson [34], is only assured by anticipation of the noise.

The preceding arguments are phrased in the context of an iteration scheme
to construct the stochastic coordinate transform and the corresponding evo-
lution. Each step in the iterative process satisfies the governing sdes to
higher order in the asymptotic expansions. By induction, we immediately
deduce the following proposition.

Proposition 1 with stochastic anticipation allowed, a near identity stochas-
tic coordinate transformation exists to convert the stochastic system (35–36)
into the normal form

Ẋ ' AX+ F(X, t) , (46)

Ẏ '
[
B+G(X,Y , t)

]
Y , (47)

where ' denotes that these are equalities to any power of (X,Y) in an
asymptotic expansion about the origin.

Note: F and G may contain fast time memory integrals but these need only
occur as products with other noise processes; for example, see (27) and (28).

This proposition corresponds to the general Theorem 2.1 of Arnold and
Xu Kedai [5] and to the general Theorem 8.4.1(i) of Arnold [3]; the crucial
difference is they do not identify that memory integrals may be mostly
eliminated. Proposition 1 becomes significant when placed within the context
of other theorems: Theorem 8.4.1(ii–iii) by Arnold [3] asserts that the locally

6However, when the fast dynamics contain rapidly oscillating, non-decaying modes,
the corresponding eigenvalues occur as complex conjugate pairs which typically interact
to cause µ = 0 ; among rapid oscillation we cannot completely decouple the slow modes
from the fast oscillations [12]. Physically, waves do interact with mean flow.
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invariant Y = 0 is indeed attractive and approximates the ssm of the original
dynamics. This, in turn, builds upon the earlier Theorem 8.3.10 [3] that
there exists a stochastic coordinate transform which, by a stochastic version
of Borel’s lemma [3, Lemma 8.2.12], has the same formal asymptotic series as
can be constructed to any order. In its turn, this builds upon the existence
of well-behaved invariant measures [3, Theorem 5.6.5]. Propositions 1 and 2
empower this significant body of theory to also support macroscale modelling.

3.3 Slow dynamics do not need to anticipate the noise

Despite the presence of anticipatory convolutions appearing in the stochastic
coordinate transform, we here argue that none of them appear in the slow
dynamics because the anticipatory convolutions always involve fast variables.
Bensoussan and Flandoli [6] correspondingly show we do not need to antici-
pate noise on a stochastic inertial manifold.

In the previous sections, the anticipatory convolutions only occur when
the rate <µ > 0 . But for both the slow and the fast components, this
occurrence is only generated when at least one fast Yj variable appears in the
term under consideration. Moreover, there is no ordinary algebraic operation
that reduces the number of Y factors in any term: potentially the time
derivative operator might,

d

dt
=
∂

∂t
+
∑
`,k

YkB`,k
∂

∂Y`
+
∑
`,k

XkA`,k
∂

∂X`
,

but although for non-diagonal A and B, in the algebra X` variables may be
replaced by Xk and Y` variables may be replaced by Yk, nonetheless the same
number of variables are retained in each term and a Y variable is never re-
placed by an X variable. The reason is that the x and y dynamics are linearly
decoupled in the system (35–36). Consequently all anticipatory convolutions
appear in terms with at least one component of the fast variables Y .

Since the evolution (46) of the slow modes X is free of Y variables, the
evolution is also free of anticipatory convolutions. However, as seen in exam-
ples, there generally are anticipatory convolutions in the evolution (46) of the
fast modes Y . Further, although the stochastic coordinate transform (38) has
anticipatory convolutions, on the ssm Y ' 0 there are none. Consequently
the preceding formal analysis leads to the following proposition.

Proposition 2 although stochastic anticipation may be invoked, there need
not be any anticipation in the dynamics (46) of the slow modes in the stochas-
tic normal form of the system (35–36). Moreover, on the ssm, Y ' 0 , the
stochastic coordinate transform (38) need not have anticipation.

Tony Roberts, July 25, 2007



4 Implications for multiscale modelling 25

In contrast, Arnold, Xu Kedai and Imkeller [5, 4] record anticipatory
convolutions in the slow modes of their examples, respectively (12) and (4.6).
Such anticipatory convolutions are undesirable in using the normal form to
support macroscale models.

4 Implications for multiscale modelling

This section describes some of the generic consequences of the previous
sections in modelling stochastic systems.

Anticipation All who write down and then use coarse scale models of
stochastic dynamics implicitly are soothsayers. In writing down a coarse
scale model, researchers neglect the many details of any quickly decaying
insignificant ignored modes. Proposition 1 assures us that normally this
neglect requires us to know aspects of the near future of the ignored modes
in order to decouple the coarse modes from the uninteresting details. In
particular, providing initial conditions for the coarse model requires looking
into the future. Nonetheless, Proposition 2 assures us that non-anticipative
coarse models do exist and may be accurate for all time.

4.1 Prefer coordinate transformation over averaging

Papavasiliou and Kevrekidis [25, §5] explored the multiscale, equation free,
modelling of the simple, two variable, one noise, stochastic system

dx = −(y+ y2)dτ , (48)

dy = −
1

ε
(y− x)dτ+

1√
ε
dWτ . (49)

This system has two time scales for small parameter ε: for small ε the fast
variable y decays quickly to y ≈ x on a τ time scale O

(
ε
)
; substituting

this approximate balance into (48) gives, in the absence of noise, dx ≈
−(x + x2)dτ to predict the relatively slow x evolution. We compare the
information provided by averaging to that provided by stochastic normal
forms in multiscale modelling.

