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Abstract: Sleep is highly essential for maintaining metabolism of the body and mental balance for
increased productivity and concentration. Often, sleep is analyzed using macrostructure sleep stages
which alone cannot provide information about the functional structure and stability of sleep. The
cyclic alternating pattern (CAP) is a physiological recurring electroencephalogram (EEG) activity
occurring in the brain during sleep and captures microstructure of the sleep and can be used to
identify sleep instability. The CAP can also be associated with various sleep-related pathologies,
and can be useful in identifying various sleep disorders. Conventionally, sleep is analyzed using
polysomnogram (PSG) in various sleep laboratories by trained physicians and medical practitioners.
However, PSG-based manual sleep analysis by trained medical practitioners is onerous, tedious
and unfavourable for patients. Hence, a computerized, simple and patient convenient system is
highly desirable for monitoring and analysis of sleep. In this study, we have proposed a system for
automated identification of CAP phase-A and phase-B. To accomplish the task, we have utilized
the openly accessible CAP sleep database. The study is performed using two single-channel EEG
modalities and their combination. The model is developed using EEG signals of healthy subjects as
well as patients suffering from six different sleep disorders namely nocturnal frontal lobe epilepsy
(NFLE), sleep-disordered breathing (SDB), narcolepsy, periodic leg movement disorder (PLM),
insomnia and rapid eye movement behavior disorder (RBD) subjects. An optimal orthogonal wavelet
filter bank is used to perform the wavelet decomposition and subsequently, entropy and Hjorth
parameters are extracted from the decomposed coefficients. The extracted features have been applied
to different machine learning algorithms. The best performance is obtained using ensemble of bagged
tress (EBagT) classifier. The proposed method has obtained the average classification accuracy
of 84%, 83%, 81%, 78%, 77%, 76% and 72% for NFLE, healthy, SDB, narcolepsy, PLM, insomnia
and RBD subjects, respectively in discriminating phases A and B using a balanced database. Our
developed model yielded an average accuracy of 78% when all 77 subjects including healthy and
sleep disordered patients are considered. Our proposed system can assist the sleep specialists in an
automated and efficient analysis of sleep using sleep microstructure.

Keywords: sleep; sleep macrostructure; sleep microstructure; electroencephalogram (EEG); polysomno-
gram (PSG); cyclic alternating pattern (CAP); classification; ensemble of bagged trees (EBagT)

1. Introduction

Sleep is an important aspect of human life and it greatly affects our mental and physical
health. Sleep consists of periodic repetition of unconsciousness (physical-inactivity) called
non rapid eye moments (NREM)) followed by high activity called rapid eye moments
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(REM). The REM and NREM manifests certain important functioning of brain including
memory consolidation, brain clearance from metabolites and cellular restoration. However,
the entire process is yet not completely perceived and known. To distinguish sleep’s
macrostructure, sleep is categorized into five stages: wakefulness (W), N1, N2, N3, and
REM, according to the guidelines of American Academy of Sleep Medicine (AASM) [1].
The distinction is made on the 30 s window of electroencephalogram (EEG) signal by the
trained medical practitioners. The sleep stages N1, N2, and N3 form NREM part of the sleep
cycle followed by REM. In literature, many studies are available on the macrostructure of
sleep and researchers have developed models for automated classification of sleep stages
using machine learning techniques and PSG [2–9]. Recently, deep learning-based methods
have also been employed for sleep scoring [10–12].

However, ephemeral events such as K-complexes and transient power alterations
in frequency bands are neglected by these macrostructure based sleep scoring rules. In
the AASM guidelines, only the arousal definition captures the short periods of changes
in cortical activation. Although, phasic events like K-complexes and delta bursts show
characteristics similar to arousal, but they are not considered as arousal if there is no
to short-term frequency increase in EEG [13,14]. To overcome these shortcomings of
macrostructure based sleep scoring, a new microstructure based sleep scoring technique
named cyclic alternating pattern (CAP) was devised, which includes such phasic events in
brain activity [15] as an alternative scheme to describe NREM sleep. CAP is found to be
useful in the detection of insomnia, sleep apnea syndrome, epileptic disorders and periodic
limb movements [16]. Ferini-Strambi et al. have observed the impact of CAP on heart rate
variability during sleep in healthy young adults [17]. They concluded that, the cardiac
autonomy in normal subjects is influenced by the physiological fluctuations of EEG arousal
level. Studies have found that during coma, the CAP in EEG signal is correlated with the
motor activity, cardiorespiratory rate and cerebrospinal fluid pressure. These events were
observed to increase during phase A and decrease during phase B [18,19].

Figure 1. Typical multi-channel image of a CAP cycle with phase A and phase B.
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The NREM sleep stage is observed to have alternating patterns of cerebral activation
(phase A) followed by duration of deactivation (phase B), which separate two or more
consecutive phase A periods [15]. The CAP phase A typically includes events like K-alpha,
K-complex sequences, delta bursts, alpha waves, vertex sharp transients and arousals. The
duration of these phases may vary between 2 s to 60 s. Two successive phase A events
are considered as a single phase A event if the duration of separation between them is
less than 2 s [20]. The combination of phase A and phase B is termed as a CAP cycle and
this cycle begins with phase A and ends with phase B. Two successive CAP cycles are
needed to form a CAP sequence [21]. If a phase A is not accompanied by phase B, then
it is termed as an isolated phase A and is considered as non-CAP (an absence of CAP for
>60 s duration). Thus, a CAP sequence contains minimum three A phases (A–B–A–B–A)
followed by non-CAP period [22]. However, there is no upper limit in terms of overall
duration or number of CAP cycles, and approximate mean duration of a CAP sequence
in healthy young adults is around 150 s containing six CAP cycles [23]. In general, a
CAP sequence always follows a continuous NREM sleep EEG pattern with a minimum
duration of 60 s. CAP phase A can be detected using any EEG lead [22]. Figure 1 shows the
typical image of a CAP cycle for multiple EEG channels and Figure 2 displays the typical
waveforms of phase A and phase B.
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Figure 2. Typical waveforms of Phase A (top) and Phase B (bottom).

