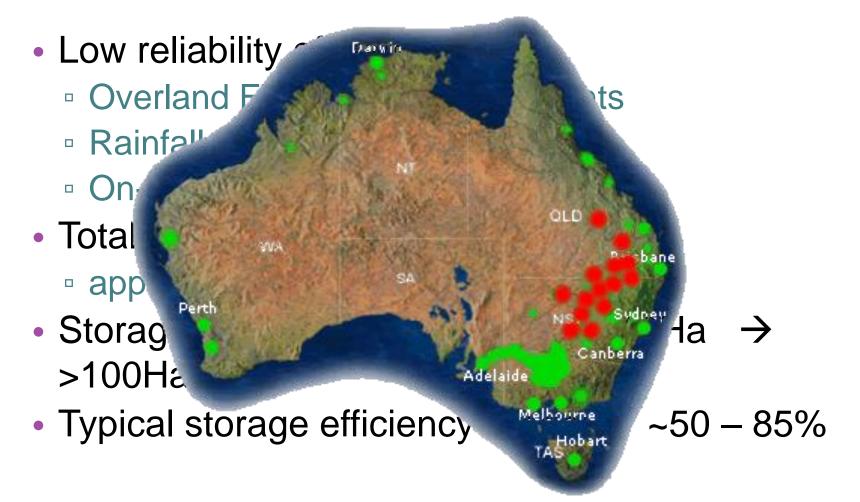
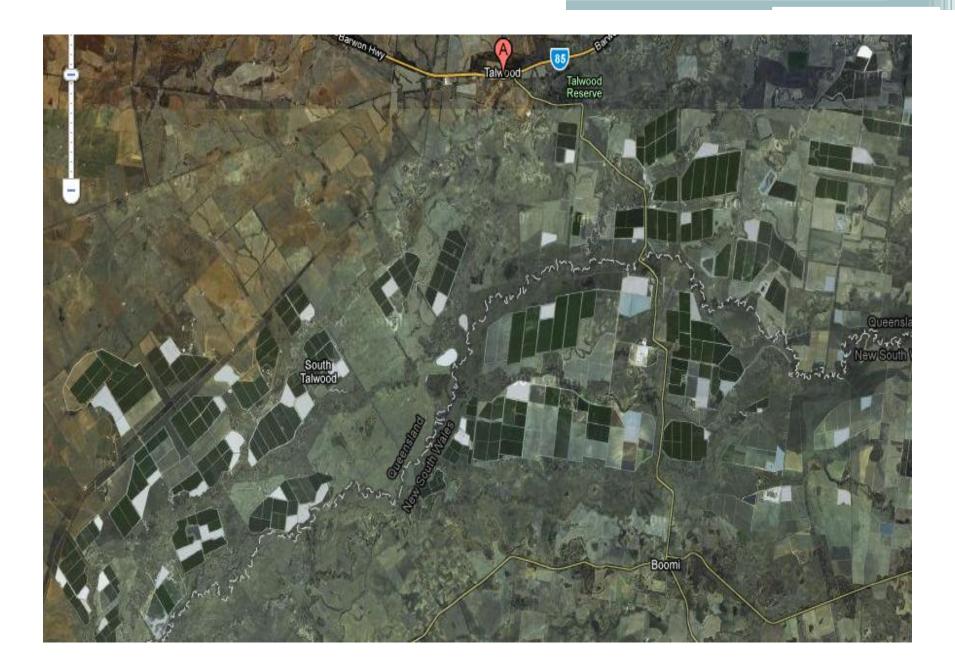
Cotton Storages Project: Measuring Losses to Improve Performance