Many apply methods of singular perturbations to systems of the form (48)–
(49). For example, Papavasiliou and Kevrekidis [25] use the method of
averaging to deduce that

x = x̄+O
(√
ε
)

where dx̄ = −(x̄+ x̄2 + 1
2
)dτ . (50)
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That is, solutions of (48)–(49) are modelled to an error O
(√
ε
)

by the
deterministic ode (50) which applies over τ times longer than O

(
ε
)
. The

noise in the fast variable y generates the extra drift −1
2
dτ in (50) through

the quadratic nonlinearity in the slow equation (48). However, averaging
gives no basis for improving the O

(√
ε
)

error: such errors are often large
in applications as the scale separation may only be an order of magnitude
or two; for example, Papavasiliou and Kevrekidis [25] simulate sdes (48)–
(49) with scale separation ε = 0.01 implying errors are roughly

√
ε = 10% .

Nor does averaging recognise the stochastic fluctuations induced in the slow
variable x through fluctuations in the fast variable y. Stochastic normal
forms extract both effects, and more as well.

Computer algebra behind a web service [32] readily derives a stochastic
normal form for the system (48)–(49). But first we avoid the straightjacket of
singular perturbations by simply rescaling time to t = τ/ε : that is, we adopt
a time scale t where the rapid transients decay on a t time of O

(
1
)
, and the

slow variable x evolves on long times ∆t ∼ 1/ε . Being simply a coordinate
transform, the normal form we derive is valid for all time: the errors only
arise through the controlled truncation of the asymptotic approximations. In
principle one could invoke any finite truncation of the coordinate transform
and retain all generated terms in the transformed dynamical system: then
the transformed system in X and Y is still exact for all time over all state
space (for which the coordinate transform is not degenerate). It is only when
one truncates the transformed dynamics, the sdes in the new coordinates
X and Y , that approximations occur. The dynamics are formally valid for all
time provided any truncation error remains small enough for your purposes.
Importantly, you can control the truncation error very flexibly through any
reasonable truncation of the transformed dynamics.

To proceed with this particular example, diagonalise the linear dynamics
through the transform x = x1 and y = x1 + y1 . The example system (48)–
(49) is then identical to the Stratonovich system

ẋ1 = −ε
[
x1 + y1 + (x1 + y1)

2
]
, (51)

ẏ1 = −y1 + ε
[
x1 + y1 + (x1 + y1)

2
]
+ σφ(t) , (52)

when the new noise magnitude σ = 1 . I introduce the noise magnitude σ in
the sde system (51)–(52) in order to control truncation of noise effects. We
seek a near identity coordinate transform x1 ≈ X and y1 ≈ Y to separate the
slow and fast dynamics that occur in this system for small parameter ε. The
web service [32] derives that the coordinate transform

x1 = X+ ε(Y + 1
2
Y2 + 2XY)
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+ εσ
[
(Y + 2X)e−t ? φ+ Ye+t ? φ

]
+ 1
2
εσ2(e−t ? φ)2 +O

(
ε2, σ3

)
, (53)

y1 = Y + σe−t ? φ+ ε
[
− Y2 + X+ X2

]
+ εσ

[
(1+ 2X)e−t ? e−t ? φ− 2Ye−t ? φ

]
+ εσ2e−t ? (e−t ? φ)2 +O

(
ε2, σ3

)
, (54)

maps the sde system (51)–(52) into the following Stratonovich sde system
for the new variables X and Y:

Ẋ = −ε(X+ X2) − εσ(1+ 2X)φ− εσ2φe−t ? φ+O
(
ε2, σ3

)
, (55)

Ẏ = Y [(−1+ ε) + 2εX+ 2εσφ] +O
(
ε2, σ3

)
. (56)

As before, the utility of the coordinate transformation is that the sde (56)
shows that the transformed fast variable Y → 0 exponentially quickly from a
wide range of initial conditions. Moreover, the methodology may refine the
approximation, through further iteration, to suit a wide range of specified
finite scale separation ε.

This normal form transformation reaffirms that the new slow variable X
evolves independently of the fast variable Y, see (55), both throughout the
initial transient as well as thereafter: there are no initial transients in X.
Furthermore, being just a transform of the original sde (52), the sde (55)
for the slow variable X(t) applies for all times, albeit to the truncation error;
in contrast, the averaged model (50) generally only applies for a finite time
span. Also, since the coordinate transform and normal form are exact when
ε = σ = 0 , the normal form (55)–(56) is globally valid in (X, Y) and hence
in (x, y). Consequently, the expansions (53)–(56) are asymptotic in only the
parameters ε and σ, as indicated by their orders of errors. The expansions
are local in the parameters ε and σ, but are global in X and Y.

Although not immediately apparent, the leading approximation of the
slow X evolution (55) is the averaged model (50). The quadratic noise term
in (55) generates a mean drift and an effective new noise over long times:
Chao and I [30, 10] argued that over long times

φe−t ? φ 7→ 1
2

+ 1√
2
φ(1) , (57)

where φ(1)(t) is effectively a new ‘white’ noise process independent of the
original noise process φ(t). Thus the slow variable sde (55) is effectively the
sde

Ẋ = −ε(1
2
σ2 + X+ X2) − εσ(1+ 2X)φ− εσ2 1√

2
φ(1) . (58)
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Reverting to the original (slow) time τ, setting σ = 1 to match the original
noise intensity, and re-expressing, the sde (58) becomes

dX = −(1
2

+ X+ X2)dτ−
√
ε(1+ 2X)dWτ −

√
ε
2
dW(1)

τ . (59)

The deterministic part found at leading order, dX = −(1
2

+ X + X2)dτ ,
is the averaged model (50). However, the sdes (58) and (59) also make
explicit some of the errors in averaging. Firstly, the

√
ε error of the averaged

model (50) comes from its neglect of the stochastic fluctuations: to leading
order we can combine noise processes W and W(1) to determine that the
slow variables are better modelled by the sde dX = −(1

2
+ X + X2)dτ +√

3ε/2 dW
(2)
τ ; although the two stochastic terms in the sde (59) should

be better. Secondly, higher orders in the coordinate transform, not recorded
here, correct errors that may be significant at finite scale separation ε. Simple
averaging misses all of these effects.