High amplitude slow EEG waves increases with increasing depth of sleep whereas low
amplitude fast rhythms are dominantly present in REM sleep. CAP phase A is subdivided
into three subtypes A1, A2, and A3 based on the duration of high amplitude slow waves
and low amplitude fast rhythms. Subtype A1 is characterised by high amplitude slow
waves covering >80% of entire phase A duration and low amplitude fast rhythms, if present,
covers <20% of total phase A duration. Subtype A2 is characterised by a mixture of fast and
slow EEG waves. Low amplitude slow waves in phase A2 covers around 20–50% of entire
phase A duration. Subtype A3 is characterised by dominant low amplitude fast rhythms
covering >50% of the phase A duration. CAP sequences triggered or interrupted by body
movements are also distinguished as subtype A3 [22]. The CAP parameters include CAP
rate, CAP time, and no of phases A1, A2 and per hour. Cap rate refers to the percentage
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ratio of CAP time to total NREM sleep time. CAP time refers to the total duration of all
CAP sequences. CAP time increases with increase in number of CAP cycles. For healthy
sleepers, CAP rate has very low variability. It is observed to vary with age. It is very low
for toddlers (around 13%), gradually increases with age and peaks during peripubertal
stage (around 62%), then again decreases for adults and middle age (around 37%) followed
by an increase during elderly age (55%) [22].

Thus, the detection of CAP phases and estimation of CAP parameters is essential for
accurate sleep analysis. However, the CAP detection in human beings is prone to errors
and a cumbersome task. In literature, few attempts have been made for identifying CAP
phases automatically using computer aided systems [24–28]. However, the studies on
the automated detection of sleep phasic events are very few. Also, the model developed
using machine learning methods on the above studies have been tested on very small
number (5–10) of good sleepers without considering sleep disordered patients. Further,
despite using large number of discriminating features the classification performance is
not very high. Hence, there is a need for a model to be tested with significant number of
subjects, involving both healthy controls and sleep disordered patients which can exhibit
high performance. It is also desirable that the model should employ small number of
features for training and testing so that it can be implemented in real time application.

In the proposed study, we have used a large number of subjects comprising of healthy
as well as sleep disordered-patients suffering from six different disorders. We have imple-
mented an ensemble learning method by employing wavelet-based Hjorth and entropy
features extracted from monopolar C4-A1 and bipolar F4-C4 EEG channels to develop
an automated model for detection of CAP phases. The developed model achieved better
classification performance than the existing state-of-art studies. Our developed method is
simple, computationally efficient and hence it may be deployed in clinical applications.

2. Material Used

This study is accomplished using the public CAP sleep database, which contains night-
long sleep polysomnographic (PSG) recordings of 108 subjects logged at the Sleep Disorders
Center of the Ospedale Maggiore of Parma, Italy. The database contains recordings of
16 healthy subjects and patients suffering from insomnia (9), narcolepsy (5), nocturnal
frontal lobe epilepsy (40), periodic leg movement (10), REM behavious disorder (22), and
sleep-disordered breathing(4). Each PSG recording contains multiple channels including
EEG, electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EOG), SpO2
and respiratory signals. EEG channels include traces like F4-C4, C4-A1, C4-P4, P4-O2,
Fp2-F4, Fp1-F3, C3-P3, P3-O1 and other combinations of F3/F4/C3/C4/O1/O2 with
reference A1/A2. The sampling frequencies of these EEG channels varies from 100 Hz
to 512 Hz. Bipolar EEG channel F4-C4 and monopolar EEG channel C4-A1 are present
in maximum number of sleep recordings. Based on the availability of C4-A1 and F4-C4
channels coupled with 512 Hz sampling frequency, we have taken 77 subjects for the
identification of CAP phase A in this study. Terzano et al. [21] suggested that bipolar EEG
leads are favourable for CAP phase detection. So we have also evaluated performance of
each of the two leads (F4-C4 and C4-A1) independently and combined. We have performed
CAP phase classification using EEG signals from healthy subjects as well as disordered
patients individually and combined. Table 1 shows gender and age details of healthy
controls and sleep disordered patients used in this study.

https://physionet.org/content/capslpdb/1.0.0/
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Table 1. Demographic details of the subjects used in this study.

