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Abstract    29 

A number of models exist to predict lucerne (Medicago sativa L.) dry matter production; however most 30 

of these models do not adequately represent the ecophysiology of the species to predict daily growth 31 

rates across the range of environments in which it is grown. Since it was developed in the late 1990s 32 

the GRAZPLAN model has not been updated to reflect modern genotypes and has not been widely 33 

validated across the range of climates and farming systems in which lucerne is grown in modern times.  34 

Therefore the capacity of GRAZPLAN pasture growth model to predict lucerne growth and 35 

development was assessed.  This was done by re-estimating values for some key parameters based on 36 

information in the scientific literature. The improved GRAZPLAN model was also assessed for its 37 

capacity to reflect differences in the growth and physiology of lucerne genotypes with different winter 38 

activity.  Modifications were made to GRAZPLAN to improve its capacity to reflect changes in 39 

phenology due to environmental triggers such as short photoperiods, declining low temperatures, 40 

defoliation and water stress.  Changes were also made to the parameter governing the effect of vapour 41 

pressure VPD on the biomass-transpiration ratio and therefore biomass accumulation. Other 42 

developments included the representation of root development and partitioning of canopy structure, 43 

notably the ratio of leaf to stem dry matter.  Data from replicated field experiments across Australia 44 

were identified for the purpose of model validation. These data were broadly representative of the range 45 

of climate zones, soil types and farming systems in which lucerne is used for livestock grazing.  46 

Validation of predicted lucerne growth rates was comprehensive due to the plentiful data.  Across a 47 

range of climate zones, soils and farming systems there was an overall improvement in the capacity to 48 

simulate the pasture dry matter production, with a reduction in the mean prediction error of 0.33 and 49 

the root mean square deviation of 9.6 kg/ha/d.  Validation of other parts of the model was restricted 50 

however as information relating to plant roots, soil water, plant morphology and phenology were 51 

limited. This study has highlighted the predictive power, versatility and robust nature of GRAZPLAN 52 

to predict the growth, development and nutritive value of perennial species such as lucerne. 53 
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1 Introduction 56 

Lucerne (or alfalfa, Medicago sativa L.) is the most widely grown perennial pasture legume in the 57 

world.  In Australia, lucerne is used in a wide range of livestock and farming systems.  It is grown in 58 

areas ranging from cool temperate to subtropical areas for both intensive and extensive agriculture in 59 

both dryland and irrigated settings.  It is commonly grazed, or cut and conserved as hay or silage.  It is 60 

also often integrated into crop-livestock systems as a ley phase in cropping rotations to control weeds 61 

and disease (Dalal et al. 2004), to augment soil nitrogen and carbon stocks (Angus and Peoples 2012), 62 

and to improve soil structure (Hanley et al. 1964) and water infiltration (McCallum et al. 2004). Lucerne 63 

is also grown in order to capitalise on summer rainfall to produce quality forage; it also alleviates 64 

waterlogging (McCallum et al. 2004) and de-waters the soil profile (e.g. Dolling 2001) making it an 65 

important tool in combating secondary soil salinity.   66 

 67 

A wide range of germplasm options from different genotypes are available to match different 68 

combinations of farming systems, climate and soil type.  Available genotypes vary in their winter 69 

growth activity (the inverse of which is known as fall dormancy) from winter inactive to highly winter 70 

active (Humphries et al. 2004).  Farmers choose genotypes based on the desired availability of forage, 71 

persistence and tolerance to defoliation.  Compared to regions in the northern hemisphere that 72 

experience extreme cold periods, the growing season of lucerne in Australian farming systems is 73 

commonly longer and stands may be defoliated more frequently, and most of the year round in many 74 

areas (Lodge 1991).   75 

 76 

The exact nature of the physiological differences between lucerne genotypes with differing winter 77 

activity is not well understood.  For example various authors have found that more winter-active 78 

genotypes do not initiate the inactivity (or dormancy) process as early as winter-inactive genotypes 79 

(Bula et al. 1956; Shih et al. 1967; Paquin and Pelletier 1980). Brown et al. (2005) suggested that the 80 

rate of leaf emergence also showed genotype dependency, possibly in relation to assimilate supply. 81 

However the actual differences in terms of ecophysiology such as the initiation or termination of 82 
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dormancy are not clear from the literature and the actual effects might be complicated by genotype by 83 

environment interactions. 84 

 85 

In Australia, the proportion of land sown to lucerne is increasing (Donald et al. 2012) with expansion 86 

from 3.2 M ha in 2006 to 7.5 M ha considered realistic in the medium term (Robertson 2006).  87 

Mathematical modelling has an important role to achieve this expansion, because it offers the 88 

opportunity to understand the productivity of lucerne, especially in highly variable climates, and allows 89 

farmers and their advisors to confidently plan to maximise the benefits to farm operations with 90 

consideration of the business risks.  These types of models need to be developed on sound principles, 91 

and thoroughly validated.    92 

 93 

The ability to accurately predict responses in the growth and nutritive value of lucerne to environmental 94 

variations is of primary importance in modelling production from grazing systems (Brown et al. 2012).  95 

The responses of perennial forages such as lucerne to environmental conditions are, however, more 96 

challenging to predict than for annuals due to the activity of the perennial organs (Teixeira et al. 2009). 97 