4.2 Avoiding homogenisation of stochastic dynamics

Pavliotis, Stuart and Hairer [26, §11.6.7] develop a combination of averaging
and homogenisation for the modelling of stochastic dynamics. One of their
examples that requires homogenisation is the following five variable system,
upon scaling time by a factor of ε2, for i = 1, 2 , and using i ′ = 3− i :

ẋi = εyi , (60)

ẋ3 = ε(x1y2 − x2y1) , (61)

ẏi = −yi + (−1)iαyi ′ + φi(t) . (62)

This stochastic system has two independent white noise sources φi(t), and,
for small parameter ε, has three slow variables xi(t) and two fast vari-
ables yi(t). The spiralling decay of the fast variables, combined with the
form of the slow dynamics of x3 generate subtle effects that averaging does
not resolve but homogenisation does. A normal form coordinate transform
proceeds without any difficulty.

Using the web service [32], which requires a diagonal form for the linear
dynamics, let us explore the case of weak spiralling, that is, the regime where
parameter α is small. Because of the simplicity of this system, we do not
insist on small forcing and so the parameter σ does not appear. The required
coordinate transform to errors O

(
ε2 + α2

)
is

yi ≈ Yi + e
−t ? φi + (−1)iαe−t ? e−t ? φi ′ ,

xi ≈ Xi + ε
[
− Yi − e

−t ? φi
]
,
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x3 ≈ X3 + ε
[
X2Y1 − X1Y2 + X2e

−t ? φ1 − X1e
−t ? φ2

]
.

In the new variables and to errors O
(
ε2, α2

)
, the stochastic dynamics become

the normal form7

Ẏi ≈ −Yi + (−1)iαYi ′ , (63)

Ẋi ≈ εφi + (−1)iεαφi ′ , (64)

Ẋ3 ≈ ε(−φ1X2 + φ2X1) + εα(φ1X1 + φ2X2)

+ ε2(φ1e
−t ? φ2 − φ2e

−t ? φ1)

+ ε2α
[
φ1(1+ e−t?)e−t ? φ1 + φ2(1+ e−t?)e−t ? φ2

]
. (65)

The sde for X3 is the one of interest. The drift in X3 identified by Pavliotis
et al. is here due to the quadratic stochastic terms ε2αφie

−t ?φi , which over
long times are ≈ 1

2
+ 1√

2
φ

(1)
i [10, 30]; the other quadratic stochastic terms

have no drift. Retaining the O
(
ε2
)

drift but neglecting the O
(
ε2
)

fluctua-
tions reduces the sde (65) to the homogenised model of Pavliotis et al. [26,
(11.6.28c)]. Coordinate transforms to decouple slow and fast dynamics ex-
tend the methodology of averaging and homogenisation.

4.3 Equation free simulation

Kevrekidis et al. [21] promote a framework for computer aided, equation free,
multiscale analysis, which empowers systems specified at a microscopic level
of description to perform modeling tasks at a macroscopic, systems level.
When the microscopic simulator is stochastic (Monte Carlo) or effectively
stochastic, such as molecular and discrete element simulators, then the in
principle issues addressed in this article of the nature and extraction of long
term dynamics from a stochastic system are crucial to the equation free
methodology.

Equation free modelling is designed to solve specific multiscale systems
with specific finite scale separations. Thus a challenge for future research
is to maintain reasonable accuracy in estimating long term dynamics by
extracting from numerical realisations the sort of information extracted by
these algebraic normal form coordinate transforms and without knowing
any algebraic representations of the systems of interest. The stochastic
normal form transformation shows what might be achieved in principle. The
challenge is to find out how to achieve it from a finite number of short bursts
of realisations.

7As typical for examples sourced from singular perturbation problem, this coordinate
transform and normal form sdes appear globally valid in the five dynamic variables, and
locally valid in the parameters ε and α.
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On the macroscale the stochastic effects may be relatively small. How-
ever, a deterministic macroscale model is often structurally unstable: one
example is the structural instability of the averaged model dx̄ = 0 dt for the
sde (1); instead we prefer the stochastic model dX = εdW of the sde (3).
Moreover, even on the macroscale a deterministic model for some averaged
slow variable is almost inevitably different from the average of the system
with noise included. This difference follows from the same line of argument
that establishes that the expectation of realisations is generally different from
the expected position of the stochastic slow manifold, see (31). Noise induced
mean drift must be recognised [35, 36].

As well as the drift, the fluctuations in the macroscopic quantities usually
need modelling. Thus the macroscale integration should be that of a system
of sdes. Because the macroscale sdes model microscale processes, I conjec-
ture that the macroscale sdes must be interpreted as Stratonovich sdes. The
challenge is to develop Stratonovich integrators that only use short bursts of
realisations.