Subject Type Subject Count
Gender Age Number of 2 s Epochs

Male Female Mean Min Max Phase A Phase B Total

Healthy 6 2 4 32.00 23 37 4965 4965 9930
Insomnia 7 2 5 58.86 47 72 5664 5664 11,328

Narcolepsy 5 2 3 31.60 18 44 5043 5043 10,086
NFLE 27 13 14 30.04 16 67 36,618 36,618 73,236
PLM 9 6 3 54.44 40 62 10,029 10,029 20,058
RBD 22 19 3 70.73 58 82 19,827 19,827 39,654
SDB 1 1 0 78.00 78 78 834 834 1668

All Combined 77 45 32 48.01 16 82 82,980 82,980 165,960

3. Methodology

Figure 3 represents the procedure involved in the automated identification of CAP
phase A and phase B. Firstly, we collected PSG recordings of all 77 subjects then EEG
recordings are extracted with sampling frequency of 512 Hz. We separated C4-A1 (monopo-
lar) and F4-C4 (bipolar) EEG montages for this study. Both EEG channels are reprocessed
via normalization and filtering operations. Subsequently, labelled A and B phases are
segmented using windows of one and two seconds duration. Each EEG epoch (of lengths
either 1 s or 2 s) is subjected to an optimal mean squared bandwidth minimized (OMSBM)
orthogonal wavelet filter bank (OWFB) that decomposed the EEG epochs into six sub-
bands [29]. The wavelet entropy and Hjorth parameters of each subband are computed
from the decomposed subband coefficients and used as discriminating features. We have
employed several machine learning classifiers to distinguish the features to choose the op-
timum performing classifier. Ten-fold cross-validation is performed to develop the model.

Acquiring PSG
data from
Physionet

Signal preprocessing
(filtering, normalization)

Extraction of
EEG from
PSG data

Segmentation of
EEG into

2-second epochs

Wavelet
decomposition

Balancing data of
both phases

Feature extraction
(Hjorth parameters
& Wavelet entropy)

Supervised machine
learning classifiers

CAP
phase-A

CAP
phase-B

Figure 3. Flow diagram of the proposed study.

3.1. Preprocessing

EEG signals contains most of the useful information in the frequency range below
35 Hz. Hence, to remove the noise artifacts and preserve only the necessary information,
EEG signals are bandpass filtered using an infinite impulse response (IIR), butterworth
filter of order four [30,31]. The lower and upprer cut-off frequencies have been set to
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0.5 Hz and 35 Hz, respectively as mentioned in guidelines of AASM [1]. After filtering,
normalization of the signal is done to uniformly scale down the amplitude in the range of
0 to 1.

CAP sleep database contains phase A annotations scored by expert neurologists in
accordance with the Terzano’s reference atlas of rules [15]. With the help of the annotations,
we have separated CAP phase A recording from the NREM sleep EEG signal and labelled
remaining NREM signal as non-CAP recording. These phase A (CAP) and phase B (non-
CAP) signals are segmented into epochs of 2 s duration each. Later, in order to develop
a precise CAP scoring system, we have also obtained CAP classification results using 1 s
duration epoch of each phase. All EEG epochs are balanced with respect to both phase
A and phase B. For balancing we used random undersampling to reduce the number of
epochs from either phase to equalize epoch count of both phases.

3.2. Orthogonal Filter Bank and Wavelet Decomposition

There are many wavelet filter banks available in the literature with wide variety of
applications [32–36]. Among these filter banks, the orthogonal filter bank is remarkable
due to its advantage of energy preservation [37–39]. In this study, we have used the orthog-
onal wavelet filter with minimum root-mean-square (RMS) bandwidth [40–42]. Generally,
equiripple filter method and band-energy minimization method are used to achieve sharper
roll-off. Although, these methods are efficient, but they do not take entire spectrum into
account as they are based on edge frequency specifications. On the other hand, RMS band-
with simultaneously considers both transition band and pass/stopband, comprehensively
describing a filter’s frequency localization and avoiding influence of ripple amplitude spec-
ifications [43,44]. In this method, for the optimization of RMS bandwidth, either a symbolic
method can directly applied [40] or constrained optimization problem that is transformable
into a convex optimization problem like semidefinite programming (SDP) problem [45]
can be used. The SDP includes non-negativity constraints during the optimization. We
have used orthogonal filter with length 12 and 4 vanishing moments [46] in this study. The
significance of this method is that, it can give more accurate and thorough results including
all local and global minimum [47,48].

Five level wavelet decomposition yielded six subbands with frequency ranges 0–1 Hz,
1–2 Hz, 2–4 Hz, 4–8 Hz, 8–16 Hz, 16–32 Hz. In this work, lower frequency band (0–1 Hz)
is called the approximation coefficient and remaining bands with higher frequencies are
called detailed coefficients [49]. Figures 4 and 5 displays the subbands after wavelet
decomposition for an epoch of phase A and phase B, respectively.

3.3. Feature Extraction

We computed wavelet entropy and three Hjorth parameters from each subband to get
48 discriminating features for CAP phase identification using two EEG channels. The size
of the feature array employed is 165960× 48. The details of discriminating features are
as follows:

Wavelet Entropy: Wavelet entropy is used for quantitative analysis of transient fea-
tures of non-stationary physiological signals including EEG. It is able to measure the
uncertainty involved in a random process and for a wavelet subband it can be defined
as [50]:

EWave = −
n

∑
i=1

xilog(xi) (1)

where, xi represents the magnitude of ith wavelet coefficient.
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Figure 4. Subbands obtained after wavelet decomposition of a 2-second epoch of CAP Phase-A.
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Figure 5. Subbands obtained after wavelet decomposition of a 2-second epoch of CAP Phase-B.