In particular this involves the need to represent the dynamics of assimilate storage and mobilisation in 98 

the perennial reserve organs in response to environmental conditions (photoperiod and temperature) 99 

experienced by plants during the year (Teixeira et al. 2010); hence it is important to take a biophysical 100 

approach. The interactions between lucerne and its environment are complex (Christian 1977).  Often 101 

interactions due to changing temperature, moisture stress, nutrient status and/or light, as well as the 102 

length of grazing period, influence plant phenology and physiology which in turn have an effect on 103 

lucerne biomass quantity and quality (Lodge 1991).  The interactions among growing conditions, 104 

defoliation patterns and winter growth characteristics influence the relationship between flowering 105 

stage and the partitioning of assimilates.  A number of attempts have been made to express dormancy 106 

in lucerne models (Fick 1984; Kanneganti et al. 1998; Moot et al. 2001; Chen et al. 2008; Teixeira et 107 

al. 2009; Pembleton et al. 2011), however while they were effective in replicating biomass dynamics 108 

for a given dataset they were not physiologically robust and therefore it is difficult to confidently 109 
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transfer the parameter sets across diverse combinations of climate and different farming systems in 110 

other locations.  As in Australian farming systems defoliation through cutting or set stocking/rotational 111 

grazing can occur all year round, in predictive models there needs to be careful consideration of the 112 

links between plant physiology, phenology and the plant’s environment.    113 

 114 

Despite extensive research conducted worldwide contributing much to the collective knowledge of the 115 

ecophysiology of lucerne, the ability to accurately model lucerne plant physiology across the diverse 116 

spectrum of environments, and genotypes remains underdeveloped. Simulating the growth and 117 

development of lucerne which occurs largely as a result of dormancy and the ecophysiology of the 118 

lucerne plant (i.e. physiological responses to its environment) (Brown et al. 2005; Teixeira et al. 2009) 119 

are significant challenges and several areas remain elusive for modelling. These include accurately 120 

predicting lucerne phenology (such as the initiation of reproductive growth and flowering), particularly 121 

in autumn; and its acquisition and use of below-ground reserves; capturing differences between 122 

genotypes with different levels of winter activity; and predicting changes through the year in the 123 

nutritive value of lucerne.  A number of models predict lucerne growth, such as CropSyst (Stöckle et 124 

al. 2003), APSIM (Robertson et al. 2002) and ALSIM (Fick 1984). These biophysical models of plant-125 

soil-climate dynamics represent carbon assimilation, partitioning and utilization (Fick and Onstad 1988; 126 

Robertson et al. 2002) to simulate growth, development and N accumulation in response to temperature, 127 

photoperiod, soil water and N supply and were developed primarily for lucerne stands under cutting 128 

management.  None of these models represent different genotypes, nor defoliations of lucerne stands 129 

by grazing animals which is the most common management system in Australia.   130 

 131 

This study aimed to review and revise the lucerne parameter set for lucerne in the GRAZPLAN model 132 

of pasture growth (Moore et al. 1997) to improve its ability to predict growth rate; and validate the 133 

predictions of the model set against experimental data from different agro-ecological areas within 134 

Australia.  In particular we attempted to model the differences in winter growth activity between 135 

genotypes; and to formally test the model in Mediterranean environments, with temperate and summer-136 
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dominant rainfall.  This required updating the model to better represent seasonal phenology, biomass 137 

partitioning, leaf:stem ratio, nutritive value etc.  Previous versions of GRAZPLAN (and APSIM, 138 

Robertson et al. 2002) were based on the semi winter–active cultivar, Hunter River, which has been 139 

largely superseded by other options and so the model was updated to include the full range of genotypes 140 

available to farmers.   141 

 142 

2   Materials and Methods 143 

2.1 The GRAZPLAN model 144 

The GRAZPLAN simulation model of grazed temperate grasslands (Moore et al. 1997) is a biomass-145 

based, multi-species model that operates at a daily time step and that is designed to capture the dynamics 146 

of both perennial and annual plant species. The model includes equations for the phenological cycles 147 

of various classes of perennial and annual plants, including representation of reduced winter activity 148 

caused by cold conditions or by drought; capture of light, water and soil nutrients; assimilation and 149 

respiration; the allocation of net assimilate to the production of leaves, stems, roots and seeds, including 150 

the influence of phenological stage on allocation; relocation of below-ground reserves to new shoot 151 

growth; the dynamics of forage nutritive value; and the death, fall, decomposition and disappearance of 152 

dead biomass. It has been specifically designed to interact with a model of selectively grazing livestock 153 

(Freer et al., 1997). The GRAZPLAN models, and decision support tools based on it, are used widely 154 

within Australia for purposes of research (e.g. Cayley et al. 1998; Moore et al. 2014) and also in 155 

decision support for producers (Donnelly et al. 2002 and references therein; Warn et al. 2006). In this 156 

study, the GRAZPLAN grassland model has been used in conjunction with the APSIM soil water, soil 157 

nutrient cycling and surface residue models (Holzworth et al. 2014). 158 

 159 

Defoliation by either grazing or cutting is represented in the GRAZPLAN model. Defoliation by cutting 160 

removes shoots above a nominated height; the relative distribution of leaf and stem over the height 161 

profile is modelled, so that cut herbage can contain a higher proportion of leaf than the stand as a whole. 162 
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Shoot biomass is divided into age cohorts of regularly decreasing dry matter digestibility (DMD) and 163 

the declines in digestibility of living leaves and stems due physiological senescence, and of dead 164 

herbage due to microbial decomposition, are modelled as functions of temperature and (for dead 165 

herbage) moisture status. Grazing is controlled by the animal module of GRAZPLAN (Freer et al. 166 

1997). Briefly, all forage above a livestock-specific height is aggregated into 6 equally-spaced 167 

digestibility classes; animals are assumed to select higher digestibility classes preferentially over those 168 

of lower digestibility, and to be able to digest the latter more rapidly and so to consume more of them 169 