In equation free simulation one projects a macroscopic time step into the
future, then executes a burst of microscale simulation in order to estimate
the macroscopic rate of change [21]. Initial rapid transients must be ignored
in each burst as the microscopic system attains the quasi-equilibrium of the
ssm. In a stochastic system, the true ssm can only be identified via integrals
over fast time scales, see Section 2.3. However, these are generally integrals of
both the past and the future. Thus, to estimate macroscopic rates of change
in a stochastic system, we must not only neglect initial transients, but also
data from the end of a burst of microscopic simulation in order to be able to
account for the integrals which anticipate the noise processes.

Lastly, the gap-tooth scheme empowers equation free modelling across
space scales as well as time scales [16, e.g.]. For spatiotemporal stochastic
systems we need theoretical support for the notion that spdes can be mod-
elled by the gap-tooth scheme in the same way as deterministic pdes [33].
Only then will we be assured that we can cross space scales as well as time
scales.

5 Long time modelling of stochastic

oscillations

Persistent oscillations are another vitally important class of dynamics. Hopf
bifurcation is the example considered in this section, but many other cases
occur, including wave propagation. The challenge addressed here is how to
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(a) β = −0.1 (b) β = +0.1
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Figure 4: stochastic Hopf bifurcation in the Duffing–van der Pol oscilla-
tor (66) as parameter β crosses zero with noise amplitude σ = 0.5 . Two
realisations are plotted in each case.

consistently model the evolution of oscillations over long time scales when
the oscillations are fast and in the presence of stochastic noise fluctuations
over all time scales: we eliminate from the model all fast time dynamics.

As an example let us explore the stochastic Duffing–van der Pol dynamics
also analysed by Arnold, Xu Kedai and Imkeller [5, 4]:

ẍ1 = (−1+ σφ(t))x1 + βẋ1 − x31 − x21ẋ1 , (66)

where, as before, φ is some white noise process. Arnold and Xu Kedai [2]
describe the importance of the stochastic system (66) in applications. In the
absence of noise, σ = 0 , this system exhibits a deterministic Hopf bifurcation
as the parameter β crosses zero. This section explores the issues arising when
constructing a normal form for the Duffing–van der Pol dynamics (66) near
the stochastic Hopf bifurcation as the parameter β crosses zero with σ > 0 .
The aim is to explore the issues arising in systematically constructing a long
time model of oscillatory dynamics.

5.1 Approaches to stochastic Hopf bifurcation

Figure 4 shows trajectories of the noisy Duffing–van der Pol oscillator (66)
of Arnold and Imkeller [4] for parameter β = ±0.1 . Figure 4 reaffirms that
a noisy version of a Hopf bifurcation takes place. Coullet et al. [11] first
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explored a normal form of Hopf bifurcations with noise. Further research on
such stochastic bifurcations elucidated some fascinating fine structure. For
example, Keller and Ochs [20] explored the structure of the random ‘limit
cycle’ attractor using a stochastic version of the subdivision algorithm of
Dellnitz and Hohmann [13]; whereas Arnold and Imkeller [4] explored the
structures using a normal form approach very close to that used here. How-
ever, the emphasis here is not on the stochastic Hopf bifurcation as such, but
instead using it as the simplest prototype system with stochastic oscillatory
dynamics. We look at the issues afresh to explore the characteristics of a
long term stochastic model of such stochastic oscillatory dynamics. In the
future, these considerations will underpin the multiscale modelling of general
stochastic oscillations and waves.

Section 5.2 constructs a stochastic coordinate transform from which we
may extract significant properties of a stochastic Hopf bifurcation. Solutions
of the Duffing–van der Pol oscillator (66) are most conveniently represented
in complex exponentials as

x1 ≈ a(t)eit + b(t)e−it , (67)

where for real solutions x1, the amplitudes a and b are complex conjugates.
Then Section 5.2 finds a stochastically forced Landau model governing the
evolution of the complex amplitudes a and b:

ȧ ≈ 1
2
βa− (1

2
− 3
2
i)a2b+ σ

√
δ/2(aφ0 − bφ+2) , (68)

ḃ ≈ 1
2
βb− (1

2
+ 3
2
i)ab2 + σ

√
δ/2(bφ0 − aφ−2) , (69)

to errors O
(
β2 + σ2 + ε4

)
where here ε = |(a, b)| measures the size of the

oscillations, and where φm(t) are independent ‘white’ noises arising from
stochastic fluctuations near ‘resonant’ frequencies 0 and ±2 in the applied
noise process φ(t); ‘near’ means within ±δ of the specified frequency. This
model resolves the slow evolution of the complex amplitudes near the Hopf
bifurcation, small β, under the influence of the nonlinearity and a weak
stochastic forcing, small σ. As the complex amplitudes a and b vary slowly
in time, relative to the period of the oscillator, this model empowers long
term simulations with efficient large time steps.8

View (67) as a time dependent coordinate transform of the (x1, ẋ1) phase
plane. In principle, any dynamics in the phase plane may be described
by the evolution of the complex amplitudes a and b. The utility of the

8Note: the analysis also applies in the case of the deterministic forcing φ = cos 2t ,
for which φ0 = 0 and

√
2δφ±2 = 1

2 . Then the above model, ȧ ≈ 1
2βa + 1

4σb and its
conjugate, successfully predicts the Mathieu-like instability with eigenvalues λ = 1

2β±
1
4σ .
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coordinate transform (67) is that it empowers a simple description of oscil-
lations with frequency near 1: namely (68)–(69) for the Duffing–van der Pol
oscillator (66). Section 5.2 modifies the coordinate transform (67) through
nonlinear and stochastic terms in order to simply describe nonlinear stochas-
tic oscillations. That is, there is a time dependent, coordinate transform of
the phase plane that leads to the normal form (68)–(69).