David Wigginton National Centre for Engineering in Agriculture

Australian Government


National Water Commission Raising National Water Standards Program



Water Storage in the Cotton Industry

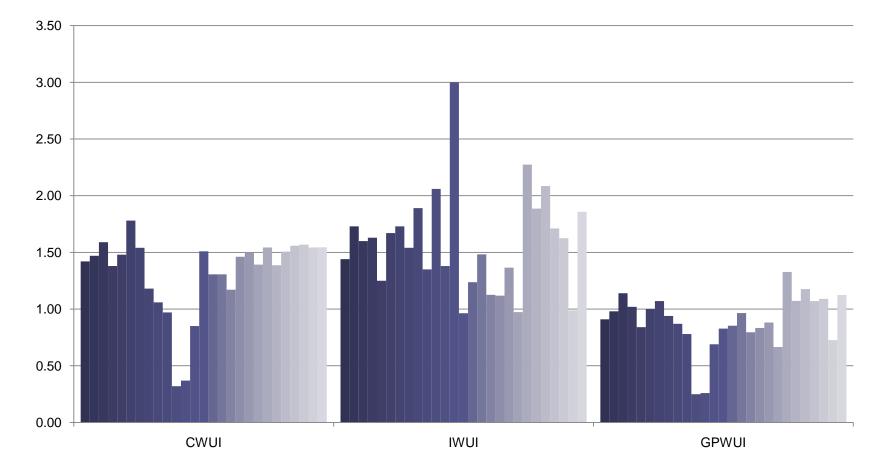
Commercial Measurement Technology

- Previous measurement techniques are not commercially viable
 - Expensive
 - Not user friendly
 - Complicated
- Commercially viable storage measurement technology became available
 - Irrimate[™] Seepage and Evaporation Meter
 - Evapcalc software

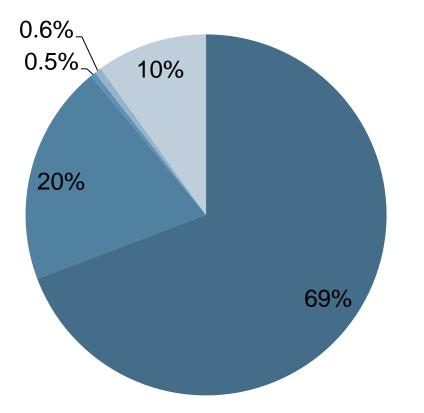
Project Objectives

- NWC Raising National Water Standards Funding
 - Raise awareness of losses and amelioration options
 - Measure seepage and evaporation losses (137 completed)
 - Build capacity for measurement delivery
- Healthy HeadWaters Water Use Efficiency Project

Whole Farm Water Balance

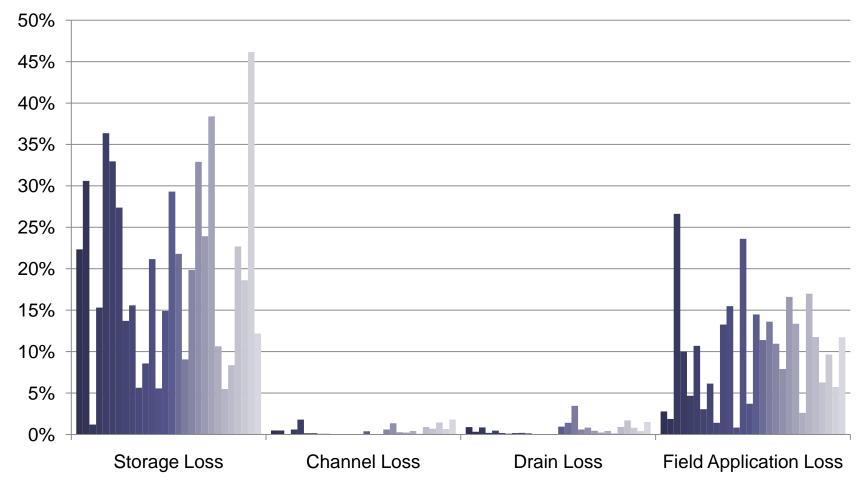

- Watertrack™ Divider
 - Whole farm irrigation performance
 - CWUI (yield ÷ ET)
 - IWUI (yield ÷ irrigation)
 - GPWUI (yield ÷ total water)
 - Segmented losses
 - Storages
 - Fields
 - Channels & Drains