Hjorth Parameters: Three Hjorth parameters named activity, mobility and complexity
are utilized in our study along with wavelet entropy for feature extraction which are
extensively used in applications related to EEG signals. These parameters mainly represent
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the time domain characteristics of EEG signals [51]. Table 2 provides the description of
these parameters and their expression. In order to measure, discriminating abilities of each
feature, we have computed the p-values and rank of each feature using Kruskal-Wallis test.
Table 3 shows the p-values and ranks for all 48 features computed using Kruskal-Wallis test.
From the table, it is clear that p-vales of all features are close to zero. Hence, all features are
statistically significant for the classification task.

Table 2. Details about Hjorth parameters used in this study [51].

Hjorth
Parameter

Activity Mobility (µ) Complexity

Formula
σ2(x(t)) σ(x′(t))

σ(x(t))
µ(x′(t))
µ(x(t))

Description It is the variance of
the signal x(t).
It represents total
energy of the
signal x(t).

It gives estimate of the
mean frequency.
It represents the pro-
portion of standard de-
viation of the power
spectrum.

It gives estimate of the
bandwidth frequency.
It represents change in
frequency.

Table 3. P-value and rank for all 48 features computed using Kruskal-Wallis test.

Feature Subband C4-A1 Channel F4-C4 Channel

p-Value Rank p-Value Rank

Hjorth Activity

D1 0 35 0 6
D2 0 2 0 25
D3 1.95× 10−9 26 0 44
D4 0 36 0 41
D5 0 11 0 18
A5 7.80× 10−28 29 0.073 21

Hjorth Mobility

D1 0 38 0 17
D2 0 39 0 3
D3 0 1 0 10
D4 0 12 0 16
D5 0 5 0 30
A5 0 8 0 43

Hjorth Complexity

D1 0 27 0 31
D2 0 4 0 40
D3 0 33 0 13
D4 0 19 0 48
D5 4.00× 10−20 14 5.04× 10−31 24
A5 8.09× 10−37 32 0 45

Wavelet Entropy

D1 0 9 0 37
D2 0 20 0 46
D3 0 28 0 47
D4 0 15 0 23
D5 0 42 0 22
A5 0 7 0 34

3.4. Classification and Validation

After performing feature extraction, features have been applied to several supervised
machine learning (ML) classifiers. For the implementation of these algorithms and to
develop the model, we have employed the Statistics and Machine Learning Toolbox of
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MATLAB R2020a. The obtained features are used to train various classifiers namely
support vector machines (SVM), K-nearest neighbour (KNN), ensemble bagged trees
(EBagT) and ensemble boosted trees (EBoosT). We developed the model using sample-
wise ten-fold cross-validation scheme. Initially, all classifiers are trained using a trial
and error approach, because it is difficult to determine in advance which algorithm will
perform better for our extracted features. Once the best classier is obtained among all,
we performed hyperparameter tuning to increase the performance further. We observed
that, for most of the classification tasks EBagT and EBoosT algorithms attained the best
classification performance after extensive simulations, however, for few classification
tasks SVM algorithm showed better results. It can be noted from Table 1 that, we have
considered large number of epochs in our study and ensemble methods yielded better
results compared to other algorithms. It is to be noted that we have balanced the epochs
of both phases before training the classifiers. The data balancing makes the model more
reliable for practical applications.

4. Results

The entire experimentation and training related to our study was accomplished using
MATLAB R2020a installed on an Ubuntu server 18.04. The specifications of the server
are: an Intel Xeon E5-2690 v3 CPU @2.6 GHz (6 cores), 56 GB RAM and a 12 GB Nvidia
K80 GPU.

In this work, we have used monopolar C4-A1 and bipolar F4-C4 EEG channels for the
identification of CAP phases A and B using sleep recordings of 77 subjects. The database
contains recordings of healthy subjects and variety of sleep disorders like NFLE, SDB,
narcolepsy, PLM, insomnia and RBD. In this work, we have extracted and analyzed CAP
phase information for each type sleep disorders separately. The results are given below
for both EEG montages individually and combined. The classification performance was
evaluated in terms of average classification accuracy (ACA), precision (Pcn), Recall (Rcl),
F1-score (F1), Cohen’s Kappa (κ) value and area under curve (AUC).

We have taken six healthy subjects and extracted 9930 epochs (2 s duration) of phase A
and phase B for two EEG channels. Though features have been applied to several classifiers,
the optimal performance was obtained using ensemble boosted trees and bagged trees
classifier to classify CAP phases. The model could attain ACA of 75.7% and 76.4% for
C4-A1 and F4-C4 channels, respectively. It is evident that bipolar channnel F4-C4 channel
performed better than the monopolar counter part. Combining the features extracted from
both channels yielded better ACA of 83.30%. The confusion matrix corresponding to three
classification tasks for good sleepers can be seen in Table 4. It can be observed from Table 4
that, for healthy sleepers both phases are detected equally well while features of both
channels are classified together.