I emphasise this different view of (67). Many would view (67) as an
approximation to x(t) that can only resolve slowly varying oscillations. In
contrast, I present (67) as the leading term in a coordinate transform, a
reparametrisation, of the entire phase (x1, ẋ1) plane that in principle en-
compasses all dynamics in the phase plane. The approximate model then
arises by finding parameter regimes, in this new coordinate system, where
the evolution of ‘coordinates’ a and b is slow and thus useful for long time
modelling.

Amplitude/phase models do not decouple Arnold and Imkeller [4]
analysed a Hopf bifurcation by transforming to real amplitude r and phase
angle ϕ coordinates and deducing a model ṙ = · · · and ϕ̇ = 1 + · · · .
This approach is certainly effective for unforced deterministic problems [29,
e.g.]. However, the presence of time dependent forcing, whether stochastic or
deterministic, breaks time translation symmetry. Consequently, Arnold and
Imkeller [4] must couple the phase ϕ back into the amplitude r evolution, as
also seen in the normal forms of Arnold [3, p.446] and Xu Kedai [2, equation
(39)]. Such coupling of the fast phase into the notionally slow amplitude
confounds our aim to use the normal form for long time modelling.

Because of their different aim, Arnold and Xu Kedai [2] convert back
to a pair of fast Cartesian variables to obtain a canonical system that is
generic for the class of stochastic Hopf bifurcations; thus they establish that
the pattern of behaviour they explore is generic for Hopf bifurcations. But
our aim is different: we aim to construct models suitable for exploring long
time evolution; our normal form is consequently different. We use complex
amplitude coordinates, the a and b seen in (68) and (69), as originally
proposed by Coullet et al. [11].

Stochastic averaging seems to suffer the same defect of not recognising the
broken time symmetry [2, equations (16–20)]. Stochastic averaging also does
not appear to detect the split in Lyapunov exponents present in stochastic
Hopf bifurcations.

Prefer a strong model Olarrea and de la Rubia [24] comment that
“When the reduction to the normal form is done . . . only the deterministic
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part of the equations retain the characteristic radial symmetry.” and then
assert “This makes it necessary to work with the two-dimensional probability
distribution.” Thus they introduce early in their analysis some probability
distributions governed by Fokker–Planck equations and hence derive only
weak models. In contrast, here we maintain strong modelling of each reali-
sation of the noise. We avoid weak models.

5.2 Construct a stochastic normal form

To construct the stochastic normal form for the Duffing–van der Pol os-
cillator (66), I use an iterative scheme to construct a useful nonlinear co-
ordinate transform. The coordinate transform must be time dependent to
adapt to both the oscillations and to the stochastic effects. The starting
approximation to the linear time dependent coordinate transform is (67).
Iterative modifications to (67) result in a description of the Duffing–van der
Pol oscillator (66) which has only slow processes and is thus suitable for long
time simulation.

The homological equation Each step in the iteration improves the nor-
mal form description of the dynamics. Suppose that at some step in the it-
eration, the coordinate transform and consequent evolution is x1 = ξ(a, b, t)

where ȧ = g(a, b, t) and ḃ = h(a, b, t) for some specific functions ξ, g and h.
Seek small corrections, denoted by dashes, to ξ, g and h so that

x1 = ξ+ ξ ′(a, b, t) where ȧ = g+ g ′(a, b, t) and ḃ = h+ h ′(a, b, t)

(70)
better satisfies the Duffing–van der Pol oscillator (66). We measure how
well the Duffing–van der Pol oscillator (66) is satisfied by its residual, Res66.
Substitute (70) into the Duffing–van der Pol oscillator (66), omit products
of small corrections, approximate ξ ≈ aeit + be−it and g ≈ h ≈ β ≈
σ ≈ 0 whenever multiplied by a correction, and deduce that in the complex
amplitude coordinates, an appropriate homological equation is

ξ ′tt + ξ ′ + (i2g ′ + g ′t)e
it + (−i2h ′ + h ′t)e

−it + Res66 = 0 .

But there is one further refinement: we aim for ȧ = g and ḃ = h to only
possess slow dynamics; thus, for parameter regimes where the evolution
of a and b are slow, also omit the time derivatives g ′t and h ′t to give the
homological equation

ξ ′tt + ξ ′ + i2g ′eit − i2h ′e−it + Res66 = 0 . (71)
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This last simplification enables systematic algebraic construction, and is
often implemented inconsistently, as commented later. The homological
equation (71) governs corrections to the complex coordinate transform.

5.3 Linear noise effects

An iterative scheme to find a stochastic coordinate transform and correspond-
ing evolution was coded into computer algebra [31]. Iterative improvements
to the coordinate transform and the model continue until the residual of
the Duffing–van der Pol oscillator (66) reaches a specified order of error. To
effects linear in the noise magnitude σ the iteration finds the stochastic model
(68) and (69) to the specified errors. In terms of the Fourier transform φ̃(Ω)

of the noise, φ(t) =
∫∞

−∞ eiΩtφ̃(Ω)dΩ , the corresponding stochastic com-
plex coordinate transform is

x1 = aeit + be−it + 1
8

[
(1+ i)a3ei3t + (1− i)b3e−i3t

]
− σia

∫
D

1

Ω(Ω+ 2)
ei(Ω+1)tφ̃(Ω)dΩ

+ σib

∫
D

1

Ω(Ω− 2)
ei(Ω−1)tφ̃(Ω)dΩ

+
√
2δσ

[
i
4
(aφ0 − bφ2)e

it − i
4
(bφ0 − aφ−2)e

−it

− i
8
aφ2e

i3t + i
8
bφ−2e

−i3t
]

+O
(
β2 + σ2 + ε4, δ3/2

)
, (72)

where the integration domain D avoids singularities in the integrand as
explained in Section 5.3.2.