VATER SUMMARY REPORT			DIVIDER [®] Ingelon Response Farm: Namei Valley Co Balance Period: 09/10/2005 - 03/03/2
Green Area (ha): 116.00			
A) AVAILABLE WATER	ML	ML / Green	n he
Licensed Water (metered)	480.0	4.14	
Change in Storage Volume Hervested Land Surface Volume	75.0	0.65	Negeüve meens en increase in storage volume
Harvested Land Surface Volume	75,0	0.00	
Irrigation Water Supplied	1450.0	12.50	
Effective Rainfall on Irrigated Fields	209.2	1.80	That portion of rain infiltrated in to soll
Total Water Inflow	1659.2	14.30	
Change in Soil Moisture in	59.2	0.51	Negative means an increase in soil moisture
Irrigated Fields			reservoir i.e. reduction in deficit
Total Available Water	1718.4	14.81	All vester evaluable for crop production including effective rainfall and change in soil moisture
B) CROP WATER USE			encovertenta are charge in sci induzio
Crop Water Requirement	832.5	7.18	includes in-field soil eveporation.
C) WATER LOSSES			Losses indude:
Segmented Irrigation Losses:			 seepage and evaporation from:
Skyrace Losses	354.1	3.05	 supply system sing tanks and dams
Channel Lasses	43.5	0.38	 Img cance and carries drainage and tailwater system
Dmin Losses	87.1	0.75	 In-field application including:
Operational Losses	10.0	0.09	 eveparation from soil surface
Field Application Losses	391.1	3.37	 deep percolation
Total Irrigation Water Losses	885.8	7.64	
(Total Available Water - Crop Water Requirement)			
D) RAINFALL			
Di RAINFALL Total Rainfall on Intigated Fields	272.4	2.35	


NOTE: WildowThat DokuT ** is a single and easy to use water before model which is (groups in its calculations to large at major elements in its a single seasonal loss per element. For a debied breakdown of bases into seasonal energy and exponsion in each element of the minipation system on a only basis. WaterThat Optimizer** should be used. WaterTatus Optimizer** at an any prediction beward to optimise patentia and education for vertices what enableDise, and any provide seasonement of infrastructure change on water use new we waterback comes or prime 1000 1600 1600.

Caution: Cutput of this model is based on genue data together with an understanding of the processes of water movement on an intigated fram. It should be used with extreme cution and supported by other measures of water movement on the farm. Water Track accepts no skilling under any characteristic measures on this cutput.

Whole Farm Performance



Water Use

- Crop Water Use (69%)
- Storage Loss (20%)
- Channel Loss (0.5%)
- Drain Loss (0.6%)
- Field Application Loss (10%)

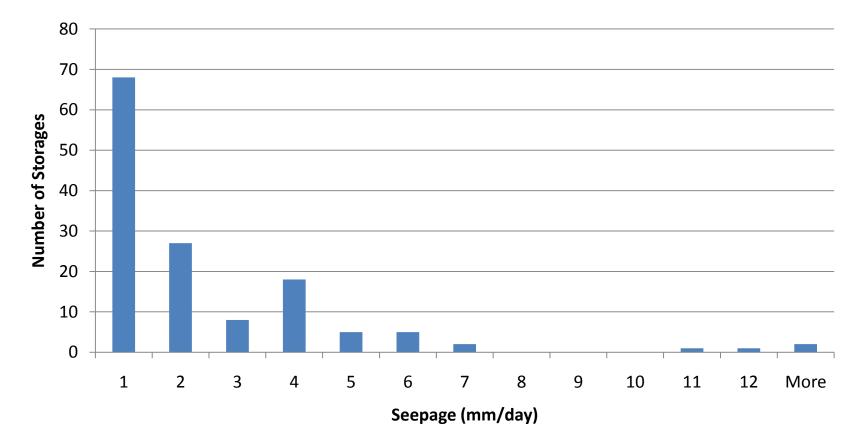
Individual Results

Key Points

- 69% of all water is used by the crop with 31% lost
 - Fields 10%
 - Channels 1%
 - Storages 20%
- Storages account for two-thirds of all losses.
- On an individual farm, storage loss can be as high as 45% or as low as 5%
 - Which farm are you?