(Freer et al. 1997); and total consumption of forage in each digestibility class is allocated pro rata to 170 

the species and plant parts of which it is comprised (Moore et al. 1997).  171 

 172 

2.2 Revision of the GRAZPLAN genotypic parameters for lucerne 173 

2.2.1 Allocation of growth between roots, leaves and stems 174 

Khaiti and Lemaire (1992) found that the seasonal variations in potential shoot production of lucerne 175 

were not determined by changes in the radiation use efficiency for the production of total biomass, but 176 

by the annual pattern of assimilate partitioning between roots and shoots. The seasonality in shoot 177 

production which is characteristic of lucerne – and which partly determines its pattern of forage supply 178 

– is therefore largely driven by differences in assimilation partitioning throughout the year.  Teixeira et 179 

al. (2008) found that fractional partitioning of dry matter to roots increased from near zero in winter 180 

and early spring to more than 0.45 in autumn (i.e. the period of reduced shoot growth). The latter figure 181 

corresponds to a root:shoot ratio of approximately 0.8, so the parameter giving the “target” root:shoot 182 

ratio during vegetative growth was decreased to this value; the target ratio after flowering was set to 183 

0.3. 184 

 185 

Modelling experimental data sets in which leaf and stem biomass were separated highlighted that the 186 

original parameter set underestimated the leaf fraction.  This is of importance as the leaf fraction is 187 
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arguably the single most important determinant of value for livestock production. This problem was 188 

addressed in the following ways: 189 

 190 

 The parameters governing allocation to leaf as a proportion of shoot allocation during vegetative 191 

growth were increased to a fixed value of 0.80 (in the original parameter set, this value ranged 192 

between 0.25-0.70 depending on the degree of shading) based on the work of Teixeira et al. (2008) 193 

who found that the fractional partitioning of dry matter to roots increased from near zero in winter 194 

and early spring (reproductive growth) to more than 0.45 in autumn (i.e. the period of reduced 195 

activity). The latter figure corresponds to a root:shoot ratio of approximately 0.8, 196 

 The parameters affecting the phenology (KV3,  KV5, KV6), specifically the transition from 197 

vegetative to reproductive stages were taken from field data reported by Moot et al. (2001), Brown 198 

et al. (2005), Zahid (2009) and Teixeira et al. (2011).  The canopy morphology profile of the sward 199 

was adjusted so that there would be a better representation of the sward in response to selective 200 

grazing.  The upper layers of the sward have a higher proportion of leaf (Woodward and Sheehy 201 

1979), so that samples of herbage obtained by cutting to heights above ground level have a higher 202 

proportion of leaf than the pre-cutting sward as a whole.  Consequently, the “morphology” 203 

parameter KMO1, which describes the variation of the leaf:shoot mass ratio with height, was fitted 204 

by least-squares minimisation to the data of Woodward and Sheehy (1979), resulting in a value of 205 

-0.30 (which implies that there is a height below which all herbage is composed of stem), 206 

 Leaf:stem ratio in lucerne is reduced by high temperature (Carter and Sheaffer (1983). This effect 207 

is captured in the GRAZPLAN model through the link between phenology and allocation between 208 

stem and leaf: higher temperatures lead to more rapid initiation of reproductive growth and 209 

flowering, and assimilate is redirected from roots to stems during the reproductive phenological 210 

stage (see equation 36 of Moore et al. (1997).   211 

 212 
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Changes were also made to the parameter governing the effect of VPD on the biomass-transpiration 213 

ratio.  This influences biomass accumulation under low CO2 conditions when stomata are closed.  The 214 

model was found to fit the experimental data better if the parameter setting the temperature above which 215 

photosynthesis proceeds at its maximum rate was increased to 18°C. 216 

 217 

2.2.2 Extension of the rooting front  218 

The rate at which the rooting front of a newly-sown lucerne stand develops (called the extraction front 219 

velocity or EFV) is important in determining the length of time a lucerne stand takes to exploit this soil 220 

water resource.  In the GRAZPLAN model, the EFV is modelled as a function of soil bulk density, sand 221 

content, soil moisture content and thermal time. EFV increases with decreasing bulk density and with 222 

increasing sand content, both of which imply the presence of larger soil pores into which roots can 223 

penetrate.  224 

 225 

Data presented by Dolling et al. (2005a) for 9 locations in Western Australia were used to estimate the 226 

parameters of the existing EFV sub-model, because only this data set included both a range of soil types 227 

and measurements of the soil attributes necessary to estimate EFV using the GRAZPLAN model 228 

equation. Rather than use the average EFVs over the whole soil profile presented by Dolling et al. 229 

(2005a), EFVs for the B horizons were estimated by linear regression of the data presented in their 230 

Figure 3. This was done to control the effects of soil moisture and temperature on EFV: the experimental 231 

conditions in the Dolling et al. experiment made it likely that there would always be soil moisture 232 

available at the base of the rooting front, and temperatures in the subsoils would not vary greatly from 233 

the long-term mean, allowing the measured EFVs in mm/d to be converted to the values in mm/°C.d 234 

that are predicted by the model equation. 235 

 236 

The 4 parameters (KR2 to KR8) for the effect of bulk density and sand content on EFV (Appendix A) 237 

were fitted to the measured EFVs by the method of least squares. Figure 1a compares the fitted and 238 
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estimated EFVs, and Figure 1b shows the fitted relationship between EFV and bulk density for soils 239 

with a range of sand contents.  The RMSE was 0.41 mm/day for the Dolling et al. (2005a) data.   240 

 241 

2.2.3 Representing different winter activity types 242 

A period of reduced winter activity or sometimes referred to as “dormancy” is a distinctive characteristic 243 

of the annual growth cycle of lucerne. Reduced winter activity relates to a collection of processes that 244 

enable the plant to survive during the onset of stressful times of the year and that manifest as a slowing 245 

of shoots growth.  For lucerne, during this period the plant continues active photosynthesis but 246 

transitions from partitioning assimilates and activity to below-ground rather than above-ground 247 

structures (Christian 1977). Lucerne genotypes can be rated for their winter activity according to the 248 

extent of shoot elongation in winter. Plants are cut at the end of autumn and their productivity, canopy 249 

height and leaf:stem ratio 4 weeks later are used to assign a winter activity rating.  For the purposes of 250 