5.3.1 Deterministic effects

The first line of (72) describes the well established deterministic shape of the
limit cycle in the deterministic Hopf bifurcation. When the residual Res66
has terms with factors eimt for some integerm, |m| 6= 1 , and no other explicit
time dependence, then as usual we update the complex coordinate transform
by a correction ξ ′ proportional to eimt/(m2 − 1), and do not change the
evolution, g ′ = h ′ = 0 .

Deterministic terms in the residual with factors e±it, and no other explicit
time dependence, such as the term (iβa+3a2b)eit, are resonant and as usual
must be assigned to correct the evolution; see the deterministic nonlinear and
β terms in the model (68)–(69).
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5.3.2 Non-resonant fluctuations

The second two lines of the transform (72) describe how stochastic fluctu-
ations non-resonantly perturb the oscillating dynamics. These arise from
terms in the residual Res66 of the form

φ(t)e±it =

∫∞
−∞ e

i(Ω±1)tφ̃(Ω)dΩ .

Away from resonance, namely in the domainD = R\∪m∈{−2,0,2}[m−δ,m+δ] ,
these terms in the residual generate the desingularised integrals in (72).9

Rewriting these integrals as a convolution f(t) ?φ(t) recognise that formally
f = e±it

∫
D

1
Ω(Ω±2)e

iΩt dΩ . This integral for the convolution kernel f may

be written in terms of the Sine integral [1, §5.2] from which we deduce that
the convolution kernel f(t) decays like 1/(δ|t|) for large |t|. Assuming that
convolutions of f(t) with stochastic white noise do converge in some sense, the
complex transform appears to necessarily involves the entire past and future
of the noise. In contrast to the pitchfork bifurcation, which only needs to
look a little way into the future and the past, in the Hopf bifurcation we
look far into the future and the past in order to construct the stochastic
coordinate transform.

In contrast, Coullet et al. [11], in their equations (18) and (19), assign the
entire integral to the evolution (68)–(69), rather than to the transformation,
just because one frequency is resonant. This approach seems inconsistent in
the neglect of the time derivatives g ′t and h ′t in the homological equation as
such derivatives are large for ‘white’ noise. Their assignment to the evolution
is consistent only when the noise φ(t) has a narrow band spectrum around
the resonant frequencies.

5.3.3 Resonant fluctuations

The excised parts of the integrals in the transform (72) correspond to res-
onances. These resonances generate terms in the model (68)–(69) involving
components of the (complex) noise process

φm(t) =
1√
2δ

∫m+δ

m−δ

ei(Ω−m)tφ̃(Ω)dΩ , (73)

9In analyses to higher order in the oscillation amplitude more resonant frequencies
occur; for example, integrals arise with singularities at frequencies Ω = ±4 in some terms
of O

(
ε2σ

)
. In such higher order analyses the domain of integration D will have further

intervals excised to avoid resonances.
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Figure 5: schematic plot of three realisations of the amplitude of resonant
noise φ0(t) for some mesoscale cutoff δ.

normalised so that E
[
|φm|2

]
= 1 under the original white noise assumption

that E
[
φ̃(Ω)

∗
φ̃(Ω(1))

]
= δ(Ω − Ω(1)) (here δ() denotes the Dirac delta

function and ∗ the complex conjugate); Figure 5 plots three realisations.
Being a narrow band integral (with the dominant frequency accounted for
by the e−imt factor) the φm(t) are slowly varying noise processes: Figure 5
shows φ0(t) has slow variations on the fast times scale of the 2π-periodic
oscillations. They are independent of each other as the domains of integration
do not overlap (for small cutoff δ). Each φm(t) has autocorrelations which
decay on a time scale of order 1/δ, roughly the width of the window in
Figure 5, but for time scales � 1/δ the autocorrelation is zero and the
φm look like white noise processes. Thus choose the ‘cutoff’ 1/δ to be a
mesoscopic time scale: one significantly longer than the period of the limit
cycle; but significantly shorter than the long macroscopic time scale on which
the model (68)–(69) is to be used. Then φm(t) are effectively independent
white noise processes in the long term model.

Encouragingly, although the Fourier transform φ̃(Ω) requires the entire
history of the noise, the parts of it that appear in the model (68)–(69) are
essentially local in time. That is, as for non oscillatory dynamics, the long
term model itself does not require anticipation of the noise.