Storage Losses: Measurement

- Irrimate[™] Seepage and Evaporation meter
- Equipment deployed for 5-6 weeks per storage
- Regression to separate seepage and evaporation (Evapcalc)



Storage Losses

	Mean	Minimum	Maximum
Seepage (mm/day)	2.31	0.5	35.20
Evaporation (m/year)	1.8	1.4	2.6
Storage Size (ML)	1950	75	14000
Water Depth (m)	3.5	2	9.1

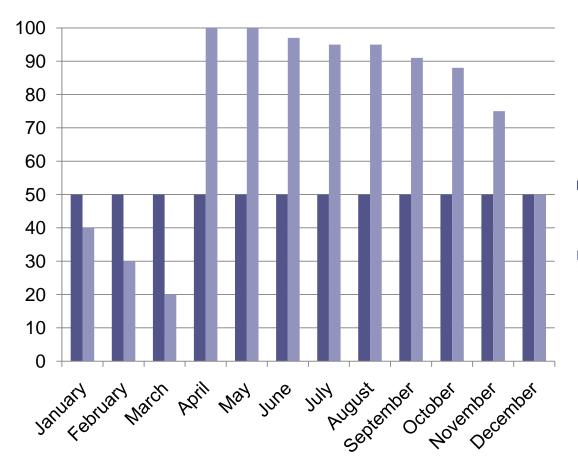
Seepage

Grower Seepage Estimate

Grower Seepage Estimate		Average Seepage (mm/day)	Minimum Seepage (mm/day)	Maximum Seepage (m	m/day
Low <5 mm/day	109		1.67	0.1	7
Med 5-10 mm/day	23		2.93	0.5	10.5
High 10-15 mm/day	2		7.10	2.7	11.5
Very High >15 mm/day	3	1	7.73	3	35.2

Key Points

- Most storages had low seepage (1 to 2 mm/day)
- However 20% of storages had seepage of 4 to 8mm/day
 - big enough to be a problem but small enough to be hard to identify without precise measurement
- Seepage not related to region or soil type.
- Seepage was typically due to underlying faults:
 sand lenses, gravel patches or prior streams.

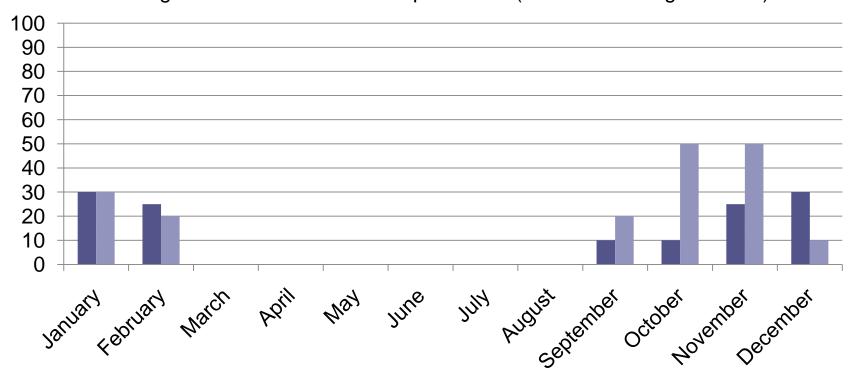

Storage Modifications

- Cell division (11 Scenarios)
 - Split storage into 2 cells
 - Wall position determined by optimum water savings, within practical limits
- Wall height (6 Scenarios)
 - Increase wall height
 - Extra volume equal to volume of second storage
 - Second storage decommissioned/not used