Table 4. Classification performance for healthy subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 77.30% 26.00% 78.10% 25.20% 83.30% 16.70%
Phase B 22.70% 74.00% 21.90% 74.80% 16.70% 83.30%

ACA, Pcn, Rcl 75.70%, 0.75, 0.77 76.40%, 0.76, 0.78 83.30%, 0.83, 0.83
F1, κ, AUC 0.76, 0.53, 0.84 0.77, 0.51, 0.84 0.83, 0.67, 0.91
Classifier EBoosT EBoosT EBagT

The CAP sleep database contains seven EEG recordings for both montages, at sampling
rate of 512 Hz with average duration of 575 min, corresponding to insomniac patients. We
have classified total of 11328 epochs (2 s) into phase A and phase B. We have achieved
maximum ACA of 71.4% and 72.5% for C4-A1 and F4-C4 channels, respectively. It can



Diagnostics 2021, 11, 1380 10 of 19

be seen that bipolar channel F4-C4 performed better than the monopolar channel C4-A1,
individually. By combining both EEG channels, ACA increased to 76.5%. Confusion matrix
and performance parameters for insomnia subjects are shown in Table 5.

Table 5. Classification performance for insomnia subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 67.20% 24.30% 67.50% 22.40% 71.70% 18.70%
Phase B 32.80% 75.70% 32.50% 77.60% 28.30% 81.30%

ACA, Pcn, Rcl 71.40%, 0.73, 0.67 72.50%, 0.75, 0.67 76.50%, 0.79, 0.72
F1, κ, AUC 0.70, 0.45, 0.79 0.71, 0.43, 0.79 0.75, 0.53, 0.85
Classifier EBagT EBoosT EBagT

The CAP sleep database contains EEG recordings of five narcolepsy patients, with
both montages sampled at 512 Hz frequency and an average duration of 494 min. We have
taken 10086 epochs (2 s each) of phase A and phase B. The best possible ACA achieved is
77.20%. The confusion matrix for all three classification tasks can be seen in Table 6.

Table 6. Classification performance for narcolepsy subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 69.70% 26.10% 77.20% 37.50% 79.20% 24.80%
Phase B 30.30% 73.90% 22.80% 62.50% 20.80% 75.20%

ACA, Pcn, Rcl 71.80%, 0.73, 0.70 69.80%, 0.67, 0.77 77.20%, 0.76, 0.79
F1, κ, AUC 0.71, 0.44, 0.78 0.72, 0.40, 0.77 0.78, 0.54, 0.86
Classifier EBoosT EBoosT EBoosT

The CAP database contains 27 EEG recordings of NFLE patients at sampling frequency
of 512 Hz and an average duration of 505 min. We have classified 73236 epochs (2 s duration)
into phase A and phase B. Among all classifiers, ensemble bagged trees classifier gave best
performance with maximum ACA of 84%, F1-score of 0.84 and Cohen’s κ coefficient of 0.68
using both channels . Confusion matrix and performance parameters corresponding to
classification using C4-A1, F4-C4 and combination of both can be seen in Table 7.

The CAP database contains nine PLM patients’ EEG recordings for both the montages,
at sampling rate of 512 Hz and with an average duration of 431 min. The maximum ACA,
F1-score and Cohen’s κ obtained are 77%, 0.76 and 0.54, respectively. Table 8 shows the
confusion matrix and performance parameters for patients suffering from PLM.
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Table 7. Classification performance for NFLE subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 75.00% 20.40% 74.50% 23.00% 82.80% 14.80%
Phase B 24.70% 79.60% 25.50% 77.00% 17.20% 85.20%

ACA, Pcn, Rcl 77.40%, 0.79, 0.75 75.80%, 0.76, 0.74 84.00%, 0.85, 0.83
F1, κ, AUC 0.77, 0.55, 0.86 0.75, 0.51, 0.84 0.84, 0.68, 0.92
Classifier SVM SVM EBagT

Table 8. Classification performance for PLM subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 67.90% 24.20% 67.60% 26.20% 72.80% 19.00%
Phase B 32.10% 75.80% 32.40% 73.80% 27.20% 81.00%

ACA, Pcn, Rcl 71.90%, 0.74, 0.70 70.70%, 0.72, 0.68 76.90%, 0.79, 0.73
F1, κ, AUC 0.71, 0.44, 0.79 0.70, 0.41, 0.78 0.76, 0.54, 0.85
Classifier EBoosT EBoosT EBagT

22 RBD patients’ EEG recordings obtained from CAP sleep database were segmented
into total number of 39654 epochs of 2s which contains either phase A or phase B. The
average duration for each of these recordings is 514 min. For classifying the phases of
RBD patients, the proposed model attained the best ACA of 72%, 70%, and 77% for F4-C4
channel, C4-A1 channel and combined channels, respectively. The F1-score and Cohen’s κ
of 0.71 and 0.44, respectively were obtained corresponding to the features obtained from
the combined channels. Table 9 shows results obtained using RBD patients.

Table 9. Classification performance for RBD subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 60.20% 28.20% 62.70% 27.80% 67.20% 22.80%
Phase B 39.80% 71.80% 37.30% 72.20% 32.80% 77.20%

ACA, Pcn, Rcl 66.00%, 0.68, 0.60 67.45%, 0.69, 0.63 72.20%, 0.75, 0.67
F1, κ, AUC 0.64, 0.32, 0.72 0.66, 0.35, 0.74 0.71, 0.44, 0.80
Classifier EBagT EBagT EBagT

The CAP sleep database contains one SDB patient’s EEG recording for both the
channels, with sampling rate of 512 Hz and 396 min duration. We segregated EEG signals
into 1668 epochs (2 s each) which comprises of phases A and phase B. Using EBagT classifier
on the extracted features, with C4-A1 and F4-C4 channels separately, the model attained
ACA of 74.9% with 10 fold cross validation, whereas combined features from both channels
produced ACA of 81.5%. We have obtained F1-score and Cohen’s κ equal to 0.81 and
0.63, respectively for combined features. Confusion matrix and performance parameters
obtained for SDB patients are shown in Table 10.



