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ABSTRACT 
 

 

The world demand for natural gas which is at an increasing trend has rekindled interest 

in the production and transportation of Liquefied Natural Gas (LNG) from resource rich 

areas in Africa, Middle East, Far East, Australia and Russia to customers in Europe, 

Americas, China and India. The challenges for the future are to produce and transport 

gas in a cost effective manner to be competitive in the market place.   

 

 

Gas is beginning to play an increasingly important role in energy scenario of the 

world economy. The easiest ways of getting gas to the market is by pipe lines. 

However to reach markets far and wide across oceans, gas needs to be converted 

and transported in liquid form. Competitive pressure and search for economies of scale 

is driving up the size of LNG facilities and hence the capital requirement of each link of 

the value chain. Interdependent financing of the various links of the value chain, while 

maintaining their economic viability, is the challenge that sponsors need to address. The 

industry is potentially a high risk business due to uncertainty associated with the 

characteristics of the industry, which calls for high level of investment in an 

environment of volatility of the price and political and economic changes in the 

world market. 

 

 

LNG production facilities are becoming larger and larger than ever before to take 

advantage of economies of scale. These massive plants not only have created new 

challenges in design, procurement and construction and environment but will create new 

challenges in operation and maintenance. Innovative technologies and first of a kind 

equipment applications with a rigorous technology development and a stringent testing 

plans ensure that the facility will achieve a long term reliable operation. Conventional 

LNG plants use Gas Turbine as main drivers for refrigerant compressors. To this effect 

All-Electric LNG has a potential to provide an alternative offer a life cycle advantage 

over the convention. Hence it would be worthwhile to study the pros and cons and 

prospects offered by this new technology from an overall life cycle perspective for 

future of LNG projects. This research is an endeavours in this direction. 
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CHAPTER 1 

           

Introduction 
 

1.1 Natural gas: 

 
Natural gas is the world’s third largest source of primary energy after coal and oil. Since 

the early 1970s, world’s proven and recoverable reserves of natural gas have been 

increasing steadily. The bulk of the natural gas reserves are located in Russia, the 

Middle East and Australia. There are various mode of transportation available for gas 

produced. Natural gas is distributed to the consumer either by pressurized pipeline 

distribution or as Liquefied Natural Gas (LNG), which is carried internationally by LNG 

tankers. Transportation is very important for gas business as reserves are often located at 

quite a distance from the main markets. In Russian, Europe and North America pipelines 

is the primary means of transport of the gas and for which there is a well-developed gas 

grid. Where it involves long distance transportation, and if it needs to be cross-

continental across deep oceans, transporting gas in its liquid state is economical and this 

enables it to be transported by purpose built cryogenic LNG tankers.  

 

1.2 What is LNG: 
 

Natural gas is an abundant fossil fuel composed primarily of methane (90%), along with 

hydrocarbons such as ethane, propane, butane, and other inert gases such as nitrogen and 

is found deep inside the earth crust. It is taken out of earth by drilling deep wells on 

onshore or offshore locations. When natural gas especially methane (CH4) is cooled to a 

temperature of approximately -162°C (-259°F) at atmospheric pressure it condenses to a 

liquid called Liquefied Natural Gas (LNG) (The Internal group of LNG importers, 

2009). So LNG is natural gas (methane) in a liquid form. LNG is odorless, colourless, 

non-toxic and non-corrosive. One volume of this liquid takes up about 1/600th the 

volume of natural gas. Specific gravity of LNG is about 45% that of water (The Internal 

group of LNG importers, 2009). When vaporized and mixed with air it burns only in 

concentrations between 5% (Lower Explosive Limit) to 15% (Higher Explosive Limit). 

To liquefy natural gas, impurities that would freeze at low temperature, such as water 

and carbon dioxide, and other materials like sulphur compounds and heavier 

hydrocarbons are removed (The internal group of LNG importers, 2009). The gas is then 

cooled at atmospheric pressure to condense methane to liquid form, which is then stored 

or transported at atmospheric pressure. The liquefaction allows natural gas to be 

transported more efficiently over long distances where pipelines do not exist. 

 

1.3 LNG Industry and its future: 

 
The need to transport gas long distances across oceans led to the development of the 

international LNG trade which began in 1954. Its success led to the first shipments, 

which was made on a trial basis in the early 1960s between the US and the UK, while 

1964 saw the start of the first commercial-scale LNG project to ship LNG from Algeria 
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to the UK This was followed by ventures between Algeria and France in 1965, and 

Alaska and Japan in 1969 (Bosma and Nagelvoort, 2008). The LNG trades actually 

developed in the 1970s, as much larger projects were planned in that era, to exploit 

economies of scale in liquefaction and to meet the increasing demand (Deo and 

Mangala, 2002).  The demand for gas did fluctuate on the whole based on the strength of 

soaring demands from Japan, Korea and Taiwan; new capacities were built, especially in 

Middle East and Australia. Globalization, the emergence of a robust marketplace, the 

fluidity of supply and demand, and the increased understanding of energy as a 

commodity have produced a mature and sophisticated LNG industry. Favourable 

supply/demand fundamentals, compelling new technologies, and the recognition of LNG 

as a viable supply source are fueling rapid growth in the sector (Ernst and Young, 2013).  

There is a conscious shift worldwide from oil towards natural gas, which is a cleaner, 

and a cheaper source of energy. With surging demand for natural gas across countries, 

supply restrictions and impracticality of cross-country and cross continent pipelines 

through deep oceans, there was no option but to supplement natural gas requirement 

through imports of liquefied natural gas (LNG). Demand for energy in North America, 

Europe and emerging markets in China and India is increasing (International Energy 

Agency, 2012). Liquefied natural gas (LNG) offers an excellent option helping to meet 

energy demand growth. LNG provides a flexible and economical alternative for 

delivering remote gas reserves to expanding markets across the globe. Worldwide gas 

demand is climbing, largely because of the combined impacts of deregulation and the 

development of high-efficiency combined-cycle gas turbine technology that makes 

natural gas increasingly the fuel source of choice in power generation.  LNG also had a 

premium value as a clean fuel.  Along with these factors, advances in liquefaction 

technology have driven significant cost out of the LNG chain to improve the prospects 

for monetizing these stranded gas reserves (Castel et al, 2012). A stranded gas reserve is 

found in a natural gas field which has been discovered, but remains unusable for either 

physical or economic reasons. Figure; 1.1 shows the Global LNG demand in the past 

and forecast for the future. 

 
                   Figure 1.1: Global LNG demand; Source (Ernst and Young, 2013) 
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1.4 Uses of LNG: 
 

Most LNG that is traded internationally is used to fuel electric power plants (Siemens, 

2008). LNG is also used for the purpose of heating. Growing needs for electricity around 

the world has increased demand many folds, making it one of the fastest growing energy 

sources in the world. Once delivered, LNG is stored in insulated tanks so that it can be 

vaporized and distributed as natural gas to the customers. In addition to use of LNG in 

power plants to generate electricity and for the purpose of heating, it is emerging as an 

alternative motor fuel to diesel. 

 

1.5 LNG Process: 
 

There are steps that explain the process of liquefying natural gas and ultimately 

delivering it to customers – this process is often referred to as the LNG “Value Chain” 

(Palmer, 2012). Figure 1.2 demonstrates the LNG liquefaction process (Palmer, 2012). 

Step 1: Extraction– Natural gas is extracted from deep inside the earth by drilling 

process either on offshore or onshore drilling wells and piped to onshore LNG plants. 

Step 2- Inlet receiving and Condensate removal- The gas is received at the onshore 

facility. The liquid hydrocarbon (condensate) associated in gas is removed at this stage 

Step 3: Acid gas removal- Acid gas (H2S) is removed and sent to the sulphur recovery 

unit for extraction of sulphur. Carbon dioxide is also removed. 

Step 4: Dehydration- The gas is purified before being cooled because impurities found 

in raw gas would freeze at low temperatures. The gas is dehydrated as the water vapour 

will freeze at the liquefaction temperature of LNG.  

Step 5: Mercury removal- Mercury compounds are removed at this stage 

 

 
Figure-1.2:  LNG Liquefaction process; Source (Buzzini, 2012)   
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Step 6: Pre-cooling- Once the gas is cleaned, the gas is pre-cooled at this stage using 

refrigerant. In large units propane is used as a pre-cooling refrigerant. 

Step 7: Refrigeration/Liquefaction–The gas is chilled in successively colder heat 

exchanger that uses propane, ethylene, and methane as refrigerants. A mixture or 

combinations of refrigerant are used at this stage. LNG is produced at this stage and then 

sent to storage tanks. 

Step 8: Sub-cooling- Sometimes sub-cooling is required for larger units before LNG is 

sent to the storage and Nitrogen is used for sub-cooling so as to increase production. 

Step 9: Storage– LNG is stored in double-walled tanks at atmospheric pressure. These 

tanks are specially designed and cooled to contain liquefied gas until it is loaded on to 

tankers. 

Step 10: Loading- From the storage tank LNG is loaded on to special purpose, custom 

built cryogenic ships. 

Step 11: Shipping– LNG is shipped from the LNG Plant to a Regasification Terminal 

via tankers with specially designed tankers. 

Step 12: Storage– LNG is stored in special design double-walled tanks at atmospheric 

pressure till it is sent for consumption. 

Step 13: Re-gasification– LNG is extracted from the tanks, pressurized and re-gasified 

using heat exchangers to be sent over pipes. 

Step 14: Customer Delivery–  After LNG is returned to its gaseous state, the natural 

gas is treated in a number of ways, including metering and odorizing, and then fed into a 

transmission network for distribution to customers. 

 

1.6 Alternative Fuels to LNG: 

 
LNG’s growth has largely been fueled by a need for a clean fuel. However, there are 

certain other fuels that are alternative sources of energy as a clean fuel. On the other 

hand there are many others, which are in developmental stage and are expected to 

become cost effective in future (Deo and Mangala, 2002) 

 

a) LPG: (Liquefied Petroleum Gas) 

 

LPG is mostly made up of a mixture of propane and similar hydrocarbon gases. These 

hydrocarbons are gases at room temperature, but turn to liquid when they are 

compressed. LPG is stored in special tanks that keep it under pressure, so it stays as 

liquid. LPG is used in homes for heating, cooking, hot water and other energy needs. 

LPG costs less than gasoline for the same amount of energy. LPG fueled engines  

pollute less than gasoline and diesel engines.     

 

b) CNG: (Compressed Natural Gas) 

 

Compressed natural gas (CNG) is compressed into high-pressure fuel cylinders. Many 

automakers around the world are developing vehicles to run on compressed natural gas 

because of its clean burning nature and because it pollutes less than petroleum, gasoline 

and diesel. Cars, vans, buses and small trucks generally use natural gas in the form of 

CNG.   
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c) Hydrogen: 

 

One of the most interesting and in some ways promising, alternative transportation fuels 

is hydrogen. While only experimental vehicles are operating on this fuel now, the 

potential for this unique energy source is excellent (Energyquest, 2002). It is easy to 

produce through electrolysis, simply splitting water (H20) into oxygen and hydrogen by 

using electricity.   Because hydrogen burns nearly pollution free, it has been looked at as 

the ultimate clean fuel. Being a non-carbon fuel, the exhaust is free of carbon dioxide, 

which is a greenhouse gas. Hydrogen's clean burning characteristics may, one day, make 

it a popular transportation fuel.  
 

d) Liquid from coal:  

 

Like oil and natural gas, coal is a non-renewable, fossil fuel formed in the earth from 

what was once living plants. Being a solid, coal is not easy to use for most transportation 

fuel needs. However, there are ways to make gasoline, diesel fuel, methanol, and other 

chemicals from coal (Energyquest, 2002). 
 

e) Bio-diesel:  

 

It is vegetable oil that is bio-degradable; hence it is much less harmful to the 

environment, if spilled. This process makes vegetable oil and animal fat into esterified 

oil, which can be used as diesel fuel, or mixed with regular diesel fuel. Oil produced 

from jatropha and castor seeds are getting popularity as bio-diesel (Energyquest, 2002). 

 

f) Ethanol and Methanol: 

 

Both ethanol and methanol are now used as transportation fuels and will likely play an 

increasingly important role in the future. Ethanol is generally made from corn or from 

biomass, which includes agricultural crops and waste, plant material left from logging, 

and trash including cellulose. Methanol can be made from various biomass resources 

like wood, as well as from coal.   

 

g) Gas to Liquids: 

 

Natural gas can be converted into liquid hydrocarbon products, called ‘gas to liquids’. 

The products are virtually free of nitrogen and sulphur giving them excellent combustion 

properties. Gas to liquids technologies provide opportunities to create value from 

otherwise stranded natural gas resources and will play an important role in the coming 

years. The liquids products are cheaper to transport than gas, and will therefore be 

competitive across a greater range of market (Deo and Mangala, 2002). 

 

1.7 Purpose of the Study: 

 
The purpose of the project is to explore various aspects of life cycle of major project 

from ‘cradle to grave’ and the challenges faced from conceptualization up to project 

completion, operation and finally till the facility is dismantled. The purpose of choosing 
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this topic is that it has relevance to the LNG industry in which I am working and 

especially to my company, which is the largest LNG producer in the world and also 

involved in marketing LNG and it’s by products. This study will help enhance my 

understanding on various challenges encountered in building and operating large capital 

intensive infrastructure project from an engineering management perspective. As ‘All 

Electric’ LNG is a concept that is yet to catch up with the imagination of the LNG 

developers, it is an interesting and challenging subject to research. I intended to carry 

out detailed investigations on various aspects such as engineering, technical, 

environmental, contractual and operational perspective to understand the spectrum of 

issues that are encountered while building and operating large capital intensive projects. 

This research will help improve insight into key management and technical theories and 

practices and application to a real life plant environment. This study helped in 

broadening and deepening my knowledge base on dynamics of technological innovation, 

qualification, application and management of various risks and challenges faced in 

managing large assets. There is a perception gas between conventional gas turbine 

driven LNG plants are the “All Electric driven LNG”. This study will also endeavour to 

bridge the gap and investigate whether “All Electric” can be a viable alternative to the 

convention. 

 

1.8 A conventional Gas turbine driven LNG: 

 
A concept of a contemporary LNG driver-compressor strings are shown here in Figure 

1.3. A number of large size compressors are used in the LNG plant in pre-cooling, 

refrigeration and sub-cooling (liquefaction) cycles. Here the Propane compressors. 

Mixed refrigerant compressors and Nitrogen compressors are driven by large gas turbine 

drivers, which constitute by far the largest loads in the LNG plant. 

 

 
Figure 1.3  Conceptual drawing of LNG process; Source: Perez et al (2009)  
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The turbine-compressor string has to be started from stand still by a small electric starter 

motor and brought up to a certain speed when gas turbine is fired, which gradually takes 

up the entire compression load. Then the starter motor runs idle. Gas turbine’s output is 

very sensitive to fluctuation of ambient temperature. At higher ambient temperature the 

air becomes thinner hence the power output of the turbine reduces thereby affecting the 

compression process adversely. Further, if the process train trips, for the purpose of 

restarting the string, the compressor has to be de-pressurized by venting the inventory. 

This not only leads to loss of inventory hence revenue but also increases emission. In 

modern concept the starter motor size has been increased so that this can start and restart 

the gas turbine-compressor string, even in fully pressured condition in a process called 

‘Full Pressure Re-start”. This concept is shown in Figure 1.4. During high ambient 

temperature conditions in summer, the gas turbine capacity goes down. In addition to 

starting the turbine compressor string this motor can also perform as a helper to add 

power to the string in summer so as to maintain flat production. Starting a large electric 

motor ‘direct on line’ leads to sizeable voltage drop due to large motor inrush current, 

which may lead to power system instability. Hence a Variable Frequency Drive (VFD) 

is used to soft-start the large motors-gas turbine-compressor string slowly so as to limit 

the inrush current in starting.  The VFD slowly builds up the speed of the string and at a 

certain speed fuel is introduced and the gas turbine is fired. It then picks up the load 

slowly and the VFD load is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: A Conventional Gas Turbine-Compressor string with Variable Frequency 

Drive (VFD) starter/ helper motor (Concept- Qatargas 2 project doc. 2006) 

 

1.9 An ‘All Electric LNG’ concept: 

 
As discussed earlier, gas turbine itself is not inherently self-starting hence an electric 

motor is used to start it. This motor also helps to ‘full pressure restart’ the string 
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following a trip, without flaring the inventory or refrigerant. Further in summer when 

gas turbine performance is adversely affected due to high temperature the motor can also 

perform as a helper to maintain a steady production. There are many other life cycle 

issues with gas turbine such as lower availability, higher maintenance, high level of 

emission, noise and safety issues etc. which will be discussed in details later. 

 

The ‘All Electric’ concept is based on increasing the size of the VFD driven starter/ 

helper motor, used in large gas turbine compressor string, so as to replace the gas turbine 

and assume the complete responsibility of the driver of the compressor load. The idea 

behind this study is whether this concept of replacement of the gas turbine with a VFD 

driven electric motor is a viable option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: An ‘All Electric’ Variable Frequency Drive (VFD) Motor driven 

Compressor (Concept: ABB, 2005, Siemens, 2006; Devold, 2006; Kleiner, 2005) 

 

1.10         Project learning objectives: 

 
 To make useful original contribution to the existing knowledge on alternative LNG 

production technology and understand the challenges faced in building and operating 

large infrastructure projects.  

 To make a systematic and coherent analysis in order to facilitate understanding of 

engineering management issues. To conduct original and intensive study to find 

solutions to pressing and complex engineering management problems, research 

current and new approaches to effectively manage change and leverage 

technological innovations. 

 To develop a deep insight into dynamics of LNG Industry and finding out linkages 

with other such similar projects elsewhere. 

 To explore the challenges faced in life cycle management issue of large projects, 

especially from an engineering management stand point from ‘cradle to grave’. 
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 To broaden knowledge of the socio-economic implications and long-term 

sustainability associated with major engineering decisions and technology 

innovations while adopting new engineering processes or technologies. 

 To disseminate newly acquired knowledge and new concepts and ideas to a larger 

interested audience, in publications and through participation in scholarly and 

professional societies. 

 To advance knowledge and skills to conceptualize, formulate, analyze, and solve 

complex engineering problems with multiple interrelated variables, both 

deterministic and probabilistic. Such problems may cross the boundaries of various 

engineering disciplines and involve social, economic, and sustainability factors. 

 To advance knowledge and understanding of the concepts and application of good 

management practices to deal effectively with change and innovations and their 

socio‐economic impact. 

 To bring insight into the factors affecting project planning engineering, procurement, 

construction, commissioning, operation and maintenance from an engineering 

management perspective for the entire LNG value chain. 

 To delve into economic, social and technological implication of the LNG Projects 

and also associated safety, environment, quality and cost implication from a life 

cycle perspective.  

 To explore factors affecting world LNG expansion strategy and the bearing of new 

technology in reducing specific cost by improving Net Present Value (NPV). 

 To bridge the gap between perception and reality and investigate whether “All 

Electric” can be a viable alternative to the conventional gas turbine driven LNG. 

 

1.11      Summary of outline of Chapters: 

 
The ‘Introduction’ chapter deals with natural gas, LNG and their uses. It also describes 

how it is processed, stored and transported. The alternative sources of energy to LNG 

are also described in brief. Natural gas Liquefaction processes using gas turbines as    

process compressor driver and introduction to Electric drive concept has also been 

discussed in a brief. The key elements and major processes to be considered to start 

large capital intensive engineering ventures have been discussed in ‘Literature review’ 

chapter. The treatment of risk, availability, reliability, maintainability, capability, 

thermal efficiency, and effectiveness has been discussed. Subsequently, technology 

qualification management process for adopting a new technology has been discussed in 

detail. The benefit and importance of sustainability adopted in life cycle process has 

been analyzed. A success of any venture which depends on life cycle cost, profitability 

and Net Present Value (NPV) has been analyzed. The criteria for selection of drivers for 

LNG process have been discussed and hypothesis built. ‘Methodology chapter’ deals in 

the processes and method by which data has been sourced, collected and analyzed. In 

addition to desk research, questionnaire method and interviewing method, various 

mathematical and statistical analyses have been utilized to analyze and summarize the 

data. The life cycle management related to Financial, Contractual, Environmental, 

Commercial, Procurement and Logistical, Safety, Human Resources, Quality, 

Construction, Testing, Commissioning, Operation, Maintenance aspects have been 

described with respect to all electric option has been discussed in chapter entitled ‘Life 
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Cycle Management Challenges’. When an alternative is suggested to a well-established 

practice the advantages and disadvantages of the alternatives vis-e-vis the standards need 

to be discussed. This has been done in ‘Gas Turbine Vs Electric drives, a 

comparison’, in which various aspects of both the options have been compared 

extensively. All-electric option as a driver for LNG compressor offers a number of 

advantages but also has many challenges both technical and otherwise. ‘Technical 

Challenges of Electric Drives’ chapter deals with all the technical and reliability 

challenges of all-electric concept. All electric is relatively new concept which offers 

many advantages about which some case studies have been produced by various 

concerned entities. I have analyzed some of the ‘Case studies’, carried out by principals, 

contractors and vendors, which throw light into various advantages of the “all electric” 

option. Some of the cost data from the case studies has been utilized in building the life 

cycle cost benefit model. In the ‘Life cycle cost benefit analysis’ studies, the overall 

cost and benefit of the electric option and uses Net Present Value method and Sensitivity 

analyses has been utilized to demonstrate economic advantages of ‘all electric’ concept. 

In ‘Questionnaire and interview discussion’ chapter, questionnaire survey and 

interview with knowledgeable persons is discussed in details and new insights and 

perception of experienced personnel has been analyzed. ‘Summary and further 

research’ chapter summarizes the research and gives recommendations. It also identifies 

areas where further research has to be conducted. 

 

1.12 Study objective: 

 
To study as to whether an ‘All Electric LNG’ plant can be a viable alternative to a 

conventional gas turbine driven LNG plant from a life cycle perspective. 
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CHAPTER 2 

 

Literature Review 

 

2.1   Introduction: 
 

Liquefied natural gas is playing an ever increasingly role in the world energy scene. The 

combination of higher natural gas price and rising demand is encouraging the producers 

to monetize their gas reserve. As regards the world LNG supply/demand balance, the 

combination of the increase in new LNG supplies and the current economic slow-down 

will introduce new dynamics into Global LNG markets for the future. As the oil and gas 

industry’s capital expenditures have soared in the recent years, capital project execution 

and operation of assets becomes an important topic of discussion among the producer, 

distributors, financers, consumers and EPC (Engineering, Procurement and 

Construction) contractors alike (Luan &Wray 2007). Increase in complexity, increase in 

the scale of the project in demanding environment, aggressive performance expectations 

and financial expectations are bringing in a quantum shift from the older approaches. 

These major projects present unique physical, technical, environmental and political 

challenges. This can impede the ability to manage this significant wave of capital 

investments and secure the world’s energy future. The lack of predictability in delivering 

projects includes CAPEX (Capital Expenditure) overruns, late project completions, 

overly optimistic recoverable reserve estimates, etc.(Luan, Wray 2007).There are many 

factors which can affect the schedule and cost for building major infrastructure facility. 

Large LNG projects typically involves state-owned enterprises and international oil and 

gas companies comprising the upstream and liquefaction components and credit-worthy 

off takers such as electric and gas utilities making up the downstream component. 

Consequently, both upstream and downstream sponsors have sought to integrate 

themselves throughout the entire LNG value chain in an effort not only to share value 

throughout the chain, but also to internalize and spread the risks and lower the overall 

risk profile (LNG journal, October 2005). Some of the key elements that determine the 

success of the projects need not be over emphasized. In order to develop a liquefaction 

facility for the 21st century, a few key elements are necessary to place a new project on 

the LNG world map (Kotzot et al. 2007). These elements are discussed in the following 

section. 

 

2.2    Key elements for placing a new project: 

 
a) Having the right location: Distance of the site location from the offshore wells and 

from the port is quite important. Cost of site preparation will vary significantly with 

the soil conditions and location and on the plant size. A second factor is location as 

regards to its geographical position to reach various LNG markets. A key advantage 

is through technologies which can drastically reduce the unit operating costs to reach 

markets both east and west (Kotzot et al. 2007). 

 Accessing markets: The access to various markets by a successful marketing 

team cannot be over emphasized. To commercialize resources it is needed to find 
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viable gas markets. The effort should be to access traditional LNG markets in 

Japan, Korea and China and develop new opportunities in Europe and in India. 

 

b) Having the right partners: Most major projects involve complex commercial 

arrangements across numerous companies and shareholders. In this situation, making 

quick decisions can be challenging and project schedule can be delayed by slow 

responses from joint venture partners (McKenna et al 2006). While joint venture 

partners for contractors’ can help mitigate risks, however a number of interfaces 

challenges needed to be resolved because of distinction in the cultural background, 

work culture, approach to the jobs and interface handling. Complex dealings and 

conflict of interest between parties may delay decision making. Sometimes the 

various parties work in cocooned environment with restricted information exchange 

(Kotzot et al. 2007). 

 

c) Having the right financial plan: As the global market for LNG has developed, 

financing has always required careful planning and is becoming increasingly 

complex. The financing cost includes the interest on equity and debt on capital 

expenditure, as well as the operating capital necessary for the initial phases of the 

project until LNG revenues will cover operating costs and other repayment 

obligations. Various aspects of financing that need to be considered include project 

rate of return, long-term demand, political and regulatory stability, production 

covered by take-or-pay arrangements, risk allocation among the sponsors, 

creditworthiness of the buyers and the availability of security or guarantees. (Kotzot 

et al 2007).  

 

d) Having Stable Political & Business Environment: Having a stable political and 

business environment engenders large scale investment. Host governments 

frequently require that international partners use local suppliers with whom oil and 

gas companies do not have an established track record for material and services. The 

decision making mechanisms of the host governments are often unclear and the 

interference can lead to significant schedule delays (McKenna et al 2007). 

 Managing relationship between NOCs and IOCs: The world is witnessing a 

greater role for International Oil Companies (IOCs) with more LNG 

developments. Relationships between National Oil Companies (NOC) and 

International Oil Companies (IOC) have changed over the past twenty years as 

NOCs have allowed increased participation and involvement of IOCs in the 

development of LNG project structures. IOCs can bring project and process 

management skills, risk sharing and understanding, political risk overview, 

access to market, access to alternative LNG supply, human resource support, 

finance, technology and support for development of the local market to LNG 

project chain (Ledesma, 2007). 

 

e) Cost related issues: 

 Contract and cost escalation: Owners continue to offer lump sum contracts 

while contractors manage most of the project risk alone. To reduce and spread 

the risk exposure in large projects the contractors show preference to joint 
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venture. It introduces some degree of complication when the joint venture 

partners are geographically diversely located, have different cultural and 

linguistic background and have different corporate culture. This can be 

problematic, since megaprojects put particular stain on labour availability and 

delivery of long lead items (McKenna et al 2006). Lump Sum Turnkey (LSTK) 

contracts mean that contractors have had to bear some of the financial load of 

cost escalation and materials shortages. The contactors favour moving towards 

time and material charges cost-plus contracts rather than lump sum contacts for 

high risk projects, which push the financial risks back onto project sponsors, 

often adding additional complexity and time to final decision-making by 

sponsors (OECD/IEA/ 2008). 

 Lowering costs thorough technology: Cost reduction throughout the value 

chain is a major contributor towards success in the LNG business. Working out a 

series of scale and technology initiatives have contributed to holding cost well 

below industry benchmarks. The application of large train LNG technology, 

“Design One, Build Multiple” strategy state-of-the-art turbines, compressors and 

heat exchangers with greater efficiencies have delivered a significant competitive 

advantage (EM Energy project doc. 2005).  

 Material Related Cost: Material costs can vary substantially from historical 

norms depending on the technical requirements of the project and the condition 

of the materials market during the procurement effort. As the number of 

equipment items increases, the total cost of material also increases, which is a 

primary concern to build large facilities. The proportion of material cost to total 

plant cost will affect comparisons of specific cost among LNG projects as the 

material market has outpaced economy of scale benefits over recent years 

(Kotzot et al, 2007). 

 Capital cost: The difficult part is to define what is “right” in order to achieve the 

lowest cost and shortest schedule. “Lowest cost” is the most crucial driving 

factor in every project. Although Life Cycle Cost is often cited as a criterion in 

plant design, it seldom becomes more influential than lowest capital cost (Kotzot 

et al 2007). The specific cost of an LNG plant has become a metric to compare 

projects against each other. This dollar per ton per year number, referred to as 

“dollars per ton”, is frequently cited in technical and commercial literature. 

Standardizing design when possible and a focus on technological innovation 

when replicating technology can reduce project cost. However when there is a 

step change in size, complexities and technology content standardization may be 

difficult to achieve. 

 Value of Replication: There are various benefits for replicating the design and 

construction and implementing lessons learnt of an existing project. The other 

benefits are reduced capital costs, reduction in execution time, enhanced safety, 

completion, quality performance and quicker facility availability. The success of 

the RasGas expansion Project and lessons from the value of replication have 

served as a springboard for even larger LNG expansions in Qatar. Both RasGas3 

and sister Qatargas companies built six of the world’s largest LNG trains while 

employing the same contracting and replication strategies that have been tested 

and proven by the RasGas expansion projects (Khoo et al, 2007). 
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f) Competition among contractors: New LNG projects are facing a limited pool of 

contractors capable of building new plants. High commodity costs for construction 

materials, intense competition for skilled labor and project delays are becoming the 

norm, rather than the exception. To counter constraints in the Engineering, 

Procurement and Construction (EPC) contracting business, including a shortage of 

capacity in many areas and rising prices, a contracting strategy should foster 

competition, while retaining control over the areas where proprietary technology is 

involved. To deliver the project safely, on time and to budget, and at the right quality 

a ‘One Project, One Team’ ethos on the project should be followed encouraging all 

involved to work together in a cooperative fashion(Brown, 2009). In Qatar, 

unanticipated requirements or delays in awarding smaller contracts at Qatargas and 

RasGas allowed cost increases, which postponed the start-up by at least six months, 

and had a domino effect on the other projects down the line (Kotzot et al 2007). 

 

g) Supply value chain: Traditional LNG models have an upstream investor group 

comprising state-owned enterprises and international oil and gas companies selling 

to a downstream credit-worthy off-taker. With the evolution of the LNG industry, 

upstream participants are getting interested in downstream investments and vice 

versa. A fully integrated ownership allows the project sponsors to internalize risks, 

increase commercial flexibility and value chain integration. Projects are constrained 

in raising capital unless they are part of a fully integrated value chain: from 

upstream, liquefaction, shipping, re-gasification, and even to off take and marketing. 

The challenge for sponsors and lenders is to connect the links with interdependent 

financing and investment commitments and commercial relationships, while still 

preserving each link’s economic viability, collateral, and the ability to tap separate 

pools of capital (LNG Focus, 2005). 

 

h) Managing Technical Risk: Building a large project tries to take advantage of 

economy of scale with a step change from the past, while maintaining an acceptable 

level of risk. The risk of using new technology and new equipment should be 

properly assessed and mitigated.  A structured approach to risk management during 

the maturation of project elements with attention given to both technology 

integration and technology qualification activities is required. In Qatargas2 project a 

number of new step-out technologies implemented presented a major challenge in 

itself requiring a very rigorous and structured approach to ensure the design, 

construction, installation and operations (Khoo et al 2009). Introduction of new 

technology adds to project complexity and can be problematic (McKenna et al 

2006). Technology Qualification Management System (TQMS) is a key to 

systematically determine the suitability of all new critical equipment and processes. 

(Thompson et al, 2004). 

 

i) Human resources angle to project success: Success of any large project has a 

human resources angle to it and depends on the team and leadership. Some of the 

key elements towards the success of Engineering and a Project organization largely 

depend on mobilizing the staff and sharing the vision of the project, establishing 

proper communication between them, organizing a strong Project Implementation 
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Team and helping in removal of organizational barriers in the system (Luan, Wray 

2007). 

 Short supply of technical talent: There is a challenge for the LNG industry to 

attract, develop and retain talent for reasons such as job insecurity from single 

project mentality, perception by youngsters that oil and gas is a sunset industry, 

lack of formal career path for the project staff after completion of the project and 

lifestyle issue, since most activities take place in remote locations putting 

hardship on families. Hence engineers are not opting oil and gas as a career 

option (McKeena et al 2006). 

 Having the right people: A major contributor to the success of a project is the 

cost of labour, availability of quality labour force which is both plant size and 

location dependent, and varies significantly based on project location (Kotzot et 

al 2007). The labour rate and labour productivity factor and a more expensive 

location significantly change the contribution of labor to the metric for specific 

cost. With labor costs accounting for up to 50% of the cost of construction which 

is quite significant, the impact of labor has to be considered separately from the 

cost of equipment (Ledesma 2007). While industry is aggressively managing 

material costs, labor is the largest variable. For example, as might be expected, in 

the United States material and labor are the major components in construction 

(Herron, 2008). 

 Building the Producing Organization: When building large Greenfield and 

Brownfield projects the operating organization has to look into building a 

permanent organization, which takes over the facility from the project 

organization and operate it successfully for the rest of the period of the life of the 

facility. A producing organization is required to ensure completion and 

integration of the projects into operating organization and make sure that the 

organization is prepared to assume ownership and operatorship of the new 

facilities and achieve production, safety, and availability goals when completed. 

Road Map or execution plan have to be created so as to identify, plan, schedule, 

steward and execute the tasks to ensure readiness for operations consistent with 

the project schedule. The task is to identify and work key interfaces necessary to 

achieve operational readiness (Qatargas, BTPO 2006). 

 Handling resistance to change: A major obstacle to implementing a new 

project delivery is the sheer inertia within the organization. People are 

accustomed to developing, planning, and exploiting opportunities in a particular 

way. The firm, as well as its entire supporting infrastructure, may be organized to 

sustain the old way of planning and executing projects (Luan & Wray 2007). To 

establish a sense of urgency, management should call for action and 

communicate the risk involved in not achieving the goal. This will instill 

promptness in action among the project personnel. 

 

2.3     Major Processes of Large Capital Intensive Ventures: 

 
2.3.1        Finance: 

 

The challenges of financing massive infrastructure projects with billions of dollars of  
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investments require independent commercial and financial evaluation and structuring of 

various sources of capital. Consortiums are formed in order to share and spread the 

risk. In general project funding begins with consideration of three key elements such 

as the main risks and the risk owners, the project structure and who provides the 

money (Deloitte Resource News, 2005). Project financing is a type financing of a 

particular economic unit where a lender is initially satisfied to look to the cash flow 

as the source of repayment of the loan and the assets as the collateral of the loan 

(Gajameragedara et al 2008). Project finance is usually based on single special 

purpose company’s asset’s cash flow. A fundamental concept inherent in all project 

finance deals is the structuring of future cash flows to meet the debt obligations of the 

project. As such, a project must demonstrate its ability to service debt, even under 

adverse circumstances, before lenders become comfortable with the deal (White and 

Case 2004). The recovery of the debt is dependent on the performance of the project. 

By this mechanism the borrower transfers some of the project risk to the lender 

which is normally reflected in a higher financing cost. However all cost can be more 

than offset by significant risk mitigation, expanded debt capacity and better 

management due to enhanced transparency of the project(White and Case 2004).In 

project finance the bank finances a Special Purpose Vehicle (SPV) that will build 

and operate a project and the SPV has off-take contract with an end user.  

 

2.3.2 Commercial: 

 

The commercial risk of LNG plants entails balancing the capital and operating cost with 

the projects’ expected cash flow generated by the LNG production. Over past decades, 

liquefaction of natural gas has matured to become an economically viable as well as a 

technically and commercially proven scheme for shipping natural gas from remote 

production locations to distant consumers. Reducing the specific cost of LNG by up-

scaling liquefaction trains and increasing their productivity through innovative 

technologies is a recognized industrial trend. The size, production and monetization of 

the gas resource are the biggest commercial challenges in developing LNG projects due 

to the uncertainties associated with the quality and deliverability of the gas and the 

economy of scale required for a liquefaction plant. LNG projects are designed and 

driven by economy of scale and environmental concerns of the host country related to 

gas flaring. Most commercial issues associated with an LNG plant are resolved on the 

same basis as a plant by the project sponsors, suppliers, contractors and host government 

and trade-offs required to make the project viable (Chiu, 2006). 

 

2.3.3 Contracts: 

 

Determining the correct form of contract can have a great effect on the cost and risk 

associated with a major project. Proper front-end definition work can identify the 

stakeholders’ expectations, project priorities and critical success factors early on. This 

information is a must in order to correctly identify the proper contract strategy and 

structure required to meet the project objectives. Failing to meet the project objectives of 

safety, cost and schedule stems from misunderstanding the objectives of the project from 

the conceptual stage and therefore often leads to improper selection of the contract type 

(Agnitsch et al, 2001).The cost of construction varies inversely with the amount of 
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business risk the owners and financers are willing to accept. The less business risk the 

owner wishes to assume, the higher the cost of construction. This follows the “risk-

reward” motto for business (Prodigy, 2006). The two most common types of contacts in 

a LNG project are EPC (Engineering Procurement and Construction) “turn-key” and 

EPCM (Engineering Procurement, Construction and Management).  Each of these 

methods has variations that can be adapted to each project as needed (Prodigy 2006). 

 

2.3.4 Environment: 

 

It is widely believed that the greatest contribution to be made to slow the pace of global 

warming is to reduce the use of carbon rich fossil fuels which is related to the human 

demand for energy and subsequent release of carbon into the atmosphere. Dashwood 

(2010) adds that “rising greenhouse gas emissions pose a significant risk to society and 

ecosystems” and that “many emissions were energy related.” Natural gas is a much 

better fuel than liquid hydrocarbons in terms of emissions. If Propane is used instead of 

Natural Gas (Methane) the emissions are 15% higher and the use of Fuel Oil increases 

the emissions by more than 50%. This is due to the ratio of hydrogen to carbon that is 

much lower in heavy hydrocarbons than in methane (Rabeau et al, 2007).Total life cycle 

greenhouse gas emissions from the use of LNG, spanning the complete LNG chain from 

production through to consumption, are markedly lower per unit of energy than 

traditional fossil fuels such as coal or fuel oil. The available options for reducing 

greenhouse gas emissions in each LNG segment will ultimately determine which 

technologies are economically sound for a particular project in the LNG chain (Chiu 

2003).Not only can LNG production reduce the flaring and venting of associated gas 

from oil production, thus reducing the greenhouse gas emissions, but also the re-gasified 

fuel can be used in a combined cycle gas turbine (CCGT) power plant to increase 

efficiency. Greenhouse gas emissions are quantified in the form of carbon dioxide 

equivalent emissions and recommendations are made for process and technology 

improvements.  

 

2.3.5 Procurement and logistics: 

 

Procurement involves purchasing, subcontracting, field materials functions, and all 

related activities. Sourcing of the materials and services is done from financially sound, 

reputable organizations with proven performance track record. Proper planning and 

documentation of procurement activities with adequate resources assigned to manage the 

processes and deliveries is vital to meet all project schedule requirements. Procuring a 

comprehensive power-to-compression solution from a single point of responsibility 

offers a host of benefits for end customers and EPCs alike. A single point of contact can 

lead to significant reduction of interfaces, simplifying project management and 

communications, reducing engineering, erection and commissioning time and costs 

(Siemens, 2005). 

 

2.3.6 Safety: 

 

Safety Health and Environment (SHE) philosophy is based on the belief that all 

incidents  
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can be prevented and demonstrated by giving SHE the highest priority and 

implementing adequate measures. The overall goal of Safety, Health, Environmental and 

Security philosophy is to protect the health and safety of persons, equipment and the 

environment. An effort to foster a culture that understands and recognizes hazards and 

takes proactive and pre-emptive actions to eliminate all hazards is the need for every 

project. OHSAS 18001 Occupational Health and Safety Zone provides information, 

guidance, resources and recommendations to help organizations address the 

requirements to manage health and safety more effectively. It helps minimize risk to 

employees, improves an existing Occupational Health and Safety management system 

and demonstrates diligence and gains assurance (The Health and Safety & OHSAS 

Guide; 2013). Meyers et al (2007) opine that while recent projects teach important new 

lessons regarding LNG safety and reliability, every stakeholder in each LNG project 

must identify risks throughout its chain, evaluate and quantify under various likely 

scenarios, develop mitigation measures to reduce the risk to an acceptable level, and, 

finally, make business decisions based on the best available assessment of all 

interrelated risks. 

 

2.3.7 Quality: 

 

Basic quality requirements for projects are defined by the International Standard such as 

ISO 9001 in accordance with international best practices. ISO 9001:2008 specifies 

requirements for a quality management system where an organization needs to 

demonstrate its ability to consistently provide product that meets customer and 

applicable statutory and regulatory requirements, and aims to enhance customer 

satisfaction through the effective application of the system, including processes for 

continual improvement of the system and the assurance of conformity to customer and 

applicable statutory and regulatory requirements(ISO-9000, 2013).A stricter regime of 

quality control and verification, both through internal training and external certification, 

can help improve quality record even in the face of future competitive cost pressures, 

new players, and inexperienced new employees. The demand for highly skilled 

employees outstrips the supply across the energy industry, nowhere more so than for 

contractors with LNG experience and capabilities. On three recent occasions, suppliers 

have delivered cryogenic equipment with substandard welding quality.  One of these 

incidents caused a leak with subsequent ignition and explosion – the infamous Skikda 

accident. The two others were detected, and the consequences were limited to serious 

project delays. The difference may have been a simple matter of personnel that were 

better trained to recognize risks, and managers that were willing to take action (Meyers 

et al, 2007). This signifies the importance of quality in infrastructure projects. 

 

2.3.8 Human Resources: 

 

Planning and executing large, high risk, capital projects means that the organizations 

have to create and maintain their project delivery systems. It is a major challenge to 

develop and implement a robust project management processes to support high capital 

expenditure projects. The major obstacle to implementing a new project delivery system 

or project management processes is the sheer inertia within the existing organization. 

The firm, as well as its entire supporting infrastructure, is organized to sustain the old 
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way of planning and executing projects. The systemic challenges include all systems 

associated with human resources, management information, business processes and 

support staff that apply an organizational and behavioral change model for overall 

success. Success of any large project has a human resources angle to it and depends on 

the team and leadership (Luan and Wray, 2009). 

 

2.3.9 Operation: 

 

With an ongoing industry trend towards larger train sizes, and more emphasis placed on 

higher energy efficiency and lower greenhouse gas (GHG) emissions, the use of a 

technology that helps in ease of operation, reduces the operating expenditure to help the 

bottom line success. To that effect large electric motors to drive the compressors 

becomes of increasing interest (Kleiner et al 2005). The flexibility of operation also 

should include operation under varying climatic, gas compounds, density, volume flow 

rates and pressure levels. Achieving high levels of efficiency and availability will 

translate directly in an increased production output and an improved product quality 

(ABB, 2009). 

 

2.3.10 Maintenance: 

 

Maintenance is intended to achieve a maximum overall availability of the plant facilities 

at a minimal cost while ensuring safe operating conditions. This is achieved by internal 

control, coordination and efficiency and effectiveness by minimizing facility down time 

so as to achieve optimum equipment performance by minimizing maintenance costs in 

balancing direct and indirect costs. In today’s competitive market Asset Management is 

very essential for all enterprises, especially for asset intensive industries like Liquefied 

Natural Gas (LNG). Best Asset Management practices would be the premier tools for 

customer satisfaction, budget control, and firm’s edge over its competitors. The basic 

philosophy of maintenance of major process, rotating equipment and instrumentation 

should be predictive as opposed to reactive (Qatargas Maintenance documents, 2010). 

To accomplish this objective several asset management tools such as the Machinery 

Management System, Instrument Management System etc. can be included in the project 

design. These systems shall be networked to make the asset management diagnostics 

available remotely to maintenance personnel.   

 

2.4 Project Execution: 

 
Execution of the work to design, construct, install and start-up follows a discipline and 

orderly management approach outlines a Feasibility Study, followed by the pre-Front 

End Engineering Design, appropriate management reviews and completion of the Front 

End Engineering Design, EPC (Engineering Procurement and Construction), bidding 

and award of contract for execution of facilities, mechanical acceptance followed by 

commissioning and handover (Qatargas project documentations, 2005). The important 

elements of project execution have been discussed below (Qatargas project 

documentations, 2005): 
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- Design and Engineering: During design and engineering, specifications, standards  

and regulations need to be complied within consideration of operability, 

accessibility,  

maintainability and constructability by taking in to account start up, shutdown and 

upset conditions.   

  

- Equipment and Equipment Sparing: Special attention need to be given to 

standardization and interchangeability of equipment, noise level and maintainability 

and consequence of failure of a single component or auxiliary component by 

adequate sparing. Equipment needs provisions for safe maintenance actions.  

 

- Human Factors: Human Factor principles for safe and operable equipment be 

incorporated into the facility design. The guidelines require adequate access, egress, 

ease of operation, ease of maintenance and accessibility andfuture growth.  

 

- Project Management Team organization: Project Manageent Team ensures 

performance in accordance with the requirements of the project, fully adapted to 

each specific phase of the work  and resourced to complete the work in scheduled 

time. 

 

- Teambuilding Program: Teambuilding session are held to develop a high-

performing team working environment. Team building workshops are held at key 

project milestones and phases of the project.    

 

- Cost Effectiveness and Design Enhancements: The opportunities for potential 

improvements of the facilities should be evaluated and an economic analysis should 

be condcuted for cost savings and cost effectiveness. 

 

- Information Security: Tight security should be maintained for all sensitive 

documentation and other information to minimize any opportunities for 

individuals/organizations to obtain information without specific authorization. 

 

- Training of Personnel: A training program need to be developed in accordance 

with the requirementsso as to make the personnel ready to operate and maintain the 

plant. 

 

- Management of Changes in the work: Although the general effort is to minimize 

changes, design deveopment  and other changes occurs during project, hence a 

management of change procedure should be developed and implemeneted with 

adequate risk assessments as required for various changes.   

 

- Interface Management; It is required to establish for coordination for sharing of 

data and information for tie in among the various subprojects and other external 

operating plants for which an interface management has to be adopted. 
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2.5 Project Controls: 

 
The Project Controls Plan which includes a standard project controls systems and 

procedures, reflecting minimum requirements to address key controls activities 

including: Planning and Scheduling,  Progress Monitoring System, Cost Control and 

Estimating, and Accounting Procedure, Close Out Report and Change control is required 

to be developed and implemented. Planning and scheduling should meet the Project 

Completion Milestones including an appropriate level of detail in recognition of 

interfaces and coordination with  other entities. Systems should be capable of producing 

a comprehensive range of reporting options to provide timely and concise decision-

making information. Actual progress, showing start and finish dates, should be 

monitored against these schedules on an ongoing basis and available for formal 

distribution, to support the progress (Qatargas project documentations, 2005).Liquidated 

damages are payable in case performance guarantees are not met. It should guarantee the 

quantity of product defined with respect to the required input to the specifications. As 

soon as possible after the startup at a stage of running in steady conditions and the 

feedstock has reached its operating specification, a test run is undertaken in order to 

verify the performance guarantees for capacity and quality at their maximum operating 

conditions. If any guarantee is again not met, contractor shall have the option to pay 

liquidated damages in lieu of undertaking modifications due to performance 

deficiencies. If any LNG train fails to achieve an agreed auto-consumption level, the 

contractor has to pay liquidated damages as applicable (Qatargas project 

documentations, 2005). After completion of the work a project closeout report is 

produced, which summarizes the technical scope, project schedule, and cost of the 

activities. This report should incorporate overall summaries at the end of the work. It 

should further include a lessons learned report that covers engineering, procurement and 

construction. Lessons learned should focus on recommended strategies, plans, 

procedures and tasks that should be modified to enhance the execution success of the 

subsequent project (Qatargas project documentations, 2005). 

 

2.6 Risk Identification/Allocation/Mitigation: 

 
Risks affecting organizations can have consequences in terms of economic performance 

and professional reputation, as well as environmental, safety and societal outcomes. 

Therefore, managing risk effectively helps organizations to perform well in an 

environment full of uncertainty.ISO31000:2009, (Risk management) – Principles and 

guidelines, provides principles, framework and a process for managing risk. Using ISO 

31000 (ISO 31000, 2013) can help organizations increase the likelihood of achieving 

objectives, improve the identification of opportunities and threats and effectively 

allocate and use resources for risk treatment. The success parameters for any project are 

in timely completion, within the specific budget and with requisite performance or 

technical requirement. Large-scale project are exposed to uncertain environment because 

of factors such as planning and design complexities, presence of various interest groups, 

resources availability, climatic conditions and economic and political environment and 

statutory regulations etc. The first task in management of a project is to acceptance of 

the fact of existence of risk and creation of a framework for risk identification and 
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management(Holding et al, 2007).Established project management practice starts with 

proper project definition and forward planning followed by careful management of 

costs, time and resources during the design, engineering and construction, 

implementation and operational phases so as to extract maximum economic value from 

the investment by minimizing risk of failure to comply with the project objectives. 

Through the correct assessment and quantification of risk the appropriate mitigation 

strategy can be applied from the Transfer, Take, Terminate or Treat the associated risk. 

Project Value can be destroyed by unmitigated risk impact and the process should 

address this possible consequence in the context of probabilistic analysis of the 

Schedule, Estimate and Project Economics (Holding et al, 2007). Risk Management is 

the systematic and structured process of identifying, analysing and managing risks in 

order to maximize project value. In other words risk is the identification and recognition 

of uncertainty which can have either positive (opportunity) or negative (threat) 

implications, and in some cases both. The process involves an examination of the 

likelihood or probability of a risk happening and the associated consequences if it does 

occur. Risk Management minimizes the probability and consequences of adverse events 

and ensures those risks accepted by the project have been allowed adequate contingency 

in the budget if they were to occur (Holding et al, 2007).The key steps in this 

management process are a) Risk identification b) Risk evaluation c) Risk mitigation d) 

Review and closure(Qatargas project documents, 2005). 

 

2.7 Risk Register: 

 
A key output of the risk management process is the Risk Register. It is a live document 

that captures key information about risks and their mitigating actions and is the key 

management tool for communication and tracking of risks/actions. Identified risks are 

captured and recorded on a Risk Register which allows priorities to be set and identified 

mitigating actions to be tracked until closure (Qatargas project documentations, 2005). 

 

2.8 Risk Management Methods: 

 
Risk management is an increasingly important business driver and stakeholders have 

become much more concerned about risk. Risk may be a driver of strategic decisions, it 

may be a cause of uncertainty in the organisation or it may simply be embedded in the 

activities of the organisation. An enterprise-wide approach to risk management enables 

an organisation to consider the potential impact of all types of risks on all processes, 

activities, stakeholders, products and services. Implementing a comprehensive approach 

will result in an organisation benefiting from what is often referred to as the ‘upside of 

risk’ (http://theirm.org/documents/SARM_FINAL.pdf, 2013). 

 

a) Ishikawa diagram: 

 

Ishikawa diagrams also called fishbone diagrams, or cause-and-effect diagrams that 

show the causes of a specific event. Common uses of the Ishikawa diagram are to 

identify potential factors causing an overall effect. Causes are usually grouped into 

major categories to identify these sources of variation. When there is a problem, it's 

http://theirm.org/documents/SARM_FINAL.pdf
http://en.wikipedia.org/wiki/Cause
http://en.wiktionary.org/wiki/event
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important to explore all of the things that could cause it, before starting to think about a 

solution. That way the problem can be solved completely. It is a Cause and Effect 

Analysis with this diagram-based technique, that consider all possible causes of a 

problem. 

 

A fishbone diagram helps identify the cause and effect relationship that exists in every 

system. The head of the fishbone diagram is the effect; the bones (typically six) in the 

fishbone diagram are the generic causes behind every effect. Kaouru Ishikawa (1915-

1989), a renowned Japanese engineer, identified the generic causes in the fishbone 

diagram as the six Ms: Machines, Manpower (people), Methods (Processes), Mother 

Nature (Environment), Money and Measurement (The Fishbone diagram and The 

Reverse Fishbone Diagram Conceptswww.processexcellencenetwork.com, 2013).  

 

 
 

Figure 2.1 Ishikawa diagram: (Ref-The Fishbone Diagram and the Reverse 

Fishbone Diagram Concepts; www.processexcellencenetwork.com, 2013) 

 

b) Five whys: 

 

The ‘5 Whys’ is a method of asking questions ‘why’ several times to explore the 

cause/effect relationships underlying a particular problem. The ‘5-Whys’ is a simple 

problem-solving technique that helps to get to the root cause of a problem quickly in a 

simple, easy to learn and apply method (Qatargas document, 2010). 

 

c) Fault tree: 

 

Fault Tree Analysis attempts to model and analyze failure processes is basically 

composed of logic diagrams that display the state of the system and is constructed using 

graphical design techniques. Typically failure rates are derived from substantiated 

http://www.processexcellencenetwork.com/
http://www.processexcellencenetwork.com/
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historical data such as mean time between failure of the components, unit, subsystem or 

function. It also helps identify corrective actions to correct or mitigate problems 

(Qatargas project document, 2010). 

 

d) Root Cause Analysis:  

Root Cause Analysis implies the conducting of a full-blown analysis that identifies the 

Physical, Human and Latent Root Causes of how any undesirable event occurred. The 

analysis may include safety incidents, quality defects, customer complaints, 

administrative problems and the similar events. Root Cause Analysis is applicable to 

many more than just mechanical situations (Qatargas project document, 2010). 

 

e) Failure Mode and Effects Analysis (FMEA): 

 

A FMEA is an inductive analytical technique used to identify hazards in complex 

process systems. A failure mode is an event that causes a functional failure and a failure 

effect describes what happens when the failure mode occurs, which should be analyzed 

in sufficient details for it to be possible to select a suitable failure management policy 

(Moubray, 1992).An FMEA involves a tabulation of potential failure modes of various 

components of a system and the effects of these failures on the overall system. It also 

includes an estimate of consequences resulting from the failures. The traditional Failure 

Mode & Effect Analysis (FMEA) is commonly used in many industries to identify and 

address design deficiencies in the early stages of a development (Judd et al, 2007). 

 

2.9 Value Engineering: 

 
Value engineering can be defined as an organized effort directed at analyzing designed 

building features, systems, equipment, and material selections for the purpose of 

achieving essential functions at the lowest life cycle cost consistent with required 

performance, quality, reliability, and safety (U.S General Services administration, 

2013).Value engineering is a systematic and organized approach to promote substitution 

of materials and methods with less expensive alternatives, without sacrificing 

functionality(www.investopedia.com, 2013). From the point of view of the LNG 

production facilities, the concern is in developing a low cost and technically sound 

process solution with desired plant reliability, availability, maintainability. Again, the 

conflict between the desire to reduce project cost and the evaluation of production and 

delivery risks requires an understanding in order to achieve a compromise on the cost-

benefit ratio of a particular project. It is recommended that these value engineering 

should include all the possible contributors to cost effectiveness, such as owners, 

contractors, vendors, process licensors, etc. The growth of LNG train size is the result of 

technical teams attempting to achieve the lowest unit cost of LNG production. At the 

same time, these larger capacity single trains are in many cases able to satisfy the typical 

market size contracts that the commercial teams are developing. As a result, the LNG 

business has started to see the appearance of single train projects, both grass roots and 

expansions, with similar capacity/availability as some of the existing multiple trains 

projects. (Durr et al, 2001).Another concept that has been proposed is to build “small” 

LNG plants, to avoid all the problems associated with larger projects. This concept does 

http://www.investopedia.com/
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not seem to be economic except for example, if the small plants are close to the market 

thus reducing the cost of LNG shipping, then the higher unit cost of LNG production 

associated with small plants may still be economic, when looking at the project as a 

whole. Another possible situation is where there is very significant step out technology 

or infrastructure that would lower the cost of production (Durr et al, 2001).Increased 

competition in the LNG market results in downward pressure on LNG prices. The 

response is a push for cost savings in all aspects of the LNG chain, namely gas 

production, liquefaction, shipping, re-gasification and pipelining. Many of the proposed 

cost reduction measurements are based on economy of scale, integration of facilities, 

modularization, and reduction in spare equipment and use of larger ships with alternative 

propulsion systems(Durr et al, 2001). Hence Value engineering should therefore be used 

to aid selection of the best solution. 

 

2.10 Availability, Reliability, Maintainability, Capability: 

 
For a project in process industry, it is always desired to have the lowest life cycle cost. 

However, the traditional approach considers the capital cost, operation cost etc. except 

the cost related to the process reliability and availability. Once the design is fixed, it may 

be later discovered that the system does not provide the sufficient reliability and 

availability. However, it may be very expensive to change the design at this time. This 

reality drives a proper Reliability, Availability and Maintainability (RAM) studies 

upfront, simultaneously with the design, so as to avoid any major changes in order to 

maintain production with a reduced down time during the life of the plant. To 

understand the relation between reliability, availability and maintainability is very 

critical for integrating RAM study into process synthesis (Yin et al 2009). The elements 

of the effectiveness equation provide insight into how things work in a continuous 

processing plant and clues to where corrective action may be helpful. In all cases, 

alternatives should be considered, based on life cycle costs, for ranking the high cost of 

problem so the important issues can be identified for corrective action (Barringer, 1997). 

 

a) Reliability: 

 

Reliability deals with reducing the frequency of failures over a time interval and is a 

measure of the probability for failure-free operation during a given interval. In other 

word, it is a measure of success for a failure free operation (Barringer, 1997). Reliability 

is defined to be the probability that a component or system will perform a required 

function for a given period of time when used under stated operating conditions. Mean 

Time To Failure (MTTF) and Mean Time Between Maintenance (MTBM) are two of 

reliability measurements (Yin et al, 2009).If the time (t) over which a system must 

operate and the underlying distributions of failures for its constituent elements are 

known, then the system reliability can be calculated by taking the integral from‘t’ to 

infinity, as shown in the following equation (DOA, 2007)  

 

      
Reliability: R(t) = e 

(-t/MTBF)
 = e 

(-t)
  (Yin et al 2009) 
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(Where  is constant failure rate and MTBF is Mean Time Between Failure and ‘t’ is the 

number of hours in a year.) 

MTBF measures the time between system failures for a given mission time, to achieve 

high reliability, a long MTBF is required which increases productive capability while 

requiring fewer spare parts and less manpower for maintenance activities which results 

in lower costs (Barringer, 1997). It is closely related to downtime due to corrective 

maintenance. To the user of a product, reliability is measured by a long, failure free, 

operation. Long periods of failure free interruptions results in increased productive 

capability (Barringer, 1997). 

 

b) Availability: 

 

Availability deals with the duration of up-time for operations and is a measure of how 

often the system is alive and well. It is often expressed as: 

 

Availability= (Up time)/(Up time + downtime) (Yin et al, 2009) 

 

Up time refers to a capability to perform a task and downtime refers to not being able to 

perform the task. As availability grows, the capacity for making money increases 

because the equipment is in-service a larger percent of time (Barringer, 1997). Jaimeson 

(1998) defines availability as the net annual production divided by the design daily 

production multiplied by the number of days in a year. The plant availability is closely 

related to the plant downtime, which is the sum of the preventive maintenance and 

corrective maintenance hours. Very frequent preventive maintenance will cause the 

operation to lose profit through reduced product throughput. Insufficient preventive 

maintenance will cause the process to suffer unscheduled breakdowns, needing 

corrective maintenance. The trade-off is an optimal Preventive Maintenance (PM) 

interval exists at the point where the availability is the highest with efficient utilization 

of maintenance resource. 

 

c) Maintainability: 

 

Maintainability deals with duration of maintenance outages or ‘how long’ it takes to 

achieve, with ease and speed. The key figure of merit for maintainability is often the 

mean time to repair (MTTR) and a limit for the maximum repair time based on the total 

down time for maintenance including: diagnosis, trouble shooting, tear-down, 

removal/replacement, active repair time, verification testing that the repair is adequate, 

delays for logistic movements, and administrative maintenance delays.  

 

Maintainability M(t) = 1- e 
(-t/MTTR)

 = 1 –e 
(-t); 

 

Here stands for constant maintenance rate and MTTR is the mean time to repair. High 

availability (high up-time), high reliability (few failures) and high maintainability 

(predictable and short maintenance times) tend toward highly effective systems if 

capability is also maintained a high levels (Barringer 1997). 
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d) Capability: 

 

Capability deals with productive output and is a measure of how well the production 

activity is performed compared to the datum. This index measures the systems capability 

to perform the intended function on a system basis. Often the term is the synonymous 

with productivity which is the product of efficiency multiplied by utilization. Efficiency 

measures the productive work output versus the work input. Utilization is the ratio of 

time spent on productive efforts to the total time consumed or available (Barringer 

1997). 