The fourth and fifth lines in the coordinate transform (72) arise through
the excision of the resonant parts of the frequency domain from the integrals
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in the coordinate transform (72).
These resonant fluctuations also force the complex amplitudes a and b

to change their meaning in the presence of noise. I do not precisely and
explicitly define the complex amplitudes a and b; implicitly they are the
component in e±it in the oscillations. However, whatever definition one may
try to adopt, implicitly or explicitly, the noise changes the definition through
the terms appearing on the fourth and fifth lines in the transform (72). Recall
that in non-oscillatory systems noise also changes the presumed definition
of slow variables: for two examples, the ssms (2) and (29) show that we
cannot parametrise a ssm in terms of the original slow variable x, but a
new variable X which is necessarily different in the presence of noise. Sim-
ilarly here: in the presence of noise, the coefficient of eit in the stochastic
coordinate transform is not just the complex amplitude a but instead is
approximately a+ iσ

√
2δ1

4
(aφ0 − bφ2) , and analogously for the coefficient

of e−it. Noise affects the meaning of the complex amplitudes.
These terms of the fourth and fifth lines in the transform (72), and the

corresponding terms in the model (68)–(69), are proportional to
√
δ where

δ is the small width of the domain excised from frequency space about the
resonant terms. Can these terms be ignored as small? I contend it depends
upon the use of the slow model (68)–(69). In a long term simulation we
may use macroscopic time steps of large size ∆t, say, when numerically
integrating (68)–(69). In this numerical integration we would treat the
φm(t) noises as white; thus their decorrelation time 1/δ must be less than
the numerical time step ∆t. That is, a lower bound for the excised mesoscale
cutoff is δ > 1/∆t . Thus, a stochastic time integrator could treat these terms
as O

(
1/
√
∆t
)

but no smaller.

5.4 Quadratic noise effects

In many applications, quadratic noise effects generate important mean de-
terministic drifts [35, 36, e.g.], as seen in examples of Sections 4.1 and 4.2.
Such mean drifts are important here too.

5.4.1 Double integrals of noise complicate

For oscillatory dynamics, as in the Hopf bifurcation of the Duffing–van der
Pol oscillator (66), the outstanding complication is the appearance of double
integrals across all frequencies in the stochastic fluctuations. Quadratic noise
effects not involving such double integrals are straightforwardly handled as
before and thus are not discussed here. Terms of O

(
σ2
)

contain double
integrals of the form

∫
D

∫
D
·dΩdΩ̄ where both Ω and Ω̄ represent noise
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Figure 6: the integration domain D×D, hatched, also has a further resonant
region, the diagonal blue strip, excised to give the integration domain D̄ for
double integrals over the noise frequency.

frequencies. The (black) hatched region in Figure 6 shows this domain of
integration. However, in the Hopf bifurcation of the Duffing–van der Pol
oscillator (66), the kernel of such double integrals also has a singularity along
the line Ω+ Ω̄ = 0 . Thus excise the (blue) diagonal strip shown in Figure 6
to remove the singularity to leave an integral over non-resonant effects in the
domain D̄. Then additionally analyse the excised strip as a resonant effect
that directly influence the evolution of complex amplitudes a and b.

Recall we use the residual of an sde system to drive corrections to the
normal form stochastic coordinate transform. In the residual of the Duffing–
van der Pol oscillator (66) quadratic noise terms arise of the form∫

D

∫
D

ei(Ω+Ω̄±1)tK±(Ω, Ω̄)φ̃(Ω)φ̃(Ω̄)dΩdΩ̄ ,

where the integrand kernels are

K± = −
(Ω+ Ω̄±ΩΩ̄)(Ω+ Ω̄± 2)

2(Ω± 2)(Ω̄± 2)ΩΩ̄
. (74)

Before excising the blue strip in Figure 6 to avoid the division by zero near
Ω + Ω̄ = 0 , change the parametrisation of the integration domain to ω =
1
2
(Ω − Ω̄) and ω̄ = Ω + Ω̄ so that Ω = ω + 1

2
ω̄ , Ω̄ = −ω + 1

2
ω̄ , and the
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Jacobian of the transform is one: parameter ω̄ measures the distance from
resonance. In this new parametrisation, the integration kernels

K± =
2(4ω2 ∓ 4ω̄− ω̄2)(2± ω̄)

(2ω± 4+ ω̄)(2ω∓ 4− ω̄)(2ω+ ω̄)(2ω− ω̄)
(75)

→ 1

(ω+ 2)(ω− 2)
as ω̄→ 0 .

Then the double integrals in the residual are split into non-resonant and
resonant parts:

I± =

∫∫
D̄

ei(Ω+Ω̄±1)tK±(Ω, Ω̄)φ̃(Ω)φ̃(Ω̄)dΩdΩ̄

+ e±it
∫ δ

−δ

eiω̄tψ̃±(ω̄)dω̄ , (76)

where

ψ̃±(ω̄) =

∫
D

K± φ̃(ω+ ω̄
2
)φ̃(−ω+ ω̄

2
)dω , (77)

and where domain D̄ = D × D without the resonant strip as excised in
Figure 6. The non-resonant double integral in the first line of (76) contributes
components to the stochastic coordinate transform. The resonant integral on
the second line of (76) contributes a component to the evolution in the new
coordinates. Although the details will differ, the above integrals will appear
in the analysis of general stochastic oscillations.

The stochastic dynamics in the normal form coordinates involves the
integral (77). The integral (77) specifies the Fourier transforms of two
complex conjugate components ψ±(t) that express a nonlinear combination
of the original noise process φ(t). Here write these in terms of the real and
imaginary parts

ψ±(t) = crψr(t)± iciψi(t) , (78)

where the constants cr and ci are chosen so the variances E
[
ψ2r
]

= E
[
ψ2i
]

=

1 ; these constants do not seem to vary significantly with mesoscale cutoff δ.
Figure 7 shows one realisation of ψ±(t) illustrating that they vary slowly
over one period of the microscale limit cycle, and that they look like white
noise processes over the long time scales resolved by the complex amplitudes
a and b. In the Hopf bifurcation of the Duffing–van der Pol oscillator (66)
the processes ψ±(t) appear to have zero mean; this may not hold for other
stochastic oscillations.
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Figure 7: one realisation of the complex quadratically generated ‘noise’
ψ±(t) ≈ 0.87ψr(t)± i0.20ψi(t) where the real part is the larger blue curve
and the imaginary part is the smaller green curve. The resonant window size
δ = 0.2 .