Diagnostics 2021, 11, 1380 12 of 19

Table 10. Classification performance for SDB subjects.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 70.50% 20.60% 71.00% 21.10% 80.30% 17.40%
Phase B 29.50% 79.40% 29.00% 78.90% 19.70% 82.60%

ACA, Pcn, Rcl 74.95%, 0.77, 0.70 74.95%, 0.77, 0.71 81.45%, 0.82, 0.80
F1, κ, AUC 0.74, 0.50, 0.82 0.74, 0.50, 0.82 0.81, 0.63, 0.89
Classifier EBagT SVM EBagT

After considering detection of phases of all sleep disordered patients and healthy
controls individually, we then combined all 77 subjects with a total of 165,960 epochs
corresponding to phases A and B. The model attained ACA of 71.4% and 71.0% with C4-A1
and F4-C4 channels, respectively using ensemble bagged trees classifier with 10 fold CV.
On combining features obtained from both channels, ACA increased to 78.0% and F1-score
and Cohen’s kappa obtained are 0.77 and 0.56, respectively. It is also interesting to note
that both the channels performed equally well in identifying phases when used separately.
However, on combining the features from both montages there is a gain of around 7% in
the ACA. It can be noticed from the results that, for narcolepsy, NFLE and PLM patients,
C4-A1 channel performed better than F4-C4. F4-C4 channel performed better for healthy,
insomnia and RBD patients. Both the channels performed almost the same for SDB patients.
Table 11 shows the classification results when all subjects are taken together. It can be noted
from Table 12 that, highest classification performance is obtained using EbagT classifier
compared to other classifiers used in our work.

Table 11. Classification performance for all subjects combined.

Predicted

Actual

C4-A1 Channel F4-C4 Channel Both Channels Combined

Phase A Phase B Phase A Phase B Phase A Phase B

Phase A 67.60% 24.70% 68.10% 26.20% 74.30% 18.20%
Phase B 32.40% 75.30% 31.90% 73.80% 25.70% 81.80%

ACA, Pcn, Rcl 71.45%, 0.73, 0.68 70.95%, 0.72, 0.68 78.00%, 0.80, 0.74
F1, κ, AUC 0.70, 0.42, 0.79 0.70, 0.42, 0.78 0.77, 0.56, 0.86
Classifier EBagT EBagT EBagT

Table 12. Summary of performances obtained by various classifiers using features extracted from both
EEG channels of 77 subjects with ten-fold CV strategy. The bold font style represents maximum ACA.

Classifier
Performance Parameters

ACA (%) F1 Score κ

Fine Tree 75.93 0.7681 0.52
Logistic Regression 66.88 0.6947 0.34

SVM 74.01 0.7596 0.48
KNN 70.68 0.7376 0.41

EBagT 78.00 0.7752 0.56

5. Discussion

In the literature, the studies on detection of micro structure CAP phasic events are
sparse and limited. On the other hand, a plethora of studies are available on identification
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of sleep macro-structures events including sleep stage scoring and identification of sleep
disorders. Moreover, these handful of studies on CAP phase identification have used only
healthy controls with few exceptions of Hartmann et al. [26] and Mendonca et al. [28],
which have included either NFLE or SDB patients. In this proposed study, we have
performed CAP phase identification using all 77 subjects comprising six types of sleep
disordered patients having NFLE, SDB, narcolepsy, PLM, insomnia and RBD along with
good sleepers.

We have also conducted the whole experiment taking 1-second EEG window in
addition to normal 2 s window length. It can be observed from Tables 4–11 and 13 that,
the phase classification performance is better for the epochs of 2 s than 1 s. Although the
performance achieved using 1 s EEG epochs is inferior but the signal processing burden
gets reduced on the system.

Table 13. Performance parameters obtained for CAP Phase A detection in different types of sleep
disorder subjects using both EEG channels for 1-sec epoch duration.

Subject
C4-A1 Channel F4-C4 Channel C4-A1 + F4-C4 Channels

ACA F1-Score κ ACA F1-Score Kappa ACA F1-Score κ

Healthy 0.72 0.72 0.44 0.72 0.72 0.44 0.79 0.79 0.58
Insomnia 0.67 0.66 0.35 0.69 0.67 0.38 0.74 0.72 0.48

Narcolepsy 0.68 0.67 0.36 0.68 0.70 0.36 0.74 0.74 0.48
NFLE 0.73 0.73 0.47 0.72 0.72 0.47 0.75 0.73 0.49
PLM 0.67 0.66 0.35 0.67 0.66 0.35 0.73 0.71 0.46
RBD 0.62 0.60 0.25 0.64 0.62 0.28 0.67 0.65 0.33
SDB 0.70 0.70 0.41 0.71 0.71 0.41 0.76 0.77 0.53
All 0.68 0.67 0.36 0.68 0.67 0.36 0.74 0.72 0.48

Classifier EBoosT EBagT

Our results reveal that for Healthy, Insomnia, and RBD subjects bipolar EEG analysis is
better, which is in line with the observations made by Parrino et al. [22]. But, for Narcolepsy,
NFLE and SBD subjects, monopolar EEG channel is found to be better. However, for
accurate analysis, we believe that both channels are equally important. To the best of
our knowledge, there is no clinical reason available regarding the superiority of channel
(monopolar or bipolar). However, our results reveal that when both monopolar and bipolar
EEG channel are used together, the performance of the model improved for sleep disorder
as well for healthy good sleepers.