GRAZPLAN genotypes with rating between 1 and 11 have been classed into four groups: winter 251 

inactive (WI, activity rating 1-3), semi-winter active (SWA, rating 4-5), winter-active (rating 6-7) and 252 

highly winter active (8-11)(Humphries et al. 2004). 253 

 254 

Attempts to parameterise the existing model for the initiation of reduced activity were unsuccessful, 255 

and so this part of the phenology submodel was re-specified. A lagged mean temperature is defined as: 256 

 257 

Tlag(t) = Tmean/KV30 + Tlag(t-1) x (1–1/KV30) 258 

 259 

and the sward displays reduced activity whenever the following condition holds: 260 

 261 

RAMP( Tlag, KV26, KV27 ) + RAMP( DL, KV28, KV29 ) ≥ 1 262 

 263 

The same equation controls both the start and end of the period of reduced activity. When reduced 264 

activity is no longer enforced, the phenological cycle recommences at the start of vegetative growth. 265 
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This submodel treats reduced activity as an enforced rather than induced partial dormancy, i.e. it ends 266 

shortly after environmental conditions become suitable for growth. This assumption is supported by the 267 

experimental evidence of McKenzie et al. (1988). 268 

 269 

The equations describing the start and end of reduced winter activity were modified to use 5 new 270 

parameters (see Appendix A).  The literature is unclear whether these triggers vary according to winter 271 

activity rating, but similar values have been concluded from experiments in different environments and 272 

with different genotypes (Major et al. 1991; Brown et al. 2005; Sim 2014). What is known, however, 273 

is that winter-inactive genotypes partition greater amounts of reserves to the taproot and consequently 274 

have a greater reduction in shoot growth than winter-active genotypes (Hodgson 1964; Teuber and 275 

Brick 1988). The modified GRAZPLAN model was therefore parameterised upon the premise that 276 

differences in dormancy of lucerne genotypes are best described as differences in the intensity of 277 

dormancy rather than differences in its duration. 278 

 279 

The parameters of the new equation are taken to be the same for all genotypes, so that the simulated 280 

duration of reduced activity in a given environment will also be the same.  (It was not possible to test 281 

this assumption using the available experimental datasets, but the available evidence provides little 282 

support for an alternative parameterization).  Differences in winter activity classes are instead assumed 283 

to be due to two physiological differences: 284 

 More winter-active genotypes undergo a relatively smaller reduction in meristematic function 285 

during the period of reduced winter activity (represented by KMR1, the maximum relative growth 286 

rate of shoots during the “winter-inactive” phenological stage). This results in a lower root:shoot 287 

ratio during the winter, i.e. proportionately less investment of assimilate into the perennial organs, 288 

in more winter-active genotypes.  289 

 More winter-active genotypes remobilize root reserves more rapidly into aboveground tissue when 290 

conditions are suitable, such as after defoliation and at the commencement of reproductive growth.  291 
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The parameter values describing these differences in winter activity were derived by trial-and-error 292 

calibration to the spring and summer experimental data sets, especially those with frequent defoliation 293 

(see KMR1, KTL1, KTL2 in Appendix A).  It is possible that other factors may vary between genotypes such 294 

as the temperature and photoperiod triggers relating to the period of winter inactivity, however as yet 295 

these are not well enough defined experimentally to specify differentially in the model.     296 

 297 

A complete listing of the GRAZPLAN parameter set for lucerne is given in Appendix A.   298 

   299 

2.3 Selection of experimental data sets for testing 300 

Because the GRAZPLAN models are applied across a wide range of environments, the first criterion 301 

for selection of the available databases for model validation was to obtain experimental datasets that 302 

gave reasonable coverage of this environmental diversity within the grazing regions of Australia. 303 

Datasets were therefore collated from around Australia, covering the range of climates, soil types and 304 

farming systems in which lucerne is used throughout the continent.  Experiments covering longer spans 305 

of time were preferentially chosen because they allow the model to be tested against a greater range of 306 

temperature and moisture conditions.  A range of datasets with desirable characteristics were sourced 307 

and a final set of 7 experiments was chosen based on the availability of adequate site characterisation 308 

in terms of soil properties and local meteorological conditions during the experiment, the length of 309 

record, whether shoot biomass accumulation was recorded at for least 10 intervals, the inclusion of a 310 

number of genotypes (differing in their winter activity) in the experiment, as well as the availability of 311 

data other than shoot production (e.g. chemical composition of the shoot material, leaf:shoot proportion, 312 

root data, soil water dynamics etc.).  The locations of the selected experimental data sets are shown in 313 

Figure 1 and the experiments are summarised in Table 1. 314 

 315 

2.4 Simulation of the experimental data sets 316 

Simulations of each experiment were constructed using the GRAZPLAN pasture and livestock models 317 

(Freer et al. 1997; Moore et al. 1997) linked to the APSIM soil water and soil nutrient cycling models 318 
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(Holzworth et al. 2014) by using the AusFarm software (version 1.4.8). Weather data (precipitation, 319 

maximum and minimum air temperature, vapour pressure deficit, solar radiation) were obtained from 320 

official local (or onsite experimental) weather stations where possible; otherwise a Patched Point dataset 321 

for the closest climate station was extracted from the SILO data base (Jeffrey et al. 2001). 322 

 323 

Soil physical and chemical attributes were taken from on-site measurements where available; otherwise 324 

soil attributes were acquired for the most suitable soils using detailed information in databases such as 325 

APSoil (Dalgliesh et al. 2009) based on advice from local experts. Soil attributes for the Forth and 326 