Capability= Efficiency x Utilization 

 

e) Effectiveness: 

 

Effectiveness is defined by an equation as a judging the opportunity for producing the 

intended results and how well the product or process satisfies end user demands and to 

find areas for improvement. Higher effectiveness is generally better than lower 

effectiveness. Effectiveness is generally a measure of value received (Barringer 1997). 

Effectiveness = availability * reliability * maintainability * capability 

 The effectiveness equation is the product of: (Barringer 1997) 

- The equipment/ system will be available to perform its duty (Availability), 

- It will operate for a given time without failure (Reliability), 

- It is repaired without excessive lost maintenance time (Maintainability), 

- It can perform its intended production according to the standard (Capability). 

 

f) System effectiveness equations (Effectiveness/LCC): 

 

System effectiveness equations are helpful for understanding benchmarks, past, present, 

and future status as shown in for understanding the trade-off. Referring to the figure 

below the lower right hand corner brings much joy and happiness often described as 

“bang for the buck” (Weisz, 1996). The upper left hand corner brings much grief. The 

remaining two corners raise questions about worth and value (Barringer, 1997). The 

major and unarguable economic issue is finding a system effectiveness value which 

gives lowest long term cost of ownership using lifecycle costs (LCC) for the value 

received. 

System effectiveness = Effectiveness/LCC (Barringer, 1997). 

 
Figure 2.2 System Effectiveness Example Source (Barringer, 1997). 
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In the above example shown, although the plant C has a lower capability because of its 

higher availability and reliability and a lower Life Cycle Cost (LCC) has a better 

effectiveness that Plant B. The elements of the effectiveness equation provide 

information about how things work in a continuous processing plant and where 

corrective action may be particularly helpful. In all cases, alternatives should be 

considered, based on life cycle costs, for ranking the high cost of problems so the 

important issues can be identified for corrective action (Barringer, 1997). 

 

g) Thermal efficiency: 
 

Thermal efficiency of a LNG facility is defined as the total energy that can be sold from 

the facility divided by the total energy that is delivered to the facility. Thermal efficiency 

is an important benchmark that is used to compare various liquefaction technologies. 

Higher thermal efficiency can significantly lower lifecycle operating costs and improve 

plant economics. LNG operators can greatly improve profitability by focusing on plant 

thermal efficiency (Meher-Homji et al 2008). The thermal efficiency of a LNG facility 

depends on factors such as gas composition, inlet pressure and temperature, compressor 

driver selection, the use of waste heat recovery and self-generation versus purchased 

power. A common consideration in evaluating competing LNG technologies is the 

difference in thermal efficiency.  When evaluating the benefits of achieving a high 

thermal efficiency with a specific LNG plant design, a true accounting of all of the 

energy being consumed in the process must be considered. Turndown capabilities of an 

LNG process also need to be considered when thermal efficiency and lifecycle 

comparisons are being made. The efficiency of a LNG process is dependent on two most 

significant factors; efficiency of heat exchange and the turbo-machinery efficiency. The 

turbo-machinery efficiency depends on the compressor and turbine efficiencies (Meher 

Homji et al, 2008). Keeping the compressor efficiency constant if the driver efficiency is 

improved by replacing the gas turbine by a more efficient driver such a Variable 

Frequency Drive (VFD) electrical motor system with a much higher efficiency the 

overall LNG process efficiency can be improved. 

 

2.11 Technology Qualification Management: 

 
Technology provides organizations with the opportunity to transact business more 

efficiently and effectively. It is changing at a faster pace, which has significant 

implications on conducting new project work. In an era where the new technology 

development is the order of the day the question that needs to be asked is how a 

technological change affects the way we conduct business to achieve a corporate bottom 

line success (Frame, 1994). Increasingly challenging projects increase the likelihood that 

new technology will be required. In order to make advances in technology, it is 

necessary to develop and execute a risk management plan to ensure that technology 

advances are correctly executed with minimum risk. When evaluating the risk for new 

technology prototypes it has to be determined as to what extent the technology is new, 

i.e. how different it is from something that is proven and how many years of proven 

experience in similar service. The key to successful risk management is to first identify 

all the project risks in three categories: design, execution, and prototype or unproven 
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technology. Once the risks are identified, the relative importance of each risk is 

determined by estimating the cost of eliminating or substantially reducing each risk item 

(Durr et al, 2001). A structured approach to risk management during the maturation of 

the project has to be undertaken, with considerable attention given to both technology 

integration and technology qualification activities for critical processes and equipment. 

Technology Qualification Management System Process has to be employed to 

systematically determine the suitability of all new critical equipment and processes. 

While challenging from the standpoint of financing, technical and project execution 

considerations, all key issues need to have been addressed and the pathway for a 

successful project to be clearly defined (Thompson et al 2003). Pinkerton (2003) 

believes that Technology Qualification Management System is the process of analyzing 

available technologies in assessing the comparative value of alternative technologies in 

relations to ventures undertaken. This process not only identifies and addresses the 

knowledge and technology gaps that may exists and must be overcome but also assist in 

pointing out the risk involved in such frequently overlooked factors such as potential 

early obsolescence and insufficient knowledgeable resources both in-house and 

outsources. 

 

Risk= f (probability or likelihood of occurrence x consequence of occurrence) 

 

To reach an agreement and optimize the cost of the project and its ability to finance it is 

necessary to provide a quantitative risk assessment of all proposed cost reduction 

measurements. The risk is defined as the consequence of not achieving the required 

production as a result of a given upset condition directly related to the proposed cost 

reduction scheme. Technology Qualification Management is the process of providing the 

evidence that a technology will function within specific operational limits with a 

specified level of confidence. Consequence of an event can be quantified in monetary 

units as per above formula or in lost production days, which are always convertible to 

monetary units. These additional requirements can be justified and the resultant increase 

in capital costs accepted based on ease of operation, safety, risk aversion, increased 

production and the like. The issue is not one of trimming specifications but one of 

understanding all their consequences and insuring they will meet the project objective 

(Durr et al, 2001).Since the large investments incurred and success of the project hinges 

on these technologies, a very rigorous and structured approach need to be developed for 

the introduction of new technologies, from project inception through all the stages of 

project execution and in to operations (Khoo, 2009). This formalized technology 

qualification process is a systematic method for analyzing cost, schedule, risk, reliability 

and a process of supporting integration of new technology into projects. Technology 

Qualification is a tool to qualify or move “emerging technologies” to a deployment-

ready state (Chaplin,2009). In order to manage the implementation; these technologies 

can be divided into three categories, new to the industry, new to the company, and 

significant step outs in size (Khoo et al, 2009). Improved technology will play an 

increasingly important role in achieving the corporate bottom line. A structured 

approach maximizes the chances of success of deploying new technology. A Successful 

Technology Qualification Process provides a tool to efficiently assess the readiness of 

new technologies to be used to assess both internal and external technologies by a 

scalable process for technology qualification (Chaplin, 2009). It helps in technology 
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deployment with an increased level of confidence through a better understanding of the 

risks and probability of success. A multi-disciplinary, cross-company team supported by 

participation will help in assuring alignment of stakeholder. Working in close 

partnership with critical vendors, extensive and elaborate modeling and testing programs 

and a comprehensive review to assess potential issues and mitigation actions is required.  

 

2.11.1 Technology Qualification Process (TQP): 
 

As the analysis progresses the process should be documented. Pinkerton (2003) outlines 

the following steps to be followed in new technology qualification process. A statement 

of objective laying out the parameters for the analysis has to be followed by a list of 

potentially viable sources that comply with the statement of objectives. An examination 

of previous qualifications and application and pilot plant testing should be conducted. 

Complete review of safety and environmental issues to be done to ensure that process or 

equipment confirm to regulations. Financial comparisons factors including initial cost of  

equipment, operating and maintenance considerations including compatibility with the 

existing work force have to be studied. The licensing and legal ramification of acquiring 

anyone of the alternative technologies with long rage corporate strategies has to be 

analyzed. Chaplin (2009) suggests the fowling Technology development Process 

workflow(Figure 2.3) and Technology Development Stage (TDS) Table (Table 2.1). 

Qualification process is a necessary first step in the deployment of new technology. The  

Technology Development Process (TDP) may take several iterations of the Process 

cycle to reach the desired Technology Development Stage (TDS).  

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Technology development Process workflow: Source Chaplin (2009) 

 

The key is to minimizing significant step-outs in technology, leveraging previous 

experience in similar project execution, keeping a close oversight during engineering 

design, manufacturing and testing, ensuring an adequate design margins, implementing 

an extensive audit program and a comprehensive testing program, ensuring advanced 

manufacturing technology and a rigorous vendor qualification and ensuring online 

maintenance capability(Khoo et al 2009). 
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TDS 

Strategic 

research 

 

 

 

  Technology     

development   

 

 

 

 

 

  Application 

 Name Description 

1 Initiation Basic principles observed and reported 

2 Concept Technology concept and/or application formulated 

3 Proof of 

concept 

Analytical and environment critical functions and/or 

characteristics proof of concept 

4 Integration Component and/or bench configured and sub-system 

validation in laboratory environment 

5 Demonstratio

n 

Component and/or bench configured and sub-system 

validation in real world environment 

6 Prototype System or sub-system model or prototype demonstration in a 

relevant environment 

7 Pre-

production 

System prototype or system demonstration in the intended 

operating condition and environment 

8 Production Actual system completed and qualified through tests and 

demonstration in realistic operating environment 

9 Field proven Actual system(s) proven through successful field 

operation@Chevron U.S.A Inc alright reserved 

                 

Table 2.1:  Technology Development Stage, (Source Chaplin, 2009) 

 

2.12 Sustainability: 
 

Sustainability in general refers to the property of being sustainable and a sustainable 

development is a progress that meets the needs of the present without compromising the 

ability of the future generation to meet their future needs. The benefits are reducing 

operating and maintenance cost, enhanced productivity, improve safety, environment 

quality and reduce greenhouse emission and by this increase overall profit (Gulati, 

2013). A sustainable company in industry considers not only business development and 

profit, but also environmental protection and social responsibility. However, 

stakeholders are now demanding proof of the “overall sustainability performance” of 

operational initiatives such as undertaken projects or technological innovations.  Brent et 

al (2004) have outlined the drivers that need to be incorporated into the business process 

for sustainability. This involves incorporation of sustainability as a core business process 

by pressure from regulating authority as a license to operate. Investors also push the 

organization to incorporate sustainability to demonstrate good corporate governance. 

International trade agreement also insists on sustainability practice for license to sell the 

product. Last but not the least the business process is aligned with and supported by the 

responsibility and care principle of corporate social responsibility. 

 

To assess the sustainability of such operational initiatives in industry, Brent et al (2004) 

suggest following measures to understand the extent operational initiatives are aligned 

with the principles of sustainable development: 

 

 The interaction of life cycles from an industry perspective must be addressed. 

 A framework of sustainable development criteria, relevant for operational initiatives 

in industry, must be defined. 

 Two types of sustainable development indicators namely, the environmental and 

social dimensions of sustainability must be followed. 
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Figure 2.4: Drivers to incorporate sustainability into business Ref- Brent et al, 2004 

 

In order to assess sustainability performances in industry, a framework of appropriate 

criteria and associated indicators has to be defined. A number of current integrated 

frameworks, need to be reviewed to determine the relevant aspects or criteria that should 

be considered when assessing industry sustainability. From a business perspective, the 

inclusion or consideration of social aspects in sustainability practices is marginal 

compared to the environment and economic dimensions. Certain social impacts are more 

important in certain phases, while it has been evident that stakeholder participation is 

crucial in all life cycle phases (Brent et al 2004).  

 

2.12.1 Environmental Impact Assessment (EIA):  

 

EIA (Environmental Impact Assessment) assesses the potential impacts of a proposed 

activity on the environment. It describes the impacts, and documents ways to avoid, 

minimize or mitigate potential negative impacts of a project. The ISO 14000 family 

addresses various aspects of environmental management. It provides practical tools for 

companies and organizations looking to identify and control their environmental impact 

and constantly improve their environmental performance (ISO-14000, 2013). An EIA is 

a process designed to contribute pertinent environmental information to project decision 

making. The assessment attempts to predict or measure the environmental effects of the 

project and rank their environmental significance, apart from identifying methods to 

prevent or minimize those effects.  Long and Short-Term potential impacts are identified 

for the design, construction, operation, maintenance, decommissioning and 

abandonment of the project (Qatargas project documents, 2006). 

 

2.13 Life cycle process and interactions: 

 
A prerequisite for aligning operational initiatives, such as undertaken projects or 

technological innovations, with the principles of sustainable development is a clear 

understanding of the various life cycles that are involved and the interactions between 

Introduction of sustainable development, 

International standards and guidelines 
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these life cycles. Three distinct life cycles can be distinguished, namely: project life 

cycle, asset or process life cycle and the product life cycle.  

 

 
Project Life Cycle: 

 
 

Acquisition phase                              Utilization phase 

 

Asset/Process Life cycle: 

 

 

Product Life cycle: 

 

Figure 2.5: Interaction between the project, asset and product life cycles (Brent et 

al 2004). 

A project in this context is viewed as a vehicle to implement a capital investment in a 

new or improved asset or technology. Each of these life cycles consists of various phases 

(Figure2.5) and nevertheless interacts, for example: the product and asset life cycles 

interact, while the asset and the project life cycle also interact (Figure 2.6 and 2.7). 

 

Project Life Cycle:  

 

 

 

 

 

 

Asset/ Process Life cycle 

 

Figure 2.6: Interaction between the project and asset life cycles(Brent et al 2004) 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Interaction between the asset and product life cycles (Brent et al 2004) 
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If the sustainability of a project or technology is assessed, the impacts or consequences 

of the assets and products associated with the project or technology must be included in 

the assessment (Brent et al 2004). 

 

2.13.1 Whole Life Cycle costing: 

 

Whole life cycle costing approach, based on cost of ownership rather than capital cost, 

to design, procurement, construction and facilities management is delivering major 

benefits. Recent initiatives whole life costs in order to prepare detailed financial and risk 

management plans for projects. Performance and durability of components are 

inadequately considered and maintenance and operating costs rarely forecast. However, 

for every unit of capital cost, several units are spent on maintenance, staffing, 

opportunity loss and environmental consequences. Savings in whole life costs can thus 

be dramatic over the operating life of the asset benefiting both the clients and the supply 

chain (Meyers et al, 2004). 

 

2.14 Life Cycle Cost and Profitability Analysis vs. Capital Cost: 

 
Life Cycle Cost, or the total cost of ownership, is an economic index widely used today 

to aid in the analysis and selection among different project designs or process 

alternatives. Life Cycle Cost is not an index of profitability. It does not measure income 

and compare it to cost as profitability does, but looks only at total cost. Estimates of 

project’s profitability are the basis for a project approval if it satisfies the precondition of 

adequate returns (Durr et al 2001). Profitability is expressed in different ways i.e. as time 

to recover the investment, as return on investment, as net present value at a chosen fixed 

rate of return etc. Life Cycle Cost is expressed only on a monetary basis (Durr et al 

2001). Since Life Cycle Cost is applied for a given period of time, all deferred costs are 

converted to net present value (NPV) for comparison purposes. A typical profitability 

analysis uses the discounted cash flow rate of return criteria, which includes all cash 

flows (in and out flows) over the entire life of the project, and adjusts them normally to 

the start-up time. The calculation required for the cash flows of the project is equivalent 

to the calculation of the Life Cycle Cost. This is normally defined as the sum, 

throughout the lifetime of the plant, of the capital expenditures (CAPEX), operating 

expenditures (OPEX); maintenance expenditures (MAINTEX). The calculation of the 

NPV assumes a rate of inflation and/or price increase and compensates with the required 

capital interest rate. Although, both economic criteria, profitability and Life Cycle Cost, 

complement each other, they are used for different purposes. In general, it can be said 

that while profitability is mainly a concern of high-level management, Life Cycle Cost is 

a concept used for making engineering decisions between alternative options or tradeoff 

studies during design, operation, and maintenance of the plant facilities (Durr et al 

2001). A major consideration in the Life Cycle Cost and/or profitability analysis is the 

effect that schedule reduction has on the economics of the project. This is due not only 

to their sensitivity to interest rates, escalation costs, etc. but also to the project viability, 

often based on a window of market opportunity. As such, the speed to the market is a 

key element between the technical and commercial teams. Hence, the technical design 
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must have the project execution schedule as one of the primary considerations in the 

technical design. It is important when comparing Life Cycle Costs that all cost 

throughout the defined life span of the plant be considered. Thus, Life Cycle Cost should 

include direct and indirect cost, maintenance and operational cost, service reliability and 

its effect on overall production. A structured methodology should be followed to obtain 

the necessary information in order to make informed decisions. In this regard, the use of 

a reliability/availability/ maintainability (RAM) model is of paramount importance to be 

able to quantify proposed changes in terms of availability and product deliverability. 

Another advantage of the Life Cycle Cost analysis is that it often helps to identify where 

data deficiencies are reducing the accuracy of the analysis and costing money. There is 

always the tendency by the contractor to reduce the scope and its initial capital cost in 

order to provide the lowest lump sum bid. However, this may be at odds with the owners 

desire to reduce lifecycle cost. Hence in the bidding process, the owner should be very 

clear about his evaluation criteria. It should be emphasized that since profitability is a 

long term concept it can only be determined after a long period of time of operation 

(Durr et al 2001). Profitability calculation for future projects are only estimates and short 

term profitability should be reviewed very carefully. In order to improve the overall 

performance of the project, successful operation in the first few years is paramount. 

Hence, an analysis of this aspect of the economics is essential in the proper selection of 

the technical solutions (Jamieson, 1998).   

 

2.15 Life cycle evaluation: 

 
Capital cost is not the only driver in project economics and capital cost reduction cannot 

be an objective all by itself. Capital cost must be balanced with fuel costs, maintenance 

costs, and plant reliability. Safety and environmental issues are also of paramount 

importance. The full impacts of capital cost decisions must be analyzed overall aspects 

of the project and over its entire life. Total cost of ownership or life cycle cost evaluation 

is common terms for this kind of assessment. Unless reliability and availability issues 

are addressed properly and maintenance costs evaluated thoroughly it is easy to reach 

wrong conclusions. Furthermore recommendations based on simple payback evaluations 

or even net present value economics can be wrong unless proper consideration is given 

to tax and financing issues (Jamieson, 1998). 

 

2.16 Criteria for selection of a compressor driver: 

 
Most of the processes in the chemical, oil and gas industries are complex and are 

exposed to the harshest environmental conditions. These conditions put a high demand 

on the process equipment. Achieving high levels of efficiency and availability will 

translate directly in an increased production output and an improved product quality 

(ABB, 2009). Before selecting the main drivers for the large compressors used in the 

process plant, the following factors needs to be considered (Meher‐Homji, 2011).  

 

 Driver Power Capability- The power developed by the driver must be appropriate 

for the worst case situation taking into account the highest ambient temperature, and 

a level of performance degradation over the life.  
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 Reliability and Availability Experience –The viability of the LNG Plant is highly 

dependent on availability of the refrigeration equipment. The reliability takes into 

account forced outages, while the availability parameter includes scheduled and 

planned maintenance schedules including the force ones. 

 

 Capital Cost – The competitiveness and viability of a LNG project is very sensitive 

to the installed cost. The capital cost of power generation must be considered as the 

selection of driver type will impact power generation requirements. 

 

 Technical Issues– These include the operating speed of the driver, speed variability, 

starting torque capability and controllability and rotor-dynamics considerations. 

 

 LNG Plant Thermal Efficiency Considerations- With the increased emphasis on 

limiting global warming, and as fuel costs increase, the issue of overall thermal 

efficiency  is important consideration without sacrificing reliability and availability. 

LNG technologies should be compared based on thermal efficiency and economic 

and environmental merits.  

 

 Operation at part load conditions: As the temperature changes during the day it 

impacts the performance of  the gas turbines and the operator needs to continually 

adjust plant parameters to achieve optimal performance which impacts overall 

thermal efficiency of the gas turbine and the plant and lifecycle costs. The turbo 

machinery efficiency depends on the compressor and gas turbine efficiencies. 

Compressor driver plays an important role in the thermal efficiency, greenhouse gas 

emissions, and flexibility under various operating conditions. Where high fuel costs 

are expected, the selection of a high efficiency driver becomes a strong criterion in 

the lifecycle cost evaluation.  

 

 Effects of site conditions on driver performance (Meher‐Homji, 2011): It is 

important to understand the effects of site conditions on gas turbine performance as 

they directly will impact the LNG production rate. Site conditions such as ambient 

temperature, altitude (atmospheric pressure), Inlet filter pressure losses; exhaust 

system pressure losses, ambient humidity effects and influence in changes in fuel 

heating value are some of the factors that directly affect the gas turbine output. 

 

 Improved control and flexibility of processes: Outputs of oil and gas fields can 

vary greatly in their compounds, density, volume flow rates and pressure levels. This 

imposes varying operating conditions on process equipment, which means that 

compressors and pumps, which must exhibit a high degree of flexibility, cannot 

always be operated at their optimum design point.  

 

 Reduced faring: The drive need to be considered that can restart the compressor 

after a trip with fully pressurized condition without have to flare the inventory which 

lead to loss of revenue and increase emission. 
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 Multiple start an restarts: The drive which gives a flexibility to start several time 

without being have to wait for thermodynamic stress consideration. 

 

 Least time to start and load: The drive that gives the flexibility to load quickly 

without thermodynamic stress concerns. 

 

 Life cycle benefits: The drive system which offers a life cycle benefit should be 

considered. Generally the efforts of project are centered on reducing the CAPEX, 

whereas for life cycle benefits both CAPEX and OPEX should be considered. 

 

2.17 Conclusion: 

 
In order to achieve successful outcome of any project there are various aspects that need 

to be looked into. Every project is unique in itself as far as the challenges faced, 

resolutions achieved and lessons learnt. A conventional approach to project management 

is to establish an adequate relationship among all the phases of the project, forecast 

project achievement for building confidence in the team, make decision on the basis of 

available data base, provide adequate information for effective management to enable to 

achieve corporate bottom line(Fink and Beaty, 2001). Risk analysis is important to make 

objective decision for completing the project in time, within the budget and within the 

requisite specification in line with the project objectives and organizational policy. 

These are some of the factors that drive the decision about the new project and affect the 

amount and type of investments. Taking short cuts in making economic analysis may 

lead to inappropriate decisions.LNG business remains a highly capital intensive, 

technologically sophisticated, long-term business, needing long-term planning and 

continuing cooperation between the project host country, sellers and buyers (Troner 

2001). In the coming years, there is a huge market growth potential for LNG. To that 

effect a Technology Qualification Management Process is essential to formally assess 

technology and make high quality risk-based decisions regarding deployment of new 

technology in to a new project based on life cycle benefits. This process should be 

applied to qualify conventional, step out, scale up or new technology. The above 

discussion about literature review delves into literatures related to successful completion 

of large projects and the factors that need to be looked into from an Engineering 

Management perspective. 

 

2.18 Hypothesis Building: 

 
The hypothesis of the study has been built in three steps. In the first step alternative 

option to the conventional compressor drivers have been discussed. The next step 

identifies the gap in research between the convention and the proposed alternative. The 

final step the hypothesis is built. 

 

2.18.1  Alternative theory:  

 

When given to decide an alternative technology to the convention the bottom line is that 

it is either better or worse. The decision on the project depends on value of the project 
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cost and receipts, interest rates, possible returns, tax regulations, available financing risk 

and reward etc. As per Fink and Beaty (2001) the investment decision to choose between 

alternative technology depends on ability to borrow money, relative risk between 

alternative, possibility to capitalize tax benefits, timing of the costs and revenue based 

on schedule completion, ability to shift investments to a more attractive alternative and 

ability to maintain and operated the equipment cost effectively. The technological 

innovations and improvements are changing the LNG business today. By lowering costs 

and increasing flexibility, these changes will have dramatic impact on the development 

of the LNG business, with important consequences. Rising environmental concerns are 

growing world concerns. Hence a technology that provides a lesser environmental 

impact will certainly will have to be considered for future LNG development. Further, 

the section 2.17has discussed various criteria for selection of a compressor driver for 

LNG process. In theory moderately large Variable Frequency Drive (VFD) motor 

systems which are used as starter/ helper motor for the large gas turbine compressor 

strings have the potential to be used as a main driver to the compressors and fulfill the 

future requirement of LNG process driver better than the conventional gas turbine 

drivers. 

 

2.18.2 Need for research, knowledge gap and research contribution: 

 

No major substantial study has been done so far to research whether a VFD Electrical 

motor system hitherto referred to as “All-Electric Drive” system can be used as a main 

driver for the major compressors in the LNG plant by completely replacing the 

mechanical gas turbine drives. Further, the constraints and hurdles for an All-Electric 

drive concept has not yet been thoroughly dealt with. A detailed research needs to be 

carried out to bridge this gap so that a viable alternative to the conventional gas turbine 

driver can be identified. Further, there is a need for a study to determine why it not 

preferred as an option in present LNG development and bridge the gap in knowledge 

and understanding. The purpose of the project is to explore various aspects of 

engineering management and will do a detail investigation on the challenges faced on a 

major project from a life cycle perspective and from engineering management stand 

point. As ‘All Electric’ LNG is a concept that is yet to catch up with the imagination of 

the LNG developers, is it will be an interesting and challenging subject to research and 

find whether it is a better alternative to conventional gas turbine driven LNG project. A 

detailed investigation on engineering, technical, environmental, contractual and 

operational perspective will be carried out to understand the issues that are encountered 

while building and operating large capital intensive projects. This research will 

contribute towards improved insight into key management and technical theories and 

practices and application to a real life plant environment. This study will also contribute 

towards broadening and deepening knowledge base on dynamics of technological 

innovation, qualification, application and management of various risks and challenges 

faced in managing large assets. The life cycle advantages of an “All Electric LNG” over 

a “Gas turbine driven LNG” have to be thoroughly researched. The technological 

challenges of All-electric concept need to be identified along with area of further 

research and development. This will help future researchers to concentrate on critical 

areas which are responsible for reducing the reliability concerns of an All-electric 

concept. 
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2.18.3 Hypothesis: 

 

Almost all the LNG project the main drivers of compressors are gas turbines. 

Considering the constraints of the gas turbine as a main driver it is pertinent to look into 

other technologies that may provide and life cycle advantage over the gas turbines. 

Hence, the hypothesis is going to test as to whether an “All-electric LNG is a viable 

alternative to the gas turbine driven LNG from life cycle perspective”. 
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CHAPTER 3 

 

Methodology 

 
3.1 Introduction: 

 
Gas turbines have been mainly used for driving process compressors in LNG (Liquefied 

Natural Gas) operations for a long time. In gas compression stations there is extensive 

use of electrical motors. However, in the field of LNG there are not many references of 

use of electrical Variable Frequency Drives (VFD) motor system exclusively used for 

driving large compressors in the LNG trains. However, they have been used in 

applications of the pumps or compressors for smaller capacity. Recently larger VFDs up 

to 45MW capacity have been utilized in the LNG to start and help Gas turbine 

compressor strings. Hence it will be interesting to study as to whether electrical VFD 

motor system can be upsized to successfully drive large compressors in LNG process 

Trains by replacing the gas turbines completely and whether there are any life cycle 

advantages to this concept. Being an electrical engineer with a considerable work 

experience in LNG industry, I intended to use both my engineering and management 

credentials to pursue a study on ‘All Electric LNG’. The method adopted for this 

research comprises of theoretical analysis, quantitative and qualitative research with 

considerable overlap in the contents. Theoretical Analysis which is primarily concerned 

with "Theory Building" forms the common foundation for the remainder of the project 

(Swatman, 1998). In addition to the case study approach, which is classified as being 

qualitative, are a number of other approaches which are considered to be quantitative 

such as descriptive, correlational, and comparative studies etc. Qualitative approaches 

rely on the use of a small number of cases. Quantitative approaches on the other hand, 

rely on a large number of cases for undertaking statistical analysis (George &Bennett, 

2005).According to Hoffman (2009) the strongest means of drawing inferences from 

case studies is the use of a combination of within-case analysis and cross-case 

comparisons within a single study or research program. This study used considerable 

desk research combined with case studies approach, questionnaire survey, statistical and 

mathematical analysis. A questionnaire survey has been carried out to gather ideas and 

opinions of the industry experts on the subject. A statistical analysis of maintenance data 

using Meridium Software has been carried out to analyze the reliability of the VFD 

system to find out areas that need further improvement. Goal of this section of the 

Method chapter is to describe why and how the particular unit of analysis was selected. 

This prepares the reader for what is to follow and provides a framework within which to 

incorporate the material. As per Johnston (2012) the ‘Methodology chapter’ is a good 

starting point to explain how the study was carried out in a logical order. This chapter 

describes the process of the study to help understand and appreciate the links among the 

research problem, the method, and the results. The following discussion is based on 

guidelines suggested by Narasimhan (2006). 

 

3.1.1 Assumptions: 
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A number of case studies have been analyzed in my approach and a number of 

secondary data have been utilized from these case studies to build the life cycle cost/ 

benefit analysis. The assumption is that the data available in the public domain is 

credible, reliable, dependable, transferable and current. The cost benefit calculation uses 

extrapolated data collected from these case studies and the correctness of the results 

depend on the reliability of these data.  

 

3.1.2 Limitations: 

 

Financial and statistical data have been collected from published article available in the 

public domain. There is a limitation of use of other data that may be available, which are 

credible and recent but which may be considered proprietary and sensitive. While 

proprietary, classified and sensitive data may have been able to give a more accurate 

cost benefit data, such data have been avoided largely because of potential limitations 

and restriction on its use. A minor error could have crept in to the calculation because of 

the above reason, but that would not change the final outcome of the study as the 60% to 

70% of the additional income in ‘All Electric ‘ option is based on additional online-

stream days of operation which forms the bulk of the income. Minor change to the other 

cost saving may have a small change in the overall net income.  

 

  3.1.2.1 Limitations of data/ information: 

 

The research used both qualitative and quantitative approaches. Research quality is 

heavily dependent on the individual skills of the researcher and more easily influenced 

by the researcher's personal biases and idiosyncrasies. Secondary research is research 

already published, and is the cheapest form of research because the data already exists 

for acquisition. Secondary research can be split into internal and external research. It is 

easy to find and collect secondary data. However, one needs to be aware of the 

limitations the data may have and the problems that could arise if these limitations are 

ignored. Secondary data can be general and vague and may not really help with decision 

making. The information and data may not be accurate. The source of the data must 

always be checked. At times the data presented maybe old and out of date. The sample 

used to generate the secondary data maybe small. Gathering and processing data can be 

very expensive. As the All Electric LNG still on a conceptual stage there is lack of 

enough information hence one has to rely on available data from secondary sources. 

There are often time and resources constraints. The value of any research findings 

depend critically on the accuracy of the data collected. The data collected from the OEM 

may be representing vested interest and may have any bias. Data quality and reliability 

can be compromised if the data obtained from above sources. There is also the issue of 

legal and ethical constraints of using confidential data. There is also a possibility that 

data is collected from sources that do not have sufficient in depth knowledge about the 

subject. 

 

3.1.3 Delimitations: 

 

Delimitations imply limitations to a research design that has been imposed deliberately. 

The research study has been carried out on an onshore LNG project. Although the 
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concept can be expanded to an offshore LNG plant or FPSO(Floating Production 

Storage and Offloading) installation and compressor stations, the cost and benefit 

calculations has to be carried out specifically for such cases as the variables might be 

different. 

 

 3.1.4 Originality:  

 

No major full scale research studies have been carried out on electric VFD drives being 

used for a LNG project replacing the gas turbine drives for compressor application in my 

knowledge except some case studies and paper presentation in conferences. Hence this 

study has originality both in its approach and outcome.  

 

 3.1.5: Period of study: 

 

The period of study is from 2009 to 2013 during which all the data have been sourced, 

gathered and analyses and conclusion drawn. 

 

3.1.6 Approach: 

 

In the introduction chapter (Chapter 1), I have introduced the readers on Liquefied 

Natural Gas and its use. The use of gas turbines in LNG production has been discussed 

and concept of all-electric LNG has been introduced. The literature review chapter 

(Chapter 2) supports the project and forms the basis of the project objective. A study in 

Engineering Management is not complete without delving deep into the various 

challenges of Engineering Management of large capital intensive ventures. The chapter 

‘Life cycle management challenges of large projects’ (Chapter 4) discusses various 

issues related to Financial, Commercial, Contractual, Procurement and Logistical, 

Safety, Human Resources, Environmental, Engineering, Construction, Commissioning, 

Startup, Operation and Maintenance aspects specific to LNG projects. The subsequent 

chapter (Chapter 5) discusses the various advantages and disadvantages of Gas turbine 

driven LNG project and All-Electric driven LNG project and makes a critical 

comparison of the pros and cons of either systems. Being a step out technology, the all-

electric concept has its own share of technical challenges. Major technical challenges 

and mitigation measures are discussed in the chapter (Chapter 6) entitled “Technical 

challenges of All-Electric Concept”. In this chapter the reliability and availability of 

large VFD system operating for a starter/ helper function has been analyzed using SAP 

which is used as a CMMS (Computer Maintenance Management System) Software 

function and Meridium software, which is one of the Reliability analysis software to 

compare design versus actual figures and areas of further improvements have been 

identified. Moving on the next chapter a number of “Case studies” (Chapter 7) 

conducted by renowned stakeholders and major players in LNG business such as Shell 

Global Solutions, Shell Development (Australia), Foster Wheeler, Conoco Philips, 

Total, ABB Process Automation Oil and Gas, Bechtel Corporation, CFAST consortium 

(comprising Chiyoda, Foster Wheeler, ABB and Stolt), TOTAL, TMEIC GE (Toshiba 

Mitsubishi/ General Electric), Kellogg Brown and Root have been analyzed and 

discussed. Some of the case studies are in the main text and some of them have been 

incorporated in to Appendix B. Based on the information and data collected, a “Life 
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cycle cost benefit analysis” model (Chapter 8) has been built to demonstrate the 

economic advantages of All-Electric LNG. I have generated calculations for an annual 

saving for a 7.8MTPA (Million Tons Per Annum) LNG plant, which is the largest size 

of single LNG Train built so far, for an all-electric over a gas turbine drive option. 

Further, I have made use of Net Present value (NPV) and Sensitive Analysis for various 

discount rates, plant sizes and LNG unit prices to strengthen and support the hypothesis. 

I have also carried out a questionnaire survey to gather ideas and opinions of 

experienced personnel in the LNG field to get an all-round perspective. Subsequently, 

the questionnaire survey results have been discussed in the subsequent chapter (Chapter 

9) entitled “Questionnaire Survey Discussions”. The last chapter (Chapter 10) entitled 

“Conclusion and further research” has summarized the entire study and has discussed 

areas of further research.   

 

3.1.7 Rationale behind this approach: 

 

Designing a research study comprises three general framework elements. Firstly, the 

philosophical assumptions and theoretical perspectives need to be established. Secondly, 

the general procedures of the research, i.e. its strategies of inquiry are set. Finally, 

detailed procedures of data collection, analysis, and reporting are determined (Koivisto, 

2008). The above approach makes proper use of all these three steps to build analyze 

and conclude the study. 

 

      3.1.8 Validation of the hypothesis: 

 

A validation plan for the hypothesis using studies, modeling and simulation etc. has been 

discussed below. 

 

a) Scope : 

 

The entire hypothesis that an “All-Electric LNG is a viable alternative to the gas turbine 

driven LNG from life cycle perspective” is being validated during the study. The idea of 

the study came to my mind while working in the project, from 2004 to 2009, to build a 

2x7.8MTPA (Million Tons Per Annum) LNG plant driven by General Electric Frame 9 

gas turbine-compressor strings being started and helped by large VFD driven motors (60 

MW short time and 45 MW long time rating) functioning as starter/helper/generator. I 

thought of studying the possibility of upsizing the VFD motor system to take up the full 

compressor load and replace the gas turbine altogether. I had a very faint idea that the 

system may work from informal discussions with some colleagues, manufacturers and 

contractors. There has been no major research carried out in this field to my knowledge 

and I had to device my own original approach to this study. The overall philosophy 

approach was to use a combination of Theoretical, Quantitative and Qualitative 

approach with data sourced from internet, company intranet, LNG Seminars, paper 

presentations, Case studies, discussion with experienced and knowledgeable personnel 

in the industry, construction and commissioning test results and available maintenance 

data.  
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b) Other approaches considered/ discarded:  

 

Initially my idea was not to go for the questionnaire approach. The reason being there is 

not much information available on all–electric LNG as only one operational plant, 

‘Snohvit LNG’ operated by Statoil in Norway, based on all electric technology was 

commissioned a few years back. Since the subject is highly technical the response base 

is very much limited to LNG personnel with experienced only. Further, based on the 

novelty of the technology a limited number of people have knowledge about All-Electric 

LNG. Nevertheless, I decided to go ahead and conduct a questionnaire survey to get the 

present level of awareness of the industry professionals and to gather any new 

perspective that may spring from the survey. The response rate to the survey was 50% as 

many of the respondent decline to comment as they thought they did not have enough 

knowledge to make a fair judgment. Nonetheless, I received some interesting 

observations and got some new perspectives. I have discussed these ideas in my study in 

the “Questionnaire survey discussion” and “Summary” chapters.  

 

c) Negative or counter-intuitive results: 

 

During the course of study, I made a statistical analysis of the reliability of the VFD of 

the Qatargas major expansion Trains used as starter/helper for the gas turbine- 

compressor string. Contrary to the claim of the manufacture the reliability of the IGBT 

(Insulated Gate Bipolar Transistor) cells has been lower and also the availability of the 

VFD threads was lower than the designed value. This is discussed in details in the 

chapter entitled “Technical challenges of all electric concepts”. Further research should 

go into improving the reliability of the cells and also reliability of the cell by-pass 

contactor so that redundancy features can be fully realized to improve the reliability and 

availability of the VFD motor system. 

 

d) Instances where hypothesis breaks down: 

 

The all-electric motor system needs a large combined cycle power plant to supply the 

large motors. The power generation and distribution system has to be constructed for a 

high reliability and a low electricity generation cost. Imposition of penalty on emission 

is another area which will support an All-Electric concept as it has potential of reduced 

CO2. There are other conditions that do not support the hypothesis, which are discussed 

below. 

 

a. Low reliability of the VFD motor system will be counter-productive to the 

hypothesis. 

b. Low reliability and low stability of electrical power generation and distribution 

during system disturbance does not support this hypothesis. 

c. Low gas price to electricity price ratio, which may of course change over time, 

means a higher electricity price, leads to a much lower marginal cost benefit. 

d. Major routine inspection requirement for static equipment reduces the available 

additional stream days. If the routine inspection can be delayed by non-intrusive 

inspection that will support the all-electric concept. 
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e. Lack of confidence of financiers to fund a new technology and stick to time tested 

gas turbine system although it has a lower availability and efficiency. 

f. If loss of additional stream days is not considered as a production loss but a 

temporary opportunity loss which can be compensated at a later day.  

g. The entire business strategy is built around gas turbine by factoring in the loss of a 

few days of production in a year due to routine maintenance of the gas turbine.  

 

3.2 Source of Data and information: 

 
a. Internet: 

 

Internet is an excellent and a vast source of information on natural gas. There is access 

to various journals and websites that proved to be valuable sources of information and 

greatly facilitated the research work. 

 

b. Intranet: 

 

Company’s intranet is a large data base of information. The share point is a location 

where a plethora of information is stored. As an employee of the company I had access 

to test and maintenance data which was made good use of to study the reliability of the 

VFD-motor system. Project documentations were also utilized to gather information on 

the gas turbines and VFDs. 

 

c. LNG Seminars, paper presentations: 

 

Seminars and workshops and forums on Natural Gas are held throughout the world 

every year. Papers presented during the seminars also provided vital pieces of 

information to help the study work. 

 

d. Case studies: 

 

Several case studies have been carried out by eminent players from the LNG industry 

from the clients, EPC contractors, financial entities and research bodies. These studies 

were analyzed to get a wider view point and an all-round perspective. There were 

arguments both in favour and against the All-Electric system which made interesting 

reading. This information has also helped in building my Life cycle cost benefit analysis. 

 

e. Experienced and Knowledgeable personnel of the industry: 

 

By questionnaire survey approach and personal interview approach it was possible to 

gather various perspectives from knowledgeable and experienced industry professionals. 

 

f. Test results: 

 

Various test data gathered during the manufacturing, construction, commissioning of the 

gas turbine and VFD system stood in good stead during the study process. 
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g. Maintenance data: 

 

Qatargas 2 utilizes an electrical motor system with VFDs of 45MW (60MW short term) 

as starter/ helper motor on the main gas turbine-compressor string for the pre-cooling, 

refrigeration and sub-cooling circuits. The compressor string is mainly powered by the 

gas turbines. On the basis of my experience and involvement on manufacturing, testing, 

commissioning and maintenance of the VFD system and the gas turbine driven 

compression system, I have gained considerable exposure and gathered some useful 

information about the VFD driven motor system. I made use of the wealth of data from 

my project and maintenance experience, which was brought to good use to advance my 

study. 

 

3.3 Tools and Measures: 

 
This section describes the particular measures employed and how they measured the 

variables specified in the research questions and hypotheses. Questionnaires are not the 

only type of data collection instrument as behavioral observations, extended interviews, 

and archival data all constitute valid sources of data for dissertation research (Sage, 

2007). Potential problems of relying on archival data are missing, incomplete, or 

compromised data. This can take the form of an insufficient sample size, the absence of 

information on important variables that were not included in the original data collection, 

or the reliance on flawed or out of date measures (Sage, 2007).  

 

- Peer Review or Debriefing: 

 

Many qualitative researchers make use of peers or colleagues to play the role of devil’s 

advocate, asking tough questions about data collection, data analysis, and data 

interpretation to keep the researcher honest. The other role of the peer reviewer is to 

provide professional support (Sage, 2007). I had assistance of some of the peers in 

analyzing and interpreting the data for reliability analysis of Qatargas VFD motor 

system. 

 

- Sampling: 

 

Strauss and Corbin (1998) stressed that several forms of sampling are appropriate at 

various stages of the study. Data collection should be stopped when the results start to 

become redundant is the key determinant of sample size (Sage, 2007). It is important to 

collect sufficient data to represent the breadth and depth without becoming 

overwhelmed. During collection of data from case studies and collecting information 

from published articles, the above points had been kept in mind. 

 

- Criteria of Adequacy and Appropriateness of Data: 

 

Adequacy pertains to the amount of data collected in a qualitative study. Adequacy is 

achieved when enough data has been obtained so that the previously collected data are 

confirmed and understood. Appropriateness means that information has been sampled 
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and chosen purposefully rather than randomly to meet the theoretical needs of the study 

(Sage, 2007). To that end multiple sources of data have been obtained to provide 

adequacy, appropriateness and confirmation of the emerging model. 

 

- The Audit Trail:  

 

An audit trail refers to keeping a meticulous record of the process of the study so that 

others can recapture steps and reach the same conclusions. An audit trail includes not 

only the raw data but also evidence of how the data were reduced, analyzed, and 

synthesized, as well as process notes that reflect the ongoing inner thoughts, hunches, 

and reactions of the researcher. This critical self-reflection component illuminates the 

researcher’s potential biases and assumptions and how they might affect the research 

process (Sage, 2007). A complete record of all the information accessed has been stored 

and all the questionnaire survey responses and interview notes have been stored for 

further reference if required in future and for the purpose of personal privacy.  

 

- Triangulation: 
 

Soliciting data from multiple and different sources as a means of cross-checking and 

corroborating evidence and illuminating a theme or a theory is known as triangulation. 

The different sources may include additional participants, other methodologies, or 

previously conducted studies (Sage, 2007). This method has been adopted in cross 

checking of evidence between several case studies and published articles in journals and 

presented papers. 

 

3.3.1 Desk Research: 

 

Many text books and technical handbooks have been referred to further understand the 

theory and practice of gas turbines and Variable Frequency Drive motor system. I have 

researched various periodicals, journals and magazines for valuable information. I made 

a good use of my earlier research works, paper presentations at seminars and thesis in 

the field of Sub-synchronous Torsional Interaction (SSTI), Harmonics and Electrical 

Resonance phenomenon. There are many journals and magazines which publish papers 

on studies and discussion about VFD system, which helped provide very useful insight 

in to the subject. 

 

3.3.2 Questionnaires: 

 

A questionnaire method was one of the many research methods utilized to gather 

information. The idea was to collect qualitative data on the respondent’s perception and 

understanding on the subject matter.  

 

3.3.3 Interview:  

 

Individual interview is one of the methods that has been adopted to gather information  

The intent was to interview experienced, knowledgeable and relevant people who by 

virtue of their responsibilities in handling various processes in LNG industry have in-
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depth knowledge and who could provide an insight to critically analyze the processes 

and give new perspective to the study. 

 

3.3.4: Statistical and Data analysis software:  

 

There is a general concern about the reliability of the power electronics in the VFD. SAP 

software was made use of to gather failure data of the VFDs used in Qatargas Trains 4, 

5, 6 and 7. Qatargas uses a 45MW VFD motor system with perfect harmony technology 

using IGBT (Insulated Gate Bipolar Transistor) devices with Pulse-width modulation 

principle to function as starter/ helper to the gas turbine compressor strings. This has a 

potential to be upsized to run as a main drive for the compressors replacing the gas 

turbine completely in an ‘All-Electric’ concept. Further, Meridium software was used to 

carry out a Reliability Analysis of the VFD threads and IGBT cell devices, by using 

MTBF (Meantime between Failures) plot of the dominant failure modes to determine the 

MTBF of the cell and thread failures and tried to understand what the reliability issues 

related to VFD are and how they can be mitigated. 

 

3.4 Data analysis: 

 
This section provides a detailed description of the exact steps taken for systematic and 

coherent analysis of data so as to draw inference. The steps taken in analysis are 

presented below. 

 

 3.4.1 Challenges in Engineering Management: 

 

There are various challenges to engineering management with respect to large capital 

investment. The asset-intensive nature of these businesses creates various challenges that 

needs advance planning and execution to tackle them from conceptualization to 

retirement. LNG industry faces multiple challenges, with a heavy investment on 

equipment and plant facilities, the need to increase return on investment, reduce costs, 

increase productivity, and growth in the business. The life cycle challenges in LNG 

business are discussed in detail and are specific to All-Electric LNG. 

 

 3.4.2: Comparative study:   

 

The constant comparative method implies that the researcher continues to build and test 

the completeness of a theory by reaching across participants to determine how the 

findings apply to cases that appear to be exceptions to the rule. By deliberately searching 

for these “deviant” cases, it becomes possible to test a provisional hypothesis and amend 

it to incorporate new and different data (Sage, 2007). The advantages and disadvantages 

of both gas turbine and All-Electric option have been thoroughly studied and their 

attributes compared from a life cycle perspective to test the hypothesis.  

 

3.4.3: Technical challenges of the new concept: 
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Both gas turbine and the All-Electric option have their own shares of technical 

challenges. The technical challenges of gas turbine driven LNG are well understood and 

mitigated as it has a large experience base and time tested profile. Various specific 

technical challenges to be faced in technology qualification, manufacturing, testing, 

commissioning and maintenance of an all-electric system for a LNG Train have been 

analyzed in details and mitigation measures discussed. This study also identifies areas of 

further research.  

 

 3.4.4: Statistical analysis: 

 

Reliability of VFD driven motor system is analyzed by statistical analysis tools and 

issues were identified so that further studies can be done to improve these shortcomings. 

I have gathered data from Computerized Maintenance Management System (CMMS) 

software (SAP) on failure data of Qatargas Variable Frequency Drives and by using 

Merdium software (Reliability Analytics) I have calculated the Mean Time Between 

Failure (MTBF) and Reliability percentage and compared it with the design values. By 

using Pareto analysis I have analyzed the major sources of unreliability of the VFD 

system.  

 

 3.4.5:  Case Studies Analysis: 

 

A number of case studies carried out by various eminent industry stakeholders were 

analyzed. Some of the case studies have been included in the main text and the rest have 

been included in the Appendix B. The data from the case studies have been utilized to 

build a model to create a life cycle cost benefit analysis. 

 

 3.4.6: Life Cycle cost benefit analysis: 

 

By using data and information collected, a Life cycle cost benefit analysis model for a 

7.8MTPA LNG train, which is the largest single Train size built so far, driven by an All-

Electric System has been built and compared with that of a gas turbine driven plant. 

Additional income per year has been calculated for the All-Electric case and a Net 

Present Value (NPV) calculation for the future additional cash flow for 25 years of 

operation has been calculated to test the hypothesis. Further, sensitivity analyses have 

been carried out for different unit prices, plant sizes and discount rates to further 

corroborate the hypothesis.  

 

3.4.7:  Questionnaire survey and interview result analysis: 

 

Quantitative data may be useful in measuring attitudes across a large sample. However, 

Grounded Theory Methodology (GTM) offers a powerful methodological framework if 

the aim of the study is to learn about individuals’ perceptions (Gorra, 2008). The 

characteristics of this methodology is based on real life experiences, valuing participants' 

perspectives, based on an interactive process between researcher and respondents and 

relying on people's words (Gorra,2008).  The questionnaire survey and interviews were 

conducted to gather the perception of the industry experts on electric LNG. The 
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discussion chapter deals with the results of this endeavour and also helps identify new 

insights. 

 
3.4.8: Conclusion and Further research: 

 

The entire research has been summarized to support the hypothesis and issues that need 

further research have been identified. New insights which were identified during the 

questionnaire survey and interview process are further discussed and some of them have 

been included for further research section. The figure shows the methodological inter-

relationship between the Theoretical, Quantitative and Qualitative analysis have been 

depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.1: Methodological Inter-relationship; (Concept from Swatman, 1998) 

 
Further the various steps and process of the research the various analytical tools and the 

procedures for testing the hypothesis has been shown. 
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reliability of the research is related to its ability to give non-random results. Insufficient 

reliability usually arises from random errors, but systematic errors may also affect 

reliability (Koivisto, 2008).  One of the bases of collection of cost data was from case 

studies. The life cycle cost benefit analysis model has been built on information 

collected from these case studies. The cost saving by improved efficiency, maintenance 

cost saving, reduction in emissions and reduction in circulation loss which constitute 

about 30-40% of the cost saving per year has been extrapolated from data collected from 

these case studies. Errors in these data may introduce some inaccuracies in the life cycle 

cost calculation, and Net present Value (NPV) calculation. In spite of the above, the 

hypothesis will still be correct based on the fact that about 60-70% of the cost saving is 

because of production due to additional on-stream days in all-electric LNG option 

against gas turbine driven LNG plant.  

 

The questionnaire survey has been limited to knowledgeable and experiences personnel 

in the LNG business. The questionnaires were selected so that the technical terms and 

conditions are understandable to the experienced personnel. A common disadvantage of 

research is subjectivity (Koivisto, 2008). Since the concept of All-Electric is new, some 

amount of subjectivity might have crept in to the answers to the questions. One 

weakness of the survey method is that different respondents can understand the 

questions differently. Furthermore, they may understand them differently to what the 

researcher meant. This divergence can be due to difficult statements or unknown terms 

(Koivisto, 2008).Random errors arise from the sample size and the study instruments, as 

well as from all the factors that are impossible to control in the test situation in a 

questionnaire survey (Koivisto, 2008). One of the reasons for the questionnaire survey 

was to get the opinion of the respondent on All-Electric LNG and the other was to get 

any new insight into the investigation process. The result of the questionnaire process 

has been overwhelmingly in support of ‘All-Electric” option. Any error due to 

divergence and sampling size etc. as described above in the questionnaire process could 

have introduced minor error into the final result but the result would still be in favour of 

all-electric option.  

 

3.6 Chapters: 

 
a) Introduction: (Chapter 1) 

 

The introductory chapter talks about natural gas, LNG and their uses. It also describes 

how it is processed stores and transported. The alternative sources of energy to LNG are 

also described in brief. Moving on, the natural gas processes where gas turbine is 

utilized as a driver for running process compressors has been discussed. Later the 

concept of Electric drive for process compressor for LNG production has been 

discussed. 

 

b) Literature review: (Chapter 2) 

 

This important chapter starts with discussion of various key elements that need to be 

considered to start a large new project having considerable investment. Then it delves 
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into major processes involved in large capital intensive engineering ventures. Risk 

identification/allocation/mitigation, which is made use of during all the important stages 

of the project, has been discussed. The effectiveness of a venture can be judged by 

factors such as availability, reliability, maintainability, capability, thermal efficiency and 

effectiveness equation, which have been discussed in details in this chapter. The risks 

and challenges encountered in adopting a new technology can never be over-

emphasized. Subsequently, the new technology qualification management process has 

been discussed in details. The benefit of adopting sustainability in life cycle process has 

been analyzed. A success of any venture depends on its life cycle cost, profitability and 

Net Present Value. The theory behind these important elements has been discussed in 

details. The criteria for selection of compressor drivers for LNG process have been 

outlined. In the subsequent step the theory and gap in research has been identified and 

the hypothesis has been built.  

 

c) Methodology: (Chapter 3) 

 

Methodology chapter deals in the processes and method by which data has been sourced, 

collected and analyzed. In addition to desk research, questionnaire method and 

interviewing method, various mathematical and statistical analyses have been utilized to 

analyze and summarize the data. 

 

d) Life Cycle Challenges: (Chapter 4) 

 

The management of engineering ventures is fraught with many challenges. The 

challenges related to Financial, Contractual, Environmental, Commercial, Procurement 

and Logistical, Safety, Human Resources, Quality, Construction, Testing, 

Commissioning, Operation, Maintenance aspects have been discussed in detail with 

respect to all electric option. 

 

e) Gas Turbine Vs Electric drives, a comparison: (Chapter 5) 

 

When an alternative suggestion is made to a well-established process the advantages and 

disadvantages of the alternatives vis-e-vis the standards needs to be compared. This is 

precisely what has been done in this chapter, in which various aspects of both the 

options have been compared extensively. 

 

f) Case Studies: (Chapter 6) 

 

The All-Electric is relatively new concept which offers many advantages about which 

some case studies have been produced. Some of these studies that have relevance to the 

topic of research and have relevance to both All-Electric option and conventional gas 

turbine drives have been analyzed.  

 

g) Technical challenges of electric drives: (Chapter 7) 

 

Although an Electric option as a driver offers a plethora of advantages it is not devoid of 

challenges both technical and otherwise. This chapter deals with all the technical and 
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reliability challenges of this concept. In this aspect reliability issues of Qatargas major 

expansion train starter/ helper VFD motor system have been analyzed. Studying 

technical issues related to this system can provide areas in which further research can be 

done to improve reliability and availability, before considering the VFD as the main 

driver in LNG compression processes.    

 

h) Life cycle analysis: (Chapter 8) 

 

For the all-electric concept the electrical power can be generated inside the facility by a 

combined cycle captive power plant or purchased from an outside utility company. 

Depending on whether it is produced or purchased the CAPEX (Capital Expenditure) 

and OPEX (Operating Expenditure) is going to greatly vary. If the power is produced 

internally one has the advantage of better control of the source but the CAPEX is much 

higher. The life cycle analysis studies the overall cost and benefit of the electric option 

and uses Net Present Value method and Sensitivity analysis to demonstrate economic 

advantages of ‘All-Electric’ concept over the gas turbine option. 

 

i) Questionnaire and interview discussion: 

 

A structured questionnaire approach limited to twenty questions has been adapted to 

touch a wider section of respondent and get their ideas. While designing the questions,  

particular care has been taken so that the questionnaire is not very lengthy, easily 

understandable and can be completed without much time, so that the participants do not 

lose interest and focus. The questions were devoid of unambiguous language, jargons, 

personal questions and double headings or leading questions (Deo and Mangala, 2002). 

Questionnaire process has some limitations as the questions are asked from the view 

point of the interviewer rather than what are the import issues as felt by the interviewee. 

Hence, the last question was left open for the respondents to write their comments on the 

subject. Questionnaire and Interview exercise care has been taken so that and the 

confidentiality and anonymity of the information collected is maintained. Personnel 

from various different disciplines have been involved so as to get an all-round 

perspective without any bias. The questions were open-ended in order to get the 

interviewee’s point of view on the subject matter with the purpose to engage without 

directing. An open discussion is a useful source for gathering information supplementing 

desk research and questionnaire survey. It was a challenge to get people to spare quality 

spare time from their very busy schedule. However, some interviews were conducted to 

gather valuable insights. The sample of interviewees was random. Although the 

interview itself was quite loosely structured, flexible and free flowing, some questions 

were prepared in advance to gather useful and important information. 

 

j) Conclusion and further research: 

 

This chapter summarizes the research and gives recommendations. It also identifies 

areas where further research has to be conducted. 
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3.7: Conclusion: 

 
This Chapter has explained the structure of the present research project, pointing out the 

nature of the research process and the effort to present material in a logical and 

structured manner. In this chapter, I have attempted to describe the effort in an 

engineering management standpoint, analyzing how each individual component of the 

process was chosen and how they fit together to form the whole. The Chapter also 

provides a justification for the research methods in some detail and explains both 

strategy and manner in which the process was implemented. This chapter also outlines   

arrangement and contents of the all the chapters in the study report. This study utilizes 

Theoretical, Qualitative and a Quantitative method. The relationships between the 

methods and approaches have been summarized in Figure 3.1. 
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CHAPTER 4: 

Lifecycle Management Challenges 

 
4.1 Introduction: 

Decisions on new asset acquisition, construction, commissioning, operation and 

maintenance needs careful monitoring and management, while the challenge and focus 

of the different segments can be quite different. The asset-intensive nature of these 

business efforts creates various challenges. It takes a lot of advance planning and 

execution to tackle the challenges from acquisition to retirement. LNG industry faces 

multiple challenges, with a heavy investment on equipment and plant facilities, the need 

to increase return on investment, reduce costs, increase productivity and grow the 

business. Asset optimization takes concerted planning, integrated management and fact-

based decisions. From acquisition to operations and maintenance through retirement, the 

way infrastructure assets are monitored, deployed, and maintained has a critical bearing 

on the success of any operation (Edwards, 2009). Huge capital investments in equipment 

and infrastructure present major financial and operating challenges for the energy 

business. The study is not complete if the challenges faced in each segment of the life 

cycle of a major investment in the LNG business are not thoroughly analyzed. Some of 

the main Life Cycle management challenges are discussed in this chapter. Some other 

important challenges such as Procurement and Logistics Challenges, Quality Challenges, 

Safety Challenges, Human Resources Challenges, Construction, Commissioning and 

Completion/ Turnover/ Startup and acceptance challenges are further discussed in 

Appendix E. 

 

4.2 Financial challenges: 

 
The Liquefied Natural Gas (LNG) industry’s expansion has increased the challenges for 

sponsors to finance what are amongst the most capital intensive projects in the world. 

Whether any LNG financing is successful depends on its fit with sponsors’ objectives 

(White, 2005). The trend of the day is that upstream sponsors are moving down the 

value chain and investing in shipping and terminals and in turn the off-takers are taking 

equity stakes in the upstream and liquefaction elements. Value chain integration creates 

unique challenges which requires expert commercial and financial structuring that will 

not only safeguard each individual project’s commercial viability and collateral, but also 

ensure that every value chain segment is able to fully tap the different pools of finance 

necessary to fund these capital intensive endeavours (Newendorp et al 2005). 

Investment decisions are based on project analysis and the results of the evaluation 

depends on the validity and reliability of the assumptions used, which consider the 

strategic implication, environmental implication and also enhancement of 

company’s bottom line. (Gajameragedara et al 2008).  
  

A Special Purpose Company (SPC) which owns the entire project asset; works with 

construction contracts and provides services or buys gas dealings with other SPCs. 
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The operating costs are met first, and then the principal and interest payments on 

loan are made and only then are the dividends to the shareholders paid. In this way, 

isolated from all outside obligations of the project sponsors, the SPC concept 

enables a significant decrease in participant risk. Apart from this all the SPCs are 

usually bound by mutual gas supply and delivery contracts, which mitigate delivery 

and volume risk (Deloitte Resource News, 2005). 

  

4.2.1 Risk of LNG: 

 

Large projects need big capital expenditure requirements, which increase the 

challenge of locating sources of debt. Capital markets have not played a large role in 

LNG financing partly due to the nature of the industry and the perceived risks.  

LNG off take volume commitments such as long-term Gas Sales Purchase 

Agreements (GSPA) needs to satisfy lenders for the entire volume of liquids 

production. Shipping and market access need also to be seriously addressed. In 

addition, condensate and gas liquids which are also produced along with LNG also 

contribute to a very substantial percentage of the developer’s revenue and 

profitability stream and risk diversification element which also need to be 

considered (Deloitte Resource News, 2005). Each link in the value chain of the 

projects offers different market and political risk profiles. At the same time, solid 

integration, whether through ownership or contractually, can lower risk to lenders 

and provide more flexibility for borrowers (Newendorp et al 2005).  