We have computed the microstructure details of subjects used in this study, like CAP
rate, CAP time and NREM time (Table 14). It is evident from Table 14 that the average CAP
rate is found to be 0.56 when all subjects (health+sleep disordered) are taken together. In
the table, we have also mentioned the CAP rate for the six sleep disordered subjects and
healthy controls when they are considered separately. It can be noticed from the table that
the CAP rate of healthy subjects is lowest (0.41) and increased for sleep disordered subjects.
The CAP rate for SDB patients is the highest (0.78) among all. RBD patients showed lower
CAP rate (0.49) compared to other sleep disorders. Hence, CAP rate can be used as a
measure to indicate the sleep quality. The CAP rate either increases or decreases sharply in
sleep disorder cases. More precisely, the CAP rate increases in insomnia [52–56], apnea [57],
PLM [58], NFLE [59], and depression [60,61]. The CAP rate decreases in conditions like
narcolepsy [62], continuous positive airway pressure (CPAP) treatment in apnea [63–66]
and neurodegenerative disorders, like Alzheimer’s disease [67].

Table 15 shows the comparison of our proposed method with other previously per-
formed state-of-the-art studies. Various techniques have been employed by researchers for
CAP phase detection. All the studies mentioned in the table have used CAP sleep database
with majority of work being performed with EEG signals of healthy subjects.
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Table 14. Details of sleep microstructure for subjects used in this study.

Subject Type Duration NREM Time CAP Time CAP Rate

Healthy 505.33 350.83 144.50 0.41
Insomnia 575.71 269.00 135.86 0.51

Narcolepsy 494.40 299.20 159.40 0.53
NFLE 505.81 353.93 223.22 0.63
PLM 431.33 282.00 186.44 0.68
RBD 514.14 315.68 152.50 0.49
SDB 396.00 283.00 221.00 0.78

All Combined (Avg) 503.64 322.16 180.47 0.56

Table 15. Comparison our study with state-of-the-art techniques for CAP phase identification using healthy subjects.

Study Method Subjects Epoch Length ACA (%) Recall F1-Score

Mendez et al. [25] KNN classifier 10 2 s 80.00 0.70 0.75

Navona et al. [24] Band descriptors and
Thresholding 10 2 s 77.00 0.84 0.87

Hartmann et al. [26]

Variable LSTM Network,
Hjorth activity, Band
power, Teager energy

operator, Shannon
entropy

46 1–3 s 82.42 0.75 0.79

Dhok et al. [27] Wigner-Ville based
Renyi Entropy, SVM 6 2 s 72.35 0.77 0.73

Mendonca et al. [28]
(ECG)

Time series analysis,
Matrix of Lags, SVM 13 60 s 77.00 0.71 0.76

Loh et al. [68] Deep neural network
(1D-CNN) 6 2 s 73.64 0.80 0.75

Proposed study
Optimal wavelet based

Hjorth and entropy
features

77 2 s 83.30 0.83 0.83

Mendez et al. [25] used unbalanced data with 3963 Phase A events from only ten
healthy adult subjects. They have used K-nearest neighbour (KNN) classifier and features
including energy, sample entropy, standard deviation, Tsallis entropy and frequency band
indices. They obtained an accuracy and sensitivity of around 80% and specificity of 70%.
Navona et al. [24] have achieved an accuracy of 77% using EEG band descriptors and
thresholding. Hartmann et al. [26] have used 16 healthy sleepers and 30 nocturnal frontal
lobe epilepsy (NFLE) suffering subjects obtained from CAP sleep database. They achieved
an accuracy of 82.42% for healthy subjects. The epoch length considered in their study
is variable with a duration of 1–3 s. Dhok et al. [27] have used balanced data with 4653
occurrences of phase A and phase B each, from six healthy subjects of CAP sleep database
for automated CAP phase classification. They used Wigner-Ville distribution based feature
extraction and support vector machine (SVM) classifier to achieve classification accuracy
of 72.35%. Mendonca et al. [28] have used time series analysis, Matrix of Lags and SVM
classifier and obtained classification accuracy of 77% using ECG signals of 60 s duration.
Recently, Loh et al. [68] developed a deep neural network (1D-CNN) model for CAP
phase classification and obtained an accuracy of 73.64%. Mariani et al. [69] have observed
that Hjorth actvity is a better descriptor for CAP A phases and helped to achieve better
classification performance between phase A and phase B which is inline with the findings
of our proposed study. It can be observed from the table that most of the studies have used
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only imbalanced data in which case the model developed may bias towards the majority
class and cannot be considered as an ideal fit for a clinical application. The proposed
study employed a balanced data to overcome bias, under fitting and over fitting problems.
The proposed model attained ACA of 83% which is better than the most of the studies
presented in Table 15.

The key attributes and benefits of our study are as follows:

• We have employed openly available CAP sleep database for easy reproducibility and
to make it easy for other researchers to compare their work with this study.