Cranbrook sites were taken from the modelling study of Ojeda et al. (2016), which also used the APSIM 327 

soil water balance model. Local soil data for some sites such as the Tamworth experiments in particular 328 

were limited, which introduces uncertainty into model predictions from the outset.  Where not available 329 

from records or local experts, the maximum rooting depth of each species was set based on soil physical 330 

properties (e.g. bulk density). 331 

 332 

Details of management practices such as sowing, fertiliser use, grazing, cutting and weed control were 333 

extracted from publications relating to each experiment (Table 1) and reproduced using the 334 

management-rule system available in AusFarm (Moore 2014).  Where descriptions of management 335 

activities were incomplete, they were inferred based on the authors’ and local experts’ knowledge of 336 

the same or similar systems. Information on cutting heights and the durations and stocking densities in 337 

periods of grazing was frequently not reported. 338 

 339 

The initial conditions of the soils at the time of sowing of the lucerne were not recorded for any of the 340 

experiments used for validation. In order to reduce this potentially large source of uncertainty in soil 341 

moisture, carbon and nitrogen pools, each simulation was run for a period prior to the commencement 342 

(i.e. sowing) of each experiment. In a number of cases the pre-experimental management of the sites 343 

was not fully reported; pre-experimental conditions for these experiments were modelled based on the 344 
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advice of local experts and typically a fallow period with regular weed control was simulated prior to 345 

sowing of the lucerne.  346 

 347 

In order to realistically represent the experiments, simulations consisted of mixed swards rather than 348 

monocultures, even though the botanical composition, or total content of species other than lucerne, 349 

was only recorded or reported for a minority of sampling dates.  In most cases this meant the inclusion 350 

of a winter grass, forb (such as a broadleaf weed) and sometimes (if reported) an annual legume and 351 

summer grass. All species except lucerne were sown in the simulations prior to the start of the fallow 352 

period.  353 

 354 

The experiments were defoliated in various ways, following the management reported in the papers 355 

describing them.  Defoliation techniques included grazing, cutting, others were grazed followed by 356 

cutting the residual biomass to a set height. Grazing or cutting activities were carried out using the 357 

corresponding events in the GRAZPLAN model.  The dates of defoliation were defined in the datasets.  358 

Cutting events were modelled using the corresponding event in the GRAZPLAN model, with a best-359 

available estimate of the cutting height used. Mown biomass was either removed from the plot or 360 

retained, as reported for each experiment. Grazing was often reported as ‘crash grazing’, i.e. sheep 361 

grazed the experimental plots at a high stocking density until herbage mass was reduced to a low level.  362 

This residual biomass was reported following estimates for experiments as a whole but not measured. 363 

In these experiments, the length of each modelled post-harvest grazing period depended on the 364 

availability of forage. In other cases the number of sheep was adjusted according to the pre-grazing 365 

biomass so that animals were on the plots for a set period of time. 366 

 367 

In some of the experiments, the height to which biomass samples were cut was not the same as the 368 

height to which plots were subsequently mown. The actual sampling height was taken into account 369 

when recording biomass values for comparison with measured data, including the differentials in leaf 370 
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proportion in the sampled biomass and the un-sampled residual.  Details of the phenology at defoliation 371 

were not often recorded or reported however.  372 

 373 

For each data set and sampling interval, pasture growth rate (PGR, kg/ha/d) was calculated for the 374 

period from completion of cutting or grazing to the next herbage sampling date. This was denoted 375 

“actual” PGR. The modelled PGR for the same period was also calculated and the two values compared 376 

for each time interval. 377 

 378 

3   Results 379 

3.1 Simulation of experimental data sets 380 

Model predictions for a selected winter activity class were compared against the corresponding data 381 

from each of the 7 experiments. A winter-active or highly winter-active genotype has been selected in 382 

each case as a reference as these genotypes are widely suited to Australian farming systems.  Predictions 383 

are then are summarised over different seasons, for one genotype at each location compared to the 384 

experimental data (Figure 3) showing that the strength of the model predictions vary with season and 385 

with location.  386 

 387 

Model predictions for lucerne stands at Forth and Cranbrook locations in Tasmania captured the 388 

seasonal patterns of pasture growth satisfactorily over the 6 site-years at these two locations, with root 389 

mean square deviations (RMSD) for PGR of 21 kg/ha/d at Forth and 16 kg/ha/d at Cranbrook. At both 390 

locations, the regression of actual PGR compared to modelled PGR was not significantly different from 391 

the 1:1 line. Overall, the model adequately reflected the high growth rates in summer.  At both sites 392 

there was there was no consistent relationship between the residuals and seasonality.  As these two 393 

locations there was no difference in the average prediction residuals between the four genotypes, but 394 

there were stronger R2 for the SWA and WA genotypes.   395 
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At Hamilton the RMSD for PGR at 21 kg/ha/d was similar to the Tasmania sites, but with the model 396 

significantly over predicting daily PGR.  The predictions were strongest for the SWA, followed by WA 397 

and then HWA. The model’s predictions for the Hamilton dataset do not show systematic errors at 398 

particular seasons of year however were weaker for winter growth.  Importantly the model successfully 399 

captures the high spring growth rates in the Hamilton data set.  For the Cootamundra experiment there 400 

was only moderate (although statistically significant) agreement between actual and modelled PGR 401 

values, with a RMSD of 19 kg/ha/d. There was no distinguishable pattern in the model deviations due 402 

to seasonality.   403 

 404 

Lucerne growth rates in Boschma experiment at Tamworth experiments were the best predicted with 405 

an RMSD of 13 kg/ha/d. The relationship between predicted and actual growth rates did not depart 406 

significantly from the 1:1 line overall, but autumn growth rates were over-predicted. While the 407 