 

Gajameragedara and Bommer (2008) define four distinct stages of the project namely 

Exploration and Production; Transportation; Conversion and Distribution and End 

use. The risks can be broadly divided into Geologic; Engineering; Market; 

Commodity Price; Capacity price; Financial and Political risks. The investment 

decisions depend on the result of assessing the risk. 
 

 

    

 

 1, 2, 3, 4, 6, 7           2, 3, 5, 6, 7                     2, 3, 4, 5, 6, 7           2, 3, 4, 5, 6, 7 

 

(Risks: 1-Geologic; 2-Engineering; 3- Market; 4- Commodity Price; 5-Capacity price; 6- 

Financial; 7- Political) 

  

Figure 4.1: Investment Decisions, (Gajameragedara and Bommer (2008) 

 

The above figure shows the various risks that may have to be evaluated at each 

stage of the LNG value chain. Some of the types of risks are common more than one 

stage. Careful evaluation of these risks is required to preserve the bankability of 

each segment and minimize direct competition for debt funding among segments in 

an integrated value chain. Commercial structuring must be tailored to generate 

market risk profiles appropriate for different lender groups (Newendorp et al 2005). 

4.2.2 Reassurance: 
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Various different market access options through shipping and re-gasification and 

marketing capabilities available to sponsors and off-takers provide greater 

reassurance to lenders to the liquefaction project. Newendorp et al (2005) state that 

in most upstream and liquefaction projects located in the developing world, export 

credit agency (ECA) participation is sought to improve the credit profile of the 

project by insulating commercial lenders for Political Risk Insurance (PRI). Even in 

low political risk countries, ECAs can play a significant role because of the need for 

increased debt capacity.   

 

4.2.3 Efficiencies of scale/ Scale-up and value chain integration: 

 

Value chain integration and project scale-up also present significant financial 

structuring challenges. To improve the project competitive position, the sponsors 

size up each component of the value chain. Further, lenders are more comfortable if 

there is advantage of sharing facilities from previous successful operation. There are 

also additional assurances if the sponsors demonstrate that the new facility will be 

operated and maintained to highest industry standards on the basis of previous track 

record of successfully and professionally operating existing operations. Fully 

integrated value chains and an integrated project sponsorship approach from 

upstream, liquefaction, shipping, re-gasification, and even to off-take and marketing 

are closely associated with key characteristics of a rapidly changing global LNG 

business. The challenge for sponsors and lenders is to connect the links with 

interdependent financing and investment commitments and commercial 

relationships, while still preserving each link’s economic viability, collateral, and 

the ability to tap separate pools of capital (Newendorp et al 2005).   
 

4.2.4 Cost elements: 

 

In analyzing the potential cost optimization of a LNG project, one must consider the 

characteristic of each business chain in order to achieve the highest cost impact 

items without sacrificing the basic safety, reliability and operability of the whole 

system. A typical cost share for each LNG business chain is Upstream Development 

10%, LNG Plant 40%, LNG Transportation 30% and Receiving & Re-gasification 

Terminal 20% (Suprapto, 2000). Many of plants achieve an availability factor as 

high as 97%, which is an impressive record.  As the LNG train size is getting larger, 

the specific costs of a LNG project will tend to be lower and lower. Nowadays, the 

LNG Buyers will certainly give more attention to a LNG projects that can offer 

lower LNG cost, shorter contract period at smaller contract quantity, attractive price 

structure and more flexible sales agreement terms and conditions (Suprapto 2000). 

    

4.2.5 Sales purchase agreement in LNG industry: 

 

In the past nearly all LNG trade have been done through long term Sales and 

Purchase Agreement (SPAs) with little flexibility in terms of volume or price, 

because the LNG industry  is long term and extremely capital intensive with 

extended payback period combined with less exposure to spot market risks. 

However the number of short term contract though small is growing rapidly 
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(Deloitte Resource News, 2005). Thus the buyer bears the entire volume risk and the 

sellers take the price risk. In the current LNG business environment, the investment 

risk is in fact getting better by the availability of alternate sources in addition to the 

long term Gas Sales and Purchase agreement (GSPA) in terms of spot cargoes.  

 

4.2.6 Financing challenge for All Electric LNG: 

 

LNG being hugely capital intensive involves separate elements of infrastructure that 

must be in place in order to monetize the gas. The common thread is that to achieve 

final investment decision and raise the substantial sums of capital required each 

project will be subject to high degree of scrutiny and risk mitigation (Sousa 2010) 

The Capital Expenditure (CAPEX) and Operating Expenditures (OPEX) are roughly 

proportional and thus account for a substantial amount of the total investment.   

Hence there is major life cycle cost saving that can be realized both in CAPEX and 

OPEX if these can be reduced in a liquefaction project. As such, a project must 

demonstrate its ability to service debt, even under adverse circumstances, before 

lenders become comfortable with the deal. The impact of rising cost results in 

reduction in profit. Although it is important to reduce the CAPEX which happens 

only once, more attention should be put on reducing OPEX which occurs throughout 

the lifetime of the project after it is commissioned. The LNG plant is a major cost 

element in a LNG business chain and has become the focus of cost optimization in 

recent years. The cost for a plant can vary drastically when site and technology 

specific conditions demand different considerations. As a result, it is clear that no 

two LNG projects are created equal.  (Kotzot et al 2009).  So the challenge for 

securing the finance for an All Electric LNG is to convince the lenders that it can 

provide an edge over the conventional gas turbine driven LNG in terms of better 

return on investment and lead to lesser environmental damage. The LNG plants are 

being sized up to reduce the specific cost of production hence it needs to  be seen 

whether all-electric plants can meet the requirement of LNG business. 

 

4.3 Commercial challenges:   

 
There are numerous variables need to be considered for the ultimate success of the 

project. The commercial variables such as available gas reserves, financing ability, 

corporate objectives and market penetration must be considered in combination with 

project related variables such as schedule, capital expenditures and life cycle costs. 

The objective is to develop strategy that provides the highest rate of return whilst 

adequate risks management is adopted by the owners.  

 

4.3.1 Host Government consideration: 

  

The contractual relationship for the exploitation of a country’s hydrocarbon resources is 

generally governed by a Production Sharing Contract (PSC), Concession Agreement, or 

some other agreement entitling the off taker to a share of the oil and gas discovered and 

produced. Gas contract terms, always require a longer period to recover the investment 

than an oil project. The commerciality of a gas depends on the size of the resource, 
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conditions for gas utilization and marketing defined for the life of the field. Local 

content and employment are major host government considerations in exploiting its 

natural resources and economic development. The capital investment generally fosters 

development of domestic use of gas and other lateral industrial developments raising the 

overall economic development of the area and providing more employment (Chiu, 

2006). Greenfield LNG projects have traditionally received tax holidays and other 

incentives necessary to justify the large capital investment of the sponsors. The host 

governments generally grant fiscal concessions in addition to providing support, 

guarantees and assurances to launch a successful project (Chiu, 2006). 

 
4.3.2 Owner’s considerations: (Redding et al, 2005)  

 

Rapid commercialization: After making a decision, to invest the interest of the 

shareholders is to bring the project to commercial operation rapidly so that they are able 

to monetize the reserve and help the bottom line after taking care of the mandatory 

obligations. Hence the project schedule is an important parameter for consideration.  

 

Reduced Technology Development Cost and Schedule: In addition to schedule, 

owners’ challenges are to bring down the cost of unit of production by increasing the 

production train size so as to improve the economy of scale. The new technologies are 

being implemented to reduce the specific cost and schedule.   

 

Market penetration: LNG brings diversity of supply to importing countries by 

providing them with a substitute for coal and liquid fuels in power generation. This is 

creating a challenge for reliable and steady source of supply, which can be achieved by 

access to multiple forms of energy from various different sources. Lower emissions 

target and global economic recovery with shift toward cleaner fuels provides 

opportunities and avenues for market penetration of LNG into hitherto unseen areas. 

 

Reduced commercial Risk: Adopting a standardized approach within the proven range 

of experience reduces technical risk and provides better prediction over actual operation 

in future. This lowers risk situation and in turn aids in the marketing effort by ability to 

demonstrate a consistent LNG supply.  

 

4.3.3 Buyer’s consideration: (Chiu, 2006) 

 

Reliability of System: LNG buyers have been large regulated utilities or government 

owned companies capable of executing long-term take-or-pay contracts. With limited 

suppliers and receiving terminals scattered around the world security of supply has 

become almost equally as important as price. While the restructured world gas industry 

is now more market responsive and the price risk has shifted more to the producer, the 

need for security of supply has not diminished. The primary concern of a buyer will be 

the reliability of the system to produce and deliver LNG as contracted (Chiu, 2006).  

Resource assurance: Buyers will still seek assurances of sufficient gas resources exist 

to meet long term contractual obligations. The short-term and spot market has a number 

of characteristics of a commodity market but in reality these sales only accounts for 
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approximately 12% of the world LNG trade. The spot and short-term market only exist 

because of surplus capacity in over designed and constructed liquefaction plants (Chiu, 

2006). 

 

Free On Board (F.O.B) Limitations: The use of special purpose vessels required for 

loading is the attractiveness of an F.O.B. trade and the buyer’s shipping options. The 

vessels should be dedicated to the project to enhance the buyer’s security of supply and 

plant off-take. The purchase of “spot cargos” will be limited to the availability of a 

special purpose vessel for delivery to a buyer within the shipping distance of the projects 

annual delivery program (Chiu, 2006). 

 

Expanded Force Majeure Terms: Until the LNG facilities have established a proven 

record of safety and reliability with a new technology, it is anticipated the sponsors ask 

for force majeure provisions to cover the inherent risk associated with an extension of 

existing technology (Chiu, 2006). 

  

4.3.4 Lender’s primary concerns:  

 

Reliability: Reliability of a LNG plant will be the sponsors and lenders primary concern 

as to whether the facility generates sufficient revenues to repay the loan. Lost production 

days due to weather, damaged to equipment, lack of spare parts, etc. can be modeled to 

determine the impact on a project’s revenues. Lenders will need to be satisfied that there 

are sufficient resources available to the sponsors to produce the revenues required to pay 

back the loan (Chiu, 2006). So the reliability and availability of the LNG plant will be of 

prime importance to the lender. 

 

Safety, environmental and other Concerns: Safety of the facility and its ability to 

resist damage, system failure, gas leak or other unplanned event are major 

considerations for all parties involved. Quantitative Risk Assessment tools and Monte 

Carlo simulations can be used to understand the risk and determine its acceptability. 

Lenders will look at the sponsors experience and reputation in LNG and their ability to 

execute large multi-billion dollar projects (Chiu, 2006). LNG projects were financed 

historically on the credit of large, regulated utility companies or state monopoly 

companies capable of executing long-term, take-or-pay contracts. The security for the 

loan is the LNG plant rather than the contracts supporting the LNG trade.   

 

Competition from Shale Gas:  Gas may be pushed into low price environment because 

of the increase in production of natural gas and shale gas. Because of shale gas 

exploration there is a lot of gas now available in US which is one of the main consumers 

of LNG. The technology of exploitation of shale gas is likely to be transferred to regions 

of the world which may lead to increase in production and reduction in demand for the 

LNG. Further competitors in the LNG business will bring gas prices down, that will 

impact revenues and profits of the producers. The majority of generation in many 

developing countries like India and China comes from old coal-fired plants, which will 

eventually be shut down and replaced by the most effective and environment friendly 

fossil fuel for now: either natural gas or LNG. Hence the demand for LNG will remain 
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high for the foreseeable future.  As competition rises the specific cost of production 

becomes increasingly important parameter (ABB, 2005). 

 

4.3.5 Commercial challenges for All Electric LNG: 

 

The variables to be considered are numerous but from a high-level perspective, 

commercial variables such as available gas reserves, finance ability, corporate objectives 

and market penetration must be considered in combination with project related variables 

such as schedule, capital expenditures, specific cost, life cycle costs, reliability/ 

availability and impact on environment etc. The objective is to develop a strategy 

providing the highest rate of return whilst taking full account of the risks that can be 

managed. From technology and commercial perspectives there is less risk associated 

with adopting a standardized approach. At the same time incorporating new technology 

reduces specific cost of production which increases the challenge. So a balance has to be 

struck to make sure that new technology helps achieving economy of scale by reducing 

specific cost with a more environmentally friendly approach by identifying and 

mitigating the risks associated with it (Redding et al, 2005). In the All electric contest, it 

remains to be seen as to whether the new technology implemented will bring overall 

commercial benefit.    

 

4.4 Contracts Challenges: 

 
Determining the correct form of contract to pursue can have a great effect on the cost 

and risk associated with the project. Proper front-end definition work can identify the 

stakeholders’ expectations, project priorities and critical success factors early on. This 

information is a must in order to correctly identify the proper contract strategy and 

structure required to meet these objectives. Failing to meet the project objectives of 

safety, cost and schedule stems from misunderstanding of the objectives of the project 

from the conceptual stage and therefore often leads to improper selection of the contract 

type (Agnitschet et al, 2001). The cost of construction varies with the amount of 

business risk the owners and financers are willing to accept. The less business risk the 

owner wishes to assume, the higher the cost of construction (Prodigy 2006). The two 

most common types of contacts in a LNG project are Engineering Procurement and 

Construction (EPC) “turn-key” and Engineering, Procurement, Construction and 

Management (EPCM). This is due to the risk involved in large capital investment in 

LNG project and because of a limited number of contractors worldwide to execute such 

contracts.  Each of these methods has variations that can be adapted to each project as 

needed (Prodigy 2006). From the perspective of the Owner, the primary differences are 

that an EPC is an all-encompassing lump sum contract. There are numerous types of 

contracts between Owner companies, General Contractors, vendors and Sub-contractors. 

The variations are basically derivatives of the major three as discussed below (Agnitsch 

et al 2001). 

 

a) Fixed Price: A company is paid a single fixed sum to engineer, procure, construct 

and commission a project.   
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b) Cost Reimbursable: A contractor is paid on a cost-plus basis such as cost plus a 

percentage, or cost plus a fixed monthly fee to fully engineer, procure, construct and 

commission a project. 

c) Unit Rate Contracts: Similar to cost reimbursable, a company is paid on a per-unit 

basis for installed product. This type of contract is used most often in the 

construction phase of a project.   

 

4.4.1 Key Elements of a Contract: 

 

a) Scope Development: 

 

The LNG promoters set the parameters for the overall project as a whole, and anticipate 

lower costs through careful design of the initial Front End Engineering and Design 

(FEED) document for bidders. FFED defines the project scope aligned with business 

objectives and further evaluates technological alternatives, capital budgets, design 

criteria for use in detailed engineering along with project scheduling and cash flow 

projections. Owners prepare their FEED plans with the help of a FEED contactor and 

then accept bids for the entire project with bidders submitting their bids for 

consideration (Troner et al 2001). It is essential that there is very good definition of the 

contract scope and changes are avoided lest there is significant cost growth. Technical 

due diligence need to be completed prior to final award so that any issues that were 

earlier overlooked could be incorporated. In fact, the design developed during the FEED 

may have to be independently reviewed by a consultant with considerable project 

experience (Jamieson, 1998).   

 

b) Competency of the contractor:  

 

The competency of the contractor is an important consideration in selection process as 

the success of the project is highly dependent on it. The strengths and weaknesses of the 

participating contractors with respect to LNG experience, record of on time and quality 

job and a sound financial footing should be considered. Typically, an owner with little 

construction experience will be more comfortable handing relative control of a project to 

a contractor than would an owner with more construction management experience 

(Oylan et al 2007).   

 

c) Control:  

 

Many factors influence and can dictate the relative degree of control the owner wishes 

over the work. For example, whether the owner would like to exercise considerable 

control and or it may prefer to offload responsibility and ideally risk to third parties. The 

latter may indicate a preference for more of a “turnkey” arrangement (Oylan et al 2007). 

 

d) Marketplace:  

It is often useful to determine the market’s appetite for various forms of agreement and 

what the current drivers may be that are associated with those forms of contract. Quite 

apart from how the present marketplace determines the risk aspects of the Design 
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Engineering, Procurement and Construction contract is how the marketplace understands 

the tendering process (Oylan et al 2007). 

 

e) Priorities:  

 

Generally the owners’ priorities are maintaining budget, schedule, and quality which are 

reflected in the contracting strategy and terms of the contract. The contract should 

impose costs or set forth rewards for the contractor depending on whether the goals are 

achieved. To achieve its goals, a contractor may insist on a high degree of control over 

its work (Oylan et al 2007). 

 

f) Tolerance for Risk:  

 

The most efficient and effective contract recognizes that the parties’ allocation of risks 

should commensurate with rewards. It is essential that the parties understand their   goals 

and properly coordinate their activities under the contract. The lion’s share of risk 

should be borne by the party most able and willing to manage that risk and such party 

should be rewarded in a commercially reasonable fashion (Oylan et al 2007). 

 

g) Cost:   

 

The cost of the LNG Projects has increased over the years. Historically, prices dip due to 

improved technology being implemented. Now, due to contractor demand and material 

and equipment escalation, the cost of LNG projects has significantly increased (Greer, 

2006). However there is significant increase in risk contingencies, particularly West 

Africa and Middle East with significant premium for EPC (similar to turnkey) lump sum 

compared to reimbursable/ mixed contracts.  

 

4.4.2 Basic features of an Engineering Procurement and Construction 
(EPC) contract: 

 

Under an EPC contract a contractor is obliged to deliver to a client a complete facility 

for a guaranteed price, by a fixed date and under a performance guarantee, who need 

only to ‘turn a key’ to start operating the facility. It means the contractor is contracted to 

provide engineering, procurement and construction services by the owner. EPC contracts 

are a common form of contract used to undertake construction works by the private 

sector on large-scale and complex oil and gas projects (DLA Piper, 2011).  The EPC 

contracts have received bad publicity as a result of a number of contractors having 

incurred heavy losses leading to a number of them reluctant to enter into EPC contracts 

in certain jurisdictions (Progidy 2006). This problem has been made worse as the 

insurance market has become more expensive due to significant losses suffered on many 

projects.  The cost risk and control are weighted towards the Contractor.  The goal of the 

owner is to build a cheaper plant and within budget with a fixed price that includes 

substantial guarantees and warranties along with a single point of responsibility 

(Jamieson, 1998).  This was a very effective way of reducing exposure to start-up delays 

and production shortfalls from a less proven technology. There are bonuses for 
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additional production, early completion and safety performance during construction. 

Characteristics of EPC and EPCM contracts are discussed in Appendix C. 

 

 

 

 

 

 

 

Figure 4.2: Strategy and issues of selection of EPC contractor (Oylan et al, 2007) 

 

 

4.4.3 Engineering, Procurement and Construction Management (EPCM) 

Contract:   

 

EPCM (Engineering, Procurement and Construction Management) contract means the 

contractor is contracted to provide engineering, procurement and construction 

management services.  Other companies are contracted by the Owner directly to provide 

construction services and they are usually managed by the EPCM contractor on the 

Owner's behalf. Some projects proponents believe that the EPCM project delivery 

methods give them greater flexibility and that they have the expertise and experience 

required to control costs in an EPCM contract (Progidy, 2006). Briefly, the primary 

difference between EPC (Engineer, Procure, and Construct) and EPCM (Engineer, 

Procure, Construction, Manage) is that the EPC contractor is paid a lump sum price to 

deliver a complete facility, with all subcontracts under their name. Conversely, the 

EPCM contractor is an extension of the contractor, executing all contracts and 

procurement under the name of the Owner and being compensated on either a lump sum 

or reimbursable basis to perform engineering and management services. Characteristics 

of EPCM contract is detailed in Appendix C. 

 

4.4.4: Alliance Contract:  

 

Alliance contracts involve a collaborative process in which it aims to promote openness, 

trust, risk- and responsibility-sharing and the alignment of interests between clients and 

contractors. The essence of an alliance contract is more in the process, the foundation of 

which lies in an approach of co-operation between clients and contractors. Trust instead 

of distrust is the basis of an alliance contract, although a clear and transparent contract is 

still needed to support this spirit of trust. Both a legal and a psychological contract are 

necessary for the logical development of an alliance. Excessive focus on legal leads to 

mistrust and absence of legal structure leads to way to abuse of trust hence a balance is 

necessary (Arino and Reuer, 2004).   An alliance contract seeks to move away from the 

traditional “adversarial” approach in which parties are first of all competitors. The focus 

is on the best arrangement for project delivery rather than on self-interests, typical of 

Engineering: 

 Preparation of design plans and 

technical specification of the 

equipment 

 Preparation of performance standards, 

maintenance and training manuals 

 Designing and planning layouts 

 Document delivery schedules of 

equipment, instruction of erection etc. 

Procurement 

 Provision of equipment 

 Procurement from third parties 
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traditional contracts (IADC-2008). Difference between alliance contracts and traditional 

“adversarial” contracts lays in the premise of diversion of capability, intellect, attention 

and energy away from project construction, which is a source of major inefficiency in 

traditional contract. This win-lose attitude leads to inefficient allocation of intellectual 

and professional resources. Traditional forms of contracting cause parties to adopt 

defensive behaviour, which leads to adversarial relationships and misdirects efforts. 

Alliance contracting removes the necessity for diversion of effort and seeks an 

alignment. This alignment makes possible joint management of the risks and the project 

as a whole, resulting in a more effective process. In an alliance contract parties may 

agree to share an early-delivery bonus, so that both parties have the same interest: A 

speedy delivery of the project (IADC-2008). An alliance contract is one contract 

between the owner/financier/commissioner and an alliance of parties who deliver the 

project or service (lhalliances.org.uk, 2013). An alliance contract is not a very common 

form. An alliance contract does not solely rest on legal clauses; non-legal considerations 

such as trust, openness and a collaborative and constructive mentality also play an 

important role.  

 
 

 

 

 

 

 

 

 

 

 

Figure 4.3: Traditional, partnering and alliance contracts (IADC-2008). 

 

If parties share a constructive and collaborative attitude and approach from the 

beginning, then the best form of contract should automatically follow. A partnering type 

of contract may run parallel to a traditional contract providing guidelines to the 

relationship amongst the various partners. Alliance is sometimes seen as an outgrowth of 

a partnering relationship which results in a legally enforced contract. 

 

4.4.4.1 Advantages of Alliance Contracts:  

 

Alliance contracts can diminish the threat of disputes through a more co-operative 

approach between principals and contractors, which leads to several following 

advantages (IADC-2008).   

- Most risks remain within the alliance. The contractor can be reimbursed for all direct 

costs even in the case of delay, negligence, cost overruns or defective design.  
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- More contractors are likely to bid on projects because of the shared liability 

exposures and a greater ability to prevent and pass cost increases and delay risks.  

- Working in an alliance contract reduces conflict or confusion. There is far less 

emphasis on legal considerations and more on time and cost obligations.   

- Conflict is avoided by defining the nature and the extent of the co-operation at an 

early stage of the project and by establishing an effective alliance board which, if 

and when necessary, can intervene as a deadlock breaker 

- Alliance contracts tend more toward risk sharing and less toward allocating the risk 

to one party, which is the logical consequence of co-operating in the early stages.   

- A good alliance contract has a major instrument called ‘Alliance Board’ to promote 

the spirit of co-operation and amicable dispute resolution and increasing efficiency. 

- Frequent communication means that time is often saved in other areas. The client 

and contractor work much more closely as a team and are far less competitive.  

 
4.4.4.2 Disadvantages of Alliance contact: 

 
The major disadvantages of alliance contract as per (IADC-2008) are as follows:  

  

- An alliance contract cannot function without a true spirit of co-operation and better 

and frequent communication which might seem to be difficult. 

- The time and cost obligations are notably lacking and the emphasis is on the result,  

e.g. delivery of the project, and less on the road that leads to the result. This brings 

with it a degree of uncertainty about budgets and delivery dates.  

- If a project has an inflexible completion deadline or inflexible budget, then an 

alliance contract could lead to major problems.  

- The organization of an alliance contract can also be much more difficult if more than 

two parties are involved as an alliance board may easily become unmanageable. 

Parties may therefore prefer a traditional contract with all the usual certainties.  

- Third parties confronted with an existing alliance contract may wish to deal only 

with either the contractor or the client, not with both.  

- Third-party involvement may even lead to a conflict of interests because of 

obligations deriving from relationships with third parties. 

 

Alliance contracts are by no means the only form of contract for the future. Traditional 

contracts probably remain the most appropriate form of contract for small-scale, 

straightforward, short-term jobs. In such cases alliance contracts may be overkill, 

because they need time, energy and devotion to succeed. Furthermore, not all parties can 

easily adopt the spirit of trust and co-operation that is essential for an alliance contract to 

succeed. For large-scale, complex projects which require long-term planning and 

execution, an alliance contract offers a unique opportunity to work in a cost-efficient 

manner that can result in a win-win situation for contractor and client. At first sight, the 

shortcomings of an alliance contract on traditional bankability issues, such as certainty 

of time and cost, appear critical. Still, banks are more and more coming to terms with the 

concept of alliance contracts.  There is a risk share across all parties and collective 

ownership of opportunities and responsibilities associated with delivery of the project or 

service. Any ‘gain’ or ‘pain’ is linked with good or poor performance overall and not to 

the performance of individual parties (lhalliances.org.uk, 2013). 
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4.4.5 Contract challenges for All Electric LNG: 

 

Failing to meet or exceed the project objectives of safety, cost and schedule typically 

stems from misunderstanding the objectives of the project from the conceptual stage and 

therefore often lead to improper selection of the contract type. Personnel, contract 

structure, authority levels, trust and teamwork are significant factors in achieving the 

project objectives (Agnitsh et al 2001). Dependent on the level of risk the Owner of a 

project is willing to accept, budget constraints, and the Owner’s organization core 

competencies, will determine which method is best for their project. EPC contracting 

tends to be more expensive to the Owner, due to the shift of project risk away from the 

Owner to the EPC Contractor.  On average, a project’s cost 10% - 20% more using EPC 

style of contracting than a project using the EPCM style of contracting (Agnitsh et al 

2001). This limited number of experienced suppliers, along with the understandable 

reluctance of the LNG industry to try new things, has probably contributed to the price 

increases (Jamieson, 1998). To that effect an All Electric LNG contract price will be 

more than a conventional LNG project as there are a lot of step out technological 

changes involved in addition to the large combined cycle power plant that needs to be 

built, however the due diligence with contractor will be more complex and cumbersome. 

An alliance contract in an LNG environment can be explored to spread the risk between 

the owners and contractors. 

 

4.5 Engineering challenges: 

 
4.5.1 Engineering: 

 

4.5.1.1 Front End Engineering Design (FEED): 

 

It is often a general practice to squeeze the front end engineering and fail to provide 

adequate planning time to fully engineer, design and plan project execution. Front End 

Engineering and Design comprises a logical progression from capital project selection 

through capital asset commissioning and operation (Morris, 2009). For a better lifecycle 

performance the owners have to ensure that more upfront engineering is done. During 

early project stages, the FEED has to define the project scope aligned with business 

objectives. In addition to identifying and evaluates technological alternatives it prepares 

capital budgets, design criteria for use in detailed engineering along with project 

scheduling and cash flow projections. It also identifies risks, judges importance, ranks 

and assigns mitigation responsibility within the Owner’s organization. This helps the 

contractor to provide firm costs and schedules while minimizing change orders 

(Wenninger, 2007).  A slightly longer planning window on front-end-engineering and 

more technical resources application with the right skills will go a long way in 

significantly improving the final outcome. Advantage of implementing a FEED 

approach is that it allows and requires early value engineering, constructability reviews 

and operation and maintenance input before the contractor fixes cost and schedule and 

make it possible to "freeze" the project scope so that further changes are few 

(Wenninger, 2007). The other key improvement area is better integration of contractors 
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and service companies into planning process. Technology limits are pushed to utilize 

and reduce the overall development cost in a lower price environment (Jacobsen, 2009). 

During each phase of Front End Engineering Design (FEED), sound engineering 

judgment and industry “best practices” are applied to improve Capital Expenditures 

(CAPEX) and Operating Expense, (OPEX). There are significant risks when owners fail 

to provide for the engineering function, by this lacking the ability to define projects at 

the front end. During later stages, these companies become overly dependent on their 

detailed design and construction contractors, whom they are ill equipped to manage. 

Failing to provide for the owner's engineering function can lead to compromised quality, 

exceeded capital costs and/or extended schedules. According to a recent Business 

Roundtable study, companies successfully executing Owner's Engineering functions 

spend 28% less on projects, reduce cycle time to start up by 30%, increase plant capacity 

by 6% and transform average 15% Return On Investment (ROI) projects into 22+% 

return (Wenninger, 2007). Companies also face the challenges of complying with 

safety/environmental regulations apart from the challenges of a new operating frontier 

with billions of dollars in capital investment. This operating, safety and environmental 

challenges necessitates utilization of new technology, improvement of asset reliability 

and reducing operating expenses to life cycle advantage over the competitors (Morris, 

2009). 

                   

4.5.1.2 Reliability Centered Design Analysis: (RCDA):  

 

Reliability Centered Design Analysis (RCDA) leverages the guiding principles and rules 

that comprise the Reliability centered Maintenance (RCM) methodology (Morris, 2009). 

RCDA is a formalized methodology, following a step-by-step process, which lowers the 

probability and consequence of failure, resulting in the most reliable, safe and 

environmentally compliant design. RCDA is a process, which can be integrated into 

project management stages i.e. Front End Engineering and Design (FEED). Funding for 

Reliability Centered Design Analysis is included in project stage. Direct benefits using 

Reliability Centered Design Analysis in Front End Engineering and Design are higher 

availability, reduces risk designs, lower the probability and consequence of failure, 

focuses on maximizing the reliability of critical components, safer and reliable 

operations, better quality control and more stable operation (Morris, 2009). It also helps 

in lowering operating expense (OPEX), optimizing Preventive and Predictive 

Maintenance programs, emphasizing on condition-based maintenance practices, 

documents the primary modes of failure and their consequences and optimizes spare 

parts requirements (Morris, 2009). 

 

4.5.1.3 Detailed engineering process: 

 

Detail design activities are undertaken and project design plan prepared, conforming to 

the project design requirements and schedules. The Design Plan needs to take care of the 

personnel involved, list of design Inputs and output, release schedule of design output, 

the method of revision, updating and control. (QG2 Project design plan, 2005). The 

schedule and interface that defines the organizational and technical interfaces among 

different organizations that input into the design process need to be established. Basic 

design need to follow the general specifications, design specifications, construction 
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specifications, basic design drawings, standard design drawings, the process licensor’s 

design package, the project engineering data and the like. Design output should include 

design calculations, drawings, specifications, and data sheets with the output meeting the 

input requirements, including applicable regulations, specifications for purchased 

products and also gives acceptance criteria for safe and proper operation and 

maintenance of the plant. Design reviews are conducted to examine and evaluate the 

design so as to identify any problems, including those in related designs, construction, 

safety, environmental, operation, maintenance, etc. Process and Instrumentation 

Diagrams (P&ID), Plot Plans 3-Dimensional model review are conducted by an 

independent team which reviews the adequacy of design. Design verification is 

conducted to ensure that the output meets the requirements in accordance with the 

design criteria. Design validation is to be conducted to confirm that the product satisfies 

specifications. Design validation is not only the performance tests specified but also to 

confirm the design by calculation and simulation, etc. at appropriate design stages. 

Design changes are reviewed and approved by the same organization that performed and 

approved the original review (QG2 Project design plan, 2005). 

 

4.5.1.4 RAM Analysis: 

 

As a best engineering design practice, Reliability, Availability and Maintainability 

analysis (RAM) is conducted during the early stages of project design. RAM is a 

statistical analysis, which quantifies system reliability, availability and maintainability. 

RAM analysis utilizes failure information from system components in order to develop 

failure probability distributions. The analysis provides insights particularly the 

identification of primary contributors and critical events to system unreliability. The 

results help to consider an alternative design if the primary design fails to meet the 

expected project deliverables with respect to reliability, availability and maintainability. 

Additionally the analysis provides assistance in determining operational and 

maintenance strategies, life cycle cost, equipment operating spares, repair strategies and 

logistical requirement considerations. Combining the efforts of RAM in conjunction 

with the principles of Reliability Centered Maintenance (RCM), which deals with 

routine maintenance and replacement based on reliability improvements, further 

enhances system reliability and reduces operating expenditure (Morris, 2009).  

 

4.5.1.5 Human factor design:   

 

An extensive use of three dimensional modeling is required during the design 

development that encompasses the key human factors in the design. This involves the 

collaboration of project, operations, and contractor personnel and a human factors 

specialist (Chavez et al 2007). 

 

Adjustment to the Anthropometry of Local Process Workers: Today, anthropometry 

plays an important role in industrial design, where statistical data about the distribution 

of body dimensions in the population are used to optimize design. Design and construct 

of process plants need to accommodate the physical characteristics of the working 

population with respect to accessibility, exit and clearance of installations (Chavez et al 

2007).  Other features to be ensured that safety escape routes ensures proper escape 

http://en.wikipedia.org/wiki/Industrial_design
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routes and provision of an additional alternative means of egress and accessibility to 

process equipment for maintainable by cranes and other lifting equipment (QG2 project 

documentation 2005). 

 

4.6  Operational Challenges: 

 
The LNG facility is designed to continuously produce on-specification product over its 

full range of capability. The plant operability  automatically adjusts controls to correct 

for disturbances caused by changing weather, process or utility conditions so as to be 

capable of controlling the transients during start-up (hot or cold), normal shutdown, and 

emergency shutdown. The facilty is normally designed to operate for a 3-year  period 

without a major turnaround to coincide with the gas turbine driver maintenance cycle 

(ABB, 2009). The probability as well as the consequences of a given type of failure is an 

important factor in consideration of special features included for continuity of 

operations. Some of the operational challenges for continuity of operations are discussed 

below.   

 

4.6.1 Online stream days: 
 

The average one line stream days is dependent on various factors such as preventive 

maintenance intervals, turnaround time for gas turbine related inspection and additional 

time for actual maintenance work. Further, the operations is also dependent upon Mean 

Time Between Failures (MTBF) of various critical rotating equipment especially gas 

turbines. While planned shutdowns can be delayed, unplanned shutdown can occur 

resulting in an average 12 lost stream days per year in total capacity (Devold, 2006). 

 

4.6.2 Operational cost:  

 

The other challenge to minimize the operational cost such cost of fuel and running 

utilities etc. More detailed assessment of opportunities demonstrates that a VFD driven 

electric motor is significantly less expensive to operate than a gas turbine. (Kleiner et al 

2005). 

 

4.6.3 Maintenance cost of Interval between maintenance: 

 

Due to thermal and mechanical stresses and wear parts service & maintenance expenses 

for Gas Turbine drivers is quite high (Kleiner et al 2005). In case of electrical drive 

systems the cost is only a fraction. The challenge is to implement a system that is 

simpler and less failure prone. The scheduled maintenance should be minimized by 

increased predictive maintenance and also the reduction of spare parts for replacement. 

Electrical drives can run for periods up to 6 years of continuous operation, and even 

after that no costly parts need to be replaced (Kleiner et al 2005). The in-operation Mean 

Time Between Failure (MTBF) of electrical drive system is higher than that of gas 

turbine with availability of 99.9%. In an all electrical system it has been demonstrated to 

lower maintenance costs by up to 80% (ARC strategies, October 2000).  
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4.6.4 Operational safety: 

 

In conventional LNG, gas turbine driven compression combustion equipment are present 

in the process area.  The evolving concept of all-electric LNG plants segregates 

combustion and convective heat recovery equipment from the high pressure liquid 

hydrocarbon equipment from process area in to utility area thus eliminating associated 

risks and can reduce associated insurance costs (Kleiner, 2005).  

 

4.6.5 Thermal Efficiency: 

 

One major challenge of LNG process is reduction of thermal efficiency. Overall 

refrigeration-system efficiency is about 32% in a traditional mechanical drive solutions, 

which can be increased to of up to 45%, with a Combined-cycle power plants fed all-

electric drive system and also reduce greenhouse-gas emissions by around 30 percent 

compared to traditional mechanical compressor drives (Kleiner et al 2005). Even 

including distribution losses the electric drive systems along with the process-steam 

supply system may reach an overall thermal efficiency of 90 percent (Siemens, 2008). 

Thus, even in a not fully optimized configuration, where the efficiency of the gas turbine 

is about 25%, the power generation efficiency is about 47%, but climbs as high as 55% 

for a combined cycle plant. Therefore, the savings in taxation and consumption of fuel 

gas at the prevailing market price could add up to as much as third of the system’s 

CAPEX (Devold et al 2006). 

 

4.6.6 Emissions: 

 

Continuous improvement in environmental performance is becoming increasingly 

important motivated by the potential to reduce both cost and GHG emissions. In 

comparison to gas turbine drives which has a much higher emission the potential for E-

drive remains noteworthy and significant in the context of future capital investment for 

emissions reduction.    

 

4.6.7 Performance Deterioration and Recovery: 

 

The area of gas turbine performance deterioration is of great importance to any LNG 

operation. Total performance loss is attributable to a combination of “recoverable” (by 

washing) and “non-recoverable” (recoverable only by component replacement or repair) 

losses. Recoverable performance loss is caused by fouling of airfoil surfaces by airborne 

contaminants. 

 

4.6.8 Flexibility of operation: 

 

Scaling up of gas turbine drives for LNG may have reached a plateau. Hence there is 

very little margin of flexibility. Further due to the discrete size of the gas turbines the 

compressor size is also restricted by gas turbine size. With E-LNG, process and 

compression-plant size is no longer restricted by available mechanical drives. In these 

systems, multiple motors with lesser outputs may serve as dedicated compressor drives, 

improving operational flexibility (Kalyanaraman, 2005).  
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4.6.9 Ambient temperature consideration: 

 

In gas turbine as the ambient temperature goes up the output goes down as the 

combustion air becomes thinner. In an all electric system the production remains 

largely unaffected by ambient temperature (Siemens, 2008).   

 

4.6.10 Capability of successive and cumulative starts: 

 

Quick and controlled starting and re-starting of pressurized compressors minimizes 

downtimes and eliminates flaring of expensive refrigerant gas (Siemens, 2008). Full 

power is instantly available over the entire temperature and speed range, and the number 

of successive and cumulative start-stop and load cycles is generally uncritical (Kleiner et 

al 2005).  

4.6.11 Restart after a trip: 

 

A full shutdown in an LNG plant creates both a safety hazard and a major loss of 

production. In a gas turbine LNG the gas turbine needs to cool down before it is 

restarted and the gas needs to be flared for restarting purpose and it takes up to 48 hours 

to come back on line resulting in lost production, which is not required in All-Electric 

LNG (Devold et al 2006). 

 

4.6.12 Design flexibility of train sizing: 

 

Gas turbines are generally available in fixed sizes hence does not offer a wider design 

flexibility in terms of size of trains. This is not the case with all electric LNG as motor 

can be built to various different sizes as per the design requirement.    

  

4.6.13 Testing: 

 

Lack of performance or malfunctions of subsystems after installation can have grave 

financial consequences and complete testing of compression systems at the 

manufacturer’s location is thus normal. To make sure that the gas turbine drives perform 

to its design, extensive testing has to be carried out at the factory. Later at the site 

extensive construction and validation testing has to be carried out. The testing duration 

of the All-Electric Drive is much shorter and less complex. 

 

4.6.14 Optimizing size and accessibility of compressors: 

 

Accessibility can often be arranged   providing ready access to the inner bundles, 

bearings, and seal cartridges of vertically-split compressors, without disturbing the basic 

alignment of the compressor bodies.  

 

4.7 Environmental challenges: 

 
ISO 14001:2004 and ISO 14004:2004 focus on environmental management systems. 

The other standards in the family focus on specific environmental aspects such as life 
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cycle analysis, communication and auditing (ISO, 2013). LNG plant contributes to CO2 

emissions, which is a greenhouse gas and a prime contributor to global warming. 

Liquefaction of natural gas produces emissions during the removal of carbon dioxide 

from inflow gas, fuel used in gas turbines compressors and fuel used by power 

generation turbines. There are two ways to increase the efficiency and decrease the 

emissions firstly by improving the process and secondly by improving the efficiency of 

the production of heat and power (Rabeau et al 2007).  

 

4.7.1 Specific CO2 emission (Coulson, 2010) 

 

4.7.1.1 CO2 Emissions from Feed Gas:   

 

Further, improving overall thermal efficiency of the plant reduces the CO2 emissions in 

two ways. Firstly, the CO2 emissions from fuel are reduced, because there is less fuel 

required, and secondly, the CO2 emissions is reduced because using less fuel requires 

less feed gas (Coulson 2010). 

 

4.7.1.2 CO2 Emissions from Fuel gas combustion: 

 

The CO2emissions from fuel for LNG liquefaction plants are typically in the range 0.24 

to 0.32 tonne CO2/ tonne LNG, which can still be reduced. With optimization of the heat 

and power balance the fuel consumption and CO2 emissions from fuel can be reduced by 

approximately 30% leading to CO2 emissions from fuel in the range of 0.17 to 0.22 

tonne CO2/ tonne LNG. Assuming capture and export of 90% of the CO2 from the 

combustion flue gases, there is potential to reduce the CO2 emissions from fuel to 

around 0.02 tonne CO2/ tonne LNG (Coulson 2010). The refrigeration and gas recovery 

power requirements can account for up to 90% of the plant fuel gas consumption. 

Therefore, the selection of combustion efficiency has a direct impact on the overall plant 

greenhouse gas emissions. The fuel consumption is about 10% of the typical feed gas for 

LNG production. 39% of the overall CO2-e emissions estimated for normalized 

operations occur from power generation (Barnett, 2010). 

 

4.7.2 CO2 Capture and Storage: 

 

Carbon capture and storage (CCS) system can be employed so that CO2 can be captured 

from process, heaters, boiler exhausts and vents. The two major sources of CO2 

emissions in LNG plants are the acid gas removal unit and the flue gas from the gas 

turbines used for driving refrigerant compressors and electric power generation. 
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Figure 4.4: CO2 Re-Injection Scheme for Gorgon Gas Development (Barnett, 2010) 

 

The removal of CO2 from the feed gas is usually performed using solvent process or 

other options such as membrane or cryogenic distillation, (Kikawa 2001). The removed 

CO2 can be compressed, dehydrated and transported and injected to storage locations 

such as saline aquifers, depleted reservoirs, where enhanced oil and gas recovery could 

be employed (Chiu 2003). By this CO2 emission to the atmosphere can be considerably 

reduced. 

 

4.7.3 Waste Heat Recovery: 

 

Most new LNG plants use large industrial gas turbines for both power generation and for 

direct drive of the refrigeration compressors. The use of waste heat recovery units on the 

gas turbine exhaust, to provide heat for plant heating needs, can reduce the greenhouse 

gas emissions and fuel consumption in place of using fired heaters. Usually these 

heating requirements represent around 5% of the total fuel requirements of the LNG 

plant.  Although the capital cost of waste heat recovery systems is generally greater than 

that of direct fired heating systems, the added cost may be justified by the reduced cost 

of fuel and emissions (Chiu 2003). Compared to not having any waste recovery 

incorporation of Heat Recovery Steam Generation (HRSG) CO2 emissions can been 

reduced by about15% by using one HRSG per production train and by about 30% by 

using two HRSG per train (Rabeau et al 2007). This can be achieved by reduction of 

energy requirement as some of  the waste heat could be recovered from the flue gas. 

 

4.7.4 All Electric Drive System: 

 

The entire LNG plant’s electric power requirements, both for refrigeration compressor 

drivers and the balance of the plant can be provided by large generators in either the 

conventional gas turbine driven LNG plant or the combined cycle plant driven with 

aero-derivative gas turbines. Large motors could be used to drive refrigeration 

compressors. Heiersted et al (2003) state that in the Snøhvit LNG Project in Norway, 

systems involving emission have been compared and selected based on economical 
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robustness in life cycle costs comparisons. The table shown below shows that the 

relative emission from a combined cycle power plant is much lower than that 

conventional gas turbine driver for the LNG plant which further demonstrates that with 

All Electric LNG concept the CO2 emission can be minimized.  

 

 
 

Table 4.1: Typical Gas Turbine Performance and relative CO2 Emissions (Chiu 

2003) 

 

4.8 Maintenance Challenges: 

 

  4.8.1 Gas turbine shutdown intervals: 

 

As the study is focused on main compressor drivers the maintenance challenges is 

discussed here in that context. Gas Turbine Shutdown intervals are based on equipment 

requirements such as turbine maintenance for combustion inspection at 12000 hours, hot 

gas path inspection at 24000 hours and major inspection at 48000 hours along the 

mandatory inspection schedule of the gas turbines (Qatargas Maintenance Doc, 2006). 

The inspection programmes of static equipment are set up according to criticality assessment 

or statutory practices. Between major six years shutdown, yearly planned shutdowns will be 

scheduled based on turbine annual requirements.   

 

4.8.2 Long term services agreement for Gas Turbine Maintenance: 

 

Normally due to the criticality and complexity of the main drivers a Long term services 

agreement (LTSA) is implemented between the operating company and the main 

supplier of the drivers. This stipulates the provision of the following Parts/services: 

 

4.8.3 Routine maintenance:  

 

Maintenance of regular, preventive or minor nature is performed periodically during Gas 

Turbines shutdown or during operation to maintain equipment on a day-to-day basis 

without the need for an outage. All preventive maintenance activities such as checking 

lubrication, calibrations, minor leak repair, provision of fluids, greases, and resins, 
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cleaning and replacement of operational spare parts, filters, strainer and cartridges, 

maintenance or replacement of those parts included in the operational spare parts list and 

other similar preventive, routine or minor work (Qatargas Maintenance Document, 

2006).   

 

4.8.4 Parts:  

 

The parts include new, repaired, refurbished or upgraded parts, materials, components 

and other goods furnished etc. Aim is to guarantee the achievement of performance 

agreed in the LTSA contract in terms of availability. During the life of the contract 

LTSA will supply and manage a set of mandatory spare parts. Parts will be used for the 

covered units during Planned, Unplanned and Routine maintenance (Qatargas 

Maintenance Document, 2006).     

 

4.8.5 Personnel at Site: 
 

In order to achieve and manage the performance agreed in the Contractual Service 

Agreement the personnel provided by the main supplier cater for Performance 

Management, for  performing planned maintenance on turbine control panels, devices 

and instruments calibrations and related equipment and performing planned maintenance 

on turbines and its auxiliaries (Qatargas Maintenance Document, 2006).   

 

4.8.6 Planned maintenance:  

 

It is the scheduled periodic inspection, testing, repair and/or replacement of components 

of a covered unit. Planned maintenance is performed on periodic basis. In case of 

planned maintenance, following materials and services are supplied. 

- Decontamination work necessary for maintenance activities 

- Site utilities (compressor air, electricity, lighting, special tools, etc.)  

- Fire-fighting equipment and services 

- Adequate space for lay down, inspection and repair  

- Workshop services for minor machining and fabrication works 

 

4.8.7 Unplanned maintenance: 
 

Maintenance of the covered units required to repair an in-service failure or abnormality 

of a component, whether discovered during an outage which occurs as a result of a 

problem or failure, or during inspection or monitoring of a covered unit.  

 

4.8.8 Remote Monitoring and Diagnosis: 

 

Data acquired by Remote Monitoring and Diagnosis service system are analyzed by 

machine experts to determine the condition of the equipment, to help in operating the 

asset below the alarm levels, to identify anomalous trends and to highlight incipient 

failures in order to assist the performance has the scope to collect and archive equipment 

operating data making them available to engineers. Acquired data are transferred to the 

Remote Monitoring and Diagnosis (RM&D) service center continuously where they are 
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checked by RM&D engineers and used to assess machines status and potential problems 

or abnormalities (Qatargas Maintenance Document, 2006). 

 

4.8.9 Trend analysis and forecasting: 

 

Data acquiring process and related analyses are designed to evaluate the mechanical 

health of the equipment. The intention of the remote service is to detect potential 

problems before an equipment shutdown occurs. If necessary, maintenance or repair 

action are suggested quickly thus minimizing the extent of repair and avoiding potential 

collateral damage. 

 

4.8.10 Availability: 

 

Availability guarantee is effective after the maintenance start date. It is calculated for 

each train based on the operating assumption. 

 

4.8.11 Scheduled Maintenance for Large compressor turbines:  

 

The mandatory inspection schedule of the gas turbines is as follows (Qatargas 

Maintenance Document, 2006). 

Combustion inspection: 12000 hrs.  

Hot gas path inspection- 24000 hrs. 

Major inspection: 48000 hrs. 

 

4.8.12 Emergency Shut-Down (Trip): 

 

If an ESD occurs due to a failure on the covered units, a ‘Trip report’ is issued for further 

analysis. It is quite evident from the above that the gas turbine needs very extensive 

maintenance routine with considerable routine downtime for regular planned 

maintenance activities so as to improve system availability and reliability. By 

incorporation of All-Electric LNG it is believed that the down time can be considerably 

reduced hence improve the system availability and availability. Further the Long Term 

Services Agreement (LTSA) for gas turbine can be very cumbersome and very expensive 

affair which can be avoided by adopting an All-Electric LNG option where LTSA is less 

expensive. 

 

4.9 Conclusion: 

 
Every stage of the asset lifecycle, from long-range capital planning, procurement, 

construction to capitalization, operations, maintenance, and eventual disposal is filled 

with numerous challenges. The decisions to face these challenges must be based on full 

consideration of business functional requirements and economic and technical feasibility 

in order to produce an effective result (Life cycle management manual, 2009). Before 

carrying out a detail analysis and comparison between the gas turbine drive and the all- 

electric drive technology it is imperative to know the challenges faced during the entire 

life cycle processed.  
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CHAPTER 5 

 

Electric vs. Gas Turbine Drives 

 
5.1 Introduction: 

 
In a conventional plant gas turbine is used as a main driver for compression. A small 

motor is provided to start the string from stand still and bring it up to a certain speed 

before gas turbine is fired and gradually takes up the entire compression load. During 

normal operation the starter motor runs idle. If the process train trips, it has to be de-

pressurized by venting the inventory for the purpose of restating the string the 

compressor. In modern concept the motor size has been increased so that it can restart 

the gas turbine string in fully pressured condition in a process called ‘Full Pressure Re-

Start” (FPRS). In addition to FPRS the motor can also perform a function of a helper to 

add power to the string during high ambient temperature condition to maintain flat 

production. Starting a large motor, direct on line, leads to sizeable voltage drop due to 

large inrush current that may cause power system instability. Hence a Variable 

Frequency Drive (VFD), which can provide both starting and FPRS function. It starts the 

string slowly so as to limit the inrush current in starting. In an electric driven compressor 

string the function of the gas turbine is fully taken over by the VFD driven electrical 

motor system, which provide all the functions for operating the compressor. 

 

Compressor Driven by Gas Turbine            Compressor driven by Electrical Motor  

 

 

 

 

 

 

 
 

 

Gas turbine      Starter motor           Compressor              Full size motor            Compressor 

Figure 5.1: Comparison Gas Turbine and Electrical Driven Compressors 

(Qatargas 2 and Siemens, 2008) 

5.2  Advantages of Gas Turbine as a compressor driver: 

 
Before going into the detail of comparison between the gas turbine and the all-electric 

LNG it is essential to discuss the advantages of the gas turbine compressor drives. 

  

a) Long LNG experience: Gas turbine has long years of service experience being the 

LNG industries dependable workhorse for about four decades. 

VARIABLE 
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b) Robust and sturdy: It is a robust, sturdy and simple machine to operate. 

 

c) Lower risk as no step out: Since this technology has been there since a long time it 

has a lower risk of design construction, testing and operation. Since there is no step 

out technology involved, it is considered low risk 

 

d) No large power requirement: It requires a small amount of power for starting and do 

not need large complex power station to be built. 

 

e) Proven Reliability: Although it has a lower availability because of routine time 

consuming and costly maintenance regime, the reliability of the machine is quite 

high. Integrated approach to design, engineering, manufacturing and testing ensures 

that the machines are of high quality and performance (General Electric, 2006). 

 

f) Full load String test up to 130MW: Proven capability exists to string test the gas 

turbine and compressor in the manufacturer’s facility up to 130MW (General 

Electric, 2006) by which all the shortcomings can be identified and fixed before the 

machine is transported to site. 

 

g) Confidence of Lenders, financiers and stakeholders: Because of the long years of 

dependable service, all the stakeholders are quite confident in its performance. 

 

h) Global Service: Dependable global service network is available for gas turbine in 

terms of personnel and spare parts. 

 

i) Rigorous testing regime: It has established improved performance and reliability 

(General Electric, 2006). 

 

5.3 Gas Turbine and Electric Drive comparison: 
 

The use of electric motors as compressor drivers is gaining increasing interest in the 

LNG industry. Systems may also be considered which uses combinations of electric 

motor and gas turbine drive for the refrigeration compressors. All gas turbines, by nature 

of their physics and design, have inherent limitations when compared to equivalent 

electric motors. These limitations do not apply to electric motor variable speed drivers of 

equivalent rating & performance and this is the key to considering electric motor 

compressor drivers as a viable alternative for new installations. The limitation of gas 

turbine with respect to electric motor is discussed here in detail. 

 

5.3.1 Availability, Reliability and Maintainability: 

 

There is increasing interest by some in the LNG marketplace for using electric motor 

drivers instead of using gas turbine drivers. This interest has a potential for higher plant 

availability and lower compressor driver life cycle costs. Plant availability can be higher 

than the 96%. The higher plant availability derives from the fact that the motors require 

minimal maintenance and can be kept operational for six years at a time (Martinez, et al 

2005).Apart from a smoother process and energy savings, electronic speed control also 
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results in less maintenance because there is less mechanical stress on the machines, 

bearings and shafts. This prolongs operational life and keeps downtime to a minimum. 

The low starting current because of the use of VFD also reduces the mechanical and 

thermal stress on the machine and the adverse influence of starting surges on the power 

system. All these factors contribute to high reliability and maximum availability of a 

plant (ABB, 2009). 

 

Online stream days: While planned shutdowns can be delayed, occurrence of 

unplanned shutdown can result in an average 12 lost stream days per year in total 

capacity (Devold, 2006).In Snohvit LNG Electric motors, provided with variable speed 

features, driving the refrigeration compressors, are parts of significant ‘Best Available 

Technology (BAT)’. For the Snøhvit design, the availability of the all-electric concept is 

approximately ten on-line-stream days more per year than for a mechanical drive, 

industrial heavy-duty based concept, with gas and steam turbines (Heiersted et al, 2003). 

 

5.3.2 Train size restriction: 

 

The gas turbines come in fixed sizes hence the LNG production Trains. However, 

depending on the desired capacity and the maximum electric motor size, many different 

configurations are possible. A train can produce up to 8 MTPA using electric motors up 

to 65 MW in size (Roberts et al, 2004).This is the driving force behind the enormous 

increase in the number of electric drives being installed in oil and gas industries for 

compressor applications (ABB, 2009).Gas turbines are available only type-tested 

standardized products of fixed sizes with given output ratings. Electric drive systems are 

custom engineered for the application on hand, allowing the compressor to be optimized 

in capacity and speed for the process on hand, and not being limited by a given Gas 

Turbine rating (Kleiner et al, 2005).Liquefaction capacities from 7-10 MTPA can be 

achieved, with the specific arrangement depending upon the maximum motor size 

considered proven. 
 

5.3.3 Starting limitations:  

 

The gas turbine is not inherently self-starting. LNG plants using gas turbine as prime 

driver of the compressor string use a smaller size motor to shaft power start the string 

from stand still and achieve a certain speed before which the combustion can start and 

the turbine can take over. If the string has to be restarted after a trip either the 

pressurized inventory or refrigerant has to be flared or a much larger motor is required 

for pressurized start. Since a large motor takes a large inrush current at starting leading 

to large voltage dip which could lead to power system instability, a VFD driven electric 

motors is considered as this helps the string to be started in a controlled manner limiting 

the current inrush. Full-pressurized re-starting capability of the string in case of a trip 

allows starting without depressurizing refrigeration loops around compressors, which 

eliminates flaring refrigerant and also significantly reduces starting times and hence 

improves availability. The same motor is also utilized as a helper to maintain flat LNG 

production when the gas turbine output reduces in summer because of high ambient 

temperature. This starter/helper drives can be upsized to fully rated variable speed drive 

systems to substitute the gas turbine entirely (Kleiner, 2005). 
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5.3.4 Multiple starting and stopping Restrictions: 

 

Gas turbine once tripped has to be cooled slowly since the shaft is at very high 

temperature and immediate stopping leads to bowing of the shaft. Hence the shaft has to 

be rolled slowly up to six hours to slowly cool it before it is brought to stand still. 

During the operation the lubrication oil has to be constantly supplied so as not to damage 

the bearings. For the above two operations, emergency electrical power provision has to 

be made, especially if the trip is because of electrical blackout condition. Further 

restarting and loading of the gas turbine takes several hours so as not to put the shaft 

under undue thermal stress. Hence there is both starting and stopping restriction for gas 

turbines. In Electrical drive system the motor can be started and stopped multiple times 

and there is no need of slow roll or emergency lube oil requirement hence no emergency 

power system required. The variable speed drive does not draw more than rated current 

from the power system during starting, and is thus not thermally and/or mechanically 

stressed beyond its rated duty. Full power is instantly available over the entire 

temperature & speed range, and the number of successive and cumulative start-stop and 

load cycles is generally uncritical due to slow controlled starting (Kleiner et al, 

2005).The above mentioned advantages are not there in gas turbine drives. A full 

shutdown in an LNG plant creates both a safety hazard and a major loss of production. It 

takes up to 48 hours to come back on line resulting in lost production. In a gas turbine 

LNG the gas turbine needs to cool down before it is restarted and the gas needs to be 

flared for restarting purpose which is not required in all-electric LNG (Devold et al, 

2006). With an electric motor driven compression system, quick and controlled starting 

and re-starting of a pressurized compressor minimizes downtime and eliminates the 

potential for flaring large quantities of expensive refrigerant constituents. Once shut 

down, planned or unscheduled, re-starting is less time consuming (Kleiner et al, 2005). 

 

5.3.5 Full Pressure Restart: 

 

On most gas turbine mechanical drive applications the centrifugal compressor usually 

start-up unloaded or a very low pressure. The turbine string is started up by a relatively 

small starter motor. Then the turbine is fuel fired and it picks up speed. After it reaches 

the minimum continuous speed after which the compressors are loaded. In an LNG plant 

this depressurized starting method results in loss of refrigerant to depressurize 

refrigeration loops after any plant shutdown with increased flaring and increased plant 

downtime (approximately 8 hours required to complete plant start-up). Electronically 

controlled starting torque of the VFD is always sufficient to start even a fully loaded 

compressor, a valuable asset in case of process trips because the compressor circuit does 

not have to be depressurized resulting in no flaring or loss of refrigerant and the 

cryogenic process elements do not warm up (ABB, 2009). Quick and controlled starting 

and re-starting of pressurized compressors minimizes downtimes and eliminates flaring 

of expensive refrigerant gas (Siemens, 2008).A pressurized starting capability with the 

help of VFD can help increasing plant availability by greatly reducing starting times. 

Service can typically be restored within a short time because the drive can always restart 

the fully loaded compressors. 

 

5.3.6 Performance Deterioration: 
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The area of gas turbine performance deterioration is of great importance to any LNG 

operation. Total performance loss is attributable to a combination of “recoverable” (by 

washing) and “non-recoverable” (recoverable only by component replacement or repair) 

losses. Recoverable performance loss is caused by fouling of airfoil surfaces by airborne 

contaminants. Periodic washing of the gas turbine, by on-line wash and crank-soak wash 

recovers 98% to 100% of these losses (Sheldrake, 2003). The objective of on-line 

washing is to increase the time interval between crank washes. A critical factor in any 

LNG operation is the life cycle cost that is impacted in part by the maintenance cycle 

and engine availability (Meher-Homji et al 2007).Electric drive systems do not require 

de-rating. 

 

5.3.6.1 Dirty engine losses: 

 

Consideration should be given to the fact that engines become contaminated with the 

combustion deposits, the lubrication oil becomes less efficient, blades erode and lose 

their thermodynamic efficiency and air filters become less efficient due to the presence 

of filtered particles. These effects combine to reduce the output of the machine. A rule-

of-thumb figure for de-rating a gas turbine for dirty engine operation is 5% of its 

capacity (Sheldrake, 2003). This depends upon the type of fuel, the type of engine, the 

environment and how long the engine operates between clean-up maintenance periods 

(Sheldrake, 2003).   

 

5.3.6.2 Fuel composition and heating value losses: 

 

The chemical composition and quality of the fuel will to some extent influence the 

power output. However, it is usually the case that more or less fuel has to be supplied by 

the fuel control valve for a given throughput of combustion air. Hence it is usually 

possible to obtain the declared normal rating from the machine, but attention has to be 

given to the supply of the fuel. In extreme cases the profile of the fuel control valve may 

require modification so that adequate feedback control is maintained over the full range 

of power output (Sheldrake, 2003). 