• We have used only two EEG channels to reduce complexity and discomfort to pa-
tients. The simultaneous use of both C4-A1 and F4-C4 EEG channels improved the
performance which is evident from our results.

• In addition to healthy subjects, we have also used subjects from six different CAP
database cohorts like insomnia, narcolepsy, NFLE, PLM, RBD, and SDB.

• Unlike other studies, in the proposed method we have used less number of features
which leads to lesser computational complexity.

• Along with 2-second EEG epochs, the simulations are also done with 1-second epochs.
• Taking into account the non-stationary nature of EEG signals, we have used wavelet-

based Hjorth and entropy features which employed orthogonal filter bank. It can
be observed from Tables 4 and 16 that, the performance parameters for phase A and
phase B classification of healthy subjects are lower if wavelet analysis is not employed.

• We have used balanced data in order to obtain robust classification.
• Our developed model is simple without involving much computational complexity

and hence can be deployed in real time applications by medical practitioners.

It can be noted that, although the classification task considered is binary, the task is
demanding due to high level of resemblance in characteristics of phases, which is clear from
the results obtained by the state-of-the-art methods available. The classification accuracy
in the range of 72–83% have been achieved using various techniques including few deep
learning models also as shown in Table 15. Further, to examine the discriminating abilities
of wavelet based features, we have performed the experiments without using wavelet
decomposition and noticed high degradation in the performance (Table 16). The proposed
method has yielded high classification results due to the use of highly discriminating
nature of optimal wavelet based Hjorth features used by us to train the model. Our
results demonstrated that if we do not use wavelet decomposition and use the Hjorth
parameters of EEG directly, then the performance decreases. Similarly, if we use the wavelet
decomposition and use some statistical features other than Hjorth parameters, again the
performance degrades. On the other hand, when both optimal wavelet decomposition and
Hjorth parameters are employed together, the optimal performance is obtained.

Table 16. CAP phase classification results obtained for healthy subjects without wavelet decomposition.

Channel
Performance Parameters

Accuracy (%) Precision Recall F1-Score κ AUC

C4-A1 73.36 0.7413 0.7201 0.7306 0.4717 0.81

F4-C4 73.74 0.7484 0.7152 0.7314 0.4747 0.81

C4-A1 + F4-C4 76.86 0.7177 0.7630 0.7403 0.5171 0.83

Presently, the CAP phases are identified by trained clinicians in sleep laboratories
only. This process is cumbersome, stressful and time consuming. Hence, there is always
a scope for a computer based automated approach. As discussed earlier, previous few
studies have tried to develop a model for CAP characterization. Our method has achieved
better performance for CAP phase identification. However, it should be tested using a large
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independent cohorts before implementing in a clinical application, this can be considered
as one of the limitations of the proposed study. There is scope for further improvement
in the results obtained using 1 s epochs. The future scope of this work includes the use of
deep learning (DL) based techniques like convolutional neural network (CNN), LSTM and
recurrent neural network (RNN) for an automated identification of CAP phases. Although,
DL-based techniques perform better in many cases but for this problem, our proposed
method worked better than rest of the reported works. Hartmann et al. [26] have already
explored DL-based LSTM technique for automated detection of CAP phase A. Our results
are found to be better because we have used highly discriminating wavelet-based features
and optimal ensemble classifiers for the classification task. In future, it would be interesting
to evaluate the performance of the proposed method for identifying sub-phases A1, A2,
and A3 of the phase A.

6. Conclusions

The sleep-scoring is widely used in monitoring and analysis of sleep as well as
identifying sleep disorders. The sleep macrostructure, represented by different sleep stages
provide information regarding the neural activity and brain waves during sleep. However,
the macrostructure sleep stages alone cannot provide information about the functional
structure and stability of sleep. Besides, the shorter phasic events K complexes, delta-wave
bursts, vertex waves, saw-tooth waves, sleep spindles and short-lasting arousals are also
abundant in sleep. These events show certain patterns and represents the microstructure of
sleep. CAP captures microstructure of the sleep and can be used to identify sleep instability.
This paper presents an automated CAP characterization system using optimal wavelet-
based features extracted from EEG signals. Our study aimed to reduce the diagnosis time
of sleep by specialists. The main intention of the study is to identify the CAP phases of
sleep disordered patients. We have utilized the entire CAP sleep database containing both
sleep disordered patients and good sleepers. Our study presented the results obtained from
healthy subjects, sleep disordered patients individually as well as all subjects combined.
An optimal mean squared bandwidth minimized orthogonal filter bank is employed
for the decomposition. The combination of highly discriminating wavelet entropy and
Hjorth parameters coupled with optimally tuned ensemble bagged trees classier yielded a
promising performance. The proposed model classified A and B phases of REM sleep. The
model has yielded average classification accuracy of 84%, 83%, 81%, 78%, 77%, 76% and
72% for NFLE, healthy, SDB, narcolepsy, PLM, insomnia and RBD subjects, respectively in
discriminating phases A and B using a balanced database. The best accuracy of 84% has
been obtained for NFLE patients. However, the proposed model requires to be tested using
a diverse and large data before clinical implementation. Our developed system is simple
and fully computer-based, which can reduce the challenges faced by sleep specialists in
scoring of CAP phases. In future, we aim to develop a model for the identification of
subtypes A1, A2 and A3 of CAP phase A using DL based techniques like CNN, LSTM
and RNN.
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