GRAZPLAN model succeeded in representing periods of low lucerne growth and the subsequent 408 

recovery in the Lodge experiment, the quantitative performance of the model in this experiment was 409 

the poorest of the 7 data sets with a RMSD of 13 kg/ha/d but a low R2 of 3% that was non-significant.  410 

As the soil properties of the Lodge experiment were unknown it has been omitted from further 411 

summaries of overall measures of model performance and further discussion.  412 

 413 

The changes in lucerne growth rate over time were well predicted at the low rainfall site at Quarading 414 

with a RMSD of 5.9. The correlation between actual and predicted growth rates was moderately high 415 

(R2 of 56.6%) and the relationship between actual and modelled growth rates was close to the 1:1 line 416 

with a slight under prediction overall. There was no apparent relationship between the time of year and 417 

the residuals in the model’s predictions. 418 

 419 

Figure 4 summarises the overall patterns of lucerne growth in the datasets from 6 locations/experiments 420 

and also the modelled patterns of growth rate over the same periods of time and calculated in the same 421 

way (i.e. allocating growth in each defoliation interval by assuming that the rate of growth over each 422 
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cutting interval was constant). While the model over- and under-predicts growth rates in each season, 423 

the only consistent bias in these average growth rates is a tendency for the model to over-predict autumn 424 

growth rates.  In the other seasons, the model over-predicts for some experiments and under-predicts 425 

for others. When summarised across seasons and experiments, model captures most of the variation in 426 

the seasonal patterns of lucerne growth (data not shown). The model explains 84.5% of the variation 427 

across seasons and experiments, with an overall RMSD of only 9 kg/ha/d. 428 

 429 

The capacity of the new parameter set to predict differences between winter activity was relatively 430 

modest. Overall, the new parameters were quite successful at describing the differences between the 431 

cultivars in the Tasmanian experiments, but predicted an advantage for winter-active genotypes at 432 

Tamworth that was not reflected in the experimental results.  At Hamilton, the lower overall production 433 

of semi-winter active genotypes relative to highly winter active genotypes was correctly predicted 434 

(although underestimated) but the large measured difference between winter active and highly winter 435 

active genotypes was not captured by the model. Given the non-linear response between winter activity 436 

rating and total production in this experiment, it appears that some other factor not accounted for in the 437 

model – perhaps disease – may have influenced the production of the winter-active cultivar (SARDI 7).    438 

 439 

3.2 Long-term behaviour of modelled lucerne stands 440 

The new lucerne parameter set was used to simulate long-term patterns of growth rate in permanent, 441 

dryland lucerne monocultures grazed by sheep. This was done in order to assess the plausibility of the 442 

modelled growth over the long term.  Eight cutting dates at regular intervals of 45 days were used, with 443 

the first cut on 1 September so that the winter cutting interval was slightly longer than the other seven. 444 

Simulations were run from 1 January 1970 and average growth rates for cutting intervals that ended in 445 

the 40 years from 1972-2011 were summarised.   446 

  447 

Long-term average pasture growth in these plausibility-simulations was high (Figure 5), reflecting the 448 

lax grazing regime, lack of weed competition and the ready supply of N to the lucerne through biological 449 
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fixation. The main feature of the growth rate patterns presented in Figure 5, however, is the high 450 

variability in lucerne growth rates between years (except at Forth, even under dryland conditions). 451 

 452 

The modelled median lucerne growth rates follow a similar seasonal pattern to the corresponding 453 

experimental datasets at Forth, Cootamundra and Tamworth. At Hamilton, however, the long-term 454 

simulation has a higher summer than spring growth rate, and at Quairading a permanent lucerne stand 455 

utilises any stored soil water within 3-4 years and is predicted to grow very little over summer thereafter, 456 

unlike the lucerne ley pastures in the Quairading experiment (Dolling et al. 2005b; Latta and Lyons 457 

2006).  This exhaustion of stored water reserves has previously been identified by various authors (e.g. 458 

Dolling et al. 2011). 459 

 460 

4   Discussion 461 

The model successfully predicts lucerne growth at locations where it grows and is grazed all year round.  462 

We have shown that using the new version of GRAZPLAN this is possible for a range of genotypes.  463 

The modelling approach used was contingent on phenology; although none of the datasets used 464 

contained records of plant phenology at a number of different stages during the experiments.  However, 465 

the methods used mean that the tests of the new GRAZPLAN model parameters are particularly rigorous 466 

by the standards of grassland model validation studies. First, the model has been tested across a wide 467 

range of contrasting environments. Second, considerable effort has been made to base the soil 468 

descriptions and weather data on locally-measured values. Third, by using the management logic 469 

available in the AusFarm software, the actual experimental management has been mimicked as closely 470 

as possible, taking the individual features of each experiment into account. These have been effective 471 

to ensure the model is robust and can be used for grazing and cutting systems across a wide range of 472 

Australian conditions.   473 

 474 

We have also increased the rigour of our validations by assessing the GRAZPLAN model’s 475 

performance from its predictions of growth rate, rather than from predictions of harvested biomass. In 476 
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grazing experiments, biomass measurements are auto-correlated, and so it is easier to predict them to a 477 

given level of accuracy than it is for growth rates. In cutting trials such as those used here (i.e. locations 478 

at Hamilton, Tamworth and the 2 Tasmanian sites), the harvested biomass is the product of the average 479 

growth rate (which must be predicted by a model) and the interval between cuts (which is known in 480 

advance of the model run).  If there is variation in the cutting intervals, therefore, the correlations 481 

between predicted and actual growth rate can be expected to be lower than those between predicted and 482 

actual yield.   483 

4.1 Predictions of lucerne growth rate over short intervals  484 

Mean prediction errors (MPE, i.e. the ratio of the RMSD to the mean value) of PGR ranged from 0.26 485 

at Forth to 0.74 for the Cootamundra experiment.  The average MPE across sites was 0.52.  The same 486 

datasets were modelled using the original parameter sets.  The original parameter set had two genotypes 487 