 

5.3.6.3 Silencer, filter and ducting losses: 

 

The amount of silencing and filtering of the inlet combustion air depends upon the site 

environment and the operational considerations. Site environmental conditions may be 

particularly bad, e.g. deserts where sand storms are frequent; offshore where rain storms 

are frequent and long lasting. The more filtering that is required, the more will be the 

pressure loss across the filters, both during clean and dirty operation. This pressure drop 

causes a loss of power output from the machine. The amount of inlet and exhaust noise 

silencing will depend upon, how many machines will be in one group and total noise 

level permitted by standards. It is then necessary to allow a de-rating factor for the 

pressure drop that will occur due to long runs of ducting. With a reasonable degree of 

silencing a rule-of-thumb de-rating factor would be 98%. The following de-rating 

factors should be used in the estimation of the continuous site rating for the complete 

machine (Sheldrake, 2003). 

• ISO to a higher site ambient temperature, typically 0.5 to 0.8% per every
0
C rise. 
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• Dirty engine losses and the ageing of the gas turbine, assume 5%. 

• Fuel composition and heating value losses, discuss with the manufacturer. 

• Silencer, filter and ducting losses, assume 2 to 5%. 

• Gearbox loss, typically 1 to 2%. 

• Generator electromechanical inefficiency, typically 2 to 4%. 

• Auxiliary loads connected to the generator, typically 1 to 5%. 

 

5.3.7 Speed control range restriction: 

 

Being a mechanical drive a gas turbine has a limited speed variation capability by 

controlling the inlet guide vane and firing rate. With the use of a Variable Frequency 

Devices, the speed of each compressor can be optimized not only to achieve maximum 

compressor aerodynamic efficiency at a design point but also at the warm and cold 

ambient temperature extremes and as per process requirement (ABB, 2009).In addition, 

compressor speeds can be suitably changed to optimize for target production with 

smaller train capacity while remaining insensitive to swings in ambient temperature 

(Chart Energy & Chemicals Group, 2013). Apart from a smoother process and energy 

savings, electronic speed control also results in less maintenance because there is less 

mechanical stress on the machines, bearings and shafts (ABB, 2009).The VFD enables 

the strings to vary speed required to optimize LNG production by increasing or 

decreasing the speed as per process requirement. Since the efficiency is more or less 

same for the entire speed range. 

 

5.3.8 Emissions: 

 

Continuous improvement in environmental performance is becoming increasingly 

important motivated by the potential to reduce both cost and greenhouse gas emissions. 

In comparison to gas turbine drives which has a much higher emission the potential for 

zero emissions in the LNG supply chain, and this advantage for Electric drive remains 

noteworthy and significant in the context of future capital investment for emissions 

reduction. Use of “carbon tax” is typical to decide the appropriate compromise between 

minimum cost, minimum greenhouse gases and also reduce greenhouse gas emissions 

by around 30 percent in electrical drives compared to traditional mechanical compressor 

drives (Kleiner et al 2005). 

 

5.3.9 Schedules of installation: 

 

The schedule with gas turbine installation and testing is quite expansive. Typically, E-

LNG schemes provide significant time benefits. Faster string test programs, modular 

motor-drive systems, and shorter installation times offer the potential for months of 

schedule reduction and a substantial decrease in related costs (Siemens, 2008). Motor 

delivery times are shorter than that of a gas turbine driver. 

 

5.3.10 Testing: 

 

No extensive testing such as gas turbine required.LNG plants are mostly located in 

remote areas and in extreme climate zones. The gas turbine testing is extensively 
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discussed in Appendix D. Hence complete testing of the compression systems at the 

manufacturer’s location is thus normal to avoid financial consequences due to lack of 

performance or malfunctions of subsystems after installation. To make sure that the 

electrical drive system performs as specified prior to this full-load test at the compressor 

manufacturer's test facility, they can be load-tested as well in the motor factory at or near 

full load & speed. To verify that quality standards and customer requirements a drive 

can be subjected to thorough testing modern test facilities. Routine tests and functional 

tests can be performed in accordance with international standards. Combined test with 

the complete drive system, including transformer, converter and motor can be performed 

with or without load to verify functionality as well as the load performance to confirm 

the design data and verify performance values as well as reduce installation and 

commissioning time on site. With two or more identical drive systems on order at the 

same time, they can be tested in the so-called back-to-back mode, i.e. one unit operates 

as motor, the other one as generator and loaded (Kleiner et al 2005). 

 

5.3.11 Ambient temperature consideration: 

 

In gas turbine as the ambient temperature goes up the output goes down as the 

combustion air becomes thinner as shown in Figure 5.2. In an all-electric system the 

production remains largely unaffected by ambient temperature (Siemens, 2008). Full 

power is instantly available upon issuing the ‘Start’ command, regardless of the ambient 

and motor temperature, and the number of successive starts is also unlimited: (Kleiner et 

al 2005). Decoupling of plant production and ambient temperature is possible with 

electric drives as typical gas turbines lose approximately 0.33% of their output for every 

one degree F increase in ambient temperature (Martinez, et al 2005). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 5.2: Temperature vs. thermal efficiency of gas turbine (Blaicklock et al 

2013) 

 

5.3.12 Thermal Efficiency: 

 

Overall refrigeration-system efficiency is about 32% in a traditional gas turbine 

mechanical drive solutions, which can be increased to of up to 45%, with a Combined-

cycle power plants fed all-electric drive system. Even if the energy conversion in the 
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power plant is taken into consideration, the electric drive’s efficiency is typically better 

than that of Gas Turbine direct drives due to the higher efficiency of the large Combines 

Cycle power plant (Kleiner et al 2005). Even including distribution losses electric drive 

systems achieve 96% efficiency, resulting in an including process-steam supply, overall 

thermal efficiency may reach 90% (Siemens, 2008).Thus, even in a not fully optimized 

configuration, where the efficiency of the gas turbine is about 25%, an electric drive 

system achieves 36% (Devold et al, 2006). A variable speed industrial gas turbine in the 

25MW range driving a compressor train typically has an Efficiency of up to 30%. The 

average operational performance quickly falls to about 25%. A corresponding electrical 

drive system achieves an efficiency of around 95% over a quite wide range. In addition, 

the power generation efficiency is about 47%, but climbs as high as 55% for a combined 

cycle plant and more than 80% with triple cycle. Therefore, the savings in taxation and 

consumption of fuel gas at the prevailing market price could add up to as much as third 

of the system’s CAPEX (Devold et al 2006).Electric motor variable speed drives in the 

upper Megawatt (MW) power range have energy efficiencies >95%, over the entire 

useful speed range, typically 80% to 105% of rated speed. By employing variable speed 

drives instead of throttling or using by-pass vanes, the energy bill can be reduced by as 

much as 60% (ABB, 2009).Variable speed control is the most eco-efficient way to 

optimize process performance. Variable speed drives reduce energy consumption and 

NOx and CO2 emissions (ABB, 2009). Recent improvements in technology have 

resulted in a thermodynamic efficiency close to 60% for a combined cycle power 

generation system. In a combined cycle, the waste heat from the gas turbine exhaust is 

used by a steam cycle to generate power or drive another turbine. Greater reductions in 

fuel consumption and CO2 emission rates may be achieved through the use of combined 

cycle power generation and electric motor drivers for LNG refrigeration compression. It 

is possible to reduce fuel consumption and CO2 emissions by 40-50% using combined 

cycle power generation in conjunction with electric motor driven refrigeration 

compressors in place of simple cycle Frame gas turbine drivers (Chiu, 2003). The 

thermal efficiency of gas turbine decreases with the load as shown in Figure 5.3. 

 

 

 

 

 
 

 

 

 

 

Figure 5.3: Part-load on thermal efficiency of gas turbine (Blaicklock et al 2013) 

 

Some of the other thermal efficiency improvements are discussed in Appendix G 

“Efficiency improvement in LNG plants”. 
 

5.3.13 Operational cost: 

  

The gas turbine requires several utility systems that significantly increase space, weight,  
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operational cost and maintenance cost. The utility systems include filters, cooling, sound 

dampers, insulation, lube and seal oil systems and other turbine auxiliary systems.  

 

5.3.14 Operational Economics: 

 

More detailed assessment of opportunities demonstrates that a VFD driven electric 

motor of equivalent rating is significantly less expensive to buy & operate than a gas 

turbine. Additionally, the installation cost of a gas turbine direct drive is about double its 

cost as a generator drive (Kleiner et al 2005). 

 

5.3.15 Operational flexibility and improved control of processes: 

 

Outputs of oil and gas fields can vary greatly in their compounds, density, volume flow 

rates and pressure levels. This imposes varying operating conditions on process 

equipment, which means that compressors and pumps, which must exhibit a high degree 

of flexibility, cannot always be operated at their optimum design point. The employment 

of variable speed drives offers the possibility to control the process simply and 

effectively by speed control and to run equipment at its optimum operating points (ABB, 

2009). Scaling up of gas turbine drives for LNG may have reached a plateau. Hence 

there is very little margin of flexibility. Further due to the discrete size of the gas 

turbines the compressor size is also restricted by gas turbine size. With E-LNG, process 

and compression-plant size is no longer restricted by available mechanical drives. In 

these systems, multiple motors with lesser outputs may serve as dedicated compressor 

drives, improving operational flexibility (Kalyanaraman, 2005). Outputs of oil and gas 

fields can vary greatly in their compounds, density, volume flow rates and pressure 

levels. This imposes varying operating conditions on process equipment, which means 

that compressors and pumps, which must exhibit a high degree of flexibility, cannot 

always be operated at their optimum design point. The employment of variable speed 

drives offers the possibility to control the process simply and effectively by speed 

control and to run equipment at its optimum operating points. It is easier to dial in an 

LNG production rate when compared to gas turbines, especially single shaft, constant 

speed (ABB, 2009).Apart from a smoother process and energy savings, electronic speed 

control also results in less maintenance because there is less mechanical stress on the 

machines, bearings and shafts. This prolongs operational life and keeps downtime to a 

minimum. 

 

5.3.16 Operational safety: 

 

No gas fired equipment in process area and there is no need for fired equipment and 

associated scheduled maintenance inside the process plant. Furthermore, the risks 

associated with placing gas fired equipment within the process battery limit with high 

pressure gas are eliminated which can result in reduced insurance costs. Enhanced safety 

can be achieved by removal of the gas turbines from the hydrocarbon process area. 

Worker risk and related insurance premiums are eliminated by removing gas turbines 

from the process area (Siemens, 2005). 

 

5.3.17 Design flexibility of train sizing: 
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Gas turbines are generally available either in two sizes: less than 30 MW variable speed 

units or large 100 MW or more fixed shaft speed units. Electrical drives are available in 

a wide power and speed ranges, up to 100MW. Thus, the All Electric Drive system has 

much wider design flexibility in terms of size of trains, compressors per train shaft, and 

the possibility to separate smaller essential units. It has other advantages such as better 

overall uptime and reliability, Safe and stable operation over a wider range of process 

state, plant restart time is shorter, OPEX saving of 70% or more and slow roll 

requirement after a trip to cool down the gas turbine is not required and hence the 

essential auxiliary system is not required (Devold et al 2006).  With electric drives, the 

plant can go to a production hold idle recirculation mode. In an all-Electric Drive system 

a low manned, remote, or unmanned operation can be considered, because electric drives 

have a service interval that’s about 6 times longer and can operate for 100,000 hours 

without the need for a major overhaul as a result, fixed and variable costs are further 

reduced(Devold et al 2006). 

 

5.3.18 Testing: 

 

Lack of performance or malfunctions of subsystems after installation can have grave 

financial consequences and complete testing of compression systems at the 

manufacturer’s location is thus normal. To make sure that the gas turbine drives perform 

to its design extensive testing has to be carried out at the factory. Later at the site 

extensive construction and validation testing has to be carried out. The testing duration 

of the all-electric drive is much shorter and less complex. It is normal practice to mount 

both the compressor and the motor on a common base plate or skid, and to test the entire 

assembly under load in the factory prior to dispatch to the job site. Full load 

performance tests of such compression systems can be performed up to about 80 MW, 

with most job equipment being part of the test, thus reducing the installation time & risk 

considerably(Kleiner et al 2005). 

 

5.3.19 Optimizing size and accessibility of compressors: 

 

Electric drive systems are always custom engineered for the application on hand, 

allowing the compressor to be optimized in capacity and speed for the process on hand, 

and not being limited by a given Gas Turbine rating. In case of twin compressor bodies, 

these can often be arranged on either side of the motor shaft, providing ready access to 

the inner bundles, bearings, and seal cartridges of vertically-split compressors, without 

disturbing the basic alignment of the compressor bodies. This feature is the key to larger 

LNG train capacities since electric motors can readily be built up to today’s limit ratings 

of the compressors (Kleiner et al 2005).  

 

5.3.20 Maintenance issues: 

 

An electrically driven LNG facility requires less maintenance when compared to a gas 

turbine driven compressor solution as frequent turnarounds are not required for motor 

driven LNG plant. Further there is reduced maintenance costs and downtime for the 

motors and the VFDs as compared to gas turbines (Siemens. 2006). More detailed 

assessment of these opportunities demonstrates that an electric motor variable speed 
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drive (VSD) of equivalent rating is significantly less expensive to buy & operate than a 

gas turbine. Additionally, the installation cost of a gas turbine direct drive in an LNG 

facility is about double its cost as a generator drive. Infrastructure improvements at the 

site itself can increase the price tag of the electric system, but not dramatically. In very 

large installations, the construction of power transmission systems or even an associated 

power plant may be justified if the “Total Cost of Ownership” is considered and not only 

the capital investment for the LNG plant (Kleiner et al 2005).In case of twin compressor 

bodies, these can often be arranged on either side of the motor shaft, providing ready 

access to the inner bundles, bearings, and seal cartridges of vertically-split compressors, 

without disturbing the basic alignment of the compressor bodies. This feature is the key 

to larger LNG train capacities since electric motors can readily be built up to today’s 

limit ratings of the compressors (Kleiner et al 2005). Mainly due to low thermal and 

mechanical stresses in the motor, and no wear parts in the drive system, service & 

maintenance expenses of electrical drive systems are only a fraction of those en-

countered for Gas Turbine drivers. Under certain assumptions, there is no scheduled 

maintenance for periods up to 6 years of continuous operation, and even after that no 

costly parts need to be replaced (Kleiner et al 2005). Gas turbine driven refrigeration 

compressors require periodic maintenance. Continuous production is possible up to 6 

years. High thermal and mechanical stresses with resulting lifetime reductions of certain 

components and reoccurring service requirements requires costly spare parts, long shut 

down periods for maintenance. Further, complexity and sensitivity of machines due to 

numerous very tight clearances and tolerances between stationary and rotating parts 

leads to lower reliability (Kleiner et al 2005). No major refurbishment required ‘Long 

term services agreement’ is much cheaper and less spare part intensive. 

 

5.3.21 Part Load efficiency: 

 

The power required running a pump or a compressor is roughly proportional to the cube 

of the speed. In other words, a pump or compressor running at half speed can consume 

as little as one eighth of the energy compared to one running at full speed (ABB, 2009). A 

small reduction in speed can make a big difference in energy consumption. As many 

pump and compressor systems often run at partial load, the use of a variable speed drive 

can produce huge savings. By employing variable speed drives instead of throttling or 

using by-pass vanes, the energy bill can be reduced by as much as 60%(ABB, 2009).  

 

 
 

Figure 5.4: Power and consumption of control methods (ABB, 2009) 
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In addition to increasing efficiency electric drives can reduce NOx and CO2 emissions 

on site that could delay granting of a permit and cause penalties (ABB, 2009). All trains 

experienced reduced efficiency in throttling mode (recycle) at low flow, driver 

efficiency is nearly constant at varying power levels (Man turbo AG Schweiz, 2009). 

The entire liquefaction process can be optimized since variable speed drive systems are 

more efficient at part load and require less shut down periods for maintenance. Ambient 

temperature swings impact both gas turbine performance and propane refrigerant 

condensing temperature. As the ambient temperature increases, the condensing pressure 

of propane and other refrigerants increase. This increase in pressure translates into 

power and thus places a higher demand on the gas turbine or motor driver. If this power 

is not available, overall LNG production will be curtailed. There is improved plant 

operational flexibility by using full-rated power variable frequency drives (Martinez, et 

al 2005). 

 

5.3.22 Advanced surge control: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Control-system architecture applied to electric compression (ABB, 

2003) 

 

To avoid surge control methods using recirculation valves are used extensively and 

being opened widely well before the compressor is actually in danger of reaching surge. 

A VFD allows for a new strategy based on an active surge control scheme by using the 

motor torque as a manipulated variable. By using the fast response time of the motor, 

and the surge valve in a coordinated way, it is possible to improve anti-surge 

performance and allow the compression systems to operate with lower recirculation 

flows with increase energy efficiency. This facility is not available in gas turbine due to 

slowness of response of mechanical drives (ABB, 2005). 

 

5.3.23 Integrated control system and process optimization: 

 

An integrated control system can improve process performance by consolidating all 

available information and managing all control loops in a coordinated way. This is very 
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important due to two process modifications that result from the adoption of VFD as 

compressor driver: 

 

 A VFD system for compressor trains significantly improves the response time as 

compared to gas turbine driven alternatives as the electric motor has typical speed 

step response time of less than 200ms. 

 A VFD allows for operation in a much wider operating speed range where the 

electrical drive and motor efficiency stay relatively constant. 

 

In this way, motor-speed and surge-valve controls can be operated as interacting control 

loops, both in steady-state and during dynamic transitions. Hence a VFD solution can 

balance power requirements faster and better among the different sections of the LNG 

process. This improved control results in increased process safety and efficiency. In a 

parallel loop, for load sharing optimization, the possibility to operate on a wider speed 

range allows for the load sharing control solutions to have access to those operating 

points, which will minimize the total power consumed by the compressors (ABB, 2005). 

 

5.3.24 Automation and control challenge: 

 

The adoption of a VFD-driven compressor will also introduce a very important 

modification in the process-control architecture of a compressor train. The most 

common control architecture is still based on an old concept, where DCS (Distributed 

Control System)  is considered is in charge only of slow-control feedback loops such as 

fuel valves for turbines to set rotational speed. On the other side of the classical-control 

concept, the fast-control feedback loops are assigned to special external dedicated 

hardware such as those only in charge of control of the anti-surge valve. The old control 

architecture approach is often still applied to VSDS (Variable Speed Drive System)/ 

VFD driven compressor. The classical fast-control design includes (ABB, 2005): 

 

• A DCS (Distributed Control System) in charge to control the LNG process and, in 

particular, to define the working point. 

• A unit control panel, which is the PLC (Programmable Logic Controller) in charge 

to define rotational speed of the motor and to check the relevant interlocks. 

• An anti-surge control that is locally controlling the surge valve in order to avoid 

surging. 

 

Modern Hardware/Software architecture-control systems are mature enough to 

overcome those limitations given by the usage of different Hardware platforms for 

different control functionalities. Actually, a modern DCS, where control cycle time can 

be also of 1 ms, can cover within the same platform all the functionalities required to 

control the entire LNG process as well as the fast loop of surge valve. Note that in the 

case of an existing plant, where slow DCS (cycle time higher than 200ms) is used, it is 

still useful to have a unique control system for VFD and surge valve (ABB, 2005). 

 

5.3.25 Limited vendors: 
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Large sized gas turbines are produced by limited vendors. Most large sized gas turbine is 

supplied by General Electric. Whereas, electric drive system are built by many 

manufacturers that can provide competition in the market which will improve quality 

and reduce price (Kleiner et al 2005). 

 

5.4 Other advantages of All Electric Drives: 

 
5.4.1 Suitability of small and mid-scale LNG: 

 

Due to the high cost and complexity of a larger and more sophisticated train and 

growing demand of natural gas with rising prices, there is increasing interest on limited 

sized, mid-tier fields, with geographical isolation or unconventional production 

challenges. The remote fields which constitute a major share of global natural-gas 

reserves were earlier thought as technically unfeasible and uneconomical for 

exploitation. Standardized, modularized small-scale LNG solutions offer a host of 

benefits for stranded natural-gas assets to be monetized requiring substantially lower 

initial capital investment is necessary. When the fields are depleted, the equipment 

associated with each modular train is still within a size range that makes it fairly easily 

to dismantle and relocate. All-Electric can be solution as driver as the motor can be built 

to ant size without restricting the capacity of the LNG trains (Chart Energy & Chemicals 

Group, 2013).Due to their standardized and modularized design modularized 

liquefaction trains and other components of a the repeatable small or mid-scale LNG 

facility can speed the project schedule by up to 30% percent in comparison to custom-

engineered solutions (Chart Energy & Chemicals, 2013) 

 

Figure 5.6 Modular LNG Schedule; (Chart Energy & Chemicals Group, 2013) 

5.4.2 Robustness of Electric motor: 

5.4.3  

 

 

 

 

 

 

 

Fig 5.7; Theoretical limits for 2-pole compressor drive motors (Kleiner et al 2005) 
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Brushless synchronous motors with solid steel two-pole turbo rotors have been in 

service for decades in various industries in ratings up to 40 MW and speeds to 6600 rpm 

and their construction is practically identical to that of turbo generators in power 

stations, which have output ratings exceeding 600 MW. In 2003 Siemens built and load-

tested the first “all-electric” refrigeration compressor drivers for a new LNG liquefaction 

plant, with rated powers of 65 MW and 32 MW at 3600 rpm, respectively, and such 

drives are offered in ratings exceeding 80 MW at the same speed. For lower power 

ratings the shaft speed can be increased somewhat with circumferential rotor speed of 

200 m/s and rotor dynamic considerations up to 6600rpm (Kleiner et al 2005). 

 
5.4.3 Modularity and prefabrication: 

 

The frequency converter with its cooling & control systems, Low Voltage switchgears, 

Motor Control Centers and UPS (Uninterruptible Power Supply) systems, and the local 

operator interface are typically installed in prefabricated power center containers 

modules at the manufacturer’s location where they are also tested and pre-commissioned 

prior to shipment. These custom engineered modules are suited for installation outdoors 

in the climate zone specified, if necessary with full climate control, and meeting local 

building codes. With this modular building concept, the number of shipping containers 

and the amount of installation work on site are minimized. This module concept also 

facilitates the various performance and load tests typically specified for such 

compression systems (Kleiner et al 2005). Direct outdoor installation inside hazardous 

area, pluggable cables, fully climate controlled and pressurized to exclude the 

environment, multiple individual modules assembled on-site to form one building, safe 

working environment  are some the advantages. Turbo-rotor-motors have been built up 

to 65 MW and turbo generators in ratings > 600 MW and static frequency converters of 

the LCI type are built in ratings to 3000 MW. Both, motors and variable frequency 

drives, are available today in ratings up to 90 MW (Kleiner et al 2005). Other 

advantages are reduced effect of harsh weather conditions during construction, reduced 

effect of remoteness of location and reduce the necessity of extensive steel work at site. 

Since there is higher productivity at construction yard in the factory the modularity 

offers reduce work at site in general. 

 

5.4.4 Full drive package responsibility: 

 

A single source offering consolidated and coordinated work from design to production, 

testing, and delivery and commissioning give the following advantages to customers.  

Minimized risk and reduced commissioning time and optimized system with all 

associated auxiliaries. Verification of the functionality, as well as the load performance 

of the drive system can be done at the manufacturer’s facility. The manufacturers can 

offer the entire drive system, consisting of transformer, frequency converter, filters 

motor, auxiliaries, re-cooling equipment, switchgear and outdoor control houses. 

Standard air and water-cooled designs are available for ratings up to 72 MW, engineered 

designs for more than 100 MW is possible (ABB. 2009). 

 

5.4.5   No need of extensive fire suppression (Siemens 2005): 
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With all electric compressor train size can be tailored for a specific requirement,  lower 

centerlines significant in seismic active and cyclone regions can be constructed, 

complete elimination of housings for compressor and driver with no elaborate fire 

suppression system is required (Siemens, 2005). 

 

5.4.6 Better return on investment: 

  

Electric drives offer an improved plant productivity of at least ten days of additional 

steam day’s production per annum. Higher plant availability and operational flexibility 

with reduced maintenance costs and reduced peak maintenance labour are other 

advantages as LNG modules can run for 6 years without interruption (Siemens, 2005). 

 

5.4.7 Other features:  

 

The E-LNG plant concept also offers the following features: 

 

1) Power station staging – startup can use inexpensive open cycle plant with the 

potential to upgrade to combined cycle.  

2) Better compressor access by placement of compressor bodies on either side of the 

motor.  

3) Shorter motor delivery times than that of a gas turbine driver. 

4) LNG production is not impacted by ambient temperature swings (Siemens, 2005). 

5) Issues with gas turbine such as thermal and mechanical stress resulting in lifetime 

reductions of certain, components and reoccurring service requirements, complexity 

and sensitivity due to numerous very tight clearances and tolerances between 

stationary and rotating parts is not there in electric drives.  

6) Advantage of speed range regulation to achieve maximum compressor aerodynamic 

efficiency at a design point (Roberts et al, 2004). 

 

5.4.8 Possibility of parallel operation: 

 

A significant improvement in overall plant availability could be made by arranging the 

gas turbine drivers and compressors in parallel rather than in series. When one 

compressor or gas turbine in a refrigerant loop shuts down the parallel compressor 

continues to run allowing the plant to continue operation at a reduced rate. Because heat 

exchanger approach temperatures improve at lower production rates and duty can be 

balanced between refrigeration loops one of two 50% compressors can still produce 60 - 

75% of total plant capacity (Jamieson, 1998). The additional capital cost for this option 

is small and more than offset by the improvement in availability. The parallel 

arrangement eliminates the possibility of a single machinery failure shutting down the 

whole plant and saves a lot of time when repairing a machine as the plant does not have 

to be completely shut down and restarted. 

5.4.9 Possibility of Large Trains with higher reliability: 
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Large trains can be feasible and cost-effective. One major concern with “mega” LNG 

trains is significant reduction in LNG production when one of the refrigerant compressor 

trains goes out of service. This problem can be mitigated with the Phillips Optimized 

Cascade LNG Process “two-train-in-one” (parallel circuit) reliability concept which 

allows the LNG train to operate at up to 75% capacity even when one compressor string 

trips. LNG trains utilizing this design have demonstrated on-stream availability greater 

than 95%, the highest in the LNG Industry (Hunter et al, 2004). The outstanding safety, 

reliability, and high operating factors of the LNG industry keep building up confidence 

in larger trains, and the trend to design larger trains will keep accelerating. Electric 

motor system can come for good use for “two-train-in-one” concept. In this case the 

proven size of VFD driven electrical motor system of 65MW can deliver 8MTPA train 

or larger (Roberts et al, 2004). 

5.4.10 Back-to Back testing: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Back to back testing of 45 MW motor (Salisbury, 2008) 

 

Back to Back testing is to validate the system design and compare its performance with 

predicted and guaranteed values. The configuration consists of mechanically coupling 

two motors with each motor fed by multiple VFDs. Operating conditions needs to be 

simulated while validating redundancy. Test data are recorded during both the back to 

back in and string testing for system performance evaluation. During this testing, one of 

the units was operated as a motor simulating the turbine by providing positive torque. 

The second unit is operated as a generator converting mechanical energy from the first 

unit to electric power. This configuration requires that the utility supply only enough 

electric power to cover system losses as indicated in the test one-line configuration 

below. Another advantage of the back to back testing is to check the temperature rise of 

the motor in actual loaded condition (Salisbury, 2008). 
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5.5 Tabular Comparison between gas turbine and variable speed drive: 

 
5.5.1 Features: 

 
Comparison of Gas turbine Variable speed drive Reference

s 

Efficiency Low Very high  

 

 

 

 

 

 

 

 

ABB, 

2009 

 

Investment cost High medium 

Maintenance High  Very low 

Reliability Medium High 

Availability Medium High 

Mean Time To Repair A factor to be considered Very low 

Emissions High None 

Speed control range Limited Wide 

Speed control accuracy Medium High 

Design flexibility Low High 

Starting time Medium to high Short 

Noise level Very high Medium, Low 

Influence on power 

supply 

None Investigation required 

Environmental permit Required Not required 

Weight/ space  Similar Similar   

 

 

Devold et 

al 2006 

 

Minor maintenance cycle 4000 hrs. 25,000 hrs. 

Major maintenance cycle 20,000 hrs. 100,000 hrs. 

Minor maintenance  6-10 days 1-2 days 

In Operation between 

MTBF 

4000 > 25, 000 hrs. 

Control response Slow Medium to quick 

Efficiency Narrow peak range High over a wide range 

Logistics Delivery 3-4 years Delivery 1-2 years 

Average operation 

efficiency 

25% 40% 

Thermal and mechanical 

stresses 

High Low  

 

 

 

 

 

 

 

 

 

Kleiner, 

2005 

Complexity and 

sensitivity 

High Low 

Products and output 

ratings 

Standardized Variable 

Speed range/ regulation Limited Wider 

Starting capability on 

load or no load 

Unable Capable 

Ambient temp Reduced output No affect 

Part load efficiency Poor No effect 

High Elevation Reduction No effect 

Vendor competition Limited Wide  

Efficiency 

Schroder, 2008 

30% 52% with combined cycle 

95%(Individual)  

NOx, SOx, CO2 emission Higher Lower 

Process safety Fired equipment in plant No fired equipment 

Train sizes Fixed by available turbine  Flexible as motor size  

Maintenance cost High Low 
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Operating cost High Low  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Man turbo 

AG 

Schweiz, 

2009 

Train full load Cycle 

efficiency 

Low  

due to low driver efficiency 

High due to Higher drivers 

efficiency 

Train part load 

efficiency 

Low  

 

High 

Restart capability after 

forced shutdown and 

start density 

2-3 hours delay for restart due 

to driver thermal soak. 

Limited number of restart per 

hour 

Immediate restart. No limit 

on number of restarts per 

hour 

Load assumption Approximately one-half hour 

after successful start 

Ability to start and come to 

full speed under load 

Sensitivity to site 

conditions 

Available power reduced with 

increase in elevation, 

temperature and humidity 

Full power available at all 

site conditions 

Controllability Reasonably good but depends 

on firing temperature and heat 

distribution 

Excellent speed 

controllability due to high 

frequency operation at 

about 20hz (+/-0.5hz) 

(30rpm) 

Ease of remote operation Good Excellent (all electric 

concept) 

Speed control range Typically 70-105% 30-105% 

Starting reliability Good Excellent 

Auxiliary consumption Lube oil, lube oil filter media, 

inlet air filter media, power for 

lube oil pumps, lube oil cooler 

fans, Nitrogen required for 

seal gas buffering, Instrument 

air consumption, for filter, 

purge pulse cleaning 

Cooling gas filter media 

reduced instruments air, 

consumption due to usage 

of only one TCV for motor 

cooling. No air purge 

requirement, AMB power 

supply 

Exhaust emissions Seal gas must be vented or 

flared, CO2 and Nox emission 

Zero local emissions 

Maintenance costs Higher lowest 

Unit availability Lowest highest 

Unit reliability Lowest highest 

Ability to trade carbon 

credits 

Lowest highest 

Fuel/Energy cost Function of local cost of 

electricity 

 

Risk of stricter future 

emission regulations 

High low 

Insurance risk Higher Lower 

 

Table 5.1 Characteristics comparison between Gas Turbine and Electric Motor 

 

The above table compares the characteristics of the VFD with that of the gas turbine. 

The comparison speaks for itself. Except the initial investment cost in all other 

parameters the advantage of electrical motor far outstrips that of the Gas turbine. The 

initial capital investment is also paid back in few month of operation due to higher 

availability of the electrical motor. Hence from technical as well as commercial 
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perspective electrical motor is a logical choice to drive a compressor. A CAPEX 

comparison between the Gas turbine and All-Electric is shown in Appendix-A. 

 

5.6 Conclusion: 

 
All gas turbines, by nature of their physics and design, have inherent limitations. These 

limitations do not apply to electric motor variable speed drivers of equivalent rating and 

performance and this is the key to considering electric motor compressor drivers as a 

viable alternative for new installations (Kleiner et al 2005). The use of an electric motor 

driven compression concept is an alternative approach worth considering. This solution 

stands out as economically and ecologically superior, despite a higher initial investment 

for a larger combined cycle power plant. Contrary to the belief, the All Electric LNG 

concept does not employ new & unproven technology. Full load back-to-back tests and 

full-load compressor string tests have been successfully completed. Performance testing 

of compression strings and control systems in the country of manufacture reveals 

possible design & manufacturing flaws at an early point Back-to-back full load & speed 

tests of identical units possible up to 70 MW. Full load test and speed tests for complete 

compression strings is possible at factory to validate design and performance verification 

prior to shipment. All drive related electronic and auxiliary equipment can be installed in 

prefabricated and tested modules. Considering these advantages, the electric motor 

variable speed drive is in many cases a viable and economically attractive alternative to 

the mechanical gas turbine driver for centrifugal refrigeration compressors. With 

competitive & reliable electric power available at or near the jobsite, or from an 

associated power plant, this alternative should be evaluated. Continuous process 

operation is possible for six years with expected availabilities of the refrigeration 

compression system including the power plant can reach 360 days. Very little 

maintenance in the process area and few operational spares required on site, Custom-

engineered drivers up to 80 MW@3600 rpm with no power reduction at elevated 

temperatures are available (Kleiner et al 2005). The all-electric drive option for base 

load LNG plants has potential benefits of increased reliability and reduced maintenance 

cost for refrigeration compressor drivers, and elimination of separate, smaller gas turbine 

driven generators for the remaining plant electric power requirements. Another 

advantage is that when the refrigerant compressors are driven by electric motors they 

can be restarted without depressurizing the casing hence reduces flaring (Chiu 2003). 

Main Advantages of Electric motor: are easy maintenance of motors and less 

maintenance for electric parts with converters having plug and play technology (Thibaut, 

2007). 
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CHAPTER-6 

 

Technical Challenges of all electric Concept 
 

6.1 Introduction: 

 
Gas is becoming a truly global commodity as volumes of production and consumption 

are increasingly and it is transported around the world in the form of liquefied natural 

gas. As a result, high reliability at the source location becomes ever more critical. 

Meanwhile, variable speed drives and electrical motors, hitherto used mainly as turbine 

starters and helpers, are being considered to be sized up as a potential compressor drive 

solutions for the LNG-production applications sector by replacing the gas turbine 

drivers. As environmental constraints, such as carbon emissions and energy efficiency, 

are becoming more restrictive, the classic solution with gas turbine driver is getting even 

less convenient. Yet, even with these considerations, obstacles existed for source 

companies that wish to migrate to LNG liquefaction plants with full electrical-driven 

compressors solution (E-LNG). The largest obstacle is that such plants will require a 

constant availability, reliability and adequate performance and capacity of electrical 

system. Continuous improvements in power electronics, advances in technology and 

also the availability in the market of large frequency converters up to 100 megawatt has 

paved the way for large variable speed drive systems (VSDS) or Variable Frequency 

Drive (VFD) system with electrical motor drivers to be considered as an alternative to 

gas turbines as main compressors driver solution. These provide flexibility by allowing 

variable speed operations with strong reliability and lower maintenance costs (Siemens, 

2005). Whatever may be the claims, if the investors and lenders are not convinced 

about the reliability of the VFD driven motor system and sure that that the technical 

issues of the electrical system cannot be resolved they are not going to migrate from 

gas turbine technology to all electric technology in haste. The following chapters 

discuss the technical issues and their resolution for the VFD system.  

 

6.2 Typical VFD system: 

 
Before going into the details about the technical challenges it is useful to have a 

discussion about the electric drive system. As a whole, it consists of a transformer 

connected to the electrical grid feeding a VFD and a motor that ultimately drives a 

compressor. All VFDs convert Alternating Current (AC) power to Direct Current (DC) 

and again back to Alternating Current (AC) by means of power electronics switching 

devices (TM-GE Automation, 2005). The rectifier, dc link and inverter constitute a 

variable frequency drive system. The rectifier converts the Alternating current to Direct 

Current. The inverter changes the direct current to alternating current and in the process 

controls the frequency of the electrical voltage fed into the motor. As the speed is 

directly proportional to the frequency the VFD is able to control the speed of the motor. 

The internal components of the VFD function to convert the electrical supply three-

phase AC voltage to a different voltage amplitude and frequency in order to change the 
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synchronous speed of the electric motor (Nored et al 2009). Variable Frequency Drives 

can be divided into two categories based on the type of inversion scheme: voltage fed 

(source) and current fed (source) inverters.  

 

 

 

 

       Transformer 

Power grid          Rectification   Energy Storage     Switching       Motor    Compressor 

Figure 6.1: Medium Voltage Drive topology; Ref: TM-GE Automation (2005) 

 

The input converter or rectifier determines power factor and harmonics as seen by the 

electrical supply side of the VFD. After the DC link, power is inverted back to AC to 

drive the motor. The inverter side of the VFD will determine the motor-side harmonic 

characteristics. Inter-harmonics can also be significant between the motor and the VFD 

as a system. Harmonic is the electrical noise introduced by the electronic switching 

devices into the electrical system by which the pure sinusoidal waves of the source get 

distorted. The harmonics is undesirable as it produces undue heating in equipment and 

also creates noises that may affect communication system. The use of 12, 24, or 30 pulse 

VFDs results in lower harmonics induced within the network. The VFD provides a high 

degree of “ride–through” capability when there is a supply voltage dip. A project 

specific evaluation must be made on a case-by-case basis, with respect to the use of 

harmonic filters. Further, the low torque ripple would help in the torsional design of the 

motor-compressor string.  A “Full VFD” provides maximum operating flexibility during 

start up, trips, electrical transients, ambient swings, and turndown (Meherhomji et al 

2011).The primary functions of any VFD are to communicate with an external process 

controller DCS (Distributed Control System) or a local control keypad to receive the 

user signals and commands and to transmit the status of the drive.  It calculates both the 

voltage and frequency necessary to maintain the motor speed at either the reference 

torque or speed set-point and maintains the desired machine flux or Volt/Hertz. 

Subsequently it generates control signals required to control the power semiconductor in 

order to synthesize the three-phase output AC voltages or currents. Further it monitors 

the voltage across power semiconductor devices, motor current feedback and VFD 

internal temperatures to determine whether it is safe to operate the VFD. It also monitors 

motor and compressor parameter for safe operation (Nored et al 2009). When variable 

flow control is required it controls it by changing speed. By this it saves energy by 

replacing wasteful throttling control followed in gas turbine drives and also helps in 

optimization of rotating equipment performance. Since it can change speeds it eliminates 

gears or other power transmission devices also. It helps in efficient part load operation 

because of automation of process control. The part load operation in gas turbine is very 

inefficient. Since it starts the string slowly avoiding inrush current it reduces the rating 

and cost of electrical distribution by drastically reducing motor starting inrush current. 
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Because of reduced stress it is able to extend motor bearing and seal life. It also 

produces less noise and has no environmental impact; it is clean, non-polluting, quiet, 

efficient, and relatively easy to repair (Kaiser, 2008). 

 

6.2.1 Current source drives:  

 

In current-fed inverters, the inverter output to the motor is supplied in the form of 

current. Motor voltage is a function of the motor design and the associated load, 

irrespective of the inverter. The current-fed VFD uses a solid-state converter to convert 

the electrical supply from AC to DC. An inductor in the DC link provides constant 

current to the inverter which regulates the output frequency of the motor AC three-phase 

current. In current-fed inverters, the solid-state converter controls the amplitude of the 

current. In this type of VFD drives energy storage section between converter and 

inverter (DC Link) is an inductor (reactor), but the energy storage is very low. The 

inverter in the VFD of a current-fed type controls only the output frequency. Supply-side 

high order harmonics are typically high in current-fed VFD’s. LCI drives can support 

high power applications, up to 100,000 hp and can be built to supply all of the motor 

current (Nored et al 2009). LCI current source topology is used for synchronous motor 

drives and, SGCT and GTO for induction motor drives. Current switched devices like 

SGCT and IGCT require many more parts in firing/ gate control than voltage switched 

devices like IGBT, IEGT(TM-GE Automation, 2005).The current source inverter can 

also apply pulse width modulation by varying current amplitude and frequency control 

through semiconductors Most current fed VFD’s use the Load Commutated Inverter 

(LCI) or IGCT technology with large electric motors. 

 

6.2.2 Voltage source drives:  

 
In voltage source drives the energy storage section between converter and inverter is a 

capacitor. Insulated Gate Bipolar Transistor (IGBT), Integrated Gate Commutated 

Thyristor (IGCT), IECT (Injection Enhanced Gate Thyristor), Pulse width modulated 

(PWM) drive are some of the examples of voltage source drives. In voltage-fed VFD 

inverters, the output of the inverter to the motor is a voltage. In the voltage-fed VFD, the 

DC conversion is accomplished with a rectifier bridge. The DC link is heavily filtered 

using electrolytic capacitors. The voltage amplitude and frequency of the output to the 

motor are controlled by power semiconductors using a variety of different control 

techniques. The motor and load determine the amount of current. The use of a rectifier 

bridge to power the DC link helps to reduce the harmonics for these types of VFDs. The 

electrolytic capacitors used in the DC link have very high energy storage and are often a 

life-limiting component in the VFDs(TM-GE Automation, 2005). Voltage switched 

devices like IGBT and IEGT have much lower switching losses than current switched as 

they allow higher switching rates and can give better output waveforms (TM-GE 

Automation, 2005). Voltage Source Inverters (VSI) has been used in steel industry of 

20MVA for at least a decade. Increased availability and innovative solution with better 

performance allows Voltage Source Inverter (VSI) to be used at even higher power 

levels. VSI (Voltage Source Inverter) offer better performance on harmonics, torque 
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ripple and torsional oscillation (Meher‐Homji et al 2011).A detail “Torsional Analysis 

Consideration of All-electric option” is discussed in Appendix: I. 

 

6.2.3 Pulse Width Modulation technique: 

 

Many current-fed and voltage-fed VFDs control the motor voltage/current amplitude and 

frequency using a control technique of pulse width modulation (PWM). In PWM the 

VFD turns the motor voltage on and off at a frequency much higher than that of the 

desired AC power. The motor inductance is used for filtering the resulting motor-side 

harmonics. The pattern and implementation of the pulse width modulation (PWM) is 

highly dependent on the particular type and manufacturer of the VFD (Nored et al 

2009).The PWM voltage-source VFDs may require an input filter depending upon the 

different levels of current harmonics from the rectifier. Voltage harmonics are not as 

common with these types of VFDs. Some PWM voltage-source VFD types can function 

for the gas compressor/electric motor application without input filtering, depending on 

drive topology. (Nored et al 2009).  

 

A comparison of advantages and disadvantages between the voltage and current source 

VFD is shown below in Table 6.1 which shows the advantages of Voltage source drive. 

 

Current fed VFDs Voltage fed VFDs 
Lower cost higher horse power Low cost and low horse power 

Four quadrant Two quadrant 

P.F=P.U Speed*Load P.F 95% displacement P>f 

Immune to short circuit Require protection to short circuit 

More low cost components Few higher cost component 

Large inductors (bulky and costly) Small or no inductor 

Lower motor noise Low or medium motor noise 

Non critical layout Critical construction layout 

30% harmonic current 40% harmonics current at 6 pulse 

Low dv/dt at out put High dv/dt output 

High common mode voltage Low common mode voltage 

Output filter required Output filter not needed 

 

Table 6.1: Comparison of VFD Topology: (Kaiser, 2008)  

 

6.3    Drive Technology Description: 

 
There are various technologies available for the inverters. The most significant 

difference between various topology is the power quality of the output voltage and 

current fed to the motor, i.e. how close is the input current is to the sine wave and how 

does the output voltage resembles the sinusoidal utility voltage. The basic comparisons 

between various topologies are as follows (Meher-homji, 2011): 

 

 Gate power to turn devices on and off external circuitry (firing protection). The 

impact is number of control devices and system reliability. 



Chapter 6                                                                            Technical Issues of All Electric Concept    

                                                               102                                                     Engineering Doctorate Thesis 
 

 Switching speed, switching losses on state forward drop and losses. The impact is 

System efficiency and cooling. 

 Continuous current ratings, Forward and reverse blocking voltage. The impact is 

Number of power devices and system reliability. 

 Physical mounting and thermal characteristics- Packaging a system sizes. 

 

6.3.1 Load Commutated Inverter (LCI): Current source: 

 

LCI technology is Silicon Controlled Rectifier (Thyristor) based and is high in 

efficiency, reliability and installed bases but draw backs are high harmonics content 

which caused problem in integration to the electrical grid and high torque ripple and 

torque pulsation which may excite torsional oscillation in the shafts of rotating 

equipment. Thyristors are not attractive for high torque quality drive application as 

power quality is poor as they can switch once per fundamental cycle and cannot be 

actively turned off. They need harmonic filters to be applied to the grid side, which 

needs careful designing and tuning (Meher‐Homji et al 2011). It drives synchronous 

machine based on naturally commutating thyristors (natural commutation is the turn off 

process when the sinusoidal voltage source applies a reverse voltage to the device). 

Output has a substantial harmonic content which caused extra losses at the damper bars 

and give rise to significant torque pulsation. Now with self-commutating VFDs are 

available Load Commutated Inverter (LCI) is becoming less popular (Kaiser, 2008). All 

LCI VFD types will require input filters because of the supply-side harmonic voltage 

levels generated in the converter and also should consider output filtering if shaft 

cogging effects are present. Output filtering can, in most cases, reduce the operating 

temperature of the motor as the higher order harmonics in the VFD output are filtered 

before reaching the motor (Nored et al 2009).Among all the poorest performing VFD 

drive is the LCI inverter.  

 

6.3.2 Pulse width modulated (PWM): Voltage source: 

 

IGBT (Insulated Gate Bipolar Transistor), IGCT (Integrated Gate Commutated 

Thyristor) are increasingly being used in the industry. IGBT is preferable at low to 

medium voltage level and they facilitate fast switching. At higher voltage level their 

losses increase, switching frequency decreased and the decreasing current capability 

limit their maximum power output. This make IGCT more attractive for higher voltage 

power level which offers higher power capability per device which reduces the 

component count and leads to higher reliability with a high power quality 

(Meher‐Homji, 2011). Multilevel topologies are chosen in case of higher voltage levels. 

Independent switching with effective switching frequencies results in lower level of 

harmonics by improvement of current and torque quality. Using multiple semiconductor 

in series and parallel addresses the power level and quality issues.  Higher device count 

is a drawback in this technology as likelihood of failures, reduces the reliability. As a 

counter measures some means of redundancy is generally required to fulfill power level, 

power quality and system availability requirement (Meher‐Homji, 2011). Pulse Width 
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Modulation (PWM) multi variable series cell circuit decreases the current distortion such 

that the torque ripple decreases to one percent on motor base rating. It results in low and 

acceptable level torsional shaft stress (Kaiser, 2008).  

  

6.3.3 Neutral Point Clamped (NPC): 

 

Neutral point clamp circuit has five voltage levels from line-to-line and uses Pulse 

Width Modulation techniques. Depending on the frequency of switching the current is 

less distorted and the torque ripple decreases into the vicinity of 1 to 3perent (Kaiser, 

2008).  The table below shows comparison between various inverter technologies: 

Topology LCI  

(Load 

Commutated 

Inverter) 

NPC  

(Neutral Point 

Clamped) 

SGCT 

(Symmetrical Gate 

Commutated 

Thyristor) 

PWM (Pulse 

Width 

Modulated)Multi-

level Series cell 

Source Current  Voltage  Current  Voltage  

Switching device Thyristor IGBT and IGCT SGCT IGBT 

Input  

harmonics 

Fair (12 pulse) 

Poor ( 6 pulse) 

Good (12 pulse) 

v. good (16 pulse) 

Fair (12 pulse) 

Poor ( 6 pulse) 

Excellent 

Input Power factor  Fair to poor Very good Fair to poor Very good 

Output harmonics Poor Good Fair Excellent 

Output common  

mode voltage 

High (fair) w/o 

transformer 

None (excellent) High (poor) w/o 

transformer 

None (excellent) 

Output dv/dt High (poor) Med-high (fair) Low (good) Low (good) 

Regeneration 

capability 

Yes No Yes No 

Torque pulsation  High (poor) Low (very good) Low (fair) Very low 

(excellent) 

Special motor  

required 

Yes 

synchronous 

No Yes No 

Speed range 0.15 to 2.0 0 to 2.0 0 to 1.1 0 to 3.0 

Special starting 

mode 

Yes No No No 

 

Table 6.2:  Topology comparison: Source- (Kaiser, 2008) 

 

The above table demonstrates that Pulse width modulated Multi-level series cells offer 

many advantages because of low input and output harmonics, input power factor, low 

torque pulsation and speed range. The table below shows the comparison between 

devices used in various topologies. 

 
Components SCR GTO   IGBT  IGCT   SGCT  IEGT 

Description Silicon 

Controlled 

Rectifier 

Gate Turn 

off 

Thyristor 

Insulated 

Gate Bo-

polar 

Transistor 

Integrated 

Gate 

Commutated 

Thyristor 

Symmetrical 

Gate 

Commutated 

Thyristor 

Injection 

Enhanced 

Gate 

Thyristor 

Inverter type   Current   Current  Voltage   Voltage   Current  Voltage  

Efficiency 

(Low to rated) 

High  Low 

(87-95) 

High 

(93-98) 

Med-High 

90-97 

Med-High 

(90-97) 

High 

(93-98) 

Gate control  Current Current Voltage Current Current Voltage 

Gate current/ 

Components 

< 2A/ 

Medium 

400-1000/ 

High 

<1A/ Low 4000A/ High 4000A/ High <1.5A/ Low 
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Voltage rating High High To 4500V To 6000V To 6000V To 4500V 

Current rating   5500 A 1000 A 1200 A  4000 A 5000 A 4000 A 

Switching 

losses 

Med High Low  Med Med Low 

Switching speed Low Low High Med Med High 

Life Cycle point Mature but 

current 

Phasing out Current and 

growing 

Current   Current Current and 

growing 

Snubbers 

(Voltage 

suppresors) 

Few Many None None None Low 

Mounting Press pack Press pack Single side Press pack Press pack Single side 

and press 

pack 

 

Table 6.3:  Device comparison - (Kaiser, 2008) 

 

The above table demonstrates that Voltage source drives’ demand with IGBT and IEGT 

components are current and growing because they offer many advantages over the 

current source, however the current source drives are robust and mature and hence are 

sometimes preferred. 

 

6.3.4 Design constraints of VFD: 

 

All the topologies have their advantages and disadvantages. As per Meher‐Homji,  

(2011) the design objective of the VFDs is mainly oriented to:  

 

 Reduce the harmonics produced and imposed on the electrical grid by the switching 

of power electronics, which creates disturbances in the electrical system. 

 Reduces torque ripple which creates issues for rotor dynamics of the combined shaft 

line of motor, gear, compressor casing.  

 Reliability of the power electronics that affects the availability of the system hence 

the production rate. The reliability depends on the number of switching components, 

component reliability and the redundancy option offer by the topology. 

 Reduce torsional vibration level of the entire shaft center line in particular torque 

pulsation at start up and steady state and torsional lateral phenomena caused by 

excitation of the torsional modes, driving excessive train lateral vibration.  

 

6.4 Technical challenges of VFD driven motor system: 

 

6.4.1 Reliability of the VFD-motor drive system: 

 
As the oil and gas industry moves towards wider adoption of application of electrical 

drives, there is increased expectation in improved reliability and performance of power 

electronics ensuring optimum integration with rotating machinery. Reliability of the 

electric motor system can vary greatly depending on the amount of components in the 

VFD, the service environment, and various operating conditions such as frequent 
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starts/stops, transients etc. The primary causes of failure of the drive train are typically 

associated with defective components, inadequate maintenance, motor drive mismatch 

and outages from the power utility(Nored et al 2009). The reliability of the entire motor 

drive system can be defined as:  

 

Mean Time Between Failures (MTBF) = Total Operating Time/Number of Failures 

For large electric motor installations a formal Reliability, Availability and Maintenance 

(RAM) study is recommended. This analysis should consider all of the components in 

the drive and alternative options for the motor type, use of gearboxes; variable frequency 

drives (VFD) topology and component selection. The study should also include the 

auxiliary equipment required to support the electric motor drive system such as the 

cooling systems, lubrication systems for bearings, gearboxes, couplings, and bearings 

(Nored et al 2009).  

 

6.4.2 Motor Design:   

 

The major concern in the industry is that VFD of large size is not available in the 

market. The manufacturers believe that given the vast experiences in building large 

generators well over 100 MW, motors of this size are not considered new technology 

and can be built without employing new designs or materials. Suppliers indicate that 2-

pole motors equipped with variable frequency drives (VFDs) are the most attractive and 

economical solution for power ranges needed for large LNG drives and operate at high 

efficiencies. Issues that need to be addressed in building such large motors are: 

(Meher‐Homji, 2011). 

 

 Ensuring adequate torque-speed capability to allow appropriate acceleration with 

minimal dwell time at the critical speeds while start-up of the compressor string. 

 Time taken to restart of the compressor train after a motor trip. 

 Range of operability (efficient turndown) - there are limitations generally imposed 

on the speed range of the motor and these are typically rotor dynamic constraints. 

 Torsional analysis of the full compressor train under start up conditions, compressor 

transients such as surge and electrical transients such as power dips. 

 Interaction of torsional and lateral vibration. This could be accentuated with the 

presence of a gearbox which may be needed to optimize compressor operation. 

 Sensitivity of the motor to excitation of its critical speeds. 

 Effects imposed on the power system resulting from motor trips (this is by far the 

most critical issue affecting the electrical system stability), switch gear and power 

distribution failure. 

 Operation at degraded levels of the VFD may present problems.  

 

6.4.3 Additional CAPEX due to large Power plant: 

 

Most of the time, E-LNG plants have no grid connection and must be supplied under 

island conditions. The in-plant generation should be chosen in an (N+1) generation 

configuration where ‘N’ is the total load requirement of the facility ‘+1’ is one more 
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generator running as spinning reserve so that, in the case of loss of a generator, the 

system will ride through the transient and reach a new steady-state operating condition 

without requiring load shedding (Siemens 2008). This large power demand leads to 

additional Capital Expenditure (CAPEX) to set up large power plants. The alternative to 

a large captive power plant is connection to the electric utility grid in which case cost of 

purchased power has to be factored into the analysis process. 

 

6.4.4 ARC Flash: 

 

Arc flash is the sudden release of electrical energy through the air when there is a 

breakdown of insulation between energized conductors. Arc flashes can be a 

spontaneous event or result from inadvertently shorting out electrical contacts or 

conductors with a conducting object. A phase to ground or phase to phase arcing fault 

can quickly escalate into a three phase arcing fault due to the expansive cloud of 

conductive copper vapor which can engulf all phase conductors. The chain of events 

during an arcing fault can be extremely rapid. Air is normally a good insulator, however 

when heated during a short circuit air becomes an ionized gas which is a conductor 

allowing the arc to continue and produce a very high temperature. These extremely high 

temperatures can vaporize materials resulting in fiery explosions propelling shrapnel to 

significant distances. VFD System design can create a significant arc-flash hazard risk 

considering that an extremely high short circuit current is available. There is a 

possibility of cooling water leak that may lead to faults when de-ionized cooling water 

system is used to cool IGBT cells and Transformers. Possible environmental conditions 

such as high humidity, salty atmosphere and extremely fine dust particles may lead to 

faults and result in arc flash. Possible mitigation measures should be considered during 

design such as described below. (Qatargas 2 VFD testing data, 2006) 

 

 Isolation of electrical equipment before starting work. 

 Arc Flash Detection System to detect and trip and isolate the VFD drive.  

 Installed pressure vents, door latches, and structure supports. 

 Design VFD and associated switchgears to be arc-resistant. 

 Insulated bus bar and electrical conductors to reduce exposed conducting surfaces. 

 

6.4.5 Power-line harmonics: 

 

With the introduction of large-frequency converters, power-supply quality has become 

more of a concern. VFDs are non-linear electrical loads on the electrical system which 

have side effects in the form of power-line harmonics, inter-harmonics, Sub-

synchronous torsional interaction, oscillating torques (torque ripples), in the drive 

motors and possible electro-magnetic interferences (EMC) throughout the electrical 

system. Harmonics is electrical noise which introduces distortions to the perfect 

electrical sine wave of the voltage and current wave forms. This is as a result of high 

speed switching of the power electronics. This can result in unacceptable supply-voltage 

distortion responsible for overheating components; insulation stresses and Electro 

Magnetic Compatibility (EMC) issues. Effective mitigation measures have been 

developed for all these unwanted effects. Passive harmonic filters are custom-engineered 
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for each requirement. The effects of inter-harmonics are simulated, and corrections in 

control strategies can be implemented if necessary. Oscillating torques (torque ripples) 

caused by harmonics in motor-compressor strings are damped sufficiently by design 

measures and by rotor inertia. Effects of active and passive electro-magnetic 

interferences on the entire electrical distribution system are investigated and solutions 

can be developed (Siemens 2008). Harmonic studies should be performed to define 

possible actions needed to keep the harmonic distortion within the limits set by 

international standards. Harmonic filters can be design and installed to neutralize the 

effect of harmonics so as to reduce to the injection of current harmonics into the grid as 

much as possible. These filters are safe and reliable passive subsystems for both in 

indoor & outdoor installations (Kleiner et al 2005). The filters are properly tuned over 

chosen resonance frequencies (Siemens). The perfect harmony technology (IGBT cells 

with voltage source drives) from Siemens used for Qatargas VFD system produces Total 

Harmonic Distortion (THD) below the maximum acceptable level.  The choice of the 

filter composition, including the number of branches and tuning, depends on harmonic 

analysis. Harmonic studies comprise of analyzing the harmonic sensitivity of the 

electrical network followed by the harmonic penetration studies, which assess the 

voltage and current distortion within the network. Depending on the design of the 

electrical system a number of harmonic mitigation options can be considered as 

discussed below (Siemens 2008): 

 

 Harmonic filters can be designed to provide a low impedance path to the current 

injections, thus limiting the harmonic currents flowing in the network, and ultimately 

the total harmonic distortion. Harmonic filters can be directly connected to a 

switchboard or to a tertiary winding on each converter transformer. 

 By choice of transformer phase shifts 24, 36, 48 pulse systems can be achieved. This 

limits the number of harmonic injections, however requires all drives to be 

operation, and full cancellation is only achieved when all drives are equally loaded. 

 Large variable speed drives, and other significant harmonic sources can be supplied 

from a common switchboard known as a ‘dirty’ board, with the aim of containing the 

harmonic distortion to this switchboard alone, by supplying it via high impedance 

transformers. It can be dedicated to feed large variable speed drives and other 

significant harmonic sources.   

 According to the further reduction of harmonic component of the VFD Strings in 

perfect harmony voltage source drives, the harmonic distortion level on the network 

is dramatically reduced.   

 

6.4.6 Electrical resonance: 

 

When performing harmonic analysis, special care should be given to the presence of 

cables. In full-electrical-solution LNG plants, where power is generated within the plant, 

the voltage is stepped up to high voltage to allow transmission to nearby facilities. Often 

this is done with high-voltage cables whose intrinsic stray capacitance may be 

responsible for parallel resonances that, when hit by the injected harmonic currents, 

causing unacceptably high voltage distortion, which affects power transmission quality 

as well as leads to failure of insulation in equipment. The resonance can lead to 
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undesirable effects such as voltage spikes. The same may be done if the LNG plant is 

interconnected to the national grid, where power is already received at high voltage 

(ABB, 2005).This has lead to failure of several converter transformers in industry using 

large VFD drives. This can be mitigated by shifting the firing angle of the VFD so as to 

shift the harmonic frequency so as not to excite a resonance with the capacitance of the 

cable network (ABB, 2005). 

 

6.4.7 Torque ripple (Kleiner et al 2005): 

 

Torque ripple which is a pulsating torque created by the VFD drive has a potential to 

damage the shaft or coupling of rotating machines. The torque ripple of LCI drives 

(Current source drives is 3%) Neutral Point Clamped drive 1-3% and Pulse width 

modulated drives is less than 1%. The allowable torque ripple for system design is 

normally less than 2%. To match the drive’s input voltage to the power line voltage on 

site, a transformer is required. This isolation transformer also provides for the 12-pulse 

line reaction of the converter towards the power system, and for fault current limitation 

in the power semiconductors, avoiding fuses in the power circuits altogether. This 

transformer is connected via power cables to the frequency converter, and screened 

cables also link the ‘drive’ to the motor. In the motor, the same 12-pulse circuits can 

reduce the torque ripple, which is produced by the non-linear frequency converter and is 

superimposed on the mean torque of the motor. A complete torsional analysis of the 

rotating string is nevertheless performed to identify and quantify potentially harmful 

harmonic torque amplifications, and to size the shafts and couplings of the machines 

(Kleiner et al 2005). Another main issue is related to inter-harmonic effects on the 

turbine-generator trains. VFD systems, depending on their technology, can continuously 

produce small torque oscillations for example based on the difference between the 

network frequency and the motor frequency on the turbine-generator shaft line. The 

effects of such torque pulsations should be analyzed carefully, along with other torsional 

excitations from the turbine-generator to prevent any mechanical resonance to reach 

beyond the permissible values.   