Analysis

- Evaporation and Seepage Ready Reckoner
 - www.readyreckoner.ncea.biz
- Applicable to wide variety of strategies
 - Monolayer
 - Physical cover (floating, modular, shadecloth)
 - Bentonite
 - Clay lining
 - PAM

Typical Usage Patterns



Average percentage of years that the storage contains water

Average amount of water stored per month (% of total storage volume)

Typical Usage Pattern

Average percentage of years that the storage contains water
 Average amount of water stored per month (% of total storage volume)

Results

	Average	Minimum	Maximum
Cell Division (11 Scenarios)			
Cost of water (\$/ML/year)	\$149	\$15	\$350
Volume saved (ML)	238	15.5	1011
Capital Cost	\$218,551	\$93,150	\$547,000
Wall Height Increase (6 Scenarios)			
Cost of water (\$/ML/year)	\$146	\$61	\$271
Volume saved (ML)	1217.3	184	2929
Capital Cost	\$2.9M	\$234,838	\$6.2M

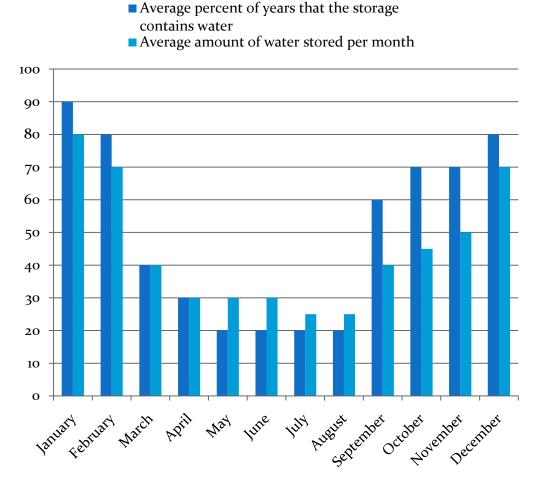
Key Points

- Average cost using either strategy approximately \$150/ML/yr
- The cost was as low as \$15/ML/yr for cell division and \$61/ML/yr for wall height increase
- Larger water volumes saved through wall height increases, although the capital cost was also much higher.
- When dividing a storage into cells, the optimum size of each cell will depend on the typical water availability.

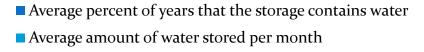
Further Information

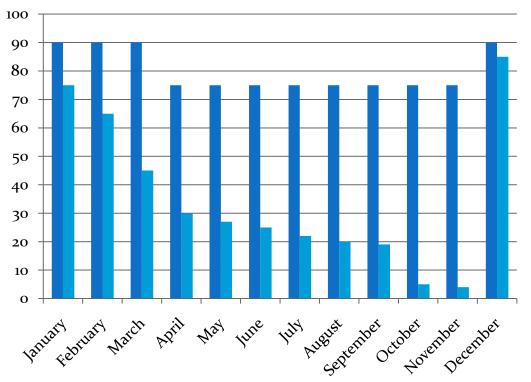
David Wigginton Project Manager 0438 887 635

National Centre for Engineering in Agriculture



Cotton Catchment Communities CRC


Volumetric Losses - Example 1



- Emerald Storage
- 5.6Ha, 180ML
- Typical Annual Loss:

Evaporation	67ML
Seepage	
1mm/day	17ML
2mm/day	33ML
3mm/day	50ML
5mm/day	83ML
10mm/day	165ML

Volumetric Losses - Example 2

- Darling Downs
- 27Ha, 1500ML
- Typical Losses:

Evaporation	423ML
Seepage	
1mm/day	89ML
2mm/day	178ML
3mm/day	267ML
5mm/day	445ML
10mm/day	890ML