5.4.2 Refine the normal form transformation

Separating the double integrals as described, computer algebra [31] derives
the following sdes for the evolution of the complex amplitudes of the Duffing–
van der Pol oscillator (66):

ȧ ≈ 1
2
βa− (1

2
− 3
2
i)a2b+ σ

√
δ/2(aφ0 − bφ+2)

+ i1
2
σ2(crψr + iciψi)a− iδσ2(1

4
φ20 + 1

8
φ2φ−2)a , (79)

ḃ ≈ 1
2
βb− (1

2
+ 3
2
i)ab2 + σ

√
δ/2(bφ0 − aφ−2)

− i1
2
σ2(crψr − iciψi)b+ iδσ2(1

4
φ20 + 1

8
φ2φ−2)b . (80)

The order of error in these sdes is O
(
ε4 + σ3 + β2, δ3/2

)
. These errors

include neglecting effects of: higher order resonances from frequencies Ω =

±4,±6, ... ; higher order nonlinear terms in amplitudes a and b; higher
order β measuring departure from the onset of oscillations; cubic and higher
order noise interactions; and higher order effects of the time scale separa-
tion δ. Nonetheless, these sdes account for more noise interactions than the
lower order model (68)–(69) and thus should be more accurate.

For very small mesoscale cutoff δ, that is for simulations on very long
time scales, the quadratic noise effects involving ψr and ψi are the dominant
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influences on the complex amplitudes a and b of the oscillations of the
Duffing–van der Pol oscillator (66). These two noise processes, see the
integral (77), arise as integrals of quadratic terms in the original noise pro-
cess φ. Analogously to the quadratic noise processes analysed on stochastic
slow manifolds [30, §5], as used in (57), I conjecture that ψr, ψi and φ are
effectively independent when sampled over long time scales. Consequently,
over very long time scales, one would model real dynamics of the stochastic
Duffing–van der Pol oscillator (66) by the Stratonovich sde

da ≈
[
1
2
βa− (1

2
− 3
2
i)|a|2a

]
dt+ 1

2
σ2a

(
icr dWr − ci dWi

)
, (81)

where complex a measures the amplitude and phase of the oscillations,
Wr and Wi denote independent Wiener processes, and cr ≈ .87 and ci ≈ .20
(Figure 7).

For medium mesoscale cutoff δ use the more complete sde model (79).
This model, with its effects in

√
δ and δ, will be needed when the desired time

resolution of a numerical simulator, essentially the integrator’s time step ∆t,
is within a few orders of magnitude of the natural 2π-period of oscillations.
A challenge for future research is to construct special sde numerical iteration
schemes when, as here, the sde itself depends upon the chosen time step ∆t;
I am only aware of sde schemes which assume the sde is independent of the
time step [18, 22, e.g.]. Physically, the dependence upon the macroscopic
time step is due to the difficulty in discerning what is and what is not a
resonant forcing of the oscillations, see Sections 5.3.2–5.3.3. In multiscale
modelling, as shown here, the macroscopic system, whether expressed as
algebraic equations or solved using equation free methods [21], may depend
upon the the length or time scale chosen for simulation.

The specific equations and formulae in the section are specific to the
Duffing–van der Pol equation (66). Nonetheless, I contend that the nonlinear
and stochastic nature of these Duffing–van der Pol oscillations are generic
for most of the interesting issues discussed in this section. Consequently, I
conjecture that almost all long time scale modelling of stochastic oscillations
has to address and resolve the issues discussed in this section.

6 Conclusion

Stochastic coordinate transforms illuminate modelling of multiscale stochas-
tic systems. Being a coordinate transform, a resultant ‘stochastic normal
form’ describes the complete dynamics of the original system, Proposition 1.
From the normal form we easily extract the stochastic slow dynamics that
are of interest over macroscopic times, from the uninteresting fast dynamics
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[3, §8.4, e.g.]. This approach is more powerful than averaging and homogeni-
sation as the coordinate transform may be systematically refined, especially
with the aid of computer algebra [31, 32], and so errors are more controlled.

In contrast to earlier work, this article argues that two modelling simpli-
fications may always be achieved without sacrificing fidelity with the original
stochastic system. Firstly, the stochastic slow manifold and the evolution
thereon need not have any terms anticipating the original noise processes,
Proposition 2. Secondly, effects linear in the noise processes in the evolution
on the stochastic slow manifold need not involve any memory integrals either,
Proposition 1. Section 2 explores the application of these principles for the
example sde system (4).

A challenge for future research is to let the algebraic techniques used
herein inspire development of numerical techniques useful for multiscale com-
putations. From a finite number of bursts of stochastic realisations we need
to determine information to empower making macroscale time steps while
remaining faithful to the underlying stochastic dynamics.

Section 5 explored oscillatory dynamics in the stochastic Duffing–van der
Pol equation (66). It demonstrates that transforming the sde to a slow
model for the complex amplitude is a delicate process that requires careful
treatment of noise integrals in order to form a consistent model of the long
term evolution. The specific and formal analysis herein needs to be extended
to generic oscillatory systems to discover general modelling principles.

Acknowledgements: I thank Phil Pollett and Yannis Kevrekidis for useful
discussions on aspects of this article. This project receives support from the
Australian Research Council.
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