 

Figure 6.2: Torque Ripple; (Qatargas 2 presentation, 2004) 
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The above figure demonstrates that Pulse width modulated drive has a lesser output 

voltage waveform distortion hence a lower toque ripple than Neutral point clamped 

drive or Load Commutated Inverter drives.  

 

6.4.8 Sub- Synchronous Torsional Interaction (SSTI): 

 

Sub-Synchronous Torsional Interference (SSTI) is an electrical phenomenon that occurs 

when large electronic switching devices such as converter/ inverter drives produce a 

frequency less than system synchronous frequency (50/60Hz) on the electrical supply. 

This can adversely interact with the torsional mode of vibration of rotating shafts. It can 

be initiated during a sudden load changes or some transient response operations of the 

power system such as sudden load swings or an electrical fault. This sub-synchronous 

frequency is transferred back to power source grid in the form of an oscillating torque 

that acts on the rotors of generators of the connected power system which can damage 

the shaft. SSTI is a potential concern that could impact reliable operation of the rotating 

machines depending on electrical system connection and configuration. Should SSTI 

occurs, excitation of the rotating equipment shaft natural frequency would increase 

exponentially to the point that either the shaft or the coupling would break resulting in 

catastrophic failure of the generator. SSTI can take place due to several causes. In 

particular, SSTI could occur due to the presence of Variable Frequency Drives (VFD) 

with massive presence of cables, capacitors for the compression process in modern, 

partially or fully electrical LNG plants in islanded networks. This phenomenon of sub-

synchronous torsional interaction (SSTI) occurs when the synchronous generator’s 

natural mode is excited in the sub-synchronous frequency injected from the VFD. The 

contemporary presence of cables and capacitances for reactive power or power factor 

compensation could build a resonance circuit with low resonance frequency. 

Furthermore, not enough accurately tuned controllers or not so well coordinated control 

schemes could be responsible for SSTI with power and torque oscillations, which at 

particular frequencies are not damped or even may be amplified (La Seta 2007). By 

means of an accurate time-domain simulation it is possible to detect the possibility of 

SSTI, determine the main cause for the torsional oscillations and evaluate the damping, 

and propose corrective actions or countermeasures. Torsional analysis is further 

discussed in Appendix-I. 

 

6.4.8.1 SSTI Mitigation Measures: 

 

The planned configuration of LNG applications of compressor trains may cause risk to 

generators in the local grid. The recommendation is to apply protection at the generators 

that senses shaft torsional vibration and trips either the power electronics or the 

generators to prevent damage. It is advisable to perform a detailed evaluation of the 

effect of VFD drive controls on the generator torsional modes. The right mitigation 

measures are always specific to a topology, machine and electrical system configuration. 

Some of the mitigation measures can be: 

 

1- Constructional: Replace shaft component, transformer, series capacitors exciter at 

design 

2- Operational: Avoid certain topology, reduced generation, generator trip 
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3- Passive Control: Change of reactance by different firing of the power electronics 

4- Active control: AVR(Automatic Voltage Regulator) control firing control 

5- SSTI Watchdog monitoring system (Torsional Oscillation Monitor):   

6- Torsional Stress Relay (TSR): Provides early warning and rapid response to trip the 

VFDs to avoid SSTI. 

7- Higher level short circuit MVA: If the electrical islanded grid is connected to 

external utility the SSTI concerns decreases because of higher level short circuit 

MVA available. This large grid is able to absorb or dampen the harmonics.   

8- Number of drives on line: Probability of SSTI is higher when all drives of the VFDs 

per turbine compressor string are operating. SSTI could be reduced if fewer numbers 

of drives per strings were operated in normal production mode.   

9- VFD control algorithms: SSTI can be caused by VFD control algorithms. Changing 

the algorithm to modify firing can change the frequency of oscillation away from the 

natural frequency of torsional mode of vibration of rotating machines.  

  

6.4.9 Network studies: 

 

Network studies, such as load flow, transient studies, harmonic analysis and short circuit 

calculations, should be performed to define the sizing of system components during 

normal and peak loadings, both for normal and contingency network configurations. 

These studies benefit from simulations that perform an accurate analysis and modeling 

of the power plant and take into account both power-control and automatic voltage 

regulation.  Studies should include those involving the loss of generation, loss of load (in 

particular the loss of one large VFD) and fault recovery after system transient. Such 

events could cause a large mismatch in the available power generation and the system 

load, thus producing severe system frequency and voltage swings (Siemens 2008). 

Electrical power system studies routinely are necessary to ensure the correct and reliable 

operation of a large LNG plant.  To ensure a satisfactory design for a LNG plant, the 

electrical power system must be designed to meet certain, minimal performance criteria 

of frequency and voltage variations (MottMac, 2007). 

 

6.4.10 Power system analysis: 

 

Models are required which represent the power plant generation including their 

automatic voltage regulators (AVRs) as well as the governors of the gas turbine 

generators. LNG systems feature a large number of induction motors drives and it is 

important that the momentary and decaying current contribution that induction motors 

will make to a system short-circuit is represented. Transformers and tap-changers (for 

changing secondary side voltage level) are modeled as equivalent networks. The zero 

sequence impedance and winding connection are used to assemble the correct zero 

sequence network representation when calculating earth faults. Cables and lines are 

modeled by a circuit length and a fixed positive- and zero-sequence resistance and 

reactance and shunt admittance value per unit length. The power system studies are 

essential to confirm the parameters of the main power system components. 

 

6.4.11 Load flow studies: 
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Load flow studies confirm the rating of all system components, during normal and peak 

loadings for both normal and contingency network configurations. Cases which reveal 

insufficient circuit capacity will be highlighted. Another key parameter is the voltage 

profile/regulation characteristics of the system. Transformer tapping ranges and step 

sizes are identified and total system losses and reactive power compensation 

requirements can be assessed. Load flow studies confirm the rating of all system 

components, during normal and peak loadings for both normal and contingency network 

configurations (Qatargas 2 Power system studies, 2005). 

 

6.4.12 Short circuit studies/ Fault level studies: 

 

Fault level (or short circuit) studies are used to determine both maximum and minimum 

three-phase fault levels and earth fault levels at all switchboards under fault make (t=10 

ms on 50 Hz system) and fault break conditions (t=60 ms), including the DC component. 

The above information helps in designing switchgears. Earth fault levels are dependent 

upon system earthling practices. The asymmetric peak fault current at 10ms determines 

the required circuit breaker making capacity and the dynamic withstand capability of the 

circuit breakers. The symmetrical RMS (Root Mean Square) fault current at 60ms 

establishes the required breaking capacity and the short term dynamic withstand of the 

bus bars. Where the predicted fault currents exceed 90% of the rating of the proposed 

switchgear, higher rated switchgear may be specified, or the system impedances may be 

increased (transformer and generator reactance). A problem with industrial systems is 

the high X/R (Reactance/Resistance) ratio, coupled with the large induction motor fault 

current contributions leading to significant asymmetric peak currents with long time 

constants for the AC and DC components. This makes circuit breaker fault breaking 

duty very onerous. For a system the symmetric fault current at break (60 ms) may be 

within the short circuit rating of the switchgear. However due to the high X/R 

(Reactance/Resistance)  ratios of the HV motors and in feeding transformer the 

instantaneous asymmetric peak current at 10 ms may be much higher which exceeds 

‘make’ rating of the switchgear necessitating consideration of a switchgear with a higher 

“making” rating  (Qatargas 2 Power system studies, 2005). 

 

6.4.13 Motor starting capability: 

 

The motor starting capability of the system must be determined. Larger high voltage 

motors operating elsewhere in the plant may be Direct-On-Line started. The motor will 

have to develop sufficient torque to accelerate the driven load up to full speed. A 

dynamic model which represents the driven load (torque-speed curve and inertia), the 

variation of motor rotor resistance and reactance with slip, as well as the source 

generator AVR (Automatic Voltage Regulator) and prime mover responses is required. 

As well as ensuring that the load is successfully started, the system voltage and 

frequency dips and overshoots must be confirmed, particularly for the most onerous case 

of starting against limited system generation (Qatargas 2 Power system studies, 2005). 
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6.4.14 Power system Transient stability studies and Load shedding: 

 

Events such as loss of generation, loss of load and fault recovery can cause a large 

mismatch in the available power generation and the system load condition, producing 

severe system frequency and voltage swings. Transient studies require detailed 

Automatic Voltage Regulator and governor models to identify the need for 

generator/load tripping following loss of load/generation. The power plants normally run 

with a (N+1) generation schedule, where ‘N’ is the minimum number of generators 

required to cater to the plant electrical load and ‘+1’ is an additional generator running 

as spinning reserve to take care of the eventualities of tripping of a running generator for 

any reason. Following loss of a generator, the additional ‘+1’ generator  helps the system 

ride through the transient and reach a new, steady state operating condition without 

requiring load shedding. In an N+1 power plant design, all turbines in service operate 

permanently at part load, and the ‘N’ units assume full load within a very short time in 

the event of an unexpected shutdown of any one of the running generator (Siemens, 

2008).With an ‘N’ generation power plant line-up it will be necessary to shed load from 

the system, following the loss of generator, to maintain a stable system and recover the 

system frequency within acceptable limits. Failing to reduce the network load, within a 

sufficient time, will lead to unacceptable depressions in the system frequency due to the 

overloaded turbines. Fault recovery studies are essential in determining the critical 

clearing time for three phase faults on the system. Stability in this context is essentially 

defined as keeping the power-system frequency within the acceptable limits. VFD 

employed to drive the main refrigerant compressors can function as negative spinning 

reserve in the power rebalancing process; they can reduce their speed and thus their 

power consumption instantaneously upon an unexpected loss of a turbo-generator in the 

power plant hence maintaining the system frequency within acceptable limits. A 

Stability solution is based on the principal functions: fast signal and data exchange 

between all control and protection systems of the power-to-compression system; 

intelligent use of positive and negative spinning load reserves; modified gas-turbine Inlet 

Guide Vanes (IGV) controls, pre-control systems; and a dedicated superimposed 

electrical network monitoring and control system (Siemens, 2008).In order to guarantee 

a high availability of the electrical and steam generation, it is necessary to overcome the 

planned and unplanned outage of a generation unit, considering both the steady state and 

the dynamic behavior (Lerch, 2013). The steam, electricity and process demands have to 

be coordinated to guarantee high availability in case of large disturbances in the system 

like generation outage, compressor outage, process chain outage or sudden loss of a 

production train. To find a suitable solution the LNG configuration can be modeled in a 

power system simulation tool including all models for generation, process equipment 

Variable Speed Drives (VSD), pump motors plant, house load and the control of all 

relevant equipment such as governors, voltage controllers and control of variable speed 

drives. These models allow simulating, tuning and optimizing the system reaction in 

case of severe system disturbances and allow defining a suitable system behaviour using 

adapted countermeasures in a whole system approach. Whereas in a large interconnected 

system the influence of one generator on the overall frequency might be negligible, 

under island conditions the control of the frequency is one of the main tasks of the 

power plant in case of a generator disturbance. In case of insufficient control and 

sustained imbalance, the island frequency would lead rapidly to a trip of remaining 
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generators due to high or low frequency. Fast balancing is realized as a droop control 

using the measured frequency deviation with a proportional influence to the output 

(Lerch, 2013). In a combined cycle power plant and co-generation system the process 

steam pressure is an integral control parameter for the balance between steam generation 

and demand like grid frequency for the active power balance. Since the process steam is 

extracted from the steam turbines, a change in steam demand has a direct consequence 

on the electrical steam turbine output and hence on the frequency. A large disturbance 

like a gas turbine trip requires on one hand a rapid increase of electrical output in order 

not to reach frequency trip thresholds; on the other hand it implies a rapid loss of steam 

generation. In such case not only the active output has to be increased, but also the loss 

of steam generation and its effect on the steam turbine output needs fast compensation. 

Since an increase of steam generation is limited by relatively slow thermal processes 

with increase of supplemental firing, the use of thermal storage has to be taken into 

account in the control concept and hence in the model(Lerch, 2013). 

In order to demonstrate the stability of the power system in case of outage of a generator 

or an entire VFD system, Lerch (2013) modeled a power system, including the relevant 

equipment with all necessary and relevant controllers to simulate and coordinate all 

necessary actions required in case of severe outage cases. The model comprised both the 

electrical and the power plant process systems. This allows to optimize the basic 

electrical and steam control concept and to design the load or generation shedding 

sequences with the corresponding load steps and process-coordinated timings, 

depending on the severity of the outage case. Lerch (2013) configured a large Electric 

LNG plant with VSD drives up to 80 MW which will be planned in 2 phases (train one 

and train two). The generation concept in this example is a combined cycle plant with 4 

GT (Gas Turbines) and 2 ST (Steam Turbines) installed in phase 1 and additional 

generation of 2 GT and 2 ST in phase II. The first phase configuration is more critical in 

case of large outages of process components or generators as the generation is weak 

during the phase I (with the largest VFD drive of 80 MW, Gas turbine generator of 176 

MVA, and steam turbine generator of 154 MVA). The simulation results of a Gas 

Turbine generator outage for the more critical phase 1, some load reduction steps and 

load shedding are necessary to keep the system under dynamic equilibrium.  

Figure 6.3: Stability in outage of a Gas turbine generator 
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The Fig. 6.3 shows that it is possible to ride through the disturbance and bring the 

system to stability. It depicts the simulation results in case of GT outage for the more 

critical phase I. The over frequency and under frequency limits are shown in bold red 

lines at the top and bottom of the curve and the dynamic frequency band is shown by 

bold green line The outage of a GT has been investigated in case of all generators 

connected (N operation philosophy, red curves), as well as in case of maintenance of one 

generator (N-1 operation, blue curves). In this last condition, some load reduction steps 

and load shedding are necessary to keep the system in stable condition. The figure shows 

the results in case of high ambient temperature T2 (40°C) and no load shedding, Variable 

Speed Drive (VSD) speed reduction, VSD string trip and load trip. Under low ambient 

temperature T1 (15°C) a load shedding with VSD speed reduction and load trip is 

sufficient. 

Figure 6.4: Stability in case of outage of a VFD driven Compressor 

Fig. 6.4 summarizes the system response regarding the case of process outage. In the 

case of process outage all generators are assumed as connected (N in operation). In case 

of partial process outage, i.e. 150 MW (blue curves), the turbine governors can suitably 

react without exceeding the dynamic band in 5-6 sec with the speed deviation inside the 

static band of ± 1%. In case of total process outage, i.e. a 320 MW train trips (red curves 

by temperature T1 and black curves by temperature T2), the turbine governors are not 

fast enough to avoid over frequency generator trip. Therefore, the tripping of one or 

more generators is required in a suitable time after the outage.  The large 80 MW VSD 

compressors can be used to reduce load in emergency situations up to 10 % without 

critical influence on the LNG-process (emergency load variation). 

The above modeling demonstrates that with suitable power systems study both electrical 

and steam dynamic behaviours can be studied and suitable measures can be undertaken 

to keep the system under dynamic balance. A combined model of electrical and steam 

behavior allows developing a suitable design concept together with the optimization of 

the power plant equipment. This simulation produces additional information of the 

closed loop electrical and steam process to tune, stabilize and optimize components, 
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control and power management. Critical situations can be detected in more details and 

counter measures can be realistically coordinated. The approach results in a higher 

availability and reliability of the plant with modern Variable Speed Drive and Combined 

Cycle Power Plant technology. With the above simulation, Lerch (2013) demonstrated 

the advantages of comprehensive simulation approach of a process management system 

which is able to handle even the most severe operational disturbances. The steam, 

electricity and process demands have to be co-coordinated to guarantee high availability 

in case of large disturbances in the system like generation outage, compressor outage, 

process train outage or sudden loss of a LNG production train. 

6.4.15 Full Pressure restart: 

 

Significant motor torque is required during startup (at lower speed) if the compressor 

starts loaded with positive pressure inside it, so as to avoid wasteful and emission-

intensive de-pressurization. An electrical variable speed drive can be used to provide this 

feature. A VFD can be used for this duty as it satisfies the high torque starting duty with 

adequate reliability (Almasi, 2011). The objective of this study is to investigate the 

capability for the restarting of Compressor-Motor String with VFD Drive under Full 

Pressurized condition for a requirement of restarting the string once the process tripped. 

The study should be performed under considerable severest operating condition worst 

case scenario for the VFD Full Pressurized Restart (Qatargas 2 Power system studies, 

2005). 

 

6.4.16 Relay Coordination study: 

 

Protective Relay Coordination Study was performed as a part of engineering work to 

evaluate the suitability of protective relay function and available setting range of the 

protective relays selected. This study evaluates adequate protective function and proper 

co-ordination grading for all operating voltage levels to satisfy requirement (Qatargas 2 

Power system studies, 2005).  

 

6.4.17 Transformer energizing study: 

 

The transformer energizing study is performed with the computer simulation package to 

assess the transient voltage response of networks when energizing large transformers 

and its effect on voltage drop and transient stability.  The aim of the transformer 

energizing studies is to determine transient over voltages and currents at various voltage 

levels after energizing of transformers. If the transient voltages and currents are found to 

be higher than acceptable limits, methods to mitigate the transient are investigated and 

implemented such as changing the impedance of the transformer, changing the cable 

size, employing soft start or changing the voltage levels (Qatargas 2 Power system 

studies, 2005). 

 

6.4.18 Grounding Grid design Study: 
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Ground grid design is carried out for the maximum earth fault current.  For this analysis 

of the step and touch potentials the maximum possible grid current at each substation is 

considered. The objective of the study is to verify the grid layout using the grid 

modeling methods. The grid layouts are given in the earthing layout of the respective 

substation. For the safety purpose, the step and touch potential must be less than the 

tolerable limits. Where required modifications are proposed in the grid layout to 

maintain the touch and step potential less than the tolerable limits (Qatargas 2 Power 

system studies, 2005).  

 

6.4.19 AVR(Automatic Voltage Regulator) and Tap changer coordination: 

 

A study which requires a different analysis approach is the coordination of Automatic 

Voltage Regulator (AVR) and transformer tap changing control by the Power 

Management System (PMS) may be required. Since tap positions are discrete, there is a 

risk of hunting in which the transformer taps oscillates between two positions to regulate 

the voltage. In this case a time domain model with appropriate control loops to represent 

the AVR and the PMS can be developed (ABB, 2004). 

 

6.4.20 Pre-commissioning test: 

 

VFD should be extensively factory tested to uncover any possible hidden weakness of 

components and system design before delivery. All the VFD components should be 

subject to routine tests during the factory acceptance test. The complete line-up should 

be full-load tested, back to back tested with one VFD acting as a motor and the other as 

a transformer, string tested with the compressor to prove system electrical performances 

and control functionalities. During the back-to-back test, the VFD can be tested at full 

power, which cannot be done during string test since compressor rating is lower that 

VFD one. Also, it can be tested at different operating conditions to calculate efficiency 

and to measure currents and voltages. Only after having satisfactorily passed these 

extensive tests can the VFD can be sent to a compressor manufacturer for a string test 

where the compressor performances are tested (ABB, 2004). 

 

6.4.21 Advanced surge control dynamic interaction: 

 

To avoid surge in the compressor the recirculation valves is being used extensively and 

being opened widely well before the compressor is actually in danger of reaching surge. 

A VFD allows for a new strategy based on an active surge control scheme by using the 

motor torque as a manipulated variable. By using the fast response time of the motor and 

the surge valve in a coordinated way, it is possible to improve anti-surge performance 

and allow the compression systems to operate with lower recirculation flows with an 

increase in energy efficiency. Improved VFD response time may result in dynamic 

interaction between VFD and surge-valve control loops, and could turn in mutual 

disturbance. This interaction was not present in turbine-driven compressors, since 

turbines have slower response times compared with surge valves so the two control 

loops are decoupled from the operative control-frequency point of view. This interaction 

needs to be closely studied for avoidance (ABB, 2004). 
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6.4.22 VFD System Grounding: 

 

System grounding is critical for reliable operation of the motor drive. Proper grounding 

is not only required for safety reasons, but also controls common mode currents that will 

cause electrical noise and premature system failures, especially in the motor bearings. 

For these liquid cooled installations, electrical isolation should be added between the 

device and the cold-plate interface or by using resistive grounding techniques (Nored et 

al 2009). 

 

6.4.23 Common Mode Voltage: 

  

Common mode voltage on motor windings results from the modulation of the motor 

input power by the VFD to provide the correct flux or Volts/Hertz for a given motor 

speed. This effect is most pronounced during motor low speed operation or during motor 

soft-start. The motor operation at low speed or soft-start with a VFD will have the net 

effect of potentially doubling the voltage stress on the motor windings. Although this 

induces more stress on the system, most motors are designed to tolerate this starting 

mechanism by a VFD. Common mode voltage problems can be eliminated with an input 

transformer. The amount of common mode voltage seen by the motor depends on the 

drive topology of the VFD. This must be evaluated carefully because of the potential 

level of inductive and capacitive currents flowing into motor bearings. The common 

mode electrical current can affect bearing and seal life (Nored et al 2009). 

 
 

6.5 Reliability of Qatargas VFD operated motor drive system: 

 
To study the reliability of VFD I studied the VFD used in Qatargas for starter/helper 

function which is operational since last three years. I used last three years operational 

data to do a reliability study. In Qatargas the three process compressors N2 (Nitrogen), 

C3 (Propane) and MR (Mixed Refrigerant) are driven by Frame 9 Gas turbines. The 

string is also supplied with a VFD driven electric motor which functions Starter (to start 

the string from stand still till the turbine is fired and takes up load), Helper (to help the 

turbine to maintain flat production in summer when the gas turbine output decreases) 

and Generator (the active front end technology helps generate power back to the grid in 

winter when there is excess power in gas turbine because of low ambient temp). It also 

provides full pressure restart (FPRS) capability for pressurized restart after a trip. The 

electric drive system has a 45MW (continuous) 60MW (Short term) rated motor driven 

by a four threads of 15MW VFD threads. All the four threads are used (60MW) for short 

time for FPRS function. Gas turbine is the main driver in the string.  
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Figure 6.5: Typical four thread VFD with Starter/ helper motor configuration 

(Source Qatargas 2 VFD documents, 2006) 

 

This arrangement has got all the characteristics of an “all electrical driven compressor” 

except that the motor is not sized to take up the entire compressor load. I chose to study 

it functionality to understand what the shortcomings are as regards to reliability. All 

Electric LNG uses a similar arrangement but the VFD and motor is increased in size to 

replace the gas turbine entirely and assume the function of the main driver of the 

compressor as described in the introduction chapter. The study of this system reliability 

of the Qatargas 2 VFD system can throw insight into the reliability issues facing a large 

electrical drive system. Further details of Reliability Analysis are in Appendix: J. 

 
6.5.1 Qatargas VFD system Design Reliability: 

 

The primary performance goal of the complete VFD equipment system is designed to 

operate as specified for a period of 7 years without the need to shut down the plant to 

perform any maintenance on the electrical equipment. As a minimum the equipment 

must be capable of running continually or as necessary in the described operating modes 

or combination of the described operating modes for 42 months, without requiring any 

service or their action that would shut down the LNG processing operation or force a 

string to shut down (MTech, 2008). 

 

6.5.2 Built in Redundancy:  

 

The system architecture is designed to achieve a high level of reliability by incorporating 

two levels of redundancy which makes it tolerant of the most likely component failures. 

The drives have redundant power cells and can continue operating after component 

failures within the cells hence 19 out of 21 power cells in each thread are required in 

each drive to operate. Three cells must fail before the drives power output is reduced by 

shutting down one of the threads. This redundancy is achieved by cell bypass feature 

incorporated, which bypasses the failed IGBT cell and keeps the system running 

continuously. A second level of redundancy is provided by the four winding helper 

motor being able to operate at 45MW (each thread and hence each winding is of 15MW 

capacity) with any three out of four drives connected and 3 out of four drives is required 

by the system/ because of this the drive failure rate is not sensitive to cell failures. The 
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master controller is redundant. However, each thread is sensitive to single points of 

failure in the input transformer, controls, input reactor and cooling system (MTech, 

2008). The design was based on the following: 

 

  For a 7 years mission or a 3.5 year mission the probability of system failure is about 

1% corresponding to a reliability of 99%.  

 Calculated Component reliability was calculated to be 99.93% for a 3.5 year 

mission. 

 Component reliability is expected failure of cell for 23 years of operation is 22 

failures per four Trains with 48 drive fleet.  

 The failure of the master controller has been found to have maximum effect on the  

unreliability common cause failure for the redundant master controller (MTech, 

2008). 

 

6.5.3 Reliability study of Qatargas VFD: 

 

 

Figure 6.6: Failure chart of starter/ helper VFD 

 

I analyzed all the failure modes of the Qatarags VFDs and the number of failures was 

plotted in a bar chart above (Figure 6.6). Out of the total number of failures observed the 

major failure mode recorded in Qatar gas is because of the cooling water alarm due to 

the rise in conductivity of the de-ionized water necessitating change of the de-ionizing 

cartridges and various leaks related to pumps seals, exchanger leaks and leaking 

components. The next highest failure is because of IGBT cell failure. Hence per fleet of 

IGBT failure per year is 1.625 per fleet and 18 per Train which is much higher that 1.8 

per Train per year as envisaged in the design. The cell bypass feature which provides a  

built in redundancy has been disabled because of the arc flash concern, which leads to 

tripping of the thread in case of any IGBT cell failure. From the above it is quite evident 

that 80% of the failure is due to cooling water alarm resulting from fall in conductivity 

requiring replacement of de-ionizing cartridges. The next is reduction in water level due 

to pump, leaks, seal leaks and leaking exchangers and inductors. The next is the IGBT 
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cell failures, which is investigated in further details.  In reality master controller failure 

is not the cause of unreliability as was envisaged in the design. 
 

6.5.4 IGBT Cell failure investigation: 

 

The following figure demonstrates the actual reliability investigation of cell failures after 

collecting maintenance data from CMMS (Computerized Maintenance Management 

System) and analyzed through the Meridian software.  

 

Number of cells installed in four trains with 12 helper motor drivers each having 4 VFD 

threads and each thread having 21 IGBT cells: 1,008 

Number of Failures recorded: 70 

Initial Mean Time Between Failures (MTBF): 43,258 days 

Final Mean Time Between Failures (MTBF): 9,366 days 

 

 
 

Figure 6.7: MTBF Trend of IGBT Cell failure Starter/ Helper VFD  

 

6.5.5 Thread failure investigation: 

 

The following figure demonstrates the actual reliability investigation of thread failures 

after collecting maintenance data from CMMS (Computerized Maintenance 

Management System) and analyzed through the Meridian software.  

 

Number of threads installed in four trains with 12 helper motor drivers each having 4 

VFD threads = 48,  

Number of Failures recorded: 69 

Initial Mean Time Between Failures (MTBF): 2092 days 

Final Mean Time Between Failures (MTBF): 452 days 
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Figure 6.8: MTBF Trend of Thread failure Starter/ Helper VFD  

 

Description Cell Thread 

MTBF days 9000 452 

λ=  1/MTBF 0.000111 0.002212 

t= No. of Days in a year 365 365 

λt 0.040556 0.807522 

Reliability %= e
-λt

 96.02558 44.59617 

 

Table 6.4 Reliability calculation Starter/ Helper VFD (individual cell and thread) 

After above analysis it is found that the IGBT cell component reliability is 96% against 

the designed 99.8%. The rate of IGBT cell failure should be further investigated and 

should be brought close to the design In case of thread reliability the achieved reliability 

is 44.5% against the designed 98%. This is because the cell bypass feature, which allows 

two IGBT cells to fail before the thread trips, is disabled because of an incident of arc 

flash that happened during initial testing. This happened because of a malfunctioning 

bypass contactor. If the bypass function is re-installed the reliability will greatly 

improve. Hence the main reliability issue with the VFD system is related to the cooling 

water issue. Further study should be done in this direction to improve the reliability. 

 

6.5.6 Motor failure: 

 

In Qatargas one of the motors fed by the VFD functioning as a starter/helper motor 

failed resulting in a number of days of down time. As the root cause failure analysis is 

progressed it was clear that due to the partial discharge inception in the air gap left 

between the insulation layers caused by commutating diode in the field protection circuit 

led to the failure of insulation and resulting in the failure of the rotor. The insulation 

between the pole and the turns was reinforced by a layer of partial discharge tolerant 
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mica insulation to reinforce the fault location. Hence during design stage partial 

discharge phenomenon needs to be studied in details and mitigation measures taken. 

 

6.5.7 Transformer failure: 

 

In another LNG company many VFD transformers failed. The root cause failure analysis 

discovered that the capacitance of large length of cables used to feed the VFD, interacted 

with the harmonic frequency and created high voltage resonance leading to the failure of 

the transformers. This was mitigated by shifting the firing angle of the VFD. 

 

6.6 Conclusion: 

 
VFDs are non-linear electrical loads on the electrical system which have side effects in 

the form of power-line harmonics, inter-harmonics, oscillating torques (torque ripples) 

in the drive motors. Effective mitigation measures have been developed for all these 

unwanted effects. Passive harmonic filters are custom-engineered for each project as 

necessary. The effects of inter-harmonics are simulated, and corrections in control 

strategies can be implemented, if necessary. Oscillating torques (torque ripples) in 

motor-compressor strings are damped sufficiently by design measures and rotor inertia. 

Effects of possible active and passive electro-magnetic interferences (EMC) throughout 

the electrical distribution system can be investigated and solutions developed ensuring 

quality from component to system level. Full lateral and torsional analyses according to 

international standards can be performed on each rotating string prior to detail design. 

Electrical stability of the power system, load-flow and short-circuit calculations, 

protection coordination, and load-shedding scenarios based on specified emergency 

shut-down (ESD)actions are routinely carried out for all electrical installations (Siemens 

2008).High dynamic performance of full-electric driven compressor brings new 

challenges. Some plants have experienced a torsional vibration in mechanical chain 

compressors. This is a typical situation that occurs when high-performance VFD drives 

are introduced. In these cases, a good control system becomes the best weapon to 

monitor and solve vibration problem. This is done with a mix of offline tools to analyze 

the overall processes, such as fluid-dynamic, mechanical, electrical, and control systems, 

and online-control functions to measure and solve the problem (ABB, 2005).Anti-

vibration control systems are a mix of function to avoid exciting resonance frequencies 

and to modify the physical characteristics of the process. Maintaining an early exchange 

of information between operator, contractors and vendors of various parts of "all 

electric" LNG plant, including vendor of motor driven compressor, contractor of the 

power plant, vendor of electric transmission and distribution systems, etc can reduce 

cost and risk by critically reviewing various available designs and options (Almasi, 

2011). There is enough relevant experience within other industries so that the application 

of electrical motors on base load LNG technology would be but a small extension of 

existing experience (Shu, Harrison 2002). The use of electrical motors is not without 

risk, however, which of course is the case with anything being done for the first time. 

Shu, Harrison (2002) of Foster Wheeler believes that the risks are well understood and 

can be managed as part of a project's development and execution. Evaluating electric 

drive LNG processes has moved on from conceptual technical aspects, in particular, 
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focusing on technical risk as well as economic comparisons. Studies by ChevronTexaco 

and Shell Global Solutions corroborate the view that such risks are well known and 

manageable through detailed design. Subsequent further development of the motor drive 

system by a number of manufacturers, specifically for LNG application, validates this 

view. Most conclusively however, the successful manufacturing, testing and full 

compressor/drive string testing now completed for the Norwegian Snøhvit project has 

shifted owner/operators interest in the electric drive from risk assessment to opportunity 

framing, especially if the total refrigeration system, including the power plant, forms the 

basis for performance guarantees (Kleiner et al 2005). 
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CHAPTER 7 

 

Case Studies 

 
There are several studies carried out by different individuals and also by various oil and 

gas companies and related Engineering Procurement and Commissioning (EPC) 

contractors to study the pros and cons of all electric LNG. Some of the case studies are 

discussed below. Some more case studies have been included in the Appendix B. 

 

7.1 Case Study-1: 
 

Kleiner and Kauffman (2005) of Shell Development (Australia) Pty. Ltd conducted a 

case study to evaluate the benefits of using an all-electric LNG system for Liquefied 

Natural Gas (LNG) and Gas to Liquid (GTL) plants over gas turbine drive system. Their 

case study used liquefaction process designed specifically in single train and multi-train 

configuration. The direct drive with conventional gas turbines (D-drive) concept used 

the well-known application of two Frame 7 industrial gas turbines each equipped with a 

20MW starter/helper motor for starting the turbine compressor string. Waste-heat was 

modeled to be recovered from the pre-cooling gas turbine exhaust. The electric drive 

concept (E-drive) used the LNG ‘Game changer’ configuration of Shell Global 

Solutions. Waste-heat is similarly recovered via the power-generation turbine exhausts. 

Additional harnessing of waste heat to support combined cycle facilities was also 

explored. Both concepts had the same number of rotating equipment per train of four 

drivers and four compressors and also required the same individual components to 

transmit electricity from generation to mechanical power.  The key differences between 

the concepts were the increase in the sizes of motors for E-drive. D-drive case uses 

starter/helper motor drive of 20 MW to start and help the main drive for the compressor 

which is a gas turbine, whereas the main drive in the E-drive case65 MW motor were 

used by elimination of the gas turbine as the main driver.   

7.1.1 Economic drivers for electric drive: 
 

The cost/benefit equation was compared as the “incremental” EPC cost difference 

between E-drive and D-drive for a train delivering the same daily LNG production of 5 

MTPA (Million Tons Per Annum). Comparing the result, Kleiner and Kauffman (2005) 

opined that the higher electrical load needed for the 5 MTPA, ‘E-drive’ concept, only 

enhances the advantages to be realized from a full ‘E-drive’ arrangement during the 

entire life cycle. Further as the electric drive configuration at 5 MTPA is far from any 

equipment size constraint, with a potential to be larger in capacity without any change to 

configuration, technical step-out or equipment type. To study this potential economy of 

scale, three designs were made and compared by the team; a 5 MTPA direct drive as a 

base case and two electric drive options, one at 6 MTPA and the other at 7.5 MTPA. The 

latter, utilized 65 MW motor/compressor strings. Power generation in the electric drive 

cases included co-generation of electricity and process heat with a combined cycle 
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generation option. The summary of the Cost-benefit calculation was tabulated as 

follows: 

 

Cost-Additional cost of E-Train drives because of a larger power plant US$20M 

Main Equipment difference 

Electric Train drive Direct drive Train 

360MW Centralized power plant with a 

N+1 sparing philosophy 

110MW centralized power plant with a N+1 

sparing philosophy 

Centralized waste heat recovery   Local waste heat recovery from pre-cooling gas 

turbine   

Variable speed motor drive system Gas turbine plus helper motor drive systems 

Larger Electrical distribution and 

auxiliary system 

Similar Electrical Distribution and auxiliary 

system 

Minimum 10 (ten) additional on stream days per LNG, which is around 

150,000 tonnes p.a US$ 3.5/MMBTU F.O.B (Free on Board) 

US$29.6M 

Reduced maintenance and shutdown costs average over 6 years maintenance 

cycle as typically used for direct drive plants 

US$1.8M 

Reduce fuel by 5% priced at US$1.0/MMBTU US$2.1M 

Reduced emission and losses by around 100,000 tons per annum CO2 e US$0.6M 

Annual Benefit (total of items below) US$34.1M 

 

Table 7.1: Cost/benefit tabulation of Direct drive (D-Drive) vs. Electric Drive (E-

drive) in large LNG plants (Kleiner and Kauffman, 2005) 

 

 

Figure 7.1 below shows the specific cost ($/ton of LNG) for a Direct drive vs. an 

Electric drive (Kleiner and Kauffman, 2005). With a Frame 7 gas turbine drive the 

maximum size that can be achieved is just above 5MTPA. The typical economy of scale 

is shown as a straight line and the improvement of specific cost of an Electric train 

shows a clear benefit with an increase in Train size in Figure 7.1. 

 
Figure 7.1: Specific cost $/t LNG of D-drive vs. E-drive in large LNG plants (Kleiner and 

Kauffman, 2005) 
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7.1.2 Conclusion: 
 

Total Installed Cost build-up was carried out by Shell Global Solutions with cost 

differences between options being validated by a separate engineering service. A key 

observation was that the 2 x Frame 7 gas turbine direct drive design could, at a stretch, 

reach just over 5 MTPA while the electric drive could approach 7.5 MTPA. The results 

shows that the specific cost (cost/ton of LNG produced) of a single Electric drive train 

can be expected to continue to decline with increasing train size, reaching about 20% 

lower than the direct drive case as the Train size reaches 7.5MTPA. More importantly, 

this allows the capacity of a single Electric drive train to be tailored specifically to the 

requirement of the developers. Additional Capital Expenditure (CAPEX) of US $20 m 

has been incurred to install an Electric Drive over a Direct Drive system because of a 

large size power plant. However annual benefit of US$ 34m can be reaped if an Electric 

Drive is selected which more than offsets the initial CAPEX incurred in the first year of 

operation itself and proves as a considerable profitable option from the subsequent years 

onwards. Further, with fewer components and more robust drivers the Electric drive has 

the potential for significantly improved operating reliability and availability.  

 

7.2 Case Study-2: 

 

Håvard Devold, Tom Nestli and John Hurter of ABB Process Automation Oil and Gas 

conducted a study in 2006 for a comparison between a conventional Gas turbine driven 

LNG plant and an all electrical driver concept from availability, reliability, and cost 

performance, longevity and safety stand points. Devold et al (2006) concurred that a 

straightforward replacement of gas turbines with electric drives is a viable alternative. 

They further inferred that gas turbines are generally available either in less than 30 MW 

variable speed units or large 100 MW or more fixed shaft speed units, whereas electric 

drives are available in wide power and speed ranges up to 100 MW. They concluded 

that, the “All Electric Drive system” has much wider design flexibility in terms of size 

of trains and compressors per train shaft. The other opportunities presented by the All 

Electric Drive system as per Devold et al (2006) are increase overall uptime and 

reliability of trains, safer and more stable operation over a wider range because of wider 

range of speed control and reduced plant restart time. With electric drives, the plant can 

go to a production hold idle recirculation mode presenting an Operating Expenditure 

(OPEX) saving of 70% or more. The restarting after a trip is almost immediate. 

 

7.2.1  Design Case (6.25MTPA LNG Train):  

 

For a LNG plant there is a requirement of 150MW for the trains and 50MW Electrical 

power including smaller electrical drives with a production of 6,250,000 Tons/ year. The 

conventional production Train with gas turbine system has six 30 MW gas turbine 

driven trains in a 5+1 configuration plus two 30 MW electrical power generation units. 

The “All Electric Drive” alternative configuration has four 40 MW trains, fed by a 200 

MW power plant that is designed to capitalize on the efficiencies of electric drives. In 
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addition, three 10 MW smaller drives for both systems have been considered. The plant 

is with an energy need of 32 MW/MTPA. The effect of tighter control and better balance 

results in lower recirculation losses with an estimated benefit of U.S. $5 million per 

year. Maintenance, unavailability, and reduced downtime benefits typically gives 10 

additional production days’ equal to U.S. $36 million per year for an all-electric LNG 

plant vs. a conventional gas turbine run system. An annual saving from operation of an 

electric vs. a gas turbine driven plant was calculated as shown in Table7.2. 

 

Characteristics Electrical drive Gas turbines  Difference 

Capital expenditure 

(main drives, auxiliary 

and power generation 

US$30M main drive 

US$35M Power plant 

US$7M auxiliary 

drive 

US$25Mmain Gas 

Turbine US$14M power 

plantUS$7M auxiliary 

drive 

US$ (26M) 

LNG production  6,250,000 tons/ year 6,250,000 tons/ year  

Maintenance costs US$5 M/ year US$10M/year US$5M 

Shaft power efficiency 36% 25%  

Fuel gas consumption 450mm SCM 648mm SCM 200mm 

SCM 

CO2 emission 800,000 TONS 1,160,000 tons 360,000 

tons 

CO2 tax (EU where 

applicable) 

US$24 M  US$35M US$11M 

Value of fuel gas US$100M US$145M US$45M 

Ten additional 

production days 

US$36M 0 US$36M 

Recirculation losses 0 US$5M US$5M 

Annual saving   =91-102 M 

 

Table 7.2 Annual Savings Using an All Electric Drive (MUSD (Devold et al, 2006) 

 

7.2.2 Conclusion: 
 

Devold et al (2006)’s calculation clearly demonstrates the value of an “All Electric 

Drive” system. The study demonstrates that an “All Electric Drive system” is the way to 

reach the industry’s goal to reach a 7.2% ratio of field gas consumption to LNG 

production. The further concurred that with the added safety and operational benefits, as 

well as shorter delivery times and flexible design parameters, an “All Electric Drive 

system” is easily the logical choice, with a payback time of only four to five months for 

additional cost incurred as the initial additional CAPEX is $26M with an annual 

marginal benefit of $90-102M. Reduced environmental impact becomes an important 

added benefit, although not critical to the economic analysis. The reduced fuel 

consumption and greenhouse gas emissions lead to large savings in operational 

expenditure in addition to being environmentally sound hence making “All Electric 

system” a highly attractive option. 
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7.3 Case Study 3:  

 

Bobby Martinez, P.E ConocoPhillips.; Cyrus B. Meher-Homji, P.E.; Bechtel 

Corporation John Paschal, P.E.; Bechtel Corporation Company Anthony Eaton, P.E., 

PhD; Formerly ConocoPhillips Company, LNG PDC Director conducted a study for an 

All Electric Motor Drives for LNG Plants in 2005 and presented to GASTEC 2005, 

Bilbao, Spain. They studied the incorporation of electric motor drives in ConocoPhillips 

LNG Process (Phillips Optimized Cascade LNG Process) with an article entitled 

“Incorporation of Electric Motor Drives in the Phillips Optimized cascade LNG 

process:. The ConocoPhillips-Bechtel Global LNG Product Development Center (PDC) 

studied several LNG driver configurations that utilized industrial gas turbines, aero 

derivatives, electrical motors, steam turbines and combinations thereof. The standard 

designs for the ConocoPhillips LNG Process incorporates a “two trains in one” concept 

with a view to maximizing plant availability, reliability and overall production 

efficiency. That is, the refrigerant cycle (Propane, Ethylene and Methane) has a 

minimum of two compressors operating in parallel, while the liquefaction plant is a 

single train. It is the parallel configuration of the refrigerant compressors that allows the 

plant to operate at production rates in excess of 50% while a single gas turbine 

compressor unit is off line. Furthermore, it is this operating flexibility, equipment 

reliability, and overall inherent design of the ConocoPhillips LNG Process technology 

that allows the LNG plants employing this technology to demonstrate production 

efficiencies greater than 95%. In an All Electric concept the Frame 7EA gas turbine 

drivers and respective starter-helper motors were replaced by an electric motor. This 

configuration was designed to ensure maximum flexibility and overall plant availability. 

 

7.3.1 Study Objectives: 
 

The fundamental objectives were to examine various electric motor drive solutions, 

determine the benefits claimed, and evaluate the technical risks and derive estimates of 

the installed costs. Specific goals of this study included a preliminary Life Cycle 

Analysis to determine the sensitivities of using electric motor drivers to key parameters, 

e.g. cost of electricity, cost of fuel and plant availability. Further, the objective was to 

examine power generation solutions to support the all-electric LNG concept, unless low 

cost, reliable external grid power is available from outside. On study a determination 

was made that self-generation would be a must, unless economical hydroelectric power 

was available. 

 

7.3.2 Electric Motor design and motor/VFD suppliers: 

  

It was determined that a single electric motor required to replace the gas turbine starter-

helper configuration can range from 95 to 100 MW. The manufacturers’ views that 

generators construction and operation is synonymous to synchronous motors, and given 

their vast experiences in building generators in excess of 250 MW, motors of this size 

are not considered new technology. These motors could be built without employing new 

designs or materials. Suppliers also have indicated that 2-pole motors equipped with 

variable frequency drives (VFDs) are the most attractive and economical solution for the 
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power ranges under consideration. Electric motor suppliers stated that the 2-pole motors 

can be built and operated at high efficiencies. Electric motor and VFD suppliers 

considered for this study included: Mitsubishi-Melco-Toshiba, Alstom, Ansaldo 

Robicon, ABB, Brush Motors, and Siemens. 

 

7.3.3 Economic Analysis: 

 

LNG plants are typically based on the lowest possible Total Installation Cost (TIC). The 

lowest TIC option for an electrically driven LNG plant is a third party external grid. The 

electric motor costs less than a gas turbine, but the power system of the All Electric 

LNG plant which has now grown from 30MW to greater than 260 MW for a 5MTPA 

plant, needs a higher initial cost outlay. The LNG plant has to accommodate a large 

power generation and distribution system with built in redundancy. Both the simple 

cycle and combined cycle power generation were considered. The combined cycle 

power solution is more complex but more thermally efficient. Simple cycle power plant 

solution is the least complicated to operate, involves the shortest installation time and 

lowest overall total installed cost when compared to a combined cycle plant. The 

combined cycle power plant solution is more complicated to operate, requires greater 

attention to maintenance, requires a larger plot plan and is greater in TIC than the simple 

cycle solution. However, the combined cycle solution does benefit from a much greater 

thermal efficiency of 48% -vs. - 33% (Martinez et al 2005). Power plant reliability and 

availability are very important to the success of an electrically driven LNG Plant. The 

power plant solution must consider capital cost, operating cost and the stability of the 

system to mitigate against power instabilities due to generator trip, mechanical failures, 

electrical faults, and transient events of with multiple power generation packages. The 

economic analysis for this study is between gas turbine driven LNG plant and that of 

electric motors, it was concluded that self-generation power plant solution is necessary 

to ensure LNG plant availability greater than 96. Clear understanding of the economic 

parameters is crucial when evaluating a grid power solution along with the geographical 

locations at which LNG plants are being installed. The alternative to grid power is self-

power generation. Self-power generation can either consist of a simple or combined 

cycle solutions. Each solution has its advantages and disadvantages. The LNG plant 

overall production efficiency must be in excess of 95% to be economic when compared 

to the gas turbine driven solution.  

 

7.3.4 Conclusion of Study-3: 

 

The inference drawn from this study was an electric motor driven LNG plant is 

theoretically a viable solution with today’s technology. Motor manufacturers are 

confident that large motors around 90-100 MW are feasible. Furthermore, large motors 

and VFDs can be built without employing new technology and materials of construction 

thus minimizing technical risk. The success of any LNG plant is fostered by low capital 

investment (CAPEX), low operating cost (OPEX), and high production efficiency. A 

third party, external grid power solution can satisfy the low capital investment and low 

operating cost drivers, but it could fall short in the area of plant production efficiency 

thus negatively impacting project economics. The self-generation plant requires a much 

greater up front capital investment than a gas turbine driven LNG plant. This initial 



Chapter 7                                                                                                                                     Case Studies 

                                                                             130                                        Engineering Doctorate Thesis 
 

capital investment is further complicated by the need to achieve production efficiency 

greater of 96% necessary to boost the project NPV (Martinez et al 2005). In conclusion, 

while an electric motor driven LNG plant is technically feasible, careful attention is 

required when evaluating the project economics. For example, the value of the fuel gas, 

credit for reducing CO2 emissions, sufficient real estate for the LNG plant and power 

plant solution, schedule advantage when the LNG tanks are critical path, Total Installed 

Cost (TIC), simplicity of design, location of the plant. The answers to these questions 

and many others will be site dependent and client driven (Martinez et al 2005). 

 

 

7.4 Case Study 4:  

 
An Environmental life cycle assessment (LCA) is an accepted method to systematically 

quantify and assess environmental impacts during the life cycle of product, process or 

activity. It can be described as a ‘cradle to the grave’ assessment of greenhouse gas 

emissions of Liquefied Natural Gas (Barnett, 2010). Emissions of interest are carbon 

dioxide, methane and nitrous oxide, which are classed as greenhouse gases related to 

global warming. Okamura et al (2007) demonstrated emissions had reduced since 1997 

and projected the feasibility of further reductions. Liquefaction remains the highest 

component of energy use within the product lifecycle resulting in 75% of emissions 

(Okamura et al 2007).  95% of liquefaction emissions occur due to fuel used by process 

refrigeration generators, acid gas processing and power generators (Barnett, 2010).The 

main types of greenhouse gas emissions in LNG liquefaction identified by Arteconi et al 

(2010) were: 

 

 Fuel consumption for driving turbines and motors to operate equipment. 

 Combustion of waste gases in flares. 

 Gas losses from venting associated with pre-treatments, maintenance processes 

and losses from equipment and pipes. 

 

As international energy companies are increasing their participation in more and even all 

segments of the LNG chain, a systematic approach to the reduction of greenhouse 

emissions across the LNG chain can yield reduced emissions. A case study was 

conducted by Coulson et al (2010) with one Train Greenfield Liquefaction with C3/MR 

(Propane/ Mixed refrigerant) Technology cases and assumptions and the results are 

briefly discussed below (Coulson et al, 2010). 

 

7.4.1 Case Study Scenarios: 

 

• Base case – Gas-turbine drives; no carbon capture 

• Option 1 – Gas-turbine drives with heat recovery; no carbon capture 

• Option 2 – Gas-turbine drives with heat recovery without supplementary firing; with 

carbon capture 

• Option 3 – Gas-turbine drives with heat recovery including supplementary firing; 

with carbon capture 
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• Option 4 – Electric-motor drives with CCGT power block; with carbon capture 

 
Parameter Base Case Option 1 Option 2 Option 3 Option 4 

Refrigeration 

Compressor 

Drivers 

motors 

2 x Frame 7 

GTs each 

with 8 MW 

helpers 

2 x Frame 7 

GTs each 

with 8 MW 

helpers 

2 x Frame 

7GTs each 

with 8 MW 

helpers 

2 x Frame 

7 GTs each 

with 8 MW 

helpers 

3 x 65 

MW 

Electric 

motors 

LNG Production 

(TPD) 

13,560 13,560 13,560 13,560 13,560 

Overall Thermal 

Efficiency (%) 

91.9% 94.2% 92.6% 92.9% 93.1% 

Total Fuel Gas 

Rate(TPD) 

2,030 1,660 1,930 1,865  1,840 

CO2 emitted (TPD)  3,319  2,377  840  270  264 

Total CO2 (TPD)  3,319  2,377  3,062  2,904  2,835 

CO2 captured (TPD)  0  0  2,222  2,633  2,572 

CO2 captured (%)  0%  0%  73%  91%  91% 

CO2 emissions 

relative 

to Base Case (TPD) 

0  -942  -2,480  -3,049  -3,056 

CO2 reduction 

relative 

to Base Case (%)  

0%  28%  75%  92%  92% 

CO2 emissions 

relative 

to Option 1 (TPD)  

n/a  0  -1,537  -2,106  -2,113 

CO2 reduction 

relative 

to Option 1 (%)  

n/a  0%  65%  89%  89% 

Tonne CO2 / tonne 

LNG  

0.24  0.18  0.06  0.02  0.02 

 

Table 7.3: Environmental Performance summary: (Coulson et al, 2010) 

 

It is evident from the above study that option 3 and option 4 are the best in terms of 

thermal efficiency and over all CO2capture and emission. However a deeper look will 

reveal that Option 4 (electric motor) is better than Option 3 (gas turbine) in terms of 

overall thermal efficiency, fuel gas rate and Total CO2emitted and captured. 
 

7.4.2 Capital cost comparison: 

 

Of the above options the electric motor driver case is supported by a lower CO2emission 

than the gas-turbine direct driver options as shown in Figure7.2. This is attributed to the 

higher availability assumed for the all-electric motor driver plant. Carbon capture has the 

potential to reduce the total CO2emissions from the liquefaction facility to around 0.02 

tonne CO2 / tonne LNG. However, heat recovery and integration optimization has the 

potential to significantly reduce CO2 emissions at a relatively low specific CO2 avoided 

cost when compared to other options (Coulson et al, 2010). 
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Figure 7.2: LNG cost v Co2 emission charges (Coulson et al, 2010) 

 

The case study indicates that the cost of post-combustion capture equipment to remove 

CO2 from gas-turbine flue gas sources requires significantly higher investment and 

consequently higherCO2 emissions charges to provide an economic incentive. With 90% 

of the carbon in the feed gas to the liquefaction facility leaving in the products, almost 

all of which will be combusted producing CO2, a greater reduction will be achieved by 

improving combustion system efficiency and capturing CO2 at end users. It was Yost 

and Di Napoli (2003), by assessment of various LNG projects in Oman, Nigeria, Qatar, 

Ras Laffan, Trinidad and Tobago, determined that an average Gas Index (CO2-e emitted 

to the atmosphere for every ton of LNG shipped) of 0.35 could be achieved based upon 

inflow gas quality of1006 Btu/standard cubic feet (s.c.f) which extrapolates to emissions 

of 3.83 g CO2-e/MJ (Coulson et al, 2010).  

 

7.4.3 Conclusion of the study: 

 

It is clearly demonstrated from the above discussion that out of all the options Option 4 

Electric-motor drives with CCGT power block; with carbon capture looks to be best 

option in terms thermal efficiency with CO2 capture option. The world’s most efficient 

LNG facility is Statoil’s Snohvit LNG in Norway, which is an all-electric LNG facility, 

recording a Gas Index of 0.22, extrapolating to 2.41 g CO2-e/MJ in contract to of Gas 

Index of 0.35with emissions of 3.83 g CO2-e/MJ for a conventional LNG plant. The 

reason for the low GI (high efficiency) is due to its geographic location at very low 

ambient temperature, waste heat recovery and reliable access to an electricity grid for 

standby power supply (Barnett 2010). It is to be also noted that Snohvit also uses an all-

electric system for LNG compressor application. 
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7.5 Critical analysis of case studies: 

 
A number of case studies have been discussed in this chapter and a few have been 

included into the Appendix B. It can be observed that the cost estimation of various 

parameters for life-cycle cost calculation is different. However in the final analysis there 

is considerable economic benefit, which cannot be denied. The reasons for this could be 

the following: 

 

- The case studies are conducted at different year and hence the costs are different 

- The cost parameters are site dependent and country dependent hence the final 

estimates are different. 

- The price of LNG considered for each case is different 

- The plant sizes are different hence there may be different estimates. 

- Cost of fuel is treated differently as in one case it is treated as LNG price and it is 

treated as cost of purchase of gas  

- Air Emissions cost differs for different sites 

- Saving due to faster project schedule is different for project located at different sites/ 

 

The case studies demonstrate that electric drives are practical over a much wider range 

of sizes and speeds and are now available to meet the full range of mechanical system 

requirements for direct drive main gas compressor applications. Electric motors hold an 

economic advantage over mechanical drivers in several important aspects in terms of 

improved full load and part load efficiency, no ambient temperature impact, speed 

control accuracy, range of control, remote control and automation, reduced annual 

maintenance costs, air Emissions, reduced noise, and system reliability perspectives. The 

motor driven system has immediate restart facility with no limit on number of start 

whereas a gas turbine system has to wait for two to three hours for restart due to driver 

thermal consideration and the limited re-starts per hour. The gas turbine has reduced 

power availability with increase in elevation, temperature and humidity whereas an 

electric motor driven has no such impact. The electric compression has variable speed 

range and ability to start and come to full load upon starting, whereas gas turbine 

assumes load one-half hour after start. The gas turbine seal gas needs be vented or flared 

increasing CO2 and NOx emission, which is much reduced in case of a motor driven 

system fed from a combined cycle power station. If the electric motor is properly sized it 

can restart a pressurized system whereas the gas turbine system has to flare the inventory 

to be able to restart. Electric compression has the ability to trade carbon credit, which 

has the lowest risk of future emission restriction and has a lower insurance risk. The 

auxiliary consumptions of gas turbines are higher in comparison to an electric motor. 

Flexibility and unknown upcoming future emission regulations are the keywords in 

today’s changing gas storage and gas transport business. Although the capital expense 

(CAPEX) may be higher with the motor solution, a higher LNG production can create a 

more favorable return on investment over the life time. 

The case studies discussed in chapter 7 validates that ‘All Electric LNG’ is a viable 

option because of all the above points discussed briefly. The information collected from 

these case studies have been further utilized for calculation and validation of the life 

cycle cost benefit model in Chapter 8. 
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7.6 Overall Conclusion of Case Studies: 

 
The case studies discussed in the previous chapters have demonstrated the technical and 

commercial advantages of all electric LNG over the conventional gas turbine driven 

LNG. Kleiner et al (2005) study concluded that the specific cost (cost/ton of LNG 

produced) of a single Electric-drive train can be expected to continue to decline with 

increasing train size, reaching about 20% lower than the Direct-drive (gas turbine) case. 

Further, the capacity of a single E-drive train can be tailored specifically to the 

requirement of the developers. Devold et al (2006) study demonstrates that an “All 

Electric Drive system” is the way to reach the industry’s goal to reach a 7.2% ratio of 

field gas consumption to LNG production. It has added safety, operational and 

environmental benefits as well as shorter delivery times and flexible design parameters, 

with a payback time of additional CAPEX of only four to five months. The inference 

drawn from study conducted by Martinez et al (2005) is that an electric motor driven 

LNG plant is theoretically a viable solution with today’s technology and materials of 

construction thus minimizing technical risk. Further, with all electric potential for 

consequential damage if process trip happens is minimized by dynamic breaking using 

VFD. Shu et al (2002) believe that there was enough relevant experience of application 

of electrical motors within other industries and use in a base load LNG technology 

would be but a small extension of existing experience. The risks of using electrical 

motors were well understood, and can be managed as part of a project’s development 

and execution. Coulson et al (2010)’s study demonstrated  that Electric-motor drives 

with combined cycle power block; with carbon capture is the best option for improved 

thermal efficiency and least environmental impact.  few more case studies have been 

discussed in Appendix E. Rama and Giesecke (2006) opine that electric drives are 

practical over a much wider range of sizes and speeds and hold an economic advantage 

over mechanical drivers in several important respects. As per Blaiklock (2010) both 

turbines and motors have advantages and disadvantages for LNG plant use. When 

deciding on the best choice the main considerations are the amount and value of LNG 

produced over the life of the plant and the initial capital expense. Although the capital 

expense may be higher with the motor solution, increased LNG production can create a 

more favorable return on investment. Grapow (2009)’s research demonstrate that general 

statement cannot be made on advantages of all-electric, as too many project dependent 

variables will influence the result. A detailed Life Cycle Cost analysis has to be made 

for each project individually. He further opined that future emission regulations are the 

keywords in the decision. Sawchuk et al (2003) opine that there is a high level of 

confidence that “Next Generation” LNG plant designs is achievable with raised 

standards on design, capacity, and life-cycle cost and greenhouse gas emissions. As per 

Thomas et al, (2009) based on thermal efficiency improvement for LNG plants and a 

long term quest for reduced CO2 emission an Electric LNG based on combined cycle 

generation and associated with heat driven absorption chillers for cooling the inlet air of 

the gas turbine in tropical area should be pursued.  
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CHAPTER 8 

 

Life Cycle Cost Benefit Analysis 

 
8.1 Introduction: 

 
Life Cycle Analysis (LCA) is a holistic method used to evaluate economic consequences 

resulting from a process, product, or a particular activity over its entire life cycle (LC). 

The LCA, also known as a cradle-to-grave analysis, is studied within a boundary 

extending from the acquisition of raw materials, through productive use and finally to 

either recycling or disposal. An LCA study can yield a true-cost-of-ownership, which 

can be compared with results for other alternatives, enabling a better informed analysis. 

With the competitiveness of current technologies, LCA is a perfect tool to provide an 

analysis of performance and cost to help discern differences in the types of plants (Life 

Cycle Analysis, 2010). The study needs to address the commercial impact of using large 

electrical motors instead of gas turbine. The expectation is that the capital cost in an all-

electric option would be higher as a result of the need to provide gas-turbine generators, 

steam turbine generators and electric motors in the combined cycle power plant to feed 

the large electrical motor drives.  The commercial evaluation of a life-cycle analysis 

should demonstrate the benefits of the alternative options.  Any commercial benefits to 

the use of all electric option must be evaluated for their impact on project net present 

value (NPV) or life-cycle benefit. Not surprisingly, when electrical motors are used, the 

capital cost is likely to escalate because of the need for a larger power plant. The 

commercial benefits therefore rely upon increased revenue streams to balance the higher 

capital expenditures (Shu, Harrison 2002). Some further discussions on Life Cycle cost 

Analysis can be seen in Appendix F entitled “Life Cycle Cost Analysis”. 