‘semi winter dormant’ and ‘winter active’ which were used for the datasets of winter inactive and semi 488 

winter active, and winter active and highly winter active genotype respectively.   When the same sites 489 

were modelled with the original parameter set, the average MPE across sites was 0.854; the new 490 

parameter set and dormancy equations resulted in a reduction of MPE at all of the locations and an 491 

overall improvement in RMSD of 9.6 kg/ha/d.  492 

 493 

To place this into context, it is useful to compare it to other studies. One of the only multi-site studies 494 

involving lucerne was reported by Ojeda et al. (2016).  We reinterpreted the production data from Figure 495 

8 in Ojeda et al. (2016) and calculated the growth rates based on available dry matter above the reported 496 

30 mm cutting height.  Comparing the results for the winter-active genotype at the Cranbrook site, the 497 

MPEs were the same.  For the high producing site at Forth our results had a lower MPE than those in 498 

Ojeda et al. (2016) for the winter dormant genotype reported – 0.30 compared to 0.44. Although the 499 

Tamworth and Hamilton locations had similar latitudes to those at Rafaela and Balcarce, because of the 500 

differences in rainfall and other factors, comparisons are not meaningful.  Two further pasture model 501 

validation studies that addressed a comparable number of sites and predicted PGR rather than biomass 502 

were those conducted by Barrett et al. (2005) and Cullen et al. (2008). Barrett et al. (2005) used the 503 
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GrazeGro model to simulate perennial ryegrass pastures in cutting trials at five European locations; they 504 

included nine site-years (compared with 21 site-years in our analysis). Barrett et al. (2005) obtained 505 

mean prediction errors ranging from 0.20 to 0.76, with an overall MPE of 0.45. In the study by Cullen 506 

et al. (2008) across 10 sites (predominantly perennial ryegrass), the mean MPE of the EcoMod grassland 507 

model was 0.36.   508 

 509 

While Barrett et al. (2005) and Cullen et al. (2008) were able to predict perennial ryegrass growth with 510 

MPEs lower than obtained in our lucerne modelling, in general they were representing much more 511 

productive environments.  (The exception was the Forth site which was highly productive.) The mean 512 

measured PGR in Barrett et al. (2005) was 50 kg/ha/d, compared with 33 kg/ha/d across our 7 data sets. 513 

While the mean PGR in datasets of Cullen et al (2008) was 36 kg/ha/d, the productivity range across 514 

their sites was much smaller than in this study (their average total PGR ranged from 8.9 to 21.6 t/ha/year 515 

compared 4.5 t/ha in the Dolling data set to 25.7 t/ha/year in the Forth data set). Because relative 516 

measurement errors increase as yields decrease, MPE of any model can be expected to be higher in less-517 

productive environments. Average PGR for the five southern Australian lucerne experiments was 43 518 

kg/ha/d and the MPE over these experiments was 0.47, which is very close to the value obtained by 519 

Barrett et al. (2005). It also should be noted that the GrazeGro study used only data sets with established 520 

grasslands, unlike the present experiments, and that perennial ryegrass is the most intensively-521 

researched grassland species.   522 

 523 

In their validation of APSIM-Lucerne, Robertson et al. (2002) used a single experiment at Lawes, 524 

Queensland over 2 years. The MPE for pasture growth rate in that simulation was 0.48 (from analysis 525 

of their Figure 7).  Because the Lawes experiment was irrigated and growth rates were high, this result 526 

is best compared with the MPE of 0.26 obtained here for Forth.  Moot et al. (2015) improved the 527 

representation of a semi-winter active genotype in a cool temperate environment by calibrating APSIM 528 

to intensive measurements of above and below ground biomass.  These changes improved the RMSD 529 

in their study from 53% to 38% for shoot biomass and 29% to 18% of the mean for roots.  In their case 530 
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the site was irrigated and the soil had no physical or chemical impediments to plant growth (Sim 2014).  531 

Our results were not as favourable however our sites included settings and climates, many of which 532 

were challenging for plant growth and included factors (i.e. soil constraints) which might not 533 

represented in GRAZPLAN or APSIM.      534 

 535 

In a number of the validation simulations, the early growth of the lucerne stand was not well simulated. 536 

Although this can be viewed as being of less importance over the life of the plant, lucerne is increasingly 537 

been assessed for its potential role in short term leys and is often undersown with a cover crop so it is 538 

important to correctly assess the early growth.  Sim et al. (2015) reported that the regrowth phase 539 

consistently reached reproductive development faster than the seedling phase. Another reason for the 540 

disparity is that the GRAZPLAN model represents sowing according to the mass of seed sown, and 541 

assumes 100% seed viability. This assumption is likely to be inaccurate for lucerne.  In the Quairading 542 

experiment, for example, 5 kg/ha of seed was sown; at a mean seed weight of 1.7 mg, this corresponds 543 

to nearly 300 seeds/m2 sown, but only 38 plants/m2 established.  It may be necessary to redefine this in 544 

the model to specify sowing events in terms of the numbers of plants establishing, as in the APSIM 545 

crop growth models (including APSIM-Lucerne).   546 

 547 

4.2 Predictions of lucerne growth rate patterns across sites and seasons  548 

We are not aware of any other similar published evaluations of different genotypes of lucerne across 549 

different environments. Apart from the study by Ojeda et al. (2016) it is rare in literature that lucerne 550 

has been tested across such a range of diverse locations.  In the present study the inclusion of the two 551 

lower-rainfall sites at Quairading and Cootamundra, and both winter and summer rainfall environments, 552 

means that a full evaluation of the sites where lucerne is grown has been carried out.   553 