 

Detailed studies have been conducted on Chapter 4 (Life cycle challenges) on various 

factors which have implication in the life cycle cost calculation. Securing the finance for 

an All- Electric LNG is to convince the lenders that it can provide an edge over the 

conventional gas turbine driven LNG in terms of better return on investment and an 

improved environmental performance. Economy of scale brings down specific cost of 

production and improves the project competitive position. The Capital Expenditure 

(CAPEX) and Operating Expenditures (OPEX) account for a substantial amount of the 

total investment cost. Hence there is major life cycle cost saving that can be realized 

both in CAPEX and OPEX, if these can be reduced in a liquefaction project. 

Considerations such as rapid commercialization, reduced technology development cost, 

market penetration, lower cost, shorter contract period and a reliable operation with 

reduced environmental concern are some of the other important factors. In Life cycle 

cost analysis important factors such as operational benefits, operational cost, 

maintenance cost, major maintenance interval, operational safety, thermal efficiency, 

emissions, performance deterioration, flexibility of operation, ambient temperature 

considerations, design flexibility, optimizing size and, Long Term Services Agreement  



Chapter 8                                                                                                      Life Cycle Cost Benefit Analysis 

 
                                                                      136                                               Engineering Doctorate Thesis 

 
 

 

(LTSA) for Gas Turbine Maintenance; additional stream days, project schedule, which 

have been discussed in details in Chapter 4 (Life cycle challenges) have been utilized for 

the overall Life cycle cost calculation in this chapter. 

Further, Chapter 7 and Appendix F discuss various case studies conducted by eminent 

and experienced personnel in LNG field. The information from these case studied 

conducted by Kleiner and Kauffman (2005), Devold et al (2006), Coulson et al (2010), 

Rama and Giesecke (2006), Martinez et al (2005)and (Shu, Harrison 2002)from chapters 

have been extensively used in the life cycle cost calculations in this chapter.  

8.2 Common Definition: 

 
A financial evaluation based on a full Life Cycle Cost analysis has to be performed for 

all alternative technologies available. Some of the terms need to be defined for a clear 

understanding of project evaluation (Grapow 2009). 

 
a) Life Cycle Costing (LCC) = Capital Expenditure (CAPEX) + Operating Expenses 

(OPEX) + Maintenance Expenditures (MAEX) 

b) CAPEX = Costs of construction of the facility + Costs of building + Cost of 

connection to electrical grid + Costs of erection& commissioning+ Costs for getting 

permissions etc 

c) OPEX= Energy costs + Costs of operating personnel + Costs of buildings operations 

+ Costs of emissions+ Money interests+ Costs of downtime costs  

d) MAEX = Spare parts costs of maintenance personnel + Costs of downtime  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Life cycle costing: (MAN Turbo AG Schweiz, 2009) 
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8.3 Life cycle Analysis of a 7.8 MTPA plant: 

Out of the total CAPEX (Electric or Gas) cost the division between various costs are 

Field development 26%, Liquefaction 32%, tankers 32% and Re-gasification 10%. 

The division between various OPEX costs are Field development 24%, Liquefaction 

35%, Tankers 29% and Re-gasification is 12% (Deloitte Resource News, 2005). The 

CAPEX and OPEX costs of Liquefaction part are roughly the same and also the 

largest in the LNG value chain. About 60% of the investment and value creation are 

located in the producing country, 30% in transportation and the remaining in the 

consuming country (Deloitte Resource News, 2005). I have made a life cycle 

calculation for a 7.8 MTPA plant. I have selected this size because this is the largest 

Train that has been built till date with gas turbine drive and would like to make a 

comparison and evaluation to demonstrate the life cycle comparison of the all-

electric LNG against the gas turbine alternative. Smaller trains will also be 

economical which will be demonstrated later in the chapter in Table 8.10.  
 

8.3.1 Improved Efficiency: 

 

The production impact of moving to electrical motors is achieved through higher 

thermal efficiency of the plant. Centralized power generation involves larger and more 

efficient gas turbines, which along with a heat recovery system in a combined-cycle 

power generation environment make the combination more energy efficient hence 

economical. The sizes of the generators in the combined cycle plant can be optimized to 

get the optimum thermal efficiency. Balanced against this increased efficiency are the 

electrical transmission and drive losses. The first of these increases thermal efficiency is 

about 12%; and then loses of about 4% because of the drive and transmission losses. The 

result is an overall increase in efficiency of 8% that translates to an additional 0.5% 

increase in LNG production (Shu, Harrison 2002).There is a potential 4-5% 

improvement in system thermal efficiency compared to single cycle gas turbines for a 

compressor station(Rama and Giesecke 2006).  

 

Kleiner, Kauffman (2005) estimate a reduced fuel gas consumption of 5% due to the 

improved thermal efficiency. Priced at US$ 1.0/ MBTU for the fuel gas cost a net saving 

is US$ 2.1M has been achieved for a 5.0 MTPA plant. 

 

Devold et al (2006) estimated fuel gas consumption for a LNG production train of 

6.2MTPA capacity or both the alternatives. For an All Electric Drive LNG plant the fuel 

gas consumption is about 450 MMSCM (Million Metric Standard Cubic Meter) per year 

with a cost of $100M and for a conventional Gas Turbines LNG plant the consumption 

is about 648 MMSCM with a fuel gas cost of $145M. The difference in consumption is 

200 MMSCM with a total net saving is $45m for a 6.2MTPA plant. 
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1- Boil off Gas used for fuel consumption by a 7.8 million tons train is about 850 tons 

per day (Qatargas daily report, July 2011). If Electric LNG uses 5% less because of 

improved thermal efficiency the additional saving is about 42.5 tons per day which 

could be sold as LNG. Annual saving is 15,045 tons (354 days at 97% availability). 

At a rate USD $800/t (@ $16/MMBTU, LNG price in 2013) of LNG the additional 

income as of 2013 is $ 12m per year. 

2- With Shu, Harrison’s (2002) estimate of 8% improved efficiency converted to 0.5% 

additional LNG production the additional income is: 

a. From Shu, Harrison’s (2002) estimates an 8% efficiency improvement will result 

in $19.2m additional income per year at a rate of $16/MMBTU (Million Metric 

British Thermal Units, which is the LNG price in 2013) for a 7.8, million tons 

train. This is calculated with boil off gas for fuel consumption of 850 tons per 

day consumption for a 7.8 MTPA is about (Qatargas daily report, July 2011). 

The above cost is 8% of 850tons multiplied by 354 days (at 97% availability) at a 

rate USD $800/t (at $16/MMBTU). 

b. 0.5% additional LNG for selling will realize in to $31.2mper year for 7.8, million 

tons train for the entire year. 

3- With Kleiner, Kauffman (2005) figures of fuel gas cost of US$ 1.0/ MMBTU, a net 

saving of $3.3m can be realized for a 7.8MTPA plant with US$16/MMBTU ($800/t) 

the additional income is $52.8m per year. 

4- As per Devold et al (2006) figures of $45m savings for a 6.2MTPA plant, the net 

saving on fuel gas for a 7.8MTPA plant is $56M per year with the same gas price as 

in 2006. 

 

8.3.2 Annual Maintenance Costs: 

 

As per (Devold et al 2006), the maintenance cost per year for a 6.2 MTPA train is given 

below: 

Characteristics Electric Drive Gas Turbines Difference 

Minor maintenance cycle 25,000 hrs. 4000 hrs.  

Major maintenance cycle 100,000 hrs. 20,000 hrs.  

Minor maintenance duration 1-2 days 6-10 days  

In operation system MTBF >25000 hrs. 4,000 hrs.  

Maintenance costs $ 5M/ year $ 10M /year $ 5M/year, in favour 

of all-electric 

  

Table 8.1: Maintenance Cost of a 6.2 MTPA plant (Devold et al 2006) 

 

As per Kleiner, Kauffman (2005) reduced maintenance and shutdown costs averaged to 

US$ 1.8M for a 5.0MTPA plant for an All-electric plant vs. a gas turbine driven plant. It 
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is quite obvious that there is substantial savings in maintenance cost of an All Electric 

LNG plant over a conventional Gas turbine driven LNG plant.  

 

With an extrapolation of Kleiner, Kauffman (2005) figures of US$ 1.8M (for a 5.0 

MMTPA) plant and with an estimated 10% annual compounded increase over every 

year, the maintenance cost saving will be about US$ 5.4m per year for a 7.8MTPA all-

electric LNG plant. As per Devold et al (2006) figures $ 5M/year (for a 6.2 MTPA) with 

an estimated 10% annual compound increase for a 7.8MTPA LNG plant saving from 

reduced maintenance cost of 2013 will be about $9.7m per year in 2013.  

 

8.3.3 Initial Capital Cost and Installed Cost: 

 
Additional cost is about US$ 20M (Kleiner, Kauffman 2005) for installing a 360MW combined 

cycle power plant unit for an all-electric LNG instead of a 120MW power plant required for a 

gas turbine driven LNG plant of 5 MTPA size. With an estimated 10% compound increase in 

cost per year the extrapolated additional cost for putting a power plant of 500MW power plant is 

about US$ 54Mfor a 7.8 MTPA plant. It is considered that a 500MW plant is required for a 

7.8MTPA all electric LNG by optimizing power consumption. Shu, Harrison (2002) calculated 

the impact of capital cost of the change to an all-electric plant of 4 MTPA capacity, which is 

given in the following table: 

 

Effect of change on CAPEX: $ million 

Adders 153 

340MW Centralized power generation 25 

Centralized waste heat recover 18 

Electrical Motor drivers 39 

Electrical Infrastructure  

Total Adders 235 

Deductions  

Four Frame 5 gas turbines 45 

Three frame 7 gas turbines 81 

Localized waste heat recover units 28 

Steam turbines 7 

Electrical Infrastructures 14 

Total deductions 175 

Net increment 60 

 

Table 8.2: Total Installation cost for a 4 MTPA LNG Shu, Harrison (2002) 

As expected, the capital cost for the electric-motor option increases because of the 

installation of a large combined cycle power plant, if the power is generated in-house. 

The major "adder" is the cost of the power station, whose capacity has risen because of 

the all-electric option (Shu, Harrison 2002). As per his calculations, the additional outlay 

with an estimated 10% compounded increase in cost every year (from 2002 to 2013) for 

a 7.8 MTPA plant will be about $333M as of 2013. 
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Devold et al (2006) calculates the additional CAPEX for an all-electric LNG system for 

LNG Production of 6.2MTPA. 

 

 6.2 MTPA LNG plant 
Electric drive: $ 30M  

Main drives, $35M Power plant, $7M 

Auxiliary drives Gas Turbines $25M  

Main G $14 

Power plant auxiliary drives $7M  

Difference: $29M  

Table 8.3: Installation cost calculation for a 6.2 MTPA plant Devold et al (2006) 

 

Devold et al (2006) considers that for a 6.2MTPA plant an All-Electric plant will have 

additional Capital outlay of $29M. By considering an estimated 10% compounded 

increase (from 2006-2013) an extrapolated additional cost is about $71Mfor a 7.8MTPA 

LNG Train as of 2013.  

 

8.3.4 Production due to additional stream days:  

 

Higher plant availability increases annual revenue for the entire project life, due the time 

value of money, as it brings forward a revenue stream. This evaluation will obviously 

vary with the particular configuration of prime movers selected. Increased production 

availability results from two sources: (Shu, Harrison 2002) 

 

1. Power sparing or spinning reserve is more cheaply available on centralized gas 

turbines for a combined cycle power plant rather than on localized gas turbine used 

as compressor drivers. Therefore, a highly reliable power-supply service can be 

provided economically.  

2. The scheduled maintenance needs for electrical motors are much lower than for gas 

turbines.  

 

As can be seen from the previous discussion, the reliability and hence the risk of an 

unscheduled shutdown are much the same for all components. The scheduled 

maintenance downtime for gas turbines is five times greater than the next most 

demanding component. When all of these factors are considered, production availability 

increases by 2.9% (Shu, Harrison 2002).Typical component availability is given in 

Table 8.4 below: (Shu, Harrison 2002) 

 

Equipment Average 

reliability 

Scheduled maintenance 

avg. hrs./yr. 

Scheduled maintenance 

number of days/yr. 

Centrifugal 

compressors 

0.998 50 2.08 

Electric motors 0.997 25 1.04 

Gas turbines 0.994 270 11.25 
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Steam turbines .994 45 1.875 

Table 8.4: Schedule maintenance comparison: (Shu and Harrison 2002) 

 

Hence for installing an all-electric plant the additional number of work days available is 

the difference of 11.25 days (for gas turbine) and 2.08 days (down time of compressors), 

which is 9.17 days. For a 5 million tones plant Kleiner and Kauffman (2005) estimates a 

minimum additional on-stream days per year of ten (10) days for an all-electric plant, 

which is around 150,000 tones p.aof LNG at a constant daily capacity. Priced at US$ 

3.5/MBTU f.o.b. (Kleiner, Kauffman 2005) additional income is US$ 26.2M. (Cost per 

ton is about $175). 

 

Devold et al (2006) also estimate a minimum of 10 additional production days per year 

of LNG Production. For a 6.2MTPA plant driven by an all-electric Drive an additional 

income of US $36M can be realized with a price at US$ 3.5/MMBTU. 

 

For a 7.8MTPA plant daily production with 97% availability (354 working days per 

year) is 22,030 tones. For 10 additional stream days of production, at the same price of 

$3.5/MMBTU additional income per year is US$ 38.55m. 

 

For a 7.8 MTPA plant with an average price of $16/MMBTU in 2013 the additional 

income for 10 additional stream days of production with a rate of 22,030 tons per day is 

about US$ 176m. (1metric Ton is about 49.2MMBtu) 

 

8.3.5 Air Emissions: 

 

Rama and Giesecke (2006) believe that as such, the benefit of emission reductions of the 

electric-motor driven system is reason to consider this technology. Kleiner and  

Kauffman (2005) calculated reduced CO2 emissions for 5 million tones plant of about 

100,000 tons per annum (T.P.A) of CO2, with an estimated saving of US$ 0.6M. For a 

7.8MTPA plant with an estimated 10% compound increase in cost the saving is 

US$1.82M in 2013 

Devold et al (2006) estimate thatCO2 emissions for a LNG Production of 6.2MTPA for 

an All Electric Drive is 800,000 tons per annum whereas for a Gas Turbine driven plant 

is about 1.160,000 tons with an overall difference of 360,000 tons. With Kleiner, 

Kauffman (2005) cost estimate of carbon emission (reduction of 100,000 t.p.a CO2e with 

a saving of US$ 0.6M for 5 million tones plant) the saving is $ 2.16M for a reduction of 

360,000 tons for a 6.2MTPA plant. This cost can be extrapolated at an estimated 10% 

compound increase every year from 2006 to 2013 for a 7.8MTPA plant the saving 

isUS$5.3M.  

 

8.3.6 Recirculation loss:  
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The main operating parameters for a compressor are the flow and pressure differential. 

At lower flow, there is a minimum pressure differential before the compressor surges. 

Recirculation is used if variations in flow are expected or if there is a difference between  

 

common shaft compressors. The surge response is determined by the volume of the 

recirculation system, the surge loop response, and the overall system response time. A 

faster speed control response time improves surge performance and allows the system to 

operate with less recirculation. Recirculation causes energy loss and increased fuel 

consumption. The All Electric Drive system can operate with significantly less 

recirculation than a gas turbine driven example due to tighter and faster control (ABB, 

2005). In a “no surge” principle whereby compressors can be safely be controlled in 

surge even without recirculation facilities enhancing control over surge, helping to avoid 

recirculation during normal operation, and opening up opportunities for reduced anti-

surge equipment costs. An electric drive system significantly increases the response time 

and offers a much wider efficient operating speed range than a gas turbine. As a result, 

the electric drive system balances power requirements faster and better between different 

sections of the process. Tighter control means higher overall process efficiency and safer 

operation, with increased overall efficiency and less wear on equipment due to excessive 

stress (ABB, 2005). 

 

For a 6.2MTPA all-electric plant net saving on recirculation loss is $5M (Devold et al 

2006).Reduction in Recirculation loss, extrapolated from 6.2 MTPA plant resulting in 

additional production for a 7.8MTPA Electric driven plant is US$ 6.3. 

 

8.3.7 Project Schedule: 

 

The FOB delivery of large electrical motors is about 24 months, in comparison to GE 

Frame 7 GTs which is about 36 months (Shu, Harrison 2002). It is usual for a LNG 

projects to place the order for the gas turbines much before the final investment decision 

on the project is taken. Thus, the use of motors would not have much advantage in this 

case. Delivery of either gas turbines or a motor is assumed to be to the compressor 

vendor's works for assembly and testing of the drivers and compressors. It is also 

expected that up to 2 months would be saved in the assembly of motors and compressors 

vs. turbines and compressors (Shu, Harrison 2002). In all electric case the gas turbines is 

off the project's critical path and transfers the critical path onto the LNG storage tanks or 

the construction of the now larger power plant. As important, it helps to reduce schedule 

risk by elimination of a schedule-driving event (Shu, Harrison 2002). As per Martinez et 

al (2005) LNG tanks are critical path and therefore no schedule advantage is assumed. A 

typical schedule advantage is shown in Table 8.5. 

 
 Base case in months Electrical drivers 

Frame 7 Gas Turbine FOB 36  

Electrical drivers FOB  10-12 

Frame 5 Gas turbine FOB  14-15  
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Frame 6 gas turbine  14-15 

Electric infrastructures 12 14 

Large refrigeration 

compressors fabrication 

16 16 

String test for hook up 2.5 0.5 

String tests 2 2 

Total with Frame 7 68.5 59.5 

Difference  9 months 

 

Table 8.5: Delivery times for key components: (Shu, Harrison 2002) 
 

Shu, Harrison (2002) of Foster Wheeler states that it is possible to reduce the 

engineering, procurement, and construction (EPC) phase of the project by 2 months, 

resulting in a life-cycle cost benefit of approximately $125 million for a 5 MTPA plant. 

As gas turbine is not in the critical path because storage tanks and piping being in 

critical path, I have not considered this for my life cycle calculation. 

 

8.3.8 Strategic Fuel Source Options: 

 

 If electric energy rates remain competitive with gas energy rates, the economics of 

electric drives become as superior to those of gas-powered options as to become 

indisputable. The inclusion of an electric option can become part of a system strategy to 

improve cost performance and to reduce the cost on environmental impact (Rama and 

Giesecke 2006). 

 

8.3.9 Reduced Noise: 

 

Another form of emissions coming under more scrutiny is noise. The typical high-speed 

electric drive system is 7-10 dB (A) quieter than any of the mechanical driver 

alternatives (Rama and Giesecke 2006). This is a safety advantage and has not been 

considered for life cycle calculations. 

 

8.3.10 Shorter Permitting Time: 

 

Limitations on emissions can make new installation licensing a burdensome exercise. 

Salable emissions credits may be available by adopting a strategy of integrating electric 

motor system options. Therefore, it is much easier to secure permitting because of a 

much better environmental performance (Rama and Giesecke 2006). 

 

8.3.11 Social Policy Benefits: 

 

That the impact of converting the 325,000 HP of gas-fired reciprocating engine to 

electric motor systems would be equivalent to removing 5 million cars from roads each 

year. The net potential benefit, when considered on a national basis, would appear to be 

substantial (Rama and Giesecke 2006). 

 

8.3.12 Tailor made train size: (Kleiner and Kauffman, 2005) 
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All electric allows the capacity of a single E-drive train to be tailored specifically to the 

aspirations of owners. Capital efficiency is improved with larger train sizes using E- 

 

 

drive concepts and allows owners to select any train size as best fits the opportunity 

(Kleiner, Kauffman 2005). 

 

8.3.13 Control response:  

 

The control response of electric motor is Medium to quick, whereas that of Gas Turbines 

is slow (Devold et al 2006). 

 

8.3.14 Weight and space: 

 

Electric Drive itself is a light unit but has space and weight consuming auxiliaries. Same 

applies to gas Turbines which is also a light unit with space and weight consuming 

auxiliaries (Devold et al 2006). 

 

8.3.15 Power Factor: 
 

The VFD operated synchronous motor can be operated at unity power factor so that it 

does not have a negative impact on the MVAR (Mega Volt Ampere Reactive) demand 

and hence on the power factor of the power system.  If the power factor is lower, more 

current have to be supplied for a given amount of power use resulting in more line loss 

and need much larger size equipment in place than otherwise may be necessary.  

 

8.3.16 Soft Start Equipment: 

 

Because of the soft start capability the start can be smooth and does not impact in 

voltage dip of the power system during starting. When starting an electric induction 

motor, it takes a lot of energy to get all the components of the motor and the compressor 

rotating. The initial current is therefore much larger than the normal operating current. 

Application of VFD, which is soft-start equipment, the surge can be considerably 

reduced and the string can be started in a controlled manner without any voltage dip.  

 

8.3.17 Comparison of equipment and plant size: 

 

Kleiner and Kauffman (2005) worked out the cost/benefit equation to express as the 

“incremental” EPC cost difference between All-Electric drive and direct gas turbine 

drive for a train delivering the same daily LNG production. To study this potential 

economy of scale, three designs were made and compared; a 5 MTPA direct drive (as a 

datum) and two electric drive options, one at 6 MTPA and the other at 7.5 MTPA. The 

latter, corresponds to a 65 MW motor/compressor string. Total Installed Cost build-up 

was carried out by ‘Shell Global Solutions’ with cost differences between options being 

validated by separate engineering services. These results demonstrated that the specific 
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cost (cost/ton of LNG produced) of a single Electric-drive train can be expected to 

continue to decline with increasing train size, reaching some 20% lower than the direct 

drive (Kleiner and Kauffman 2005). 

 

8.4 Annual savings:  

 
An additional CAPEX of US $20 m has been incurred to install an Electric drive against 

a direct gas turbine drive system for a 5 MTPA LNG train. However annual benefit of 

US$ 34m can be reaped if an E-Drive is selected which more than offsets the initial 

CAPEX incurred in the first year of operation itself and proves as a considerable 

profitable option from the subsequent years of operation (Kleiner and Kauffman, 2005). 

For further details of the above calculations please refer to Chapter 6 section 6.1 (Case 

studies). For LNG plants, for example, industry goals are currently to reach a 7.2% ratio 

of field gas consumption to LNG production. An All Electric Drive system is the only 

way to reach that ratio (Devold et al, 2006).  With the added operational safety and 

operational benefits, as well as shorter delivery times and flexible design parameters, an 

All-Electric Drive system is easily the logical choice, with a payback time of additional 

CAPEX only in 4 to 5 months for a 6.25MMTPA LNG plant (Devold et al, 2006).In this 

context the environmental impact becomes an important added benefit, but is not critical 

to the economic analysis (Devold et al 2006).  

 

8.4.1 Life cycle benefit for a 7.8MTPA plant with All Electric system: 

 
From the preceding discussion the annual cost saving and additional income of an all-

electric system over a gas turbine driven LNG can be calculated with a LNG price of 

US$16/MMBTU for a 7.8MTPA unit: (scheduled advantage not considered) 

 

1- Saving due to improved efficiency= $56m per year. 

2- Maintenance cost saving: $ 9.7m per year. 

3- Production due to additional stream days with $16/MMBTU: US$ 176m. 

4- Air Emissions 7.8MTPA plant in 2012 is US$5.3M.  

5- Reduction in Recirculation loss resulting in additional production for a 7.8 MTPA 

Electric driven plant is US$ 6.3m. 

6- Additional Capital Cost and Installed Cost: (-) $71m. 

7- Total additional income per year (at $16/MMBTU): $56m + $9.7m +$176m +$4.8m 

+$6.3m= $253.3. 

8- Monthly income = 253.3/12 =21.10. 

9- Additional initial capital investment is $ 71m for larger power plant installation. 

10- Extra income in the first year after taking care of the additional capital investment 

=253.3 - 71=182.3. 
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11- The additional CAPEX can be paid back in which can be paid back in months = 

(Additional CAPEX for all-electric/ monthly income) = 71/21.10 = 3.36 months of 

the first year of operation. 

12- For a 25 year operation total additional flat rate income with discounting = 182.3 + 

(24 x 253.3) = US$6261.5M. 

 

8.5 Sensitivity analysis of LNG price and plant size variation: 

 
Sensitivity analysis is carried out with various different price of LNG and corresponding 

yearly additional income and annual cost saving of an all-electric system over a gas 

turbine driven LNG and calculated for a 7.8MTPA plant.    

 

LNG 

Price 

in 

$/MM

BTU 

Saving by 

improved 

efficiency 
US$ M 

Maintena

nce cost 

saving 
US$ m  

Production 

due to 

additional 

stream days 

US$ m  

Reduction 

in Air 

emission 
US$ m 

Reduction 

of 

recircul-

ation  loss 

US$ m 

Total 

incom

e per 
year 

Additional 

CAPEX due 

to a combined 

cycle plant 

US$ m (-) 

Extra 

income 

in the 1st 

year  in 

US$ m 

6 21 9.7 66 5.3 6.3 108.3 71  37.3 

8 28 9.7 88 5.3 6.3 137.3 71  66.3 

10 35 9.7 110 5.3 6.3 166.3 71 95.3 

12 42 9.7 132 5.3 6.3 195.3 71 124.3 

14 49 9.7 154 5.3 6.3 224.3 71 153.3 

16 56 9.7 176 5.3 6.3 253.3 71 182.3 

18 63 9.7 198 5.3 6.3 282.3 71  211.3 

20 70 9.7 220 5.3 6.3 311.3 71 240.3 

 

Table 8.6: Sensitivity analysis of annual income a 7.8MTPA plant for various LNG 

prices: 

 

The following sensitivity analysis is carried out for Annual total income in US$M per different 

sizes of the plants and with different LNG prices in $/MMBTU. Here the income is extrapolated 

from a plant of 7.8MTPA capacity with extrapolation of saving due to improved efficiency, 

maintenance cost saving, reduction in Air emission and reduction in recirculation without 

deduction of the initial additional CAPEX. 

 

 Annual total income in US$M per different sizes of the plants 

LNG Price in 

$/MMBTU 

3 

MMTPA 

4 
MMTPA 

5 
MMTPA 

6 
MMTPA 

7 
MMTPA 

8 
MMTPA 

9  
MMTPA 

6 41.65 55.53  69.42 83.3 97.19 111.0 124.96 

8 52.80 70.41 88.01 105.61 123.21 140.82 158.42 

10 63.96 85.28 106.6 127.92 149.24 170.56 191.88 
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12 75.11 100.15 125.19 150.23 175.26 200.30 225.34 

14 86.26 115.02 143.78 172.53 201.29 230.05 258.80 

16 94.42 129.89 162.37 194.84 227.32 259.79 292.26 

18 108.57 144.76 180.96 217.15 253.34 289.53 325.73 

20 119.73 159.64 199.55 239.46 279.37 319.28 359.19 

Table 8.7: Sensitivity analysis of annual income of various sizes of plant with LNG 

prices 

 

8.6 Net Present Value (NPV) calculation: 

 
The figure below demonstrate the movement of LNG price over the last 10 years, which 

shows that there is a increase in trend except a dip observed in 2008-2009 due to the 

global slowdown. A sample NPV calculation is shown in Appendix K. 

 

Figure 8.2: Global Natural gas price monthly average (Ernst and Young, 2013) 

 

The table below demonstrates the Net Present Value (NPV) of expected cash flow with a 

flat rate of annual income for 25 years of operation, and a discount rate of 7% for a 

7.8MMTPA plant, which clearly shows the economic advantage of an all-electric 

system. 

 

LNG price 

($/MMBTU) 

Income 

per year 

(US$M) 

Net Present value of 

expected cash flow with 

discount rate of 7% (in 

US$M) (A) 

Additional CAPEX 

due to a combined 

cycle plant (B) 

Net Present Value 

(NPV) after 

discounting for 
CAPEX(C=A-B) 

6 108.3 1,262 71 1,191 

8 137.3 1,600 71 1,529 

10 166.3 1,938 71 1,867 
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12 195.3 2,276 71 2,205 

14 224.3 2,614 71 2,543 

16 253.3 2,952 71 2,881 

18 282.3 3,290 71 3,219 

20 311.3 3,628 71 3,557 

 

Table 8.8: Net Present Value (NPV) calculation for a 7.8MTPA plant with 7% 

discount rate for various LNG unit price:  

 

The table below demonstrates the net present value of future cash flow at a flat rate of 

annual income for different sizes of LNG plant with respect to various LNG price and 

varied discount rates for a 25 years of operation. No matter what is the discount rate the 

NPV value looks very attractive. 

 

 NPV of  total income in US$M per various sizes of the plants and various discount rate 

with flat rate of annual income for 25 years of operation 
LNG Price 

$/MMBTU 
3 MMTPA 

(Various Discount rates) 

5 MMTPA 
(Various Discount rates) 

7 MMTPA 
(Various Discount rates) 

9 MMTPA 
(Various Discount rates) 

 7% 8% 9% 10% 7% 8% 9% 10% 7% 8% 9% 10% 7% 8% 9% 10% 

6 485 445 409 378 809 741 682 630 1133 1037 955 882 1456 1334 1227 1134 

8 615 564 519 479 1026 939 864 799 1436 1315 1210 1118 1846 1691 1556 1438 

10 745 683 628 581 1242 1138 1047 968 1739 1593 1466 1355 2266 2048 1885 1742 

12 875 802 738 682 1459 1336 1230 1136 2042 1871 1722 1591 2626 2405 2213 2045 

14 1005 921 847 783 1676 1535 1412 1305 2346 2149 1977 1827 3016 2763 2542 2349 

16 1100 1008 927 857 1892 1733 1595 1474 2649 2427 2233 2063 3406 3120 2871 2653 

18 1265 1159 1066 985 2109 1932 1777 1643 2952 2704 2488 2300 3796 3477 3200 2957 

20 1395 1278 1176 1087 2325 2130 1960 1811 3256 2952 2744 2536 4186 3834 3528 3260 

 

Table 8.9: Sensitivity Analysis with various discount rates for different plant sizes 

and varied LNG prices for 25 years of operation. 
 

 

The Figure 8.2 above shows that the price of LNG has increased from US$ 4.5/MMBTU 

in 2003 to US$ 16/MMBTU (Asia-JCC price) which is an annual rate of increase of 

14%. The table below demonstrates the net present value of future cash flow at 14% 

increase in the gas price every year, for different sizes of LNG plant and varied discount 

rates for 25 years of operation. 

 

 NPV of  total income in US$M per various sizes of the plants and various discount rate 

with annual rate of LNG price increase of 14% for a period of 25 years operation 

LNG Price 

$/MMBTU 
3 MMTPA 

(Various Discount rates) 

5 MMTPA 
(Various Discount rates) 

7 MMTPA 
(Various Discount rates) 

9 MMTPA 
(Various Discount rates) 

 7% 8% 9% 10% 7% 8% 9% 10% 7% 8% 9% 10% 7% 8% 9% 10% 

6 2306 1988 1723 1502 3843 3314 2872 2503 5381 4639 4021 3504 6918 5965  5170 4506 

8 2923 2520 2185 1904 4873 4201 3641 3713 6822 5881 5098 4443 8771 7562 6555 5712 

10 3541 3053 2646 2306 5902 5088 4411 3844 8263 7124 6175 5381 10624 9159 7939 6919 
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12 4159 3585 3108 2708 6931  5976 5180 4514 9703 8365 7251 6320 12476 10756 9323 8125 

14 4776 4117 3569  3110 7960 6863 5949 5184 11145 9608 8328 7258 14329 12353 10708 9332 

16 5228 4507 3907 3405 8990 7750 6718 5855 12586 10850 9405 8197 16181 13950 12092 10538 

18 6011 5182 4492 3915 10019 8638 7487 6525 14026 12092 10482 9135 18034 15548 13477 11745 

20 6629 5715 4954  4317 11048 9525 8256 7195 15467 13335 11559 10074 19887 17145 14861 12952 

 

Table 8.10: Sensitivity Analysis of annual income of various plant sizes with 

different discount rates and annual compounding increase of LNG price of 14% 

over the base. 

 

The above figure demonstrates that for various sizes of the plant and various discount 

rates with an annual 14% compound increase in LNG price the net additional income 

and overall cost saving of all-electric case over gas turbine case looks much more 

attractive over a flat LNG price. 

 

8.7 Conclusion: 
 

From the above discussion it is quite evident that there is good economic sense to 

consider all-electric as an option. If all the technical issues are studied in advance and 

mitigated, the electric option can be made a reliable and a viable alternative to the Gas 

Turbine driven LNG. For an electric LNG at a discount rate of 7% and a span of 25 

years, the projected cash flows for LNG price of $16/MMBTU for a 7.8MTPA LNG 

plant which is the largest plant that has been built till date is worth $ 2,952M, which is 

much greater than the initial additional CAPEX outlay of $71.00M. The resulting 

positive NPV of the above project after catering for the initial additional capital outlay is 

US$2881M, which indicates that pursuing the above project may be optimal. Initially in 

Table 8.9, I have considered that the LNG price is going to remain constant over the 

entire period of 25 years, but historically LNG prices increase over a period as shown in 

Figure 8.2. If we take the historical trends of increase in price and extrapolate it the 

project annual cash flow the Net Present value will still improve and make the project 

look much more attractive, which is demonstrated in Table 8.10. 
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CHAPTER 9 

Questionnaire Survey Discussion 

 
9.1 Introduction: 

 
I conducted a questionnaire survey with twenty questions with an intention to get 

feedback from experienced personnel who have worked in the LNG field. I received 

some very interesting answers which have thrown further insight into research. Some of 

the critical reviews made by the respondent were worth further detailed investigation 

before considering all electric as viable alternative. At this point it is worth mentioning 

Shu et al (2002) view ‘however large the commercial benefits, if the technical risks are 

too high, then the electric-motor option would not be selected’. The feedback response 

from the survey is discussed below. A sample of questionnaire is included in Appendix 

L 

9.1.1 Summary table of participants: 

 

Number of participants 42 Response both questionnaire (37) and 

interviews  (5) 

Employment level Managers, Engineers, Planners, Operators, 

Technicians 

Relevant expertise  Expertise in their own field and craft 

Company relevance LNG Industry 

Average Years of experience 16 

 

9.1.2 Questionnaire discussion: 

 

1. All Electric equipment has an overall advantage over Gas turbine (GT) 

alternative in engineering, manufacturing, transportation and installation. 
 

Most of respondent agreed with the above statements with those strongly agree and 

agree at 83%, neutral at 8% and disagree at 8%. Some pointed out that the simplicity of 

electric equipment with respect to gas turbine counterpart. Electrical equipment is a 

simple rotating machine requiring less auxiliary equipment and consists of fewer parts 

and hence requires lesser capital intensive spare. The primary drivers for the capital cost 

of an LNG liquefaction facility are site specific in nature. A large part of LNG plant cost 

is capacity related. As a result, most of the cost of an LNG liquefaction project is a 

function of site-related conditions, project development and project execution efforts. 

Even with all these elements, each LNG plant is unique to a specific location and market 

destination. Cost of site preparation will vary significantly with soil conditions and 

location. This cost is also dependent on plant size. Although the agreement generally in 

favour however the availability of electricity and/or how it is generated could make one 

or the other option more attractive.  

 

2. All Electric LNG requires smaller foot print (floor area) for installation, lesser 

capital intensive spare parts than Gas turbine driven LNG. 
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Most of the respondent agreed on the above statement with strongly agree and agree at 

87.5% and neutral at 12.5%. One of them made an interesting observation that if foot 

print is a concern depending on horse power requirement an aero-derivative Gas Turbine 

has smaller foot print in comparison to frame gas turbine.   However, the aero-derivative 

turbines, which have a higher thermal efficiency than that of frame gas turbine, are 

available in smaller sizes. Further they can be considered as drivers in combined cycle 

power generation option improving overall thermal efficiency. Whether one is 

considering on-site power generation or purchased power from a utility has bearing on 

the decision.  If site power generation is considered the footprint of an “all-electric” 

LNG facility would be larger than and more capital intensive than gas turbine driven 

LNG facility. Electric motors would have a smaller footprint than the gas turbine in the 

process plant, but a larger understanding of the equipment failure rate need to be 

considered to determine need for spares and their respective costs. 

 

3. All Electric LNG Factory acceptance tests is less complex, less time consuming  

and has a shorter and cheaper validation testing schedule with fewer 

bottlenecks than the GT counterpart. 

 

Most agreed that an all-electric LNG requires less complicated tests with strongly agree 

and agree at 87.4% and neutral at 6, 4%. Now a day’s major LNG construction is done 

by joint venture EPC contractors to spread their risk. The contractor selection and 

relationship and capability of the joint venture contractors and their subcontractors are 

seen by some as significant factors affecting cost. Large electric drives depending on 

topology can also create unique challenges that may not be recognized during the system 

design such as harmonics, resonance or torsional oscillation. One very interesting 

observation was it is not unusual for design engineers to miss the converter effect when 

a single diode fails in the Dead Front End of a medium voltage variable frequency drive. 

This failure mode causes the drive capacitor bank to increase the short circuit asymmetry 

during a fault which may exceed equipment ratings, which should be recognized and 

addressed during design.  Further string test for electrical motor with compressor cannot 

be carried out in the factory due to requirement of a large amount of power which the 

grids are not able to supply and hence the test have to be shifted to site and wait to be 

conducted till the power is available. This may delay finding of issues delaying the risk 

mitigation to the site, hence may delay the site testing and completion schedule. Some 

doubted whether there will be any major advantage considering large motors to be used 

in LNG plants testing would be rather non-standard thus may increase the risk. Other 

agreed that mechanical Factory Acceptance Tests do tend to be fairly complex and 

lengthy. Gas Turbines have to undergo different tests, under various scenarios to meet 

the acceptance criteria. System validation testing can pay huge dividends if properly 

done and not just a “dog and pony” show for the customer and hence any undetected 

VFD system problems can significantly delay startup and impact production.   

 

4. It is more likely that All Electric LNG can be completed within schedule and 

budget considering simplicity in construction, testing and commissioning. 

 

Out of all the responses strongly agree and agree stood at 80% neutral at 16% and 

disagree at 4%. The answer to the above somewhat depends on electrical power 
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generation requirements.  If all power were purchased from a utility then agreement is 

unanimously and strongly in favour of the statement, whereas if all power is site 

produced some doubted whether the electric drives will have any scheduled advantages. 

Competition among contractors and liquefaction process technologies are often seen as 

significant factors affecting cost. As per some technology selection does not have a 

significant impact on project being completed in schedule; however, it does impact plant 

operation, availability, and efficiency. With equal conditions among participating 

contractors, the cost impact of contractor competition is limited. Most of the project cost 

is beyond the influence of designers and contractors and is mainly a function of site 

related conditions, project development and project execution objectives. 

 

5. All Electric LNG will need a shorter overall schedule than a conventional LNG 

plant with GT driven compressors.   

 

The responses are strongly in favour of the statement with those who strongly agree and 

agree at 82% and neutral at 18%. Some are in favour, if the power is purchased and 

schedule completion is very much dependent on whether one considers purchase of 

utility power rather than site generation. Another important insight was that if GT 

modular design is considers than that would reduce the overall schedule of installation. 

VFD driven electric motor also has a modular construction and testing facility at the 

manufacturer and can provide compressed schedule. Some of the respondent mentioned 

that to build a large LNG train such as 7.8MTPA and above a dual circuit for 

compressor is needed for mixed refrigerant compression with the present maximum 

reference of VFD motor system being 65MW motor in a LNG environment. To this 

effect, Shu, et al (2002) believes that LNG plants have traditionally used the largest 

technically proven gas turbines as drivers and built their compression strategies around 

them. This has meant that, often, two compressors in separate casings are driven on a 

single shaft by a single gas turbine. For the motor option, the refrigerant compressors 

can be split and driven by individual motors. This would reduce the motor size to one 

with an operating reference. The capital cost will increase but may be compensated by 

each compressor being driven at a speed optimized to improve life-cycle benefits. Some 

believe that if a large combined cycle power plant is built that may get into the critical 

path.  Other pointed out that in large LNG plants, turbine is not in critical path for an 

LNG installation, as vessels and piping and storage tanks are on critical path and require 

considerable work effort to achieve, hence all electric may not provide an overall 

advantage to the schedule. 

 

6. The overall technical issues related to ‘Variable Frequency Drives (VFD) in All 

Electric LNG” such as Harmonics, Torque ripple, Sub-Synchronous Torsional 

Interaction (SSTI), Electrical Resonance due interaction of harmonics with 

circuit parameters can be studied and mitigated to an acceptable level. 

 

Mostly respondent remained neutral to the above statement with those strongly agree 

and agree stood at 40% and neutral at 60%. Only 40% of them agreed that the technical 

issues can be resolved. There is a concern that most known issues can be studied and 

mitigated but not all concerns can be identified until the facility is placed in operation 

under site conditions. This will place some risk on the all-electric consideration. From 
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experience “the 8Hz low frequency instability issue which was indicated during string 

test of Qatargas 2 introducing some instability to the turbine-compressor string driven by 

VFD fed Electrical motor and sub-synchronous torsional interaction concerns. This issue 

was not predicted and realized till quite late in QG2 project since the fact that magnitude 

and frequency of this instability is dependent on system short circuit availability”. Once 

identified, it was studied and necessary actions were taken. Electrical resonance can be 

one of the factors that need to be focused. An electrical resonance can be created when a 

voltage excitation source frequency matches with the natural frequency of the electrical 

circuit causing high voltage to be generated. A number of transformers of a major 

facility feeding the VFD drive failed recently due to resonance high voltage created by 

interaction between the circuit parameters and the presence of harmonics. A large motor 

has also failed due to high voltage created by commutation of the sacrificial diode 

connected to the protection of the field excitation, which gave rise to inception of partial 

discharge causing failure of the field insulation. Some pointed out the Stator earth fault 

and rotor earth fault of the motor is a major concern. An earth fault detection system if 

incorporated will increase the ability for fault detection and reduce damage. One point 

worth mentioning is that in theory much can be designed for but operational reality has 

shown that we cannot account for everything.  

 

7. All Electric LNG has a Life cycle cost advantage over a conventional GT LNG 

because better efficiency and better availability because of more available 

production days than the GT counterpart. 

 

The response rate to the above statement was in favour of strongly agreed and agreed at 

87% and neutral at 13%. A cost benefit analysis has to be carried out with relevant and 

credible data to agree with the above statement. Kotzot et al (2009) believe that for a 

project the capital cost is given more significance than the life cycle cost. Project 

stakeholders prefer a lower CAPEX (Capital Expenditure) as the most desirable project 

goal and most crucial driving factor in their decision making process. This is the largest 

single cost component of life-cycle. The difficult part is defining what is “right” so as to 

achieve the lowest cost and shortest schedule. Although life-cycle cost is often cited as a 

criterion in plant design, it seldom becomes more influential than lowest capital cost. 

Based on the number of Turbine overhaul days required for large turbines some believe 

this would prove to be an accurate statement. It is important to understand that in order 

to have a greater availability/reliability all the parts must be able to work at the same 

level. When ancillary components such as cooling requirements are considered it is 

found that an electric LNG still depends heavily on mechanical components with a lower 

reliability may bring down the overall reliability. It is also true that electrical 

components become obsolete in a rather short period of time and hence may involve 

high cost in upgrade, repair or replacement. Some pointed that as the electrical system is 

not proven in this large scale hence cannot be relied unconditionally. 

 

8. All Electric LNG have a safety benefit over the conventional Gas Turbine LNG 

as all fired equipment can be located out of the process area and the process 

areas can be made less noisy. 

 



Chapter 9                                                                                                      Questionnaire Survey Discussion 

                                                                                154                                               `Engineering Doctorate 
 

Overall response rate was strongly agreed and agreed at 87% and neutral at 13%. Capital 

cost reduction must be balanced with other important objectives, such as safety, 

reliability, operation and maintenance practices. In that respect as regards to safety all-

electric LNG marches ahead of conventional LNG plant. LNG industries put a lot of 

emphasis on safety of the plant and hence adequately design and maintain them for the 

above purpose. All Electric facility will be definitely quieter with marginal risk 

improvement by removing fired equipment. Other mentioned that we are shifting the gas 

turbine to a combined power plant which is located inside the facility hence the fire 

equipment is moved from one location to another inside the plant, hence does not bring 

in a whole lot of benefit. However, one must consider that the process plant that handles 

bulk of the natural gas at high pressure can be made considerably safer by moving the 

fired equipment out. 

9. All Electric LNG has an Operational benefit over conventional Gas Turbine 

LNG such as; faster start up, accurate and wider speed variation, better 

control, full pressure restart capability and faster cool down due to absence of 

slow roll, no effect of ambient temperature, more number of production days 

and better capacity utilization. 

 

The agreement rate for the above statement is 100% with strongly agree at 50% and 

agree at 50%. There are not many references or case of precedence of All-Electric LNG 

other than the Snohvit LNG, which also has been involved with some constructional and 

electrical failures bringing down the confidence level. There is not much experience of 

real life operational issue with the All-Electric LNG with VFD so as to make a critical 

decision for major capital investment. Considering environmental impact, ambient 

temperature limitation and ease of operation an all-electric LNG easily scores over GT 

LNG.  

 

10. All Electric LNG cost less to maintain than GT LNG considering the fewer and 

lesser number of planned outages, less spare parts and a cheaper Long -Term 

Services contracts etc. 

 

Most generally agree with this statement with those who strongly agree and agree stood 

at 87% and neutral at 13%. Some would like to slightly differ from the above pointing 

the reason that past failures of transformers and motors due to circuit resonance has 

brought considerable downtime to the plants. Hence sufficient spares in terms of 

transformers, motors and power electronics have to be stored to meet eventuality of 

failure and to reduce downtime. Outages may not be solely limited to mechanical turbine 

as inspection requirements also dictate Shutdown requirements. Hence any additional 

efficiency improvement in this area is limited to available technology. One also must 

consider the ancillary components for a VFD when answering which may also need 

periodic inspection. 

 

11. All Electric LNG has better availability due to a longer Mean Time Between 

Failure (MTBF) and Mean Time Between Maintenance (MTBM) and a shorter 

Mean Time to Repair (MTTR) longer than a GT LNG. 
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The response to the questionnaire survey was strongly agreed and agreed at 70% and 

neutral at 30%.Many doubted the reliability of the VFDs from their own experience. As 

per Shu et al (2002) the stability studies have indicated that the design of certain 

combined-cycle configurations may be problematic. The larger the gas turbines and the 

lower the sparing selected, the less able is the system to survive the trip of one of the gas 

turbines without a drop in frequency. Selecting a proper combination of gas turbine and 

cycle configuration could improve system operational stability. Shu, et al (2002) believe 

power system stability to be the most important impediment to the use of electrical 

motors. However, through stability studies a number of stable solutions can be 

configured and that there are tools that exist to manage the technical risks. This problem 

can be overcome in a number of ways: 

 

 The use of more, smaller gas turbines makes the impact of a trip of any one turbine 

proportionately less important. This may favour use of aero-derivative gas turbine 

generators, which run at higher efficiencies, for lower capacity plants and in cooler 

climates.  

 The use of auxiliary firing on the waste-heat recovery units helps to reduce the 

impact of a trip of the gas turbine on the steam turbine.  

 Fast-acting inlet guide vanes on the gas turbine can considerably improve its ability 

to ramp up in the event of a trip. 

 

12. All Electric LNG are more reliable than Gas Turbine driven LNG considering 

that GTs run with tighter parameters and clearances and lesser flexibility of 

operation. 

 

The response rate to the above statement was strongly agreed and agreed at 78% and 

neutral at 22%. Depending on overall system design all-electric machinery can have this 

advantage. The reliability of the VFDs has been brought to the notice due to number of 

power electronics failure and leakages in the de-ionized cooling water system. This is 

further accentuated by transformer and motor failures. Hence all the failure modes have 

to be closely studied and mitigated before building confidence in VFD driven electric 

motor system. 

 

13. All Electric LNG in a combined cycle generation configuration has a higher 

overall thermal efficiency over the GT driven LNG counterpart. 

14.  
The response rate was strongly agreed and agreed at 88% and neutral at 8% and 

disagrees at 4%. It is highly dependent upon the configuration one is choosing. The size 

of the Gas turbine generators and waste heat recovery steam generators system can be 

optimized to get higher combined cycle efficiency. Hence an All-Electric system can 

provide a higher overall plant thermal efficiency than the GT driven compressor. This 

hybrid solution can generate enough steam which can be used for process heating, in 

addition to power generation. Shu et al (2002) believes that the combined cycle–the 

most efficient and most integrated of the power generation solutions.  
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15. All Electric LNG in a combined cycle generation configuration is more 

environmental friendly because of lesser plant emissions than the GT driven 

LNG plants. 

 

This statement is generally agreed by most respondent with strongly agree and agree at 

78.4%, neutral 17.3% and disagree at 4.3%. Some mention that installation of Heat 

Recovery Steam Generation (HRSG) System in conjunction with gas turbine exhaust 

system, in a conventional plant, can improve the overall system thermal efficiency to 

bring it close to the motor driven compression system in a combined cycle power plant 

environment. Other said that the electricity has to be produced somewhere inside or 

outside to supply the electric motors, which in turn creates emissions. The amount of 

emission would highly dependent on the source of electricity and method of generation. 

Combined cycle generation efficiency has to be closely studied before making any 

decision. All Electric would be preferred in countries where cost of production of 

electricity is cheap and more renewable energy production is available especially large 

amount of hydro-electric power is available.  

 

16. All Electric LNG has a lesser Payback period as it has a higher number of 

available production days than the Gas Turbine option. 

 

The response rate was strongly agree and agree at 70% and neutral at 30% respectively. 

All electric LNG can have a much shorter payback period depending on utility 

generation availability and LNG prices but increasing availability (i.e. more number of 

production days) requires redundancy in system design that increase initial costs of 

investment. The motor size reference available in the LNG market is 65MW and hence 

for large size LNG production there may be a requirement of dual or parallel circuits if 

one motor cannot cater to the entire compression load. Due to economy of scale, a 

relative increase in capacity will usually lower specific costs (US Dollars per ton) as 

long as equipment sizes increase proportionally as opposed to adding one or more 

parallel modules of equal capacity. Since a 7.8 MTPA LNG (largest Train built so far) 

train may need a driver of the capacity of 120MW and present largest reference is 

65MW in a single cycle configuration, hence a dual circuit configuration may be 

required. Electrical motor drive needs high initial investment since the motor will be 

tailored to the plant size needs. Gas turbine in the other hand is common product which 

has big fleet in the world. Limited experience on large motor maintenance might lead to 

unpredicted high maintenance costs, while gas turbine maintenance can be predicted 

more easily. 

 

17. All Electric LNG has a faster restarting capability which has a life cycle cost 

advantage than Gas Turbine alternative. 

 

The response rate to the above statement was strongly agreed and agreed at 87% and 

neutral at 17%. A lot of this depends on overall plant design and the need for pressure 

reduction for a restart.  If the VFD and motor/utility source electric power (generation or 

utility) can support a full pressure restart of the pressurized compressor following a trip 

this would allow a faster restart. The alternative is to flare the inventory with loss of 

revenue and with additional emission. External cooling sources also have an impact on 
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LNG production. VFD eliminates turbine warm up and cool down requirement 

following a trip.   

 

18. All Electric LNG has an ability to de-couple plant production from ambient 

temperature which will help maintain flat LNG production throughout the 

year. 

 

96% of the response was in favour ‘strongly agree’ and ‘agree’ and neutral response was 

4%. As long as generation supports electrical power requirements under worst case 

ambient conditions it is possible to decouple plant production from ambient temperature 

in an electric drive scenario. This is a major advantage; however, the combined cycle 

power plant which may employ gas turbine may have to face this issue. Hence, the 

power plant has to be sized to handle this challenge. External cooling sources also have 

an impact on LNG production. One point of view is that cooling water is the key point, 

as a sizeable amount of cooling would also be required for VFD’s. 

 

19. All Electric plant can be built to any capacity as motors have flexibility on 

sizing whereas Gas Turbines are available in fixed sizes hence the plants can 

be built to standard sizes only. 

 

Response to the above statement was strongly agreed and agreed at 74%, neutral at 22% 

and disagree at 4%. Some raised doubt as regards to how big the motor can go as the 

present maximum reference in LNG environment is 65MW. For large size LNG plant 

built to date will need very large electrical motor. A 7.8MTPA LNG train utilized gas 

turbine with an ISO capacity of about 130MW hence will need a motor of an equivalent 

size. As the modern production trains are gradually increasing in size to take advantage 

of economy of scale and specific cost of production, which will need larger size drivers 

as years to come. Shu, Harrison (2002) opines that there are a number of useful 

reference points in industries unrelated to LNG. The largest two-pole motors (3,000–

3,600 rpm) in the world are slightly larger than 50 Mw. Larger but slower speed motors 

have been fabricated at more than 100 Mw. The availability of a large motor supply 

would seem to be the least of the technical risks, i.e. the ability of the market to supply a 

reliable large electrical motor. These are within a range that would be suitable to drive 

an LNG plant, although there are advantages to going higher still. Most major suppliers 

of large motors for LNG projects and all are confident of their abilities to design and 

fabricate motors at higher ratings (Shu, Harrison 2002). VFD driven Electric motor sizes 

give an additional flexibility of as they are no longer limited by starting current as the 

VFD can start them with low inrush. 

 

20. Based on technical and economic reasons ‘All Electric LNG’ can be 

preferred over a gas turbine LNG. 

 

The response was strongly agreed and agrees at 69.6% and neutral at 30.4%. Most 

agreed that it is technically preferred; however a detail cost benefit analysis is required 

to prove the case in point. Some of them have mentioned that there is insufficient data 

and lack of experience and reference and lack of confidence on the reliability of the 

VFD has prompted deep study before making a crucial decision changing the preferred 
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option. All electric generally gives higher reliability and ease of operation however for it 

to be the selected technology one must consider the availability and cost of electrical of 

power to validate this statement.  Present projects prefer GT because it has a large 

installed base and has been there for a long time. The advantages of size, easy start & 

stop, simpler control system, simpler shut down logics/safety system are a definite plus 

for the electric equipment’s over the Gas turbines. 

 

21. General comments, if any, for or against “ALL Electric” as a preferred 

alternative to conventional LNG. 

 

In the experience of some respondents all electric facilities are more reliable and easier 

to operate, however the cost of energy related to an all-electric facility tends to be higher 

than an all gas powered facility so how you generate or obtain the electricity is very 

important to the economics. Additionally the larger the motors utilized the more 

complex and unreliable they become. One wonders, if an electric LNG plant is actually 

more viable for all the reasons asked above then why are there not more of them– 

especially considering that oil and gas companies are always looking to become more 

efficient at installing and operating facilities. It needs to be proven that all-electric LNG 

can be a better alternative as Sonhvit has not proven itself fully. Less emission, less 

parameter monitor, lesser space occupation, less inventory, less maintenance cost, 

greater control over demand / production. There are definite indications that “All 

electric” can be a viable and preferred alternative to a GT driven plant from a theoretical 

standpoint. However, in terms of actual performance, one would recommend to study 

and analyze the performance of the only “all-electric” LNG plant in Norway.  Some 

believe that it should help to establish the points marked in this survey as a real case 

example and give an opportunity to implement the same in high capacity LNG plants. 

The requirement is high availability of LNG production with low unit cost of 

production. Reliable power availability is required for evaluating the selected case. High 

initial investment, less operating & maintenance experiences will be some of the 

requirements from investor side. More electric drives means, it will have an impact on 

power quality and power system will have more harmonics. Hence Power system will 

have to be designed such that it will have limited impact.VFD systems are often 

included as part of the rotating equipment.  The vendor’s focus is then on the 

compressor package and drive details such as short circuit ratings may be a lower 

priority during the initial design. Some of the VFD drive manufacturer claim high 

reliability of their drives which should be backed by proof of claim with validation 

witness testing.  

9.2 Some other technical risks mentioned by the respondents: 

1) Startup-Some of the respondents who do not have thorough knowledge about VFD 

raised the issue of large motors starting. Their experience with the electrical motor 

taking large amount of electrical current at starting bringing the system voltage down 

to a low level leading to tripping of the electrical system, The VFD can adjust the 

voltage and frequency directly thus the current to build up slowly during all 

situations especially starting unlike direct on line starting when the starting current 
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can be up to 7 times the full load current of the motor (Kaiser, 2008). This control 

starting has a very mild effect on the inrush current hence on the system voltage. 

2) Short circuit-Some of the respondents have raised doubt about the short circuit in 

the stator of the motor which may reduce availability. It is important to understand 

that the VFD limits short circuit at its output and input to the motor. The short circuit 

protection is included in the VFD to prevent of the damage of the VFD when short 

circuit occurs at the cable or the motor (Kaiser, 2008). 

3) Bus-Transfer-Some electrical engineers raised doubt on the bus transfer. During bus 

transfer from one bus to another during the open interval the motor flux does not 

decay much but the rotor position begins to fall behind where the stator flux will be 

when reconnected. If reconnection occurs at the wrong time the inrush current reacts 

with already present flux to create very large torque transient. This will trip the VFD 

when the utility voltage goes to zero and smoothly restart when the voltage is 

restored. Hence bus transfer need to be avoided (Kaiser, 2008). 

4) The options for risk reduction in compressor configuration- In the area of 

compressor configuration, there are really two issues to be addressed: the speed at 

which the compressor is driven and how it is started.  

5) Limitation of motor speed- The large gas turbine market has grown around the 

need to drive large power-generation plants. Thus, the running speed of gas turbine 

and compressor is 3,600 rpm, equivalent to a two-pole electrical motor with 60 Hz 

supply. Electrical motors installed in a 50-hz supply scheme where two pole motors 

will run at 3,000 rpm may be disadvantaged. This can mean either that the 

compressor needs to be redesigned for the lower speed or that a gearbox is needed. A 

third option is to use a variable speed drive (VSD) capable of driving the motor and 

compressor at 3,600 rpm without a gearbox. The option for power generation to 

provide a design, sufficiently robust enough to survive transient conditions, has to be 

designed. 

6) Use of VFD: VFDs have the ability to ride out voltage drops that result from 

upstream electrical faults. This can be a major advantage on a grid-connected facility 

but less important on an island power plant.  Shu, Harrison (2002) believes that the 

disadvantage is that the VFD is in circuit all the time, overall efficiency is lower, and 

unless significant redundancy can be included availability may be affected. One of 

the key issues to be addressed in the design and installation of a large island-

configuration power plant is the stability of the system and its ability to survive trip 

and upset conditions.  

9.3 Conclusion: 

 
The general response from the experts is that the cost of site preparation and the 

construction of the All Electric plant will be considerably higher. But it needs to be 

considered that the operational benefit will outweigh the initial CAPEX.  The 

availability and reliability of the electricity is one of the important points to be 

considered during the conceptual stage. Another important factor is a larger 

understanding of the equipment failure rate to determine need for spares and their 

respective costs. Further string test for electrical motor with compressor needs a large 

amount of power. Hence this test has to be shifted to the site and has to wait till the 
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power generation plant at site is commissioned. This may delay finding of issues 

delaying the risk mitigation. In addition, testing has to be fairly complex and lengthy 

which may increase the risk. Hence any undetected VFD system problems can 

significantly delay startup and impact production. As far as schedule of completion is 

concerned, a large combined cycle power plant may get into the critical path. Some 

believe that vessels and piping and storage tanks are on critical path, hence all electric 

may not provide an overall advantage to the schedule. Some believe that some of the 

technical challenges are so complex that in reality in spite of all the testing and 

mitigations that can be incorporated one cannot account for everything.  It is also true 

that electrical components become obsolete in a rather short period of time and hence 

may involve high cost to upgrade, repair or replace. Some respondents pointed that as 

the electrical system is not proven in this large scale hence may bring down the overall 

reliability and cannot be relied unconditionally. Hence all the failure modes have to be 

closely studied and mitigated before building confidence in VFD driven electric motor 

system. Limited experience on large motor maintenance might lead to unpredicted high 

maintenance costs, while gas turbine maintenance can be predicted more easily. Present 

projects prefer GT because it has a large installed base and has been there for a long 

time. The advantages of size, easy start & stop, simpler control system, simpler shut 

down logics/safety system are a definite plus for the electric equipment’s over the Gas 

turbines. The use of electrical motors is not without risk, however, which of course is the 

case with anything being done for the first time. Studies corroborate the view that such 

risks are well known and manageable through detailed design. Subsequent further 

development of the motor drive system by a number of European manufacturers, 

specifically for LNG application, validates this view. Successful manufacturing, testing 

and full compressor/drive string testing of the all-electric Snøhvit project has shifted 

interest in the electric drive from risk assessment to opportunity framing. Specifically, 

there are strong reasons to consider use of electrical motors on LNG projects and 

probably other base load facilities, as well. There are potentially large commercial 

benefits to be reaped in terms of plant availability and project schedule. Shu and 

Harrison (2002) believe that there is enough relevant experience within other industries 

so that the application of electrical motors on base load LNG technology would be but a 

small extension of existing experience. They further state that the risks are well 

understood and can be managed as part of a project's development and execution. 

Kleiner et al (2005) opine that evaluating electric drive LNG processes has moved on to 

evaluating an effort which is directed at technical aspects and in particular focusing on 

technical risk as well as economic comparisons.  
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CHAPTER -10 

 

Conclusion and Further Research 

 
10.1 Introduction: 

 
Gas turbines have long years of service experience in the LNG industries as reliable 

drivers and have their fair share of advantages. They are simple, robust, and sturdy 

machines. These drivers have a lower risk of technology, design, construction, testing 

and operation. They do not need large complex electric power generation and 

distribution system. Although they have a lower availability because of routine time 

consuming and costly maintenance regime the reliability of the machine is quite high. 

Integrated approach to design, engineering, manufacturing and testing ensures that the 

machines are of high quality and performance (General Electric, 2006). Rigorous testing 

regime has established an improved performance and reliability. Full load String test up 

to 130MW in the manufacturer’s facility is possible, which can identify issues so that 

they can be fixed before the machines are transported to the site (GE, 2006).Because of 

the long years of dependable service all the stakeholders are quite confident in its 

performance. Dependable global service network is available for gas turbine in terms of 

personnel and spare parts (GE, 2006). 

 

On the other hand the All-Electric Drive system delivers numerous benefits for any high 

energy consuming process within the gas value chain, including processing facilities, 

compressor stations, LNG liquefaction plants, and CO2 injection. With the added safety 

and operational benefits, as well as shorter delivery times and flexible design 

parameters, an All-Electric Drive system is easily the logical choice, with a payback 

time of only a few months as demonstrated in the life cycle analysis section 8.4.1 bullet 

11. The reduced fuel consumption and greenhouse gas emissions lead to large savings in 

operational expenditure in addition to being environmentally sound. In this context, the 

environmental impact becomes an important added benefit, but even without considering 

this aspect, the economy of the All-Electric Drive system makes it highly attractive 

(Devold et al 2006).In addition to the above the Net Present Value (NPV) for the future 

cash flow is very attractive. In an extremely safety-minded and highly competitive LNG 

industry, an evolution of all-electric is emerging that dramatically improves the 

reliability and productivity of base-load LNG plants not to mention the added safety 

benefit as all the fired equipment being located away from the high pressure gas 

processing plant. The noise level of the process plant is also much lesser than the gas 

turbine driven plans. Considering these advantages, the electric motor variable speed 

drive is in many cases a viable and economically attractive alternative to the mechanical 

gas turbine driver for centrifugal refrigeration compressors. With competitive & reliable 

electric power available at or near the jobsite, or from an associated power plant, this 

alternative should be evaluated at a very early stage of any new project. Major vendors 

offer a complete electric-driven compression solution for LNG liquefaction plants from 

the power plant through to the VFD electric motor driven compressor trains including 

the control system. Several reputable manufacturers are experienced and qualified to 
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engineer and supply integrated refrigeration systems, alternatively with gas turbines or 

electric motor compressor drivers, including the compressors themselves and the power 

plant or just parts thereof (Kleiner 2005). Compressor train size can be tailored for a 

specific requirement for customer benefits. Simpler LNG process design possibilities, 

lower shaft centerlines significant in seismic active and cyclone regions, elimination of 

housings for compressor and driver, packaging and pre-testing at factory are some of the 

added benefits (Siemens, 2005). 

 

- The availability of all electric plant is higher than that of conventional gas turbine 

driven plant. (ABB, 2009). 

- Electric drive systems are custom engineered for the application on hand, allowing 

the compressor to be optimized in capacity and speed for the process on hand, and 

not limited by size and rating as in case of gas turbine rating (Kleiner et al 2005). 

- The gas turbine is not inherently self-starting and need a starter. All electric plant do 

not need starter as the VFD driven motor can start on its own.  

- Full power is instantly available over the entire temperature & speed range, and the 

number of successive and cumulative start-stop and load cycles is possible unlike 

gas turbine plant. Once shut down, planned or unscheduled, re-starting is less time 

consuming leading to operation flexibility (Kleiner et al 2005). 

- In a gas turbine LNG the gas turbine needs to cool down slowly before it is restarted 

which is not required in all Electric LNG (Devold et al 2006). 

- VFD is always sufficient to start even a fully loaded compressor– a valuable asset in 

case of process trips because the compressor circuit does not have to be 

depressurized (no flaring or loss of refrigerant) and the cryogenic process elements 

do not warm up (ABB, 2009). 

- A critical factor in any LNG operation is the life cycle cost that is impacted in part 

by the maintenance cycle and engine availability. Electric drives have lower 

maintenance cost and higher availability than gas turbines (Meher-Homji et al 2007). 

- Electric drive systems do not require de-rating. Gas Turbine on the other hand suffer 

from Dirty engine losses, Fuel composition and heating value losses and silencer, 

filter and ducting losses (Sheldrake, 2003).    
- There is no speed control range restriction in electric drive. The speed of each 

compressor can be optimized to achieve maximum compressor aerodynamic 

efficiency at a design point and at the warm and cold ambient temperature extremes 

and as per process requirement (ABB, 2009). 

- Higher efficiency and reduced fuel consumption and reduced CO2 emissions by 40-

50% can be achieved by using combined cycle power generation in conjunction with 

electric motor driven refrigeration compressors in place of simple cycle Frame gas 

turbine drivers (Chiu, 2003). 

- A faster string test programs, modular motor-drive systems, and shorter installation 

times offer a potential for months of schedule reduction and a substantial decrease in 

related costs (Siemens, 2008). 

- Decoupling of plant production and ambient temperature is possible with electric 

drives as typical gas turbines lose approximately 0.33% of their output for every one 
0
F increase in ambient temperature (Martinez, et al 2005). 

- There is overall increase in thermal efficiency by 8% which translates to an 

additional 0.5% increase in LNG production (Shu et al 2002). 
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- The employment of variable speed drives offers the possibility to improve control 

the process simply and effectively by speed control and to run equipment at its 

optimum operating points and operational flexibility (ABB, 2009). 

- Enhanced safety is achieved by removal of the gas turbines from the hydrocarbon 

process area. Worker risk and related insurance premiums are eliminated by 

removing gas turbines from the process area (Siemens, 2005). 

- There is design flexibility of train sizing as electrical drives are available in a wide 

power and speed ranges, up to 100MW. Thus, the All Electric Drive system has 

much wider design flexibility in terms of size of trains, compressors per train shaft, 

and the possibility to separate smaller essential units (Devold et al 2006). 

- In case of twin compressor bodies, these can often be arranged on either side of the 

motor shaft, providing ready access to the inner bundles, bearings, and seal 

cartridges of vertically-split compressors, without disturbing the basic alignment of 

the compressor bodies. (Kleiner et al 2005).  

- There is a reduced maintenance cost and downtime for the motors and the VFDs as 

compared to gas turbines (Siemens. 2006). 

- Part load efficiency of gas turbine is much lower unlike electric drive. A small 

reduction in speed can make a big difference in the energy consumption. As many 

pump and compressor systems often run at partial load, the use of a variable speed 

drive can produce huge savings.  

- By employing variable speed drives instead of throttling or using by-pass vanes, the 

energy bill can be reduced by as much as 60%. All trains experience reduced 

efficiency in throttling mode (recycle) at low flow, whereas electrical driver 

efficiency is nearly constant at varying power levels (Man turbo AG Schweiz, 2009). 

- Surge control: By using the fast response time of the motor, and the surge valve in a 

coordinated way, it is possible to improve anti-surge performance and allow the 

compression systems to operate with lower recirculation flows with increase energy 

efficiency. This facility is not available in gas turbine due to slowness of response of 

mechanical drives (ABB, 2005). 

- Electric drives have suitability of small and mid-scale LNG due to their standardized 

and modularized design, modularized liquefaction trains and other components of a 

the repeatable small or mid-scale LNG facility can speed the project schedule by up 

to 30% percent in comparison to custom-engineered solutions (. Chart Energy 

&Chemicals Group, 2013). This module and prefabrication concept also facilitates 

the various performance and load tests typically specified for such compression 

systems.  

- Direct outdoor installation inside hazardous area, pluggable cables, fully climate 

controlled and pressurized to exclude the environment, multiple individual modules 

assembled on-site to form one building, safe working environment  are some the 

other advantages (Kleiner et al 2005). 

- With all electric compressor train size can be tailored for a specific requirement, 

lower centerlines significant in seismic active and cyclone regions can be 

constructed, complete elimination of housings for compressor and driver with no 

elaborate fire suppression system is required. Packaging and pre-testing reduces on-

site construction (Siemens, 2005). 

- Higher plant availability and operational flexibility with reduced maintenance costs 

and reduced peak maintenance labour are other advantages as LNG modules can run 
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for 6 years without interruption and offer a better return on investment (ROI) 

(Siemens, 2005). 

 

However, before making a general statement, various project-dependent variables will 

have to be analyzed. A detailed Life Cycle Cost analysis has to be made for each project 

individually. Final decision for electric compression or for gas engine driven 

compression can only be made after considering all project related costs over the life 

time of the project. Stringent future emission regulations are the keywords in today’s 

changing gas storage and gas transport business. Electric compression is preferred to 

cope with these uncertainties. Power plant configuration and sizing is perhaps the most 

critical aspect of implementing an all-electric solution and a detailed study need to be 

done on the transient characteristics of the overall electrical system. It is important that 

in evaluating the overall availability, the electric supply system availability needs to be 

taken into account and built into the overall project economic evaluation (Meher-Homji, 

2011).  If the power is obtained from an external source the cost of electricity has to be 

factored in to the overall analysis. If the power is generated inside the facility a 

combined cycle power plant needs to be built which is more complicated, with a higher 

total installation cost and with greater attention to maintenance than a simple cycle 

power plant solution. However, it offers a much greater thermal efficiency which more 

than offsets all the negative features discussed above. With island type power generation 

sub synchronous torsional Interactions (SSTI) must be carefully analyzed. To 

summarize, power plant reliability and availability are very important to the success of 

an electrically driven LNG Plant. A thorough investigation of the power plant solution 

must be performed on a case-by-case basis, taking into account, capital cost, operating 

cost and the stability of the system to transient upsets (Meher-Homji, 2011). The 

constraints are that the largest motor reference in the LNG environment is 65MW and 

Siemens offer 90MW motor system at 3600 rpm (Siemens, 2005). With this size of 

motor a LNG Train of 8MTPA can be easily built. Even with the largest proven motor 

size of 65MW in the LNG environment a process train of 8MTPA can be built by dual 

circuit compression.  It should be remembered that certain conditions need to be fulfilled 

before considering electric option.  

 

Lower Initial Capital Expenditure (CAPEX): The industry is quite sensitive to 

CAPEX during the project stage (Devold et al, 2006). In this context the electric drives 

cost more initially than conventional gas turbine drives. If factored in at an early stage in 

a plant’s design, an All-Electric Drive system produces major savings every operating 

year. Hence Life cycle cost and not the Capital Expenditure should only be the metric of 

comparison. 

 

Reliable power source: The reliability of the power system is a paramount factor in the 

design of the all-electric LNG. With competitive & reliable electric power available 

there is no doubt that an all-electric can provide a better return on investment in the 

entire life cycle. Proper stability study should also be carried out and mitigation 

incorporated. 

 

Competitive power cost (OPEX): A thorough analysis of the electric price/gas price 

ratio has to be accounted for in the lifecycle evaluation. If electric power is to be 
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generated at site, the decision of going with gas turbine or electric driven trains is 

generally driven by OPEX (fuel/electric costs).  For a decision from CAPEX 

perspective, a decision on gas turbine or electric driven equipment is generally based on 

the availability of electric power on site, or the cost to bring the power to the site. 

 

Large LNG production Train a possibility: Contrary to the belief that proven 65MW 

motor size date in the LNG process is not sufficient to produce a large train. Robert et al 

(2004) of Air Products chemical Inc. (APCI) have demonstrated that it is possible to 

produce 8-10MTPA production train with available capacity proven drives using AP-

X™ LNG (Air products proprietary) Process. With the specific arrangement shown in 

Figure below depending on the desired capacity and the maximum motor size of 65MW 

considered proven by the LNG owner an 8MTPA train can be built. 

 
 

Figure 10.1: An 8MTPA train with 65MWmaximum motor size (Roberts et al, 

2004)  

 

All Electric economics promises to provide better Return on investment (ROI)through 

improved plant productivity (at least ten days of additional production per annum), 

higher plant availability and operational flexibility, reduced maintenance costs  and 

should be the preferred solution for the major LNG project in future.  

 

10.2 Other potential uses of All Electric concepts: 

 
Wherever there is use of Gas turbine as a main driver for rotating equipment such as 

compressors and pumps VFD driven electrical motor can be a viable alternative driver. 

Some of the potential uses are in the following. The details are provided in Appendix H. 

 

a) Offshore LNG plants/ Floating LNG 

b) Mini LNG Plants 

c) Stranded LNG: 
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d) Compressor stations LNG ships: 

e) Gas-To-Liquid plants 

 

 

10.3  Further research: Further research topics have been listed in order of 

priorities 

 

a) Use of de-ionized water as coolant for the VFD and Transformer:  

 

For large VFD drive air cooling is not sufficient hence de-ionized cooling is used. As 

ordinary water is a good conductor of electricity, de-ionized water, which is an insulator, 

is used in electrical circuit to cool the power electronics cells, the transformers and 

reactors used in the drive. To keep the electrical conductivity below a threshold the 

water is allowed to flow through de-ionized cartridges. These cartridges have to be 

replaced from time to time for which the VFD thread may need to be shut down. This 

regular changing of de-ionized cartridges leads to down time and spares. Further studies 

have to be done whether a centralized cooling can be carried out through a common 

cooling system so that frequent changing of cartridges can be avoided and threads do not 

have to be shut down for changing cartridges (Qatargas Maintenance documents, 2013). 

 

b) Water leakages in de-ionized cooling circuit: 

 

In addition, in VFD many instances of water leakage issues are faced by users of the 

VFD. This not only asks for increased maintenance but it also increases arc flash 

concerns with water dripping on the electrical equipment. Further research is required to 

use such material and construction to make sure that such leakages are avoided as much 

as possible. 

 

c) Cell bypass to improve redundancy:  

 

Cell bypass feature is provided in the VFD threads to improve redundancy so that in 

case of failure of a single cell it can be bypassed and the thread can continue to run. This 

feature improves the availability of the VFD. Due to unreliable bypass contactor leading 

to arc flash concerns this feature has been disabled in some VFD users leading to 

reduced availability. Further study needs to be carried out so as to make a robust cell 

bypass contactor design with improved quality and reliability so as to realize the 

redundancy fully thereby improving availability (Qatargas VFD commissioning 

documents, 2007). 

 

d) Improvement in reliability of IGBT (Insulated Gate Bi-polar Transistor) 

cells:  

 

Although IGBT cells used in the VFD design are designed for higher reliability they 

keep failing because of various reasons such as poor workmanship, poor material 

selection, design deficiencies etc. Further research is required to improve the reliability 

of the cells to win confidence of the investors. 
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e) Failure rates and mitigation in motors, transformers switchgear:  

 

There are some cases of failures in transformers and motors used in VFDs, used for 

starter/helper applications, leading to extended outage. The factor such as electrical 

resonance, which is created by capacitance of long cable interacting with harmonic 

voltage, excites to create resonance over voltage phenomenon damaging insulation. 

Proper study has to be undertaken during the design stage to mitigate against this. 

Further the transformer and motor need to be made robust in design to withstand this 

phenomenon.  

 

f) String testing:  

 

String test, where the entire VFD-motor-compressor string is capacity tested to 

determine any deficiency, has limitations to be carried out in the factory due to 

requirement of large amount of electrical power, which the electrical grids in the 

manufacturer’s facility may not able to supply and hence the test have to be shifted to 

site. Further this test has to wait till the power generation and distribution system is 

substantially built and commissioned. This may delay finding of issues, which may 

further delay the risk mitigations and hence may delay the final completion schedule. 

Further studies have to be carried out as to how to validate the capability of the motor 

and compressor at the manufacturing facility. A back to back set up in which one of the 

machines acts as a generator and the other as a motor can be worked out so that power 

consumed by the motor can be generated back to the grid hence requiring a small 

amount of power from the grid to cater for the losses of both the machines. By this the 

VFD motor system can be load tested, however for a full string test to be carried out an 

extensive arrangement with adequate electrical power supply is required. 

 

g) Further study on avoiding single point failure:  

 

Single point failures can lead to outage of the VFDs. This can be because of lack of 

redundancy of electronic control circuits or electrical hardware. Proper study should be 

carried out to improve reliability and availability of circuit components so that a single 

failure does not lead to decrease in availability. Unless significant redundancy can be 

included availability may be affected.  

 

h) Arc flash concerns:  

 

Arc flash is a major concern in VFDs. Hence a proper study has to be conducted and 

proper counter measures have to be taken in terms of designing the system to withstand 

arc flash with increased safety provided to personnel and equipment. The exposed 

electrical conductors should be properly insulated and the switchgears have to be built to 

be arc flash resistant.  

 

i) Further study on overall related technical issues:  

 

One of the key issues to be addressed in the design and installation of a large island-

configuration power plant is the stability of the power system and its ability to survive 
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trip and upset conditions. Detail study has to be carried out during design to guard 

against such instability due to system disturbances. 

 

j) Installation of major equipment:  

 

Sometimes installation of the equipment is such that in case of failure of major electrical 

equipment like transformer and motor it is difficult and time consuming to replace the 

failed equipment. Study has to be carried out on how major equipment should be 

installed so that they can be easily removed and fixed back with least amount of 

downtime. 

 

k) Outages due to inspection:  

 

Shutdowns may not be solely limited to mechanical turbine as periodic inspection 

requirement for static equipment such as vessels; exchangers and piping etc. also dictate 

shutdown requirements. Any additional efficiency in this area is limited to available 

technology. Further studies have to be carried out to do more non-intrusive inspection so 

as to delay intervention of the process train for inspection purpose for which a shutdown 

is required. 

 

l) Fuel gas and steam balance: 

 

Gas turbine based LNG plant provides a way to balance fuel gas and Boil Off Gas used 

as fuel, to avoid flaring; on the contrary Electric LNG does not provide this facility and 

hence options need to be explored further as to how to balance the fuel gas and steam for 

the entire plant.  

 

m) Further study on site specific factors: 

 

Before taking a decision all site-specific factors should be closely studies and the overall 

effect on the life cycle of the plant should be thoroughly analyzed. 
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Appendix: A 
 

CAPEX (Capital Expenditure) Comparison between Gas Turbine and Electric 
 

As far as the Capital expenditure goes, if there is direct comparison between a gas 

turbine and an electrical motor an electrical motor fares much better if the power is 

sources from across the fence. However the price of the purchased power has to be 

factored in to the life cycle cost equation. Only if a combined cycle power plant is 

installed inside the facility an electrical motor combined has a higher CAPEX than the 

gas turbine drive. There is another option of power from across the fence purchased 

from a utility company. 

 

Comparison of Gas turbine VFD  References 

CAPEX for compressor train 

Driver  Least More  

Centrifugal compressor 0 0 Man turbo AG 

Schweiz, 2009 Gear/ Gear not needed -1  2 

Bearing system 0 -2 

Lube/ Control/ Working oil system -1 2 

Dry gas seal system -1 2 

Capital spare parts -1 1 

CAPEX for plant 

Building area height/ Hazardous area -2 2 Man turbo AG 

Schweiz, 2009 VFD building area 2 -1 

Power supply installation (fuel gas piping)/ Electrical cable 1 -1 

Oil system air cooling -1 2 

Equipment installation and commissioning -2 2 

CAPEX for Building 

Foundation site civil work -1 2 Man turbo AG 

Schweiz, 2009 Interconnect piping of Lube/ Control/ Working oil to air cooler -1 2 

Noise mitigation -2 1 

Interconnecting piping DGS -1 2 

Crane capacity -1 2 

CAPEX for Auxiliaries 

Intake filter system -2 2  

Man turbo AG 

Schweiz, 2009 
Fire and gas detection system -1 1 

Emission control -1 2 

Harmonic filer (LCI only) 2 2 

Environment Related Cost 

VFD cooling system noise emission 2 -1  

 

Man turbo AG 

Schweiz, 2009 

Oil cooling system noise emission -1 2 

Fulfillment of emission regulation -2 2 

Emission credits -2 1 

Permitting cost -1 2 

Weighing of Train characteristic with each other in respect of capital investment cost 

(+2 Most beneficial, -2 Least beneficial) 

Table A.1; CAPEX comparison between Gas Turbine and Electric Motor(Man 

turbo AG Schweiz, 2009).   
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Appendix: B 

 

Additional Case Studies: 

 
B.1: Case Study-A: (Rama, Giesecke, 2006) 

 

Rama and Giesecke opine that the comparative simplicity of an induction rotor allowed 

lower cost solutions, solutions that made electric drives practical over a much wider 

range of sizes and speeds. With the evolution of induction motor drive technology, 

electric motor drive solutions were now available to meet the full range of mechanical 

system requirements for direct drive main gas compressor applications. Electric motors 

hold an economic advantage over mechanical drivers in several important respects. 

 

a. Improved Efficiency: 

 

The efficiency of a typical natural gas driver might be 30% or less. Total efficiency of 

the high speed electric drive system remains 4-5% greater than that of the typical 

mechanical drive alternative. The high-speed machine eliminates the approximately 2% 

losses from a gearbox that would be required with a conventional speed machine.  

 
b. Ambient Temperature Impact: 

 

Gas turbine and engine drive capacities vary inversely with air temperature. Electric 

motors are not impacted by ambient temperature variations and can operate at the same 

capacity in all ambient conditions.  

 

c. Speed Control Accuracy and Range of Control: 

 

The accuracy of electrical adjustable speed controllers far exceeds that of any of the 

mechanical alternatives.  

 

d. Remote Control and Automation: 

 

The reliability and accuracy of current-design medium voltage speed controllers can be 

an aid to optimize throughput and energy/cost conservation. 

 

e. Annual Maintenance Costs: 

 

Annual maintenance costs for electric motor-driven pipeline compressor stations have 

been proven to be substantially less than those at stations with turbine or engine drivers. 

  

f. Initial Capital Cost and Installed Cost: 

 

Initial cost of an electric motor driver and adjustable speed controller, is well below the 

cost of a turbine driver (approximately half of the system capital cost for power  
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imported from outside.  

 

g. Strategic Fuel Source Options: 

If electric energy rates remain competitive with gas energy rates, the economics of 

electric drives become as superior to those of gas-powered options.  

 

h. Air Emissions: 

 

As such, the benefit of emission reductions of the electric-motor driven system is reason 

to consider this technology. 

 

i. Reduced Noise: 

 

Another form of emissions coming under more scrutiny is noise. The typical high-speed 

electric drive system is 7-10dB (A) quieter than any of the mechanical alternatives.  

 
j. Shorter Permitting Time: 

 

Limitations on emissions can make new installation licensing a burdensome exercise. 

Salable emissions credits may be available by adopting an electric motor system. 

Therefore, securing permitting for allowances is simply no longer an issue. 

 
k. System Reliability: 

 

Any combination of operating and maintenance costs, age, and environmental benefits 

can make the benefits of electrical motor become more attractive. Because of their many 

advantages, electric drives must be seriously evaluated for compressor applications. 

Electric drivers offer an opportunity for efficient use of natural resources, clean and 

quieter power conversion, improve process control, and very attractive life-cycle cost.  

 

B.2: Case Study B - (Blaiklock, 2010) 

 

Blaiklock (2010) of TMEIC GE opines that both turbines and motors have advantages 

and disadvantages for LNG plant use. When deciding on the best choice the main 

considerations are the amount (value) of LNG produced over the life of the plant and the 

initial capital expense. Although the capital expense may be higher with the motor 

solution, increased LNG production can create a more favorable return on investment. 

Medium-voltage electric motors have been used to drive pipeline compressors and 

pumps for years and their lifecycle costs are well known. With four banks of 25 MW 

Variable Frequency Drive (VFD) with a soft motor starting and variable speed operation 

option a capacity of 100MW can be achieved. 

 
Driver type Major 

Overhaul 

period 

Typical 

major 

outage 

Minor 

Maintenanc

e period 

Typical 

minor 

Outage 

Unschedule

d downtime 

MTTR 

Mean 

Time to 

Repair 

Gas Turbine Industrial 3-6 years 14-40 days 6 months 5 days Several Days 
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Gas Turbine Aero 

derivative 

3 years 4-40 days 6 months 5 days Several Days 

Electric Motor VFD and 

Transformer 

10 years 1 day 5 years to 

replace fans 

10 hours Very few 2 hours 

Table B. 1- Comparison of operation and maintenance features of drive solutions 

 

Blaiklock (2010) lists the advantages of VFD run electric motor over a gas turbine: 

 

• Higher reliability and shorter repair time, higher uptime (availability) and hence 

higher LNG production; higher overall efficiency, so operating costs are less. Also 

less NOx is generated and noise is minimized; The LNG production is not affected 

by rise in ambient temperature. 

• Electric drives and motors can be delivered in a shorter time, reducing the overall 

construction schedule. VFD expected Mean Time Between Failures (MTBF) in 

excess of 20 years and a Mean Time To Repair (MTTR) of two hours if spare 

modules and equipment are available. Higher availability means increased LNG 

production and higher return on investment.  
 

Driver type Power 

MW 

Efficiency % Relative 

CO2 

emission 

Speed 

RPM 

Wight 

Kg 

Availability 

Gas Turbine 

Frame 5 

32.5 29.4% gas to 

shaft 
1.0 4670 110,000 Average 

Gas Turbine 

Frame 5 

87.3 33.1 gas to 

shaft 
0.93 3600 121,000 Average 

Gas Turbine 

Frame 5 

43.9 41.9 gas to 

shaft 
0.71 3600 31,000 Better 

Electric motor 

VFD with 

Transformer 

25 95.3 electrical 

to shaft 
Depends on 

source 

3600 159,000 Best 

Electric –Two 

motor VFD with 

Transformer 

50 95.3  electrical 

to shaft 
Depends on 

source 

Up to 

4200 

286,000 Best 

Table B.2- Comparison of compressor drivers (TMEIC-GE, 2005) 

 

B.2.1: Conclusion: 

 

Blaiklock (2010) states that as the LNG trade increases and becomes more than a small 

niche-market. Owners continue to look for ways to lower costs by benefiting from 

economies of scale. The effort has concentrated, as plant capacity grows, on building 

larger single LNG train plants. Large trains are feasible and cost-effective. To achieve 

the desired results, it requires innovation, “out of the box” thinking, technological rigor, 

and a “can-do” attitude. The electrical motors have the potential to provide a viable cost 

effective solution to LNG compression. 

 

B.3: Case study-C:  (Grapow, 2009) 
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Matthias Grapow (2009) in his presentation entitled “Why Electric Compression or 

otherwise why still Gas Engine driven Compression” in Gas/Electric Partnership Special 

Workshop Electric Compression Economics, August 27 2009, Houston discussed the 

pros and cons of the Electric gas compression in comparison to the conventional gas 

turbine driven compression.  
 

B.3.1: Overall efficiency comparison: As per his calculation the overall thermal 

efficiency of All Electric system is at 44%, which significantly more than Gas turbine 

run compressor system which is 36%. 

 

B.3.2: The study concluded that: 

 

 The motor run system has considerably higher full load or part load cycle efficiency 

than a conventional gas turbine driven system.  

 The motor driven system has immediate restart facility with no limit on number of 

start whereas a gas turbine system has to wait for two to three hours for restart due to 

driver thermal consideration and the limited re-starts per hour.  

 The gas turbine has reduced power availability with increase in elevation, 

temperature and humidity whereas an electric motor driven has no such impact. 

 The Train full load and part load cycle efficiency is considerable higher in Electric 

than gas turbine compression.  

 The electric compression has variable speed range and ability to start and come to 

full load upon starting, whereas gas turbine assumes load one-half hour after start.   

 The gas turbine seal gas need be vented or flared increasing CO2 and NOx emission 

which is much reduced in case of a motor driven system fed from a combined cycle 

power station.  

 The maintenance cost is much lower and the unit availability and reliability is much 

higher as compared to a gas turbine driven system. 

 If the electric motor is properly sized it can restart a pressurized system whereas the 

gas turbine system has to flare the inventory to be able to restart. 

 Electric compression has the ability to trade carbon credit which and has the lowest 

risk of future emission restriction and has the lowest insurance risk. 

 Over all life cycle cost the motor concept was by far the lower than the GT concept. 

 Electric motor has excellent speed controllability due to high frequency operation.  

 Electric motor has ease of remote operation, speed control range, starting reliability.  

 The auxiliary consumptions of gas turbines are higher whereas the auxiliary 

consumption of electric motor is much lower.  

 

B.3.3: Electric compression is of advantage when: 

 

- A secure and economic source of electric power is available  

- Capital investment should be as low as possible 

- High humidity and ambient temperatures requires de-rating of the gas turbine 

- The electric price/gas price ratio is reasonable 

- Low-cost night-time energy available  
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- Environmental restrictions, gaseous and noise emission limits and architectural 

restrictions apply. 

- Varying fuel gas qualities or limited transmission capacity in the pipeline exists 

- High operating flexibility is required (starting frequency, frequent load cycles, 

and wide speed range)  

- High starting and operating reliability/availability is required 

- Low operation costs / unmanned operation is required 

- LCC are mainly defined through OPEX 

 

His research revealed that general statement cannot be made, because too many project 

dependent variables will influence the result. A detailed Life Cycle Cost analysis has to 

be made for each project individually. A decision from CAPEX perspective for fuel or 

electric driven equipment is generally based on the availability of electric power on site 

or the cost to bring the power to site. If electric power is available at site, the decision 

going with fuel/electric driven trains is generally OPEX driven (fuel/electric costs). 

Final decision for electric compression or for gas engine driven compression can only 

made after considering all project related costs over the life time of the project. He 

further opined that flexibility and unknown upcoming future emission regulations are the 

keywords in today’s changing gas storage and gas transportation business.  

 

B.4: Case Study D: (Sawchuk et al 2003): 

Sawchuk (2003)of British Petroleum and Charles (2003) of Kellogg Brown and Root 

undertook a program by close collaboration between the owners, contractors and process 

licensors for a fair and unbiased comparison of the technologies that evaluated key 

aspects of design and engineering of a Base load LNG Liquefaction plant through the 

Big Green Train Project. The study results provided a high level of confidence that 

“Next Generation” LNG plant designs is achievable with raised standards on design, 

capacity, and life-cycle cost and greenhouse gas emissions. 

 

 B.4.1: Study Objective: 

 

The objective was to develop next generation LNG plant options that are Big, Green and 

Low Cost to produce 5+ MTPA of LNG and with an intention to reduce the EPC cost by 

25% and reduce CO2 emissions by 50% in comparison to a conventional LNG Train 

target (Atlantic LNG Train-1) per ton of LNG produced. In 2002, BP and KBR 

completed the Select Stage engineering of the Big Green Train (BGT) project. As part of 

the Select Stage work scope, an LNG process technology benchmarking effort was 

undertaken to compare available LNG processes. The approach to the Big Green Train 

benchmarking effort began with developing a process basis of design, which was based 

on the All-Electric LNG plant design. This basis of design ensured that the plant designs 

by the various process licensors were comparable without design restrictions. The All-

Electric plant design was based on a power island that consisted of three Frame 7FA Dry 

Low NOx (DLN) gas turbine generators. Each was equipped with a two pressure level 

heat recovery steam generator (HRSG) to utilize the hot exhaust gas. One Frame 7FA 

and its HRSG were considered a spare to provide an N+1 sparing philosophy. This 
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allowed for higher plant availability than gas turbine driven LNG plants. One of the 

objectives was to evaluate a large range of refrigeration driver-compressor options in 

various LNG plant designs and then ranked them based on parameters including life 

cycle costs, capital cost per ton of LNG, energy efficiency, plant availability and CO2 

emissions. Three key project objectives were established for the Select Stage of the BGT 

Project. The priorities used to evaluate the LNG process technologies included life-cycle 

economics, specific power, capital cost (CAPEX) per annual ton of LNG production, 

CO2 ton per ton of LNG production, modular plant design for ease of expansions, 

overall plant availability, and plant efficiency (defined as energy content of the total 

products divided by the energy content of the plant feed stream). 

 

B.4.2: Conclusion:  

 

The benchmarking study showed that all of the Licensors can provide Big (large 

capacity) LNG plants with All-Electric LNG plant design. The results of the CO2 

emissions metrics for the Big Green Train (BGT) benchmarking designs showed that all 

of the LNG process technologies evaluated generated world-class emission levels. With 

some optimization, the emission levels of all the LNG process technologies are expected 

to equalize at or above the 50 percent CO2 reduction. The All-Electric LNG plant 

designs developed during the benchmarking effort yielded energy efficiencies that are 

far superior to the existing LNG plant designs. The benchmarking results for capital cost 

reduction generated for the different LNG process technologies show that all of the 

designs would set new cost benchmarks in the industry. Nearly all meet the cost 

reduction metric of twenty-five percent in EPC Cost per annual tonne of LNG with 

possible further reduction in cost through additional optimization. Consequently, all of 

the plant designs are expected to meet or exceed the twenty-five percent cost reduction 

versus the target Atlantic LNG Train-1. The conclusion was that  

 

• Big, Green LNG plants can provide low cost LNG 

• Plant capacities above 8 MTPA are economically feasible 

• Big Green Train (BGT) plant designs are LNG process independent  

B.5: Case Study-E: (Thomas et al, 2009) 

 
Thomas and Chrétien et al of TOTAL conducted a study in 2009 to the various LNG 

options. Plant owners have historically preferred robust and dependable facilities rather 

than a very efficient process with more stringent operating constraints. In today’s 

environment, improving energy efficiency of LNG Plants is a major focus for Operators. 

Main factors contributing to this shift toward enhancing efficiency are: 

 

- Higher price of feed gas/sales gas. 

- Reduction of feed gas supply in some LNG Plants. 

- Worldwide pressure to reduce the GHG footprint of industrial facilities. 

- Actual or potential CO2 taxes. 
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The study reviewed various options to increase the energy efficiency for a brand new 

plant for a given liquefaction process. The various options scrutinized are listed below: 

 

- Heat recovery options (combined cycle and others). 

- Large Frame or aero-derivative driver for refrigerant compressors or power 

generator. 

- Electric drivers for refrigerant compressors or E -LNG. 

- Heat absorption systems / chilled water loop duty 

- Cooling of Gas turbine Air inlet 

- Combination of the above. 

 

Expected efficiency enhancement was evaluated and a 30 % improvement compared to 

robust and simple LNG facilities could be achieved. For existing facilities some practical 

energy efficiency improvement could be implemented as well. There are a great number 

of possible options to improve the energy efficiency.  

 

B.5.1: Study Cases for a new plant: 

 

The comparative study is based on a well-knownC3MR APCI process with upstream 

NGL recovery. To simplify the comparison, the study is only based on the liquefaction 

process downstream the NGL recovery. Three cases with different production levels and 

different main refrigeration drivers have been defined as follows: 

 

- Two FRAME 7 with 20 MW helper/booster each for one train; required power is 

supplied by FRAME 6’s 

- Two FRAME 9 with 23 MW starter each for one train ; required power is supplied 

by FRAME 6’s 

- E-LNG : Electric motors on main refrigeration drivers associated to a power plant 

base 

 

The duty of the chilled water closed loop produced by the absorption chiller units 

encompasses: 

 

- Gas turbine air inlet cooling 

- Sub-cooling Propane refrigerant 

- Pre-cooling the feed gas and the MR refrigerant instead of propane cooling 

service 

- All utilities requirement (power, heat and cooling media) have been estimated for 

all cases. As a result, for a base case without heat recovery the specific energy 

consumption of the various cases with heat recovery schemes is given in the 

following. For E-LNG case, the combined cycle option is not considered as the 

heat is recovered to meet process duty only. Additionally, absorption chillers can 

boost the production potential of LNG trains when compared with combined 

cycle. This production improvement partly comes from the improvement of 

specific energy, partly from enhanced available power (cooler air feeding the gas 

turbine). 
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Taking into account the simplistic hypothesis of the study, the following conclusions 

was drawn: 

- The absorption chillers compared well with Combined cycle in terms of energy 

efficiency and can be used in conjunction with Combined Cycle 

- There is a good match in terms of heat level between heat recovered at the exhaust of 

aero derivative gas turbine and the heat requirement of absorption chillers. 

- The efficiency of the liquefaction part of the process can be improved by some 30% 

when combining E LNG with aero-derivative gas turbine and absorption chillers 

when compared to a base case without heat integration. However given the limited 

size of current available aero derivative gas turbine, the required number of 

generators can be high for large LNG Plants 

- In all cases, use of absorption chillers increases the potential capacity of the 

liquefaction process for a given refrigeration power duty. 

 

B.5.2: Conclusion: 

 

Thermal efficiency improvement for LNG plants is an ongoing trend with more new 

grass-root projects featuring various degrees of heat integration towards a long term 

quest up to the zero CO2 LNG facility. Future projects could make use of absorption 

chillers as part of heat integration systems. Energy efficiency improvement with 

combined cycle or heat driven absorption chillers can be considered. Most favorable 

case being E-LNG based on aero-derivatives gas turbines associated to heat driven 

absorption chillers in tropical area. Absorption chillers require only low pressure steam 

and are less complex than combined cycle powered by high pressure steam. Enhancing 

the energy efficiency of existing LNG facilities is also a robust business case when 

associated with additional potential production to pay for the modification project. 

However practical improvement of the thermal efficiency is depending on original 

design features of the facility such as lay-out or choice of refrigeration drivers. 

Absorption cooling can be implemented in Gas turbine air inlet cooling, Sub-cooling 

Propane refrigerant and Pre-cooling the feed gas and the MR refrigerant instead of 

propane cooling service to improve overall thermal efficiency. 

 

B.6 Case study- F: 

 
Sonangol/Texaco engaged Foster Wheeler as part of the CFAST consortium (comprising 

Chiyoda, Foster Wheeler, ABB and Stolt consortium) investigated the use of large 

electrical motors to replace the gas turbines and to use a central power station to supply 

the power to the complete facility for the Angola LNG Project and investigated the use 

of large electrical motors to drive the refrigeration (liquefaction) compressors for the 

onshore LNG plant. The onshore LNG plant was a single train of about 4 MTPA with 

the potential for future expansion to as many as four trains. The objectives of the study 

were to assess the technical risks associated with the use of large electrical motors in a 

base load LNG facility and to quantify the life cycle benefits on the basis of such an 

application (Shu et al, 2002). 

 

B.6.1 Life Cycle Cost Analysis: 
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Any commercial benefits were evaluated on their impact on project net present value or 

life cycle benefit. Because of the need for a larger power plant, the capital cost for an 

Electrical solution was likely to escalate, so the commercial benefits relied upon 

increased revenue streams to balance the higher CAPEX. The Life Cycle Benefits were 

dominated by these four factors: 

 

a) Capital cost  b) Plant availability  c) Project schedule  d) Plant production 

 

The marginal value was the value achieved net of all costs (other than the variable 

production costs) generated by marginal production. Thus, it was assumed that any 

additional LNG produced can be delivered to market and sold, to generate a marginal 

profit of $149/tonne (equivalent to $3/MMBTU).  

 

B.6.2 Impact on Production Efficiency 

 

The production impact of moving to electrical motors is achieved through higher 

thermal efficiency of the plant. Centralized power generation involves larger and more 

efficient gas turbines; which make heat recovery and combined cycle power generation 

economic.  Balanced against this increased efficiency are the electrical transmission and 

drive losses. The first of these increases thermal efficiency by the combined cycle power 

plant option of about 12%: the second is the transmission and drive loses about 4% of 

the benefits gained. The result is an overall increase in efficiency of 8% which translates 

to an additional 0.5% increase in LNG production.  

 

B.6.3 Impact on Plant Availability: 

 

Increased production availability results from two sources: 

 

a) Better sparing or spinning reserve is possible on a centralized basis than on a 

localized basis. The meaning of the above statement is rather than using localized 

gas turbines in the conventional case a better sparing and spinning reserve is possible 

when gas turbine are centralized at the combined cycle power generation station with 

heat recovery option where the sizes of each unit can be optimized, so a highly 

reliable power supply service can be provided economically. 

b) The scheduled maintenance needs for electrical motors are much lower than for gas 

turbines. The increased sparing allows the scheduled maintenance to be carried out 

without production impact. 

 

The table below summarizes Typical Component Availabilities: 

Equipment Average Reliability Schedule maintenance (hrs./yr.) 

Centrifugal compressors 0.998 50 

Gas Turbine 0.994 270 

Steam Turbine 0.994 45 

Electrical motors 0.997 25 

Table B.3: Equipment reliability and maintenance  
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The scheduled maintenance downtime for gas turbines is five times greater than the next 

most demanding component which is the centrifugal compressor. When all of these 

factors are considered, production availability is increased by 2.9 %, which equates to a 

life cycle benefit of nearly $210m. 

 

B.6.4 Impact on Project schedule and other key factors: 

 

 It is also expected that up to two months would be saved in the assembly of motors and 

compressors versus turbines and compressors. Switching to motors impact on overall 

project schedule is to take the gas turbines off the project critical path and transfer the 

critical path elsewhere, probably onto the LNG storage tanks or the construction of the a 

larger power plant. As important, it helps to reduce schedule risk by elimination of a 

schedule-driving event. On the base project used for this study, the EPC phase of the 

project is reduced by 2 months resulting in a life cycle cost benefit of approximately 

$125m.  

 

B.6.5 Capital Cost Impact: 

 

The table below shows the impact on the capital cost of the change. The capital cost for 

the electric motor option increases, in this case by about 5%. The major ‘adder’ is the 

cost of the power station, whose capacity has risen from 55 MW to 380 MW. The table 

below shows the additional Capital cost of $60M for opting for an electrical motor 

solution. 

 
Adders $M 

340MW centralized power generation 153 

Centralized waste heat recovery 25 

Electrical motor + drivers 18 

Electrical infrastructure 39 

Total adder 235 

Deducts  

Four Frame 5 GTs 45 

Three Framed 7 GTs 81 

Localized Waste heat recovery Units 28 

Steam turbine 7 

Electrical infrastructure 14 

Total deducts 175 

Net increment 60 

Revised option total installed cost  

 

Table B.4 Capital cost calculation 

B.6.6 Life Cycle Cost Benefits: 

 

The life cycle benefit of approximately $300 m was achieved as shown in the figure 

below. It is readily apparent that the benefits are dominated by the higher availability 

and by the shorter EPC schedule. If either of these can be achieved, then the benefits are 

still positive as either of them outweighs the higher capital cost. Economic benefits 
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could be improved further: The range of gas turbines available for power generation is 

large. The capital cost estimate could be improved through optimization and competitive 

bidding.  
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure B.1: Life cycle benefit (Shu et al 2002) 
 

B.6.7 Conclusion of Study-4: 
 

The study was conclusive in its findings that the technical risks associated with the use 

of large electrical motors are well known and would be manageable as part of the 

detailed design of the project and the life cycle benefits are potentially significant, 

making this a very real option to be considered for the Angola LNG Project. The study 

believes that there was much relevant experience within other industries such that the 

application of electrical motors on base load LNG technology would be but a small 

extension of existing experience. However large the commercial benefits are, if the 

technical risks are too high then the electric motor option would not be selected. The use 

of electrical motors was not without risk, which of course was the case with anything 

being done for the first time. The risks were well understood, and can be managed as 

part of a project’s development and execution. There were strong reasons to consider the 

use of electrical motors on base load facilities too. There are potentially large 

commercial benefits to be reaped in the areas of plant availability and project schedule. 

Whether these can be realized on a given project depend upon four key factors (Shu et 

al, 2002): 

 

- The marginal value of production. 

- Realization of the availability benefits in the refrigeration circuit across the whole 

project value chain. 

- Realization of the schedule benefits by ‘managing’ the other items competing for the 

project critical path. 

- Management of this technical development in the context of a large base load LNG 

project. 
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Appendix: C 

Characteristics of various LNG Contracts 

C.1 EPC Contract characteristics: 

 
DLA Piper (2011) suggests the following features for an EPC contract: 

a) A single point of responsibility: The contractor is responsible for design, 

engineering, procurement, construction, testing activities and problem fixing. 

b) Advantageous for owner as he can have a “hands off” approach with a minimal 

staffing requirement as the bulk of the responsibility lies with the contractors. 

c) A fixed contract price: Since the price is determined upfront the risk of cost 

overruns and the benefit of any cost savings are to the contractor’s account.   

d) A fixed completion date: EPC contracts include a guaranteed completion date with a 

liability for Delay Liquidated Damages (“DLDs”) for late completion.  

e) Performance guarantees: It contains Performance Liquidated Damages (“PLDs”) if 

the contractor fails to meet the performance criteria.  

f) Caps on liability: Contractor’s liability may be limited such as DLDs and PLDs 

might each be capped at 20% with an overall cap of 30% of the contract price. 

g) Consequential damage: No claiming of consequential damages with exceptions to 

fraud, willful misconduct, minimum performance guarantees and breach of the 

intellectual property. 

h) Security: The contractor provides performance security to protect the project 

company if the contractor does not comply with its obligations under the contract. 

i) A parent company guarantee: This is a guarantee from the ultimate parent of the 

contractor which provides that it will perform the contractor’s obligations if, for some 

reason, the contractor does not perform.  

j) Variations: The project company can order variations and agree to variations 

suggested by the contractor with pricing provided in the contract, referred as change 

orders (Greer, 2006).   

k) Defects liability/Warranty: The contractor is usually obliged to repair defects that 

occur in the 12 to 24 months following completion of the performance testing.  

l) Intellectual property: The contractor has rights to all the intellectual property used 

in the execution of the works and indemnifies the owner if any third parties’ 

intellectual property rights are infringed.  

m) Force majeure: The parties are excused from performing their obligations if a force 

majeure event occurs.  

n) Suspension: The project company usually has the right to suspend the works.  

o) Termination: The contractor’s termination rights are the right to terminate for non-

payment, prolonged suspension or force majeure. Owner’s right includes the ability 

to terminate for certain major breaches or if the contractor becomes insolvent. 

C.1.1 The disadvantages of EPC contract:  

a) Contractor should have sufficient knowledge and expertise to execute the works. 

b) Given the significant monetary value and the adverse consequences of failure, the 

lowest price should not be the only factor used when selecting contractors. 

c) EPC contract can result in a higher contract price for allocating all construction risk 

to the contractor for building contingencies for events that are unforeseeable. 
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d) In an area with unknown geology or lack of time to undertake a proper geotechnical 

survey, the contract may ask for the contingency in return for passing on the risk to 

the contractor. 

e) The scarcity of contractors willing to enter into EPC contracts can also result in 

relatively high contract prices. This limited number of experienced suppliers, along 

with the understandable reluctance of the LNG industry to try new things, has 

probably contributed to the price increases (Jamieson, 1998). 

f) In return for receiving a guaranteed price and a guaranteed completion date, the 

project company gives away most control over to the contractor and has limited 

ability to intervene. Interference by the owner helps contractors claim additional time 

and costs and defeats claims for liquidated damages and defective works.  

C.2 EPCM Contract features: (Prodigy 2006): 

 
This form of contract requires a combination of management skills on both the part of the 

Owner and Contractor together with a well-structured contract that is designed to meet 

the changing needs of a major Project. 

a) Under right circumstances the EPCM is the ‘best’ contract, from the Owner’s 

perspective, in terms of quality, achievement of schedule objectives, lower cost, 

owner Staff’s Sense of Ownership and control over process. It is for this reason that 

the ‘majors’ have moved  towards this form of contracting and rarely use the EPC 

(Lump Sum Turn Key) form of contracting in the western world (Agnitsh et al, 

2001). 

b) Incentives to  Contractor for the achievement of Project objectives may include 

milestone payments for the achievement of key schedule objectives, and cost 

incentives with contractor sharing in cost under run/overrun’s. 

c) It has a well-defined basic engineering package.  

d) It is services reimbursable. It ensures that the project is well funded and vendors, 

Sub-Contractors and the EPCM are paid promptly and owner has financing 

flexibility. 

e) Eliminates commercial restraints for utilizing additional resources (man-hours and 

expenses) in the interests of the Project. It is preferred for less defined projects with 

anticipated changes to scope of supply. 

f) Recovery plans can be deployed without any much negotiation on price and schedule 

impact. 

g) Owner can get involved in equipment selection, commercial negotiation with major 

vendors and sub-contractors and alliance arrangements can be easily implemented. 

h) The basic misunderstanding of EPCM is the perception that the risk remains with the 

contractor as in EPC. There is less possibility of legal litigations. 

i) All review and approval processes for scope, engineering, design, procurement and 

contractual issues are primarily the obligation of the Owner; hence the overall risk of 

meeting or not meeting the project objectives of time, cost, quality and safety lies 

substantially with the Owner.  

j) Failure to recognize and properly manage the shift in risk can impede the progress of 

the project, and can in fact negate the advantages of the EPCM strategy. 
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Appendix: D 

 

Testing requirement of Gas turbine 

D.1 FACTORY TESTING OF GAS TURBINE: 

Testing and validation process of gas turbine is quite extensive. It involves testing at the 

manufacturing plant as well as through construction, commissioning and start up 

process. Factory testing of gas turbine has been described below: 

a) Speed studies: 
 

Components are assessed to verify life expectancy over the entire speed range from 95% 

105% speed) was extensively tested. Operating ambient temperature from 4
0
C to 49

0
C 

with 5 to 30 starts per year are incorporated into the speed studies and the effect of speed 

assessed (Salisbury et al, 2007).The gas turbine components are subject to a number of 

failure mechanisms such as low cycle fatigue (LCF), crack initiation, cycling crack 

propagation, disc burst and creep etc. During the design, construction and testing stages 

all of the above failure modes need to be evaluated at baseline conditions and between 

the speed ranges it is required to operate. In Qatargas 2, a finite element analysis (FEA) 

model was developed based on parameters that defined the thermodynamic behavior of 

the unit such as power output, pressure ratio, mass flow, speed ramps, etc. The FEA 

model was then used to calculate transient temperature distribution, aero mechanical 

loads, inertia loads, etc. After completing the structural analysis, low cycle fatigue 

(LCF), and creep life was evaluated against the design requirements (Salisbury et al, 

2007). Further study evaluated the Frame 9E compressor airfoil rotor and stator blades 

ability to operate in the 95% to 105% speed range. An FEA analysis was also performed 

on all rotor and stator blades with the appropriate constraints and loads. The rotor and 

stator blades were also analyzed at zero speed with no pressure and temperature load and 

then validated that the stresses were within allowable limits (Salisbury 2007). If Variable 

Frequency Drives (VFDs) are used for starter/helper/ generator applications the torque 

ripple effect contributions from the VFDs to the compressor blades need to be assessed. 

Hot gas path components need to be analyzed for aeromechanical (modal) creep and low 

cycle fatigue (LCF) capability. Creep resistance of the rotor is evaluated against the 

operating hours of the gas turbines. Other than the above the turbine rotor margin to 

operate at maximum design temperature at continuous speed and also the effect of 

variable speed at highest operating speed and maximum ambient temperatures are 

analyzed to identify and quantify Low cycle fatigue (LCF) rotor components 

life(Salisbury et al, 2007). 

 

b) Fuel and emission studies/ Dry Low NOx (DLN) Testing:  

 

The gas turbines need to be installed with Dry Low NOx (DLN) combustion system for 

emission abatement. The DLN technology adopted for gas turbines needs to 

accommodate the inherently large range of fuel gas compositions created within the 
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LNG process, as well as the rate of change in conditions associated with plant equipment 

upsets. In a normal application this system is capable of 25 ppm (parts per million) of 

NOx and requires a variation of no more than +/- 5% from a given Wobbe Index (WI), 

which is a measure of the energy density of the fuel, target value for the fuel gas. WI is 

the ratio between the fuel lower heating value (LHV) and the square root of specific 

gravity multiplied by fuel temperature. The fuel gas may have a WI variation as high as 

+/- 26%. The WI range and rate of change is limited to ensure adequate pressure ratios 

across the fuel nozzles. If the pressure ratio is too low, then the combustion dynamics 

amplitudes can increase to unacceptable levels leading to shortened operating life and 

poor reliability. Combustion testing is performed to verify the combustion hardware is 

capable of handling fuel gases ranging from 4% up to 48% N2 (Salisbury 2007). Higher 

flame temperatures yield higher NOx emissions, but yield lower CO emissions. This 

increases the margin from the blow-out region, achieving a more robust design with a 

wider operating envelope. Different dilution holes needs to be tested for best trade-off 

between emissions and combustion stability over the operating range. Critical testing 

needs to be performed with test parameters such as air inlet temperature, inlet pressure, 

fuel composition and air-flow and/or exit temperature to change combustion boundary 

conditions and set points (Salisbury 2007).NOx emissions reduce as the N2/CH4 ratio in 

the fuel gas increases. While this effect is beneficial for reducing emissions, it can have 

a negative impact on the reliability of the combustion system. Extremely low NOx 

emission values for this combustion system can indicate a very weak flame, which in 

turn could lead to a combustion blow-out or high combustion dynamics. To compensate 

for the high N2 fuel content, the dilution area of the liners has to be increased to achieve 

a robust flame overall operating conditions (Salisbury, 2007). The majority of the 

normal operating fuel gas is derived from nitrogen rich (~ 35 – 42%) End Flash Gas 

(EFG), a by-product of LNG production, which is not available until the plant is online. 

The only fuel gas available prior to LNG production is the start-up and back-up fuel gas 

derived from the plant feed gas, Fuel From Feed (FFF), which has very low nitrogen 

content (~ 2 - 4%). The variation in nitrogen content of these fuels results in a large 

variation in the fuel gas Wobbe Index, which is the primary parameter that defines the 

similarity of different fuels (Judd et al 2007).The unplanned downtime risks associated 

with implementing the new emissions reduction technology on these challenging 

applications mitigated through a number of activities during the execution of the project 

(Salisbury et al, 2007). 

 

a) Laboratory Combustion Tests. Combustion tests sized and then validated the 

recommended nozzle and dilution holes using actual site hardware and expected gas 

compositions, validated the design and highlighted potential operating modes where 

final control system tuning might be required to avoid operability/reliability risks 

(Salisbury et al, 2007). 

b) Combustion Control Logic Re-design. A gas turbine control logic, which was 

earlier designed for a power plant, has to be changed to suit compressor application.  

The redesigned logic incorporates a) modified light-off sequence for reliable start-up 

with variable fuel gas b) String acceleration sequence with coordinated control of 

turbine c) New control logic for the DLN combustion modes during steady state and 

transient conditions: process upsets; start-up; shutdown d) Improved exhaust 

temperature control logic increasing control accuracy of combustion parameters 
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while improving overall gas turbine performance e) Software to calculate remaining 

gas turbine power available to base load considering turbine degradation and a wide 

range of fuel gas compositions(Judd et al 2007). 

c) String Testing. The prototype string testing program provided initial validation of 

the new control logic while also validating the new combustion hardware 

performance in an operating gas turbine (Judd et al 2007). 

c) Turning gear Function test: Either a VFD or other standard accessories such as a 

DC or AC the strings turning gear functions such as the breakaway torque, slow roll 

turning, purge, starting, and water wash and cool down. A dedicated emergency 

power circuit has to be incorporated into the VFD design to permit turning gear 

operation in the event of a plant blackout. The functionalities of the above needs to 

be extensively tested during the testing phases to validate their functionalities 

(Salisbury et al, 2007). 

d) Common lube oil testing: The standard generator drive gas turbine utilizes an 

accessory base arrangement, incorporating the string lube system, the drive for the 

main oil pump and other functions such as turning gear, starting and cool down.  A 

common oil system needs to be tested for its proper functionalities (Salisbury et al, 

2007). 

D) String test: The string tests are conducted to replicate as much as possible the plant 

site configuration so as to test the complete string to detect any defects and rectify 

before being shipped to site. A large portion of the string testing is also dedicated to 

the final validation of the VFDs system and its integration with the main equipment 

as well as with the power supply grid. Shaft torque ripple, a well-known weak point 

of variable frequencies systems, and the amount of harmonic disturbances injected 

by the system into the surrounding electrical grid also are closely monitored during 

the string tests. Results need to validate acceptable torque ripple within the design 

basis, so as to avoid external torque ripple suppression. The gas turbine, 

compressors, motor/generator and associated VFDs also including the 

subcomponents such as inlet air filtration system, inlet Bleed Heating, oil system and 

the DGS system need to be used. (Salisbury et al 2007). 

 

D.2 SITE COMMISSIONING AND VALIDATION OF GAS TURBINE: 

 

For safely starting the machinery on schedule and minimizing future unplanned 

shutdowns a detailed commissioning program scope and execution plans have to be 

developed and executed. It may need a Failure Mode Effect Analysis (FMEA) review 

for commissioning test protocols to validate applied technologies and reveal any new 

issues so that could be addressed prior to start of production. A rigorous validation and 

prerequisite steps has to be incorporated to confirm closure of FMEA prior to starting 

each test run activity. A static commissioning, is normally executed which involves 

energizing equipment and validating correct functionality of the many individual 

subsystems involved. It includes the instrument loop checks, switch gear function tests, 

motor solo-runs and cause and effect testing to ensure safe operation. The second phase 

of commissioning starts when process fluids are introduced, activities become more 

complex and involved in working to rigorous step by step procedures. Figure below 

depicts the relative schedule of key activities in both the Static and Dynamic 

Commissioning phases (Judd 2008). 
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Figure D.1: Commissioning Program Schedule for Gas turbine driven compressor 

string (Judd, 2008) 
 

Inlet Bleed Heating Cleaning: 

 

One prerequisite step involved confirmation of the cleanliness of the Inlet Bleed Heating 

(IBH) system prior to commencing the gas turbine full speed no-load (FSNL) test to 

prevent IBH control valve damage because of construction debris. The potential risk of 

construction debris leading to potential damage of compressor anti-surge valve seats and 

other sensitive equipment is present. To address this risk dynamic air blows to validate 

line cleanliness is adopted as a commissioning strategy (Judd, 2008). 

 

Frame 9E Dry Low NOx (DLN) Combustion Validation Tests: 

 

The gas turbine DLN system needed to be fully validated to be operated using the final 

plant fuel gas system and the starter/motor/generator/VFD needed to be proved reliable 

when integrated into the total power system of each of the plants (Judd, 2008). 

 

Fuel Gas System Design Optimization: 

 

The established test results for maximum allowable Wobbe Index rate of change from 

manufacturing tests has to be utilized. The size of the fuel gas mixing drum and the final 

fuel gas system control strategy are critical in preventing flame-out as the fuel changed 

from End Flash Gas (EFG) to Fuel From Feed (FFF) and vice versa. The Dynamic 

simulations of the fuel systems need to be run to ensure that all operating scenarios were 

covered. The highest risk scenario is to check whether the gas turbine behaviour 

following a trip of the fuel gas compressor which would result in a sudden stop of the 

EFG fuel gas supply as can be seen in Figure below (Judd, 2008). 
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Figure D.2: Fuel supply to Gas turbines  

 

Adequate cleaning of the fuel gas supply lines is a prerequisite for reliable operation of 

the gas turbine since the fuel nozzles have relatively small holes that may clog or 

prematurely wear if debris is carried into the combustor. During commissioning, 

temporary strainers have to be fitted immediately before the fuel gas manifolds on the 

gas turbine to be only removed once the supply lines had been proven to meet the 

cleanliness criteria of the manufacturer. Since EFG is not available until after start-up 

the temporary strainer cleaning usually takes place after first LNG production resulting 

in start-up and shutdown cycles to complete the cleanliness inspections (Judd, 2008). 

 

DLN testing: 

 

The first of these final tests are the DLN tuning runs in premix mode on Fuel From Feed 

gas with nitrogen in the nitrogen loop and methane in the C3 / MR loops. DLN testing 

program is required to achieve (Judd, 2008): 

 

• Emissions performance targets is met under operating conditions 

• To prove combustion dynamics within expected range 

• LNG production is not significantly impacted during DLN test program 

• No significant production losses associated with verifying system cleanliness 

 

Gas turbine Start up and operation: 

 

The comprehensive operational and technology validation tests completed within the 

dynamic commissioning program prior to start-up, ensures that all major reliability risks 

were addressed prior to the introduction of feed gas into the LNG trains (Steve Judd 

2009).  The remaining validation steps happen once the refrigeration compressor strings 

were put into operation and LNG production commences. One key operability feature 

validated after reaching normal operating conditions was the ability to complete a rapid 

pressurized restart following a trip of any of the machinery strings. The final settle-out-

pressure of each refrigeration loop and the compressor anti-surge control supplied by 

Compressor control vendor settings utilized at start-up were two critical factors (Judd, 

2008). 
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Appendix: E 

 
Life Cycle Management Challenges 

 

E.1 Procurement and Logistics Challenges: 

  
The procurement activities include information and tracking of requisitions and purchase 

orders and materials delivered relative to plan, with particular emphasis on the long lead 

or technically complex items requiring special attention. This further includes status of 

expediting, inspection, testing, and material transportation. Terms and conditions for 

procurement of materials and services such as purchase orders, bid inquiries, evaluation 

summaries, should be reviewed; and monitored and in compliance with Safety Health, 

Environmental, Security, quality, technical, and schedule objectives should be ensured 

(Qatargas 2 project documents, 2005). 

 

E.1.1 Purchasing plan: 

 

A Purchasing Plan, procedures, and vendor qualification process for the acquisition of 

materials for the work need to be prepared. Spare parts and aftermarket services 

technical assistance during commissioning and start up, long-term maintenance or 

service agreements, parts pricing and availability agreements with vendors and sub-

vendors aligned with project milestones is also a part of the overall effort.(Qatargas 2 

project documents, 2005). 

 

E.1.2 Critical items procurement list: 

 

This list should include items that are considers to be of prime importance to the 

successful and timely execution of the project. 

 

E.1.3 Qualification of Vendors, sub Vendors and Subcontractors: 

 

Qualification of vendors, sub-vendors and subcontractors by undergoing a stringent 

approval process has to be undertaken based on their ability to supply the material or 

service required in conformance with specifications and schedule. Their ability to 

consistently meet the delivery schedule, demonstrated technical competence and quality 

assurance of products and services is important (Qatargas 2 project documents, 2005). 

 

E.1.4 Inspection: 

 

The purchase order terms should make vendors responsible for providing materials that 

comply with specification and are capable of performing the function for which they 

were intended. The inspection requirements for materials being ordered should contain 

the Inspection and Test Plan and criticality assessment required for Quality Assurance 

(Qatargas 2 project documents, 2005).     
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E.1.5 Spare Parts / Operating Supplies/Supplier startup services: 

 

Capital spares and special tools are part of purchase order of major individual items or 

sub-assemblies of equipment such as compressor rotor, special valves, etc. to be 

designed and fabricated by equipment vendors required for installation, on-site repair, or 

dismantling/maintenance purposes and should be part of the equipment package 

delivery.   Construction Spare Parts and Commissioning Spares should be procured in 

time so as to support these activities. Commissioning and start-up supplier services need 

to be requested in advance (Qatargas 2 project documents, 2005).  

 

E.1.6 Receiving: 

 

It is the process of checking incoming shipments to ensure that the materials comply 

with the purchase order requirements and ensure the ‘Bill of Materials’ are available 

when incoming materials are received. Implementation of Positive Material 

Identification (PMI) is implemented to ensure that the materials received are of the 

correct (Qatargas 2 project documents, 2005).   

 

E.1.7 Expediting: 

 

The expediting strategy include preparing, maintaining, and implementing procedures 

covering all aspects of expediting from placement of the purchase order through receipt 

of materials, including receipt of spare parts, operating and maintenance manuals, and 

“as-built drawings”(Qatargas 2 project documents, 2005).   

 

E.1.8 Logistics: 

 

It involves freight movements, material received in ports, congested schedule, against 

limited capacity of the airport and sea ports, shortage of container storage capacity.  

 

E.1.9 Warehousing: 

 

Warehousing should ensure that the materials are kept in a secure area, that there is no 

mix up and that access to inventory is properly controlled and identified, protection of 

equipment from rain, heat, humidity, ultraviolet rays, sand, etc. maintenance procedures 

that comply with manufacturer’s warranty requirements; preservation measures 

according to extent of storage period, temperature, storage conditions, manufacturer’s 

recommendations (Qatargas 2 project documents, 2005).  

 

E.1.10 Procurement challenges for All Electric LNG: 

 

The procurement activities include information and tracking of requisitions and purchase 

orders and materials delivered relative to plan, with particular emphasis on the long lead 

or technically complex items requiring special attention. This further include status of 

expediting, inspection, testing, and material transportation; significant accomplishments 

during the periods of review and the major activities planned for the future highlighting 

any problem areas and corrective actions and a separate equipment and material 
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commitments to-date versus plan. The procurement and logistic activities of an All LNG   

project will be more or less the same as the conventional LNG project. 

E.2 Quality Challenges: 

 
Basic quality requirements for projects are defined by the International Standard such as 

ISO 9001 in accordance with international best practices; need to have a documented 

Quality Management System in place to assure the quality of the work. It is essential to 

establish implements and maintain a quality program, which ensures that its 

requirements are communicated to all employees, vendors and contractors. In order to 

implement quality policy, one should ensure that quality is built into the work through 

the use of documented control processes. Quality organization is established to 

effectively administer and implement the quality policy. All necessary procedures, 

guidelines and work instructions need to be prepared to provide the framework for a 

Quality Management System. There should be a functioning audit program in place to 

provide verification of compliance for checking, verification, surveillance and auditing 

functions, and take all necessary corrective actions to comply with quality requirements 

(Qatargas 2 Project Document, 2006). 

 

E.2.1  Vendors and Contractor’s Quality Management System: 

 

Owner’s personnel should have access for assessment and oversight of Contractor’s or 

Vendor's Quality Management System for the purpose of: conducting pre-award quality 

assessments. The Company personnel should conduct quality audits during execution of 

the scope of work and monitor execution, inspections and testing. Vendor needs to 

identify all the managing and manufacturing processes. Records need to be generated in 

connection with the Inspection Test Plan (ITP) and Control Procedures. The quality 

organization identifies quality problems, recommends corrective actions, verify 

implementation, and control further processing, delivery or installation of 

nonconforming conditions until an approved disposition has been obtained. Inspection 

& testing activities should be conducted during manufacturing, fabrication, 

construction, installation and start-up, as applicable to the scope of work which are in 

accordance with approved control procedures. These should be hold and witness points 

requiring participation and supported by documentation generated to provide objective 

evidence of acceptable quality and compliance with specified requirements(Qatargas 2 

Project Document, 2006). 

 

E.2.2  Quality Document Requirements: 

 

Project Specific Quality Plans, Inspection and Test Plans (ITP) and Control Procedures 

are required from manufacturing till hook-up activities. There should be identification 

of the stages requiring approval, inspection and testing. Control procedures should be 

established to reflect the requirements of specifications so as to safeguard the quality of 

the work with appropriate level of details (Qatargas 2 Project Document, 2006). 

 

E.2.3  Quality Audits:  
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Inspection surveillance is required to utilize a quality audit program to provide 

verification of compliance with the approved quality plans, Inspection & Test Plans and 

associated control procedures. Quality Audits may be conducted to assess compliance 

with quality plans and control procedures. Quality activities are driven by a formal 

criticality rating process, with safety, operability and financial consequences, and 

probability factors (Qatargas 2 Project Document, 2006). 

 

 E.2.4  Control of Deviation from Specifications: 

 

All deviations, alternations, exception or clarification should be resolved to the 

specifications requirements prior to the acceptance.  Conditions of deviation, alternatives 

or exception from the specifications need to be documented. Any deviation, alternative 

or exception can be proposed with technical justification during the design and 

engineering stages in the case of improvement of performance or functions of product 

and other major design constraints (Qatargas 2 Project Document, 2006). 

 

 E.2.5  Control of Nonconforming Products: 

 

The use or supply of any products that do not conform to specified requirements should 

be controlled until the nonconforming condition has been rectified or replaced with new, 

so that it conforms to specified requirements (Qatargas 2 Project Document, 2006). 

 

 E.2.6  Positive Material Identification (PMI): 

 

The vendors need to perform positive material identification in accordance with 

Requisition, data sheet or applicable specifications. The PMI plan and results shall be 

included in inspection and test plan and manufacturer’s data report (Qatargas 2 Project 

Document, 2006). 

 

 E.2.7  Manufacturer’s Data Repot (MDR): 

 

The vendors need to compile and submit the manufacturer’s data report in accordance 

with requirements stipulated. 

 

E.3 Safety Challenges: 

 
Loss Prevention systems as a combination of measures selected to prevent, control, and 

mitigate the life cycle hazards associated with the facility(Qatargas 2 project documents, 

2005). These systems should take account of those associated with construction, 

simultaneous operations, start-up, shut-down, and maintenance. It is philosophy to 

design for the protection of health and safety of plant personnel and the public, as well 

as for the integrity of operations and equipment along with economic considerations. 

Engineering designs should protect operating and maintenance personnel during normal 

operations and against contingency situations involved in start-up, shutdown and 

emergency control of the operating plant and/or unit.  Analysis should be made with 

regard to equipment layout and spacing, exposure to or from other process units or 
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adjacent off-site operations, safe mechanical design, and types and capacities of fire 

prevention and fire protection equipment required.  The design also tries to eliminate / 

mitigate the resultant risk by minimizing the potential release by appropriate provisions 

of isolation, emergency shutdown and de-pressuring equipment; eliminating or 

minimizing the spread of spills and leaks by containment and drainage and eliminating 

or minimizing the potential for fire spread, and providing for extinguishing and/or 

containment of fires through a combination of fixed and portable fire fighting 

equipment. As per Meyers et al (2007) it is imperative for the LNG industry to use all 

reasonable resources to maintain, and enhance, its enviable record on safety.   Effective 

LNG risk management weighs all data points, historical as well as recent, to provide 

business with the qualitative and quantitative tools necessary to proceed, reassess, or halt 

based on concrete scientific analysis instead of perceptions, hopes, or fears. Safety level 

on a site directly depends on the skill level of the manpower and their safety awareness. 

So maintaining a high level of safety performance is a real challenge hence an intensive 

training program should be considered (Qatargas 2 project documents, 2005). 

 

E.3.1 Hazard evaluation techniques: 

 

There are several methods currently being used for risk evaluation in the Oil & Gas 

Industry. Safety Reviews, The complexity of the Modification/Change influences the 

selection of a risk evaluation technique.  

 

E.3.1.1 Qualitative analysis: (Qatargas 2 project documents, 2005) 

a) Safety Review (SR): Studies which usually involves less complex work are 

handled through Safety Reviews. The study is closed after implementing corrective 

Actions. 

b) Joint Safety Review (JSR): It usually involves relatively complex projects 

requiring a need for multi-discipline review.  Study is closed after the corrective actions 

are implemented, documents updated and training provided as required. 

c) WHAT-IF: The What-If method is used to evaluate potential risks induced by 

complex modifications/Changes/Critical with involvement of several departments. It 

may be used either as an initial hazard evaluation method or as a supplemental method 

to systematic techniques.   

d) HAZOP (Hazard and Operability Study): The HAZOP method is a structured 

method used to identify potential risks associated with complex modifications, extensive 

changes, critical tasks such as emergency and shut-down procedures and capital 

Projects. The HAZOP method is based on the principles of hazards identification, 

consequences determination and evaluation of adequacy of safeguards to mitigate 

associated risks (Qatargas 2 project documents, 2005). 

e) Project Technical Review (PTRs): The Project Technical Review (PTR) procedure 

is applied as an independent audit at specific stage of all major projects to ensure that all 

reasonable measures are provided to ensure the operation, health and safety and 

minimize impact on the environment (Qatargas 2 project documents, 2005).   

 

E.3.1.2  Quantitative and Semi quantitative Risk Analyses (QRA): 
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These techniques are formal and systematic approaches to identifying potentially 

hazardous events and estimating likelihood and consequences to people, environment 

and resources, of accidents developing from these events. QRA techniques are used to 

quantify the level of risk so that it can be effectively evaluated and determination made 

to tolerate it, transfer it or mitigate it (Qatargas 2 project documents, 2005).   

 

a) Failure Modes, Effects and Criticality Analysis (FMECA): Failure Modes, 

Effects and Criticality Analysis (FMECA) evaluate the ways equipment can fail or 

be improperly operated and the impacts these failures can have on a process. 

FMECA identifies failure modes that either directly result in or contribute 

significantly to an accident (Qatargas 2 project documents, 2005).  

b) Fault Tree Analysis (FTA): Fault Tree Analysis (FTA) is a deductive technique 

that focuses on one particular accident or main system failure, and provides a 

method for determining and understanding of causes of that event. Data used should 

be directly related to the equipment and service under consideration (Qatargas 2 

project documents, 2005). 

c) Event Tree Analysis (ETA): An Event Tree Analysis is developed by inductively 

reasoning chronologically forward from an initiating event, through intermediate 

safeguards and conditions, to the ultimate consequences.  Data used is from an 

industry-accepted source, and directly related to the subject equipment and service.  

d) Human Reliability Analysis (HRA): HRA techniques will be applied to the 

identification and improvement of Performance Shaping Factors (PSF), thereby 

reducing the likelihood of human errors. This technique should be considered 

whenever human error is known or expected to be potentially significant contributor 

to process risk (Qatargas 2 project documents, 2005).  

e) Consequence Analysis: Consequence Analyses are used to find the maximum 

hazard zones, the extent of the flammable/toxic dispersion, the extent of the radiation 

hazard from fires and the extent of explosion overpressure (Qatargas 2 project 

documents, 2005).  

 

  E.3.2 Noise Control:  

 

Noise control is considered as an essential feature in the design of new plant and 

equipment. The sound pressure level normally should not exceed 90 dBA (decibel 

Absolute) as a general rule in the plant work areas and 75 dBA at the inner edge of 

perimeter. Employees should not be subjected to sound levels in excess of 110 dBA for 

personnel safety (Qatargas 2 project documents). It should be ensured that all individual 

equipment items comply with noise mitigation and abatement methodology consistent 

with the sound level limits of the project specifications (Qatargas 2 project documents). 

 

 E.3.3 Security Considerations: 

 

Project is responsible for assisting in designing, deploying, and delivering security and 

safeguards as needed to protect the project personnel, assets, operations, facilities, and 
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business information during development, project design, fabrication, construction, and 

installation, commissioning, and continuing throughout the life of the operation. A 

dynamic, visible security program, which addresses the threats, related to Protection of 

assets, Office and residential security, Personnel transportation/travel and 

Communication/Information security need to be addressed (Qatargas 2 project 

documents, 2005). 

E.4 Human Resources Challenges: 
 

Implementing new project is never just about installing a system of machinery; it has 

tremendous impacts on its users, which must be assessed and addressed throughout the 

entire life cycle. Implementing a project is never a simple matter most of which are not 

related to the technology. Rather, they are related to the people who will be designing, 

implementing, and using the system. Progress in business, can be greatly impeded by not 

taking human resources needs into account and by not allowing people enough time to 

learn and become accustomed to new technology (Kostur, 2009). It is important to 

communicate the project goals to all involved.   

 

E.4.1 Building a Project Management Organization: (Luan and Wray, 

2009). To build large facilities it is important to build a Project Management 

Organization with clear roles, responsibilities, goals and objectives. Some of the steps 

are as follows. 

 

a) Call for Action and Share the Vision: It establishes a sense of urgency which is 

critical for instituting the new project delivery system. It moves staff from comfort 

zone and emphasizes that not achieving the objectives is a clear recipe for failure. 

The top management should share their vision for the future course of action so that 

employees buy into the vision (Luan and Wray, 2009).  

b) Organize a Project management Team: A strong team is needed to overcome 

resistance to change within the organization. A powerful coalition made up of 

leaders with positional as well as expertise within the organization is necessary with 

initiative driven from the top (Luan and Wray, 2009). 

c) Remove Organizational and work process Barriers: There is bound to be 

organizational internal resistance to change Project team members, as well as 

functional managers, goals and performance evaluations must align with project 

business objectives. The existing work processes barriers should be removed (Luan 

and Wray, 2009).  

d) Train Staff: Training based on individual needs is the most effective. How the new 

project delivery system will facilitate the project team’s work, how it can reduce 

confusion and stress around roles and responsibilities, how it creates more 

opportunities for the firm and the staff, etc should be the focus (Luan and Wray, 

2009). 

e) Get a Quick Win: Quick wins confirm that the initiative is worthwhile and also 

provides validation to management that the new project delivery system is working 

(Luan and Wray, 2009).  

f) Celebrate: Achievements should be celebrated. This is also an opportunity to thank 

the team and their family for the extra work put in by the personnel and the support 
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they receive by the family. This is also a good opportunity to team building (Luan 

and Wray, 2009). 

g) Use a Scorecard: If it doesn’t get measured, the task will probably not get done. 

Development of a set of metrics to measure progress as well as effectiveness is 

required (Luan and Wray, 2009).  

h) Build a cross-functional, collaborative leadership team. It requires players from 

many different areas throughout the organization. A broad stakeholder group that 

participates in the selection, design, and implementation will be less likely to resist it 

and more likely to adopt any new or redefined processes (Kostur, 2009). 

i) Prepare a change plan and a communication plan. Creating a project site on the 

intranet should be considered that allows people throughout the organization to see 

status reports, project plans, and provide input (Kostur, 2009). 

j) Setting realistic deadlines: The deadlines should be challenging yet realistic.  All 

the collaborative work required to identify needs, analyze contents, communicates 

project goals and provides training should be considered.  

E.4.2 Building The Producing Organization: (Qatargas BTPO Road map, 2006) 

 

It is the responsibility of the company to build the producing organization that takes over 

and operate and maintain the plant once the commissioning and start up is over. The 

entire organization should be prepared to assume operatorship of the facilities and 

achieve desired production, safety, and availability goals when completed.  A 

coordination Team should be created:  

 

(i) To develop the road map or execution plan for a changed organization. 

(ii) To identify, plan, schedule, and be responsibilities required to ensure readiness for 

operations consistent with the project schedule. 

(iii)  To steward overall execution progress. 

(iv)  To identify and work key interfaces necessary to achieve operational readiness. 

 

A roadmap is a systematic way to consider all aspects of operational readiness well in 

advance through effective use of a multidiscipline team, and broad exposure to the 

organization, assist in identifying and resolving early potential issues that may possibly 

impact successful startup and/or continued long term operations. This process describes 

the objectives, strategies and execution plans required to support flawless startup and to 

assure continued long-term safe, reliable, and environmentally sound operations 

consistent with project objectives. This process designed to ensure optimum operational 

readiness and assurance should receive full management attention and support. 

 

E.4.3   Human Resources challenges for large projects: 

 

a) Design manufacturing and procurement work locations are worldwide with 

engineering offices at many locations around the world with work site at a different 

location.  

b) Many nationalities and people of many cultures and religions background work on 

large site with different perception and behavioral approach. It is necessary to 

understand   (Lagrange, 2009) It is important in assessing the expectations of the 
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different cultural or religious group and identifying the common elements between 

the different groups and the elements that can potentially cause issues 

c) Diversity comes from personal characteristics such as background, culture, 

personality and work-style in addition to the characteristics such as race, disability, 

gender, religion and belief, sexual orientation and age. Harnessing these differences 

can create a productive environment in which everybody feels valued, their talents 

are fully utilized and organizational goals are met.   

d) The camp having a large diverse populace has its own issues. There need to be 

adequate water supply, power for camp utilities and sewage disposal facilities and 

entertainment facilities for the camp inmates.  

E.5 Construction: 

 
Items of prime importance during construction are Safety, Health, Environmental and  

Security requirements.. A monitoring system that can quantify, plan, measure, and 

control the physical progress and system completion status of construction, and 

mechanical completion activities needs to be implemented. Based on such system. actual 

and planned physical quanity progress and equivalent manpower curves and tables  for 

each major section/area can be monitored closely.  (Various Qatargas 2 construction 

plan documents) 

 

E.5.1 Construction Execution Plan: 
 

The overall Construction Execution Plan should fully comprehend all construction 

activities. The Construction Execution Plan should include Safety, Health, 

Environmental and Security Plan, Subcontractor Management Plan,  Manpower and 

construction equipment requirements, Temporary Facilities Plan, Traffic Flow Plan, 

Logistics plan, manpower housing, transportation and security processing; material 

delivery, storage and transport; Port utilization; telecom. A detailed "Path of 

Construction" for each subcontract activity, including the sequence, key milestones, and 

target dates for each subcontract activity amd various interface procedures should also 

be included (Qatargas 2 construction plan documents). 

 

E.5.2 Constructability: 
 

The objective of a Constructability Program is to produce a concerted inter-disciplinary 

effort to incorporate all phases of the Project into a single Project program, resulting in 

improved Project safety and quality, reduced construction costs, improved Project 

schedule, and a smooth commissioning and start-up phase (Qatargas 2 construction plan 

documents, 2005).Constructability is the systematic use of construction knowledge and 

experience in planning, engineering, design, procurement, and field operations to 

facilitate the construction activity. With influx of new employees during construction 

poses a real challenge. There is a need to implement good safety orientation programs, 

robust HSE (Health Safety Environment) management systems that require adequate 

safety training. Jacobsen (2009) experienced that in such a situation it may be a 
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challenge to a hazard identification and embedment of a “stop work” culture. Other 

construction challenges one can face are poor labor productivity, weather delays and the 

need to supplement critical subcontractor operations. It is generally observed that piping 

subcontractor is a “bottleneck in the progress. Materials and labor costs escalation may 

result in the need for additional spending. Labor shortages, technical problems during 

construction and delays in commissioning shortages of all kinds of skilled workers are 

few things which should be closely followed.The extent of the local content of material 

and labor,which could affect not only the optimum construction method as well as the 

sourcing of materials but also the investment cost of the plant, should be  discussed 

between owners, suppliers and contractors in order to find ways of improving 

development of the region without unduly penalizing the project (Durr et al 2001). 

 

E.5.3Other construction challenges (Qatargas 2 construction plan doc. 2005): 

 
a) Traffic: Traffic jams due to high volume may become a logistical nightmare. The 

absence of space adds to logistical difficulties slowing down construction.  

b) Safety- To make an incident and injury free work place an overall safety 

performance  with  Quality/Cost/Schedule/Operability standards has to be 

implemented 

c) Regulatory & Environmental: To carry out construction that meets regulatory 

requirements and standards with no environmental incidents, no delays due to 

permitting and no business ethics violations 

d) Quality: Achieve facilities delivery to project specifications; flawless execution, no 

rework that meet specified requirements 

e) Cost: Control costs so as to complete the project below the approved capital budget 

f) Schedule: Objective to meet or beat project schedule milestones 

g) Operability: Completed facilities are capable of long term safe, reliable, 

environmentally sound, cost effective, life-cycle operations. 

 

E.6 Commissioning:  

 
A monitoring system that can quantify, plan, measure, and control the physical progress 

and system completion status of commissioning activities has to be prepared in advance.  

Based on such a system, actual and planned progress and equivalent manpower curves 

and tables, for each major section/area of the work can be determined (Qatargas 2 

Project Documents, 2005) Weighting factors based on estimated commissioning man-

hours shall be applied to each commissioning activity and the corresponding progress 

will be earned when that activity has been completed, independent of the actual man-

hours expended to accomplish that task.A significant testing and qualification effort is 

required to adapt the large gas turbine for system reliability. The gas turbine output 

changes considerably with ambient temperature variations. A LNG plant with gas 

turbine as a main driver has to undergo extensive testing and validation not only during 

the design and construction at manufacturing site but also during pre-commissioning and 

commissioning. Appendix D describes the details of the extensive testing requirement of 

gas turbine. In case of VFD with motor in the all electric alternative the extensive testing 
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and validation can be drastically reduced by carrying out factory testing, which will help 

in earlier commissioning and start up activities (Siemens, 2005). 

 

E.6.1 Completion/ Turnover/ Startup and acceptance: 

 
A Mechanichal Acceptance Cerificate (MAP) is issued at a point in the project when all 

construction, testing, and pre-mechanical completion activities has been completed. 

  

E.6.1.1  Mechanical Acceptance Packages: 

 

The entire facility is generally divided into variousMechanical Acceptance Packages 

(MAP) which require MAP’s to include component systems and subsystems that will 

allow to logically accept, commission, start-up, and operate the facilities as a fully 

operational system, including ancillary support systems. Mechanical Acceptance 

Certificate are ussed on completion of a package. In addition, the work shall be 

completed in a sequence that allows owner to logically accept, commission, and startup 

the facilties  (Qatargas 2 commissioning documents, 2005). 

 

E.6.1.2  Pre-mechanical Completion Activities: 

 

As part of Mechanical Completion  appropriate documentation is provided to allow 

owner to verify successfully completion of the activity. To facilitate pre-mechanical 

completion activities, plant utilities systems and components to achieve completion 

requirements is utilised (Qatargas 2 commissioning documents, 2005). 

 

E.6.1.3  Punch-listing: 

 

Prior to requesting a Mechanical Acceptance certificate for a package,  a punchlist, 

which is bascially a snag list of all items, is developed that are not completed in 

accordance with project specifications and that cannot be completed by that time due to 

reasons that are acceptable   Each item on the Master Punchlist, containing items of each 

disciplines, is categorized according to its criticality.  As punchlist items are resolved in 

the field, it is inspected and approved to be cleared from the master punchlist (Qatargas 

2 commissioning documents, 2005).    

 

 E.6.1.4  Start up of LNG plant: 

 

In large sites early commissioning of the Utilities systems is taken up so that all utilities 

demand can be met during further construction start up and commissioning phases. For a 

phased commissioning and start up the execution plan should go through internal and 

independent reviews. The startup sequences should also go through an integrated team 

review. For all new technologies that are incorporated all the critical actions as a result 

of risk mitigation should have been completed. Technical and vender support plans 

developed and in place for new technologies and key operating systems. A start up 

contingency (what-if) workshops needed to be held and all identified actions identified 

on schedule for completion before systems start ups. Internal Readiness Self-Assessment 
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Reviews should be completed for key areas that needed to be started up in sequence and 

progressed (Qatargas 2 commissioning documents, 2005).  

 

E.6.1.5  Simultaneous Operations (SIMOPS): 

 

All critical actions to be identified for Simultaneous Operations and close out on 

schedule for startup critical actions identified. 
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Appendix: F 

 

Life Cycle Cost Analysis 
 

F.1: Introduction: 

 
A lifecycle cost analysis is recommended to assess the large cost items in the motor 

installation project. Tradeoffs associated with initial cost, service factor, power rating, 

size and overall life should be evaluated through this analysis. Process variations will 

determine how much torque variations are likely to impact the motor/drive train design. 

For some applications with constant process conditions and a narrow operating window, 

a lower cost, less sophisticated drive train may be possible. The lifecycle cost analysis 

should include: (Nored et al 2009) 

 

 Production downtime (estimated based on system availability). 

 Fuel cost and electric utility cost. 

 Equipment (purchase price, transportation to site, lead time/project delay time, 

permitting)Air permits will be less for electric motors compared to gas turbines 

without back-up generators on site, design cost. 

 Installation/commissioning (estimated based on size and weight). 

 Operation and maintenance expenses (estimated based on previous performance and 

should include parts and tools, labor, training, and possible emissions reduction 

credits. Also should include vendor and sub-supplier service capability, 

recycling/disposal of waste streams.). 

 Procurement (present value of payment schedule, re-inspection costs). 

 Engineering and project management. 

 Insurance. 

 Decommissioning or product retirement and phase-out (based on equipment removal 

and replacement, if needed, and equipment salvage value or disposal cost). 

 

Issues to be considered for an All Electric Solution: 

 

While an electric motor driven LNG plant is technically feasible, careful attention is 

required when evaluating the project economics. Key issues that have to be considered 

are: (Meher-Homji, 2011). 

 

• Sensitivity of the project to CAPEX 

• Value being placed on the fuel gas 

• CO2 emission considerations and possible credits 

• Real estate availability for the LNG plant and power plant solution 

• Export power considerations 

• Load shedding philosophy in the event that power is also exported. 

 

F.1.1 Designs for Maintenance Prevention: 
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a) Total Cost of Ownership over the Equipment Lifetime: 

 

This is the Span of time over which the equipment is expected to fulfill its intended 

purpose of the core aspects of ‘cradle to grave’. Lifecycle Asset Management Process, 

Systems, subsystems, and equipment within a facility are interrelated. Expected lifetimes 

vary by circumstances and equipment type. In a typical facility, the buildings, structure, 

large heat exchange and pressure vessels, piping, major mechanical equipment and 

electrical distribution system components have an expected lifetime more than the 

design life of 25 to 30 years. Over 60 percent of equipment lifetime maintenance costs 

were caused by preventable errors during design, procurement, installation, operation, 

and maintenance (Scheller, 2004). 

 

b) The Design, Installation & Start-Up phase: Design for 

Maintenance Prevention: 

 

Operating Equipment Asset Management requires “eliminating defects introduced 

directly during the design process (Maintenance Avoidance Design) as well as defects 

introduced through fabrication, construction, installation, operation, and maintenance 

due to design weaknesses. Fundamental reliability-enhancing strategies must be 

incorporated in the design process. Preventable design errors were responsible for 

approximately 17 percent of equipment lifetime maintenance costs (Scheller, 2004). 

Optimizing equipment lifetime reliability at design depends on several issues. System 

Reliability, Availability, and Maintainability including component life and ease of 

repair, are inherent characteristics that originate at design and strongly influence the 

lifetime cost of ownership. Lifetime costs must be assessed more fundamentally during 

the design process. Good design eliminates or minimizes problems, including 

opportunity for operating mistakes. Compromises to reduce cost often result in facilities 

and equipment that are difficult and costly to operate and maintain. Once a system has 

been fielded, no improvement of performance can be achieved without significant 

expense. A reliability risk analysis is useful to ensure that in-service performance will 

meet lifetime expectations and requirements. Return on capital necessitates that new 

manufacturing facilities are designed with reduced operating margin and redundancy. 

This philosophy requires a different design approach and investment to ensure the 

resulting reliability meets mission requirements.  

 

F.1.2 Procurement of Equipment: 

 

Measures to reduce cost of parts and labor often result in reduced production availability 

and output and increased long-term costs. Relaxing material specifications, purchasing 

equipment sized to barely meet specifications, and challenged designs are examples of 

how savings at procurement can cause enormous losses during operation. A decision to 

purchase lower cost components that turn out to have a significantly shorter service life 

compared to the components they are replacing. Assuming the failure pattern is 

recognized, there must be some record of the change, why it was made, conditions prior 

to the change, and expected return. Otherwise, the failure pattern may continue without 

anyone recognizing the deterioration from prior performance (Scheller, 2004). 
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F.1.3 Installation and Commissioning of Equipment: 

 

Equipment installation is equally important to optimized lifetime cost. Only a few 

industry leaders rigorously apply equipment installation specifications that include 

foundation preparation, base-plate leveling and grouting, pipe flange and shaft 

alignment, oil system flushing, and pipe and separator cleaning. Inadequate installation 

and commissioning can cause a lot of expenditure which can be solved by following 

installation and commissioning “best-practice”. The cost to correct the problem during 

operation is multiple times the cost of proper installation (Scheller, 2004). 

 
Figure F.1: Equipment asset management process (Scheller, 2004) 
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Appendix: G 

 

Efficiency Improvements of LNG Plant 

 
G.1: EFFICIENCY IMPROVEMENTS OF LNG PLANT: 

 

G.1.1: With Aero-Derivative Gas Turbines: 

 

LNG plants have used industrial type simple cycle gas turbines, commonly called a 

“Frame” machine, to drive refrigeration compressors. Lighter duty, higher efficiency 

aero-derivative gas turbines have not been used in LNG refrigeration service, although 

they have been used extensively in electric power generation and in pipeline 

compression facilities. Due to their low heat rates and hence significantly higher 

efficiency, use of aero-derivatives in place of the conventional Frame machines could 

reduce fuel consumption and associated CO2 emissions by up to 20-30% with a small 

increment in the total capital cost (Chiu 2003).   However, dry low NOx (DLN) removal 

technology may be required to reduce NOx emissions for the aero-derivatives due to 

higher flame temperatures in their combustors. Turbines equipped with an air intake 

cooling system or water injection system to cool the inlet air to generate additional 

power for the refrigerant compressors will increase the thermal efficiency (Chiu 2003).  

 

G.1.2: Application of Combined Cycle Systems: 

 

In a combined cycle, the waste heat from the gas turbine exhaust is used by a steam 

cycle to generate power or drive another turbine. Greater reductions in fuel consumption 

and CO2 emission rates may be achieved through the use of combined cycle power 

generation and electric motor drivers for LNG refrigeration compression. Chiu (2003) 

states that recent improvements in technology have resulted in a thermodynamic 

efficiency close to 60% for a combined cycle power generation system. However the 

additional capital costs need to be evaluated against increased potential for improved 

efficiencies. It is possible to reduce fuel consumption and CO2 emissions by 40-50% 

using combined cycle power generation in conjunction with electric motor driven 

refrigeration compressors in place of simple cycle Frame gas turbine drivers (Chiu 

2003). 

 
Model Gas turbine 

Drivers 

ISO Rating in 

kW 

LHV Heat rate 

kJ/kWh 

LHV 

efficiency 

Relative CO2 

emission 

Frame mechanical drives     

1F M5382C 28.337 12,309 29.3 1.03 

2F M5432D 32,587 11,899 30.3 1.00 

3F M6511B 37,800 11,120 32.4 0.93 

4F M7111EA 81,557 11,022 32.7 0.93 

Aero Mechanical Drives     

1A LM2500+ 31,319 8,757 41.1 0.74 

2A Coberra 6761 33,482 8,994 40.1 0.76 
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3A LM6000PC 44,619 8,452 42.6 0.71 

4A Trent 800 DLE 52,549 8,479 42.5 0.71 

Combined Cycle power generation    

S-206FA 2xMS6001FA 218,700 6,652 54.1 0.56 

S-207FA 2xMS7001FA 529,900 6,373 56.5 0.54 

2X1 701F 2Xm701f 799,600 6,283 57.3 0.53 

 

Table G.1: Typical Gas turbine Performance and relative CO2 emission (Chiu 

2003) 

 

 
Figure G.1: Theoretical limit rating curves for 2-pole compressor drive motors 

(Kleiner et al 2005)  

 

G.1.3:  Application of Liquid of Liquid Expanders in LNG Plant: 

 

Cryogenic turbines expand liquefied gases from high pressure to low pressure 

converting the hydraulic energy into electrical energy to reduce the enthalpy of the 

liquefied gas and to recover energy. For LNG expanders installed between the main heat 

exchanger and the atmospheric pressure LNG storage tank, a variable speed liquid 

expander can be used also as a control valve to increase the process efficiency. Many 

LNG plants use cryogenic turbine to expand the condensed natural gas from high 

pressure to low pressure, and substantially improved the thermodynamic efficiency of 

the existing refrigeration process, contributing to an increase of LNG output by about 

6% and also a reduction of the greenhouse gas emissions (Chiu 2003).  

 

G.1.4: Inlet Air chilling: (Thomas et al, 2009) 

 

Air evaporation or air chilling at the Gas turbine air inlet: reducing air inlet temperature 

marginally improves the efficiency while increasing available power in tropical 

locations. For an LM 6000 the efficiency between air temperature of 35 deg. C and 15 

deg. C increases by 7% in relative terms. A Heat Driven Absorption Chiller is a cooling 

machine using thermal energy (steam, hot water) instead of mechanical compressors 

consuming electricity or valuable fuel gas. The most common working fluid pair is 

composed of water and Lithium Bromide, a non-toxic and stable salt instead of 

troublesome fluids (CFC or ammonia). A general scheme is provided in figure 1 
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Figure G.2: Heat Driven Absorption chiller (Thomas et al, 2009) 

 

Absorption systems are widely used for air conditioning mainly in South East Asia and 

US. Industrial applications are fewer but still some hundred units are installed in Oil & 

Gas, Refineries or Petrochemical facilities. The main benefits of Heat Driven Absorption 

machine are to make use of low level thermal energy otherwise cooled by external 

cooling media or release to atmosphere. Using Li-Br based absorption system in a new 

plant or for a revamping doesn’t increase the level risk as opposed to Ammonia. In hot 

climate conditions a chilled water loop (7deg.C) can be used to cool down process fluid 

lower than available ambient temperature cooling media. Conversely, cold climate limits 

the benefits of typical Absorption Chillers. Several suppliers can provide large packages 

than can be adapted to local conditions. The operation of absorption chillers is easy with 

a limited number of small pumps and trouble-free static equipment. However corrosion 

if not considered with care can be detrimental to the availability of the chillers. All the 

above characteristics are winning advantages for a successful integration in a LNG 

Plant. Many patents have been applied to use absorption chillers to lower the air inlet 

temperature to gas turbine. However few patents focus on the use of the absorption 

refrigeration cycle for gas liquefaction. 
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Appendix: H 

   

Other potential uses of All Electric concepts 
 

H.1 Introduction: 

 
An LNG project represents an integrated chain of investments and commercial 

agreements linking exploration, production, transportation and marketing activities. 

Natural gas has inherent market risk. Once the final investment decision is made it 

entails a high fixed investment in stationary facilities that cannot be easily changed 

without incurring substantial expense. The design concept of an electrical LNG plant 

aims to ensure up to 365 days per year of uninterrupted refrigeration-gas circulation or 

for periods not limited by either the power plant or the compressor strings. Initial 

additional investment costs for the power plant are expected to be amortized within a 

period of less than five years, depending on the value of LNG at the time. Even 

including distribution losses, electrical drive systems achieve 96% efficiency, resulting 

in an overall refrigeration system efficiency of up to 45%, compared with approx. 32% 

for traditional mechanical drive solutions. Combined-cycle power plants also reduce 

greenhouse gas emissions by around 30% compared with traditional mechanical 

compressor drives. Including process steam supply, overall thermal efficiency may reach 

90% (Devold et al, 2006).The rapid and controlled starting and restarting of pressurized 

compressors minimizes downtimes and eliminates flaring of expensive refrigerant gas, 

while compressor speeds can be optimized and target production can be reached with 

smaller train capacity and unaffected by ambient temperature. All Electric LNG can be 

designed to provide this useful additional feature. All Electric offers the following 

functions: (Siemens, 2009): 

 

 Electronic variable speed drives for current source (LCI) 

 Electronic variable speed drives for voltage source (PWM) 

 Optimized compressor selection 

 Customized and optimized compressor string design 

 Power ratings of up to 90 MW 

 Speeds in excess of 3600 rpm 

 Proven modular designs 

 Rapid on-site installation 

 Pre-installed and pre-commissioned for compressor-string performance tests  

 Capability to start up with no flaring  

 Efficient energy conversion 

 Always full power independent from ambient conditions  

 Increased availability  

 Lower production costs 

 Lower CO2 emissions 

Other than Onshore all-electric LNG, VFD driven Electrical motor have several other 

applications that are discussed below: 
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a) Offshore LNG plants/ Floating LNG: 

 

Offshore LNG plants may make sense in cases where large ‘stranded’ gas reserves exist 

at great distance from any shore line. In these cases, use of a floating plant may be more 

economical than a traditional shore-based approach. Offshore liquefaction is not a new 

or novel idea. It was considered in the Kangan natural gas field in the Persian Gulf 

during 1970s. Several studies have been conducted for building a barge mounted LNG 

plant offshore. A floating facility that can be moved and re-used will substantially 

reduce the risk associated with a stationary investment facility. A floating liquefaction 

plant can reduce the cost of the production as well as provide maximum flexibility in 

developing a gas resource. It has been estimated that a floating LNG project might be 

20-30% cheaper than a comparable size project and the construction time 25% faster. 

The floating plant’s mobility will reduce the construction cost of new pipelines and 

compression facilities that might otherwise be required to bring the gas to a land-based 

plant. It’s also possible to build an LNG plant on a floating platform—a barge—that can 

be towed to the next gas field as soon as the first goes dry. This reusability would make 

it commercially viable to tap smaller natural gas fields, since an LNG plant is a very 

expensive piece of technology (Schröder, 2008). All Electric concepts can be used for 

Floating LNG application. "Whatever the solution here, an E-LNG-based concept would 

seem to be ideal for mobile LNG plants. This is because the entire process has to be 

accommodated in a very small area. On a single floating platform, electric motors are 

much easier and, in all likelihood, safer to integrate than gas turbines, with their fiery 

hearts. Yet irrespective of just how LNG plants will look in the future, electric motors, 

electro-technology know-how, most of all, compressors, is ideally positioned to exploit 

this developing market (Schröder, 2008). 

 

b) Mini LNG Plants:  

 

Small and flexible LNG plants are an enticing prospect. They need to be designed in 

such a way that they can be easily adapted to the requirements of a new location with, 

for example, different gas compositions or production volumes. Applying Electric Motor 

Drive System to Mini LNG plant (Schröder, 2008) 

 
 Mini LNG plant with high energy efficiency by applying electric motor drive 

system with GTG, inverter, motor and centrifugal compressor 

 Availability of conventional LNG plant using direct mechanical driver is not so 

high due to long (20-40 days/year) periodical maintenance of the GT (gas 

turbine).  

 Design flexibility for small scale LNG is not so high due to limited available 

models of GTs. This flexibility is available with electric motors. 

 Electric motor drive system enables high efficiency of plant operation. 
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Figure H.1: Mini LNG Plant (Schröder, 2008) 

 

b) Stranded LNG: 

 

Liquefied Natural Gas (LNG) is becoming a desirable source of energy. Pipelines are 

unprofitable at lengths upward of 3,000 km. For gas fields in remote regions, where a 

pipeline would be too costly, liquefaction and transport via tankers offer a viable 

alternative. Thanks to extremely rapid growth in demand for energy over the last few 

years, LNG has become an energy carrier worth taking seriously. The solution to this is 

to provide a standalone island featuring a dedicated power plant to provide the requisite 

electricity to run electric motor driven LNG plants, the additional costs of such a power 

plant can be recouped within just a few years (Tim Schröder, 2008). In fact, the benefits 

of the stand-alone solution are substantial, not least because such a power plant operates 

in a combined cycle process, which is substantially more efficient than a solitary gas 

turbine in an LNG plant which has broken new ground (Tim Schröder, 2008). 

 

c) Compressor stations:  

 

Grapow (2009) has evaluated the pros and cons of the All Electric compression station 

to the conventional gas turbine driven station. As per this study the overall thermal 

efficiency of Electric compression is at 44% which significantly more than a Gas turbine 

run compressor system. The CAPEX comparison reveals that electric motor is the 

costlier than a Gas turbine option. However the motor run system has considerably 

higher full load or part load cycle efficiency than a conventional gas turbine driven 

system. The motor driven system has immediate restart facility with no limit on number 

of start whereas a gas turbine system has to wait for two to three hours for restart due to 

driver thermal consideration and the limited re-starts per hour. The gas turbine has 

reduced power availability with increase in elevation, temperature and humidity whereas 

an electric motor driven has no such impact and has full power available at all 

conditions. The gas turbine has CO2 and NOx emission which is much reduced in case 

of a motor driven system fed from a combined cycle power station. The maintenance 

cost is much lower and the availability and reliability is much higher for a motor driven 

compression station as compared to a gas turbine driven system. In terms of 

Maintenance expenditure GT concept has a much higher cost than the motor run 

counterpart. In terms of controllability, ease of remote operation, speed control range, 
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starting reliability and auxiliary consumptions High Speed Electric motor provides a 

better advantage over a Gas Turbine counterpart. Overall life cycle cost of a motor 

driven station is much better than Gas Turbine compressor station. 

 

d) LNG ships: 

 

LNG ships use large mechanical drivers for propulsion and compression. The VFD 

driven electrical system can be of good use in which it offers a number of life cycle 

advantages along with added safety benefits. 

 

e) Gas To Liquid Plants: 

 

Electric Drive system delivers numerous benefits for high energy  consuming process 

such as Gas to Liquid plants where large conventional mechanical compressor drivers 

can be replaced with VFD driven motor system which can deliver a number of life cycle 

benefits same as those which are already discussed in the LNG plant.  

Summary: 

According to the International Energy Agency (IEA) in Paris, global demand for natural 

gas is set to increase by about 3.5 % a year until 2020. By then, natural gas will cover 

one-quarter of the world’s energy needs, compared to around 20 % at present. Although 

the non-liquefied variety still accounts for the lion’s share of gas sales, LNG is making 

steady inroads and, according to the IEA, is destined to increase its share of the world’s 

natural gas market from the current figure of 7 % to 10 % by 2010(Schröder, 2008). 

Traditional gas turbines can only operate at fixed rotational speeds, are heavily 

dependent on the ambient temperature, and can’t really be regulated. The performance 

of the compressor, is determined by the gas turbines the output control of which is quite 

limited. That makes it difficult to respond flexibly to changes in production volumes. 

Electric motors, on the other hand, are simple to regulate and can also be water-cooled, 

which makes them largely independent of ambient temperatures (Schröder, 2008). 

Electric motors have one major advantage: they are virtually maintenance free. Gas 

turbines have to be shut down several days a year for routine maintenance, which has a 

significant impact on output at an LNG plant. By contrast, electric motors can operate 

for as long as five years nonstop. In addition, whereas the efficiency of a gas turbine is 

generally around 35 %, an electric motor can manage up to 95 %. And once the 

efficiency of the power plant that is used to generate the electricity is also taken into 

account, the facility’s overall efficiency turns out to be around 52 %. This means 

reduced raw materials consumption and CO2 emissions (Schröder, 2008).  

All-Electric Solution "The oil and gas industry is watching the Snøvhit project 

with great interest it’s a highly conservative sector as far as new technology is 

concerned. Mechanical solutions have been used for decades, but the fully electric 

system represents a sea change. The new technology will need to prove its reliability 
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over a full year before other oil and gas companies climb on the bandwagon. In spite of 

such industry hesitation, Siemens was recently awarded a contract for an E-LNG plant 

for Energy World Corporation on the Indonesian island of Sulawesi. The powerful 

electric motors will drive the compressors (Schröder, 2008). 
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Appendix: I 

 
Torsional Analysis Consideration of All-electric option 

 

I.1 Introduction:  

 
Full lateral and torsional analyses according to international standards need to be 

performed each rotating string prior to detail design (Siemens 2008).In LNG services 

critical aspects must be carefully considered are shaft torsional behavior and 

electromechanical interactions between the Variable Speed drives (VSD) and shaft-line. 

If torsional issues are not addressed then they can cause coupling failures, broken shafts, 

worn gears, fractured gear teeth. The issues can be mitigated by careful designing the 

entire shaft-line by precise modeling of the forcing torsional phenomena, and by 

considering the selection of couplings, gearboxes and rotors from a torsional standpoint. 

Excitation of torsional natural frequencies may come from many sources such as 

running speed, aerodynamic excitations, and misalignment effects and also the pulsating 

torque ripple on the shaft line which is created by the switching nature of the VFD 

(Meher-Homji, 2011). The VFD harmonic content which depends on VFD topology 

must be included in the transient torsional analysis. The variations in the type of VFDs 

and the topologies will affect the torsional excitation orders produced by the drive train. 

Output filters may be used to reduce high frequency harmonics entering the motor for 

both current and voltage source types of VFDs. In a pulse width modulation VFD, if the 

application does not require high switching frequencies, the harmonics may be reduced 

by changing the angles of the modulated pulses during the design stage (Nored et al 

2009). VFD harmonic excitation tends to occur in many discrete frequencies. The 

harmonic content must be included in the transient torsional analysis, particularly for the 

startup event. The variations in the type of VFDs and the topologies will affect the 

torsional excitation orders produced by the drive train. The use of voltage source or 

current source topology may determine the amplitude of harmonic fluctuations although 

other factors can influence the harmonic amplitudes as well. 

 

I.2: Critical Speed Options for the Motor Drive System (Nored et al 2009): 

 

The selection of the drive train speed range is a critical part of the design process. 

Although some compressors may have a large operating window, the torsional or lateral 

rotor-dynamic analyses may limit the speed range. The torque and power limitations of 

the motor can restrict the operational window as well. Successful system design 

frequently involves a compromise between offering as wide a speed range as possible to 

allow for increased operational flexibility and efficiency, while simultaneously avoiding 

rotor-dynamic problems. Other constraints on the speed range can result from machinery 

speed limitations and/or a requirement to avoid certain process conditions (overload, low 

pressure, high pressure, etc). Different gas compositions and pressures/ temperatures 

will affect the torque requirements of the motor. The linearity assumption for speed and 

power is not always valid. The motor must be capable of accelerating the load and 

functioning within the stated operational boundaries. The torque speed curve for the 
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motor should include margins for operational variability. When the motor must operate 

over a range of speeds, additional analyses should be performed to characterize how the 

compressor torque requirements vary with the speed. If any torsional or lateral critical 

speeds overlap the desired operational speed range, additional analyses should be 

performed to characterize the prevalent excitation energy at the overlapping speeds. If 

the rotor-dynamics are not analyzed, the resulting vibration levels at or near the critical 

speeds have the potential to cause significant cumulative fatigue damage and possibly 

lead to failure of drive train components. Three approaches (or any combination thereof) 

may be considered for dealing with lateral or torsional critical speeds that fall within the 

speed range of the motor and compressor system (Nored et al 2009). 
 

The approach to modify the design of the system to place the critical speeds outside the 

planned operating speed range is preferred and is generally possible if the rotor-

dynamics are characterized early in the design process (Nored et al 2009).By avoiding 

any coincidence between the critical speeds and significant excitation energy, the 

possibility of extremely high vibrations or life-reducing events is reduced. Typical 

modifications, if required, include changes to the coupling stiffness and hub 

characteristics, flywheel inertia, shaft diameters, shaft strength (material changes, 

additional heat treatments, or both), bearings, loading conditions, etc. 

 

The option of critical speed avoidance by changing the operating speed range may allow 

the drive train to be designed with more flexibility without reducing the operating range 

of the compressor significantly (Nored et al 2009). The anticipated separation margins 

between the calculated critical speeds and operating speeds should account for any 

uncertainty in the rotor-dynamic analysis. This option requires active control in the VFD 

system to avoid the critical speed windows and is especially useful in cases where a 

sufficient operating window is available above or below the calculated critical speed of 

concern. However, it should be noted that if the critical speed is below the planned 

operating speed range, a quick transition through the critical speed will be necessary 

during start-up events.  

 

A less desirable and not recommended option is to allow short-term operation near 

critical speeds with sufficient damping (Nored et al 2009). This is to let the critical 

speeds to exist within the operational range so long as the response is well-damped, and 

prolonged operation at the subject speed is avoided such that fatigue damage is limited. 

Damping mechanisms may be time-dependent if implemented (examples include 

viscous dampers, elastomeric couplings, bearings, etc.) and should be weighed against 

increased long-term costs associated with maintenance and the implications of high 

vibrations and  fatigue failure, if operation near the critical speed is allowed to occur for 

longer than planned, or with insufficient damping present in the system.   

 

I.3: ROTORDYNAMIC CONSIDERATIONS (Nored et al 2009): 

 

Rotor-dynamic analyses are critical to trains involving electric motor drives and must be 

considered an integral part of the design and selection process. The rotor-dynamic 

studies should be performed early enough in the design process to make changes if the 

predicted stress or torque levels exceed relevant criteria, or if the anticipated separation 
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margins between calculated critical speeds and prevalent excitation are inadequate. The 

first steps in conducting these types of analyses usually involve the determination of 

lateral critical speeds (primarily for the motor and any attached gearbox or compressor 

shafts) and torsional critical speeds (for the entire train). The predicted critical speeds 

are used in conjunction with the mode shapes and a critical speed map (lateral analyses) 

and/or interference diagram (torsional analyses) to determine the likelihood of exciting 

the critical speeds during the planned operating conditions. Similarly, for some systems 

(especially those involving synchronous motor drives or VFD systems which produce 

significant alternating torque) transients, such as start-up or short circuit events, should 

be evaluated with torsional cumulative fatigue calculations. Additionally, lateral 

analyses should be conducted for electric motors, centrifugal compressors, and gearbox 

shafting.  

 

I.4: Types of Torsional Analyses: 

 

Three types of torsional analyses are generally required for electric motor drive systems: 

 

 Critical speed analysis: should be conducted for all compressor/motor systems. In 

terms of critical speeds, the primary torsional design method used for electric motor 

driven compressors is avoidance of critical speed which should be tuned, if 

necessary, to provide an acceptable separation margin from significant excitation 

orders (Nored et al 2009). 

 Forced response analysis: should be conducted for each relevant speed and 

operating condition – In cases where operation near a critical speed is absolutely 

necessary, a forced response analysis should be used to determine the stress levels. 

The resultant stresses should be analyzed for each planned operating condition over 

the anticipated speed range and compared to clearly defined allowable stress values 

to determine acceptability. 

 Transient torsional analysis: should be conducted for start-up and short circuit 

conditions involving large driven inertia loads, critical speeds below the operating 

speed range, long acceleration times, significant compressor loading during start-up, 

or large VFD induced alternating torques, to characterize the cumulative fatigue 

damage which occurs during start-up and any potential 2-phase short circuit, and 3-

phase short circuit conditions short circuit conditions. The results of the cumulative 

fatigue analysis should be compared to the anticipated service life of the train to 

determine acceptability.     

 

I.5: Torsional Damping: 

 

For most torsional systems, damping is provided via the coupling or an attached viscous 

damper. Most modern fixed ratio gearbox designs provide only minimal torsional 

damping. Damping may be added to the train, typically with elastomeric couplings or 

viscous dampers, in order to provide additional damage tolerance, if necessary. As a last 

resort, the operating envelope of speeds and/or loading conditions may need to be 

changed to avoid situations which cause excessive stress levels in the shafting(Nored et 

al 2009). 
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I.6: Allowable Stress and Torque Criteria: 

 

An allowable stress value should be calculated for each section of shafting, for any 

forced response or transient torsional analysis. This allowable stress value should be 

based on the effective endurance limit for the shaft material, which is generally 

developed by applying strength modification factors to the material ultimate tensile 

strength. These factors should include the tensile to shear energy factor, endurance ratio, 

size factor, surface finish factor, reliability factor, safety (design) factors, etc. The 

calculated allowable stress for each section of shafting should be compared to the 

calculated intensified stress from the forced response or transient torsional analysis to 

determine acceptability for each anticipated operating condition. The calculated steady-

state and dynamic torque values should also be compared to the maximum limits given 

by the coupling manufacturer and the gearbox manufacturer (Nored et al 2009). 

 

I.7: Synchronous Motor Slip Frequency Excitation: 

 

Synchronous motors produce a very large excitation torque during the start-up event. 

The frequency of this excitation typically varies from two times the line frequency at 

zero speed, to zero at full speed (motor synchronized), and is commonly referred to as 

the “2x slip frequency.” This excitation should be included in the transient torsional 

start-up analysis (Nored et al 2009). 
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Appendix: J 

Reliability Analysis 

 

J.1  Introduction: 
 

A reliability analysis was carried out on Qatargas starter/helper/ generator VFDs to 

determine the reliability of the IGBT cells and threads by obtaining data from the SAP 

(CMMS software) and the analyzing y Meridium software. The details are given below: 

 
J.2: VFD Cell Failure: Analysis Summary 

 

Number of Assets: 1,008 

Number of Failures: 70 

Initial MTBF: 43,258.35 Days 

Final MTBF: 9,366.75 Days 

Observation Time: 1,040,256.00 Days 

Time to Next Failure: 9,342.17 Days 

Time Terminated: No 

Confidence: 90.00 % 

 

Figure J.1: MTBF Plot of VFD cell failure 

 

Figure J.2: Cumulative failure Plot of VFD cell failure 
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J.3 Thread failure: Analysis Summary 

Number of Assets: 48 

Number of Failures: 69 

Initial MTBF: 2,091.90 Days 

Final MTBF: 452.35 Days 

Time to Next Failure: 451.15 Days 

Observation Time: 49,536.00 Days 

Confidence: 90.00 % 

 

 

Figure J.3: MTBF Plot of VFD Thread failure 

 

Figure J.4: Cumulative failure Plot of VFD Thread failure 

J.3 Summary: 

The analysis demonstrate the falling Mean Time Between Failure of both IGBT cells 

and VFD threads. Further action should be taken to improve the reliability of the threads 

and cells to improve the confidence on Power electronics components. 



Appendix K: Net Present Value (NPV) Sample calculation 

                                                                                233                                     Engineering Doctorate Thesis 
 

     APPENDIX-K 

  Net Present Value (NPV) sample calculation 

NPV calculation for LNG plant - NPV over 25 years    

      

 Evaluation Period     25  years   

      

 Interest rate    7.0%   

      

 LNG Price     $20/MMBTU  for a 9 MMTPA plant  

      

 Rate of rise of LNG price    14%   

      

Revenue in the first year is US$ 359.19m is extrapolated from cot of 7.8 MTPA LNG plant and revenue is 

increased at a rate of 14% every year and discounted at a rate of 7% for the life of the project of 25 years 

 

Year 

(end)  Revenue Discounted Revenue   

 1  359.19 $336   

 2  409.4766 $358   

 3  466.803324 $381   

 4  532.1557894 $406   

 5  606.6575999 $433   

 6  691.5896639 $461   

 7  788.4122168 $491   

 8  898.7899271 $523   

 9  1024.620517 $557   

 10  1168.067389 $594   

 11  1331.596824 $633   

 12  1518.020379 $674   

 13  1730.543232 $718   

 14  1972.819285 $765   

 15  2249.013985 $815   

 16  2563.875942 $868   

 17  2922.818574 $925   

 18  3332.013175 $986   

 19  3798.495019 $1,050   

 20  4330.284322 $1,119   

 21  4936.524127 $1,192   

 22  5627.637505 $1,270   

 23  6415.506756 $1,353   

 24  7313.677701 $1,442   

 25  8337.59258 $1,536   

PV of expected cash flow  $19,887   
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     APPENDIX- L 

         Sample Questionnaire 

1. All Electric equipment has an overall advantage over Gas turbine (GT) 

alternative in engineering, manufacturing, transportation and 

installation: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

2. All Electric LNG requires smaller foot print for installation, lesser 

capital intensive spare parts than Gas turbine driven LNG: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

3. All Electric LNG Factory acceptance tests is less complex, less time 

consuming  and has a shorter and cheaper validation testing schedule 

with fewer bottlenecks than the GT counterpart: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

4. It is more likely that All Electric LNG can be completed within schedule 

and budget considering simplicity in construction, testing and 

commissioning: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

5. All Electric LNG have will need a shorter overall schedule than a 

conventional LNG plant with GT driven compressors: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 
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Comment (optional) ------------------------------------------------------------------------ 

6. The overall technical issues related to ‘Variable Frequency Drives (VFD) 

in All Electric LNG” such as  Harmonics, Torque ripple, Sub-

Synchronous Torsional Interaction (SSTI),Electrical Resonance due 

interaction of harmonics with circuit parameters can be studied and 

mitigated to an acceptable level: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

7. All Electric LNG has a Life cycle cost advantage over a conventional GT 

LNG because better efficiency and better availability because of more 

available production days than the GT counterpart: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

8. All Electric LNG have a safety benefit over the conventional Gas 

Turbine LNG as all fired equipment can be located out of the process 

area and the process areas can be made less noisy: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

9. All Electric LNG has an Operational benefit over conventional Gas 

Turbine LNG such as; faster start up, accurate and wider speed 

variation, better control, full pressure restart capability and faster cool 

down due to absence of slow roll, no effect of ambient temperature, more 

number of production days, better capacity utilization and better 

transient characteristics etc: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

10. All Electric LNG cost lesser to maintain than GT LNG considering the 

fewer and lesser number of planned outages, less spare parts and a 

cheaper Long -Term Services contracts etc: 
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Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

11. All Electric LNG has better availability due to a longer Mean Time 

Between Failure (MTBF) and Mean Time Between Maintenance 

(MTBM) and a shorter Mean Time to Repair (MTTR) longer than a GT 

LNG: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

12. All Electric LNG are more reliable than Gas Turbine driven LNG 

considering that GTs run with tighter parameters and clearances and 

lesser flexibility of operation: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

13. All Electric LNG in a combined cycle generation configuration has got 

higher overall thermal efficiency over the GT driven LNG counterpart: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

14. All Electric LNG in a combined cycle generation configuration is more 

environmental friendly because of lesser plant emissions than the GT 

driven LNG plants: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

15. All Electric LNG has a lesser Payback period as it has a higher number 

of available production days than the Gas Turbine option: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 
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Comment (optional) ------------------------------------------------------------------------ 

 

16. All Electric LNG has a faster restarting capability which has a life cycle 

cost advantage than Gas Turbine counterpart: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

17. All Electric LNG has an ability to de-couple plant production from 

ambient temperature which will help maintain flat LNG production 

throughout the year: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

18. All Electric plant can be built to any capacity as motors have flexibility 

on sizing whereas Gas Turbines are available in fixed sizes hence the 

plants can be built to standard sizes only: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ------------------------------------------------------------------------ 

19. Based on technical and economic reasons ‘All Electric LNG’ can be 

preferred over a gas turbine LNG: 

Strongly disagree Disagree Neutral Agree Strongly agree N/A 

      

 

Comment (optional) ----------------------------------------------------------------------- 

20. Please give your comments, if any, for or against “ALL Electric” as a 

preferred alternative to a conventional Gas turbine driven LNG plant: 

Comment: ----------------------------------------------------------------------------------- 