 554 

The performance of GRAZPLAN is encouraging when the effects of the environmental conditions are 555 

averaged over the long term and the time frame of comparisons is extended from single cutting intervals 556 

to entire seasons (i.e. 3 months; Figure 6). Nonetheless, there are some features of our results where the 557 
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model could do better.  The general over-prediction of growth rates in autumn is presumably due to the 558 

either the intensity of water limitation not being accurately modelled overall or an incomplete 559 

description of the below ground assimilate partitioning.   560 

 561 

Interestingly Cullen et al. (2008) found the highest deviations from predicted growth rates were in also 562 

in autumn (and summer in their case).  In reality in the Australian context, lucerne stands are commonly 563 

used opportunistically, to maximise animal productivity, depending on rainfall and the feed supply from 564 

other pastures (Lodge 1991).  Therefore being able to confidently predict lucerne growth over short 565 

intervals in warm environments where water supply is variable, as well as in crop-livestock farming 566 

systems and in dry environments where access to soil water is important as these are where lucerne is 567 

widely grown.    568 

 569 

There is a tendency for the model to under-predict total lucerne production in maritime environments 570 

(Forth, Hamilton) and to over-predict it in continental environments (Tamworth, Quairading). This may 571 

be related to the term in the growth rate equation that limits growth due to stomatal closure under high 572 

vapour pressure deficits.  For consistency with APSIM crop growth models (so that they can be linked 573 

with GRAZPLAN) VPD in the GRAZPLAN model is calculated from air temperature by assuming that 574 

dew point temperature equals the minimum temperature (Bristow 1992).  This assumption does not 575 

hold in all environments (e.g. Tanner and Sinclair 1983) and it may be that a more accurate approach 576 

to estimating VPDs would allow this error in the model to be corrected (Brown et al. 2012).   577 

 578 

At some sites (e.g. Tamworth), the model over-predicted lucerne growth in the final year of the dataset 579 

after a drought period. (A similar phenomenon can be seen in the results of Ojeda et al (2016).) It is 580 

possible that plant disease, or reductions in plant density over and above self-thinning, were reducing 581 

the measured growth rates in these experiments. Neither process is represented explicitly by either the 582 

GRAZPLAN or the APSIM lucerne models; indeed the representation of stress-related plant deaths is 583 

an area of weakness in all biophysical crop and grassland models. 584 



25 

 

 585 

4.3 Seasonal growth patterns and differences between winter activity types 586 

The capacity of GRAZPLAN to predict differences between genotypes with differing winter activity 587 

was relatively modest.  In environments where lucerne grows all year phenology and reduced winter 588 

activity cannot just be represented by simple functions for the accumulation of thermal time, and 589 

genotype differences show up as differences in winter growth rather than in survival.  Variation in, for 590 

example the sequential emergence of leaves on the main stem between cultivars supports the notion that 591 

differences in genotypes need to be considered when parameterising lucerne models (Moot et al. 2015).  592 

We have implemented an approach to represent the dormancy of different lucerne genotypes based on 593 

environmental triggers of photoperiod and temperature.  This has also been attempted by Pembleton et 594 

al. (2011) and Ojeda et al. (2016) however the approach we have used seems more robust across 595 

different climates than locally calibrated values.  More detailed studies on ecophysiology as it relates 596 

to genotypes will improve these parameter values further.  For example, which physiological 597 

characteristics vary with genotype - such as to whether the temperature and photoperiod triggers relating 598 

to the period of reduced winter activity - is largely unknown, as often modelling studies are conducted 599 

on a limited number of genotypes in one location (e.g. Moot et al. 2015).     600 

 601 

It has been suggested that in the case of cold acclimation, the specific rate of change in photoperiod 602 

may be the critical factor for triggering the response rather than a specific photoperiod per se 603 

(Castonguay et al. 2006).  The assumptions embedded in the new parameterisation of the phenology of 604 

lucerne, and in the responses of shoot growth and relocation to the period of reduced winter activity 605 

represent a hypothesis about this physiological basis that could profitably be explicitly tested.  606 

 607 

The model was found to fit the experimental data better if the parameter setting the temperature above 608 

which photosynthesis proceeds at its maximum rate was increased to 18.0 °C from 15.0 °C (Brown et 609 

al. 2006). This response was only detectable because the model was tested across environments with a 610 
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range of winter temperatures.  This is a specific requirement that can be addressed by more rigorous 611 

testing through experimental work.   612 

 613 

Overall, the new parameters were quite successful at describing the differences between the genotypes 614 

at the cool temperate locations in the Tasmanian experiments, but predicted an advantage for winter-615 

active genotypes Tamworth that was not reflected in the experimental results (Figure 4).  At Hamilton, 616 

the lower overall production of semi-winter active genotypes relative to highly winter active genotypes 617 

was correctly predicted (although underestimated), but the large measured difference between winter 618 

active and highly winter active genotypes was not captured by the model.  Given the non-linear response 619 

between winter activity rating and total production in this experiment, it appears that other factors not 620 

accounted for in the model – namely poor establishment (Li et al. 2010) – have influenced the 621 

production of the winter-active cultivar (SARDI 7).    622 

 623 

An area of uncertainty concerns the growth, development and functioning of lucerne roots.  The model 624 

development for improved prediction of EFV is an initial step and the predictions can be rigorously 625 

assessed through experimental work in the field or in controlled environments.  The EFV used in the 626 

currently modelling is derived from stands of mature plants.  EFV may vary with plant maturity (Sim 627 

2014) and the use of one number only as in our modelling may contribute to an underestimation of soil 628 

water extraction during the early stages of the plant’s life.  However to date, very few datasets are 629 

available to enable the development of widely applicable physiological principles for the inclusion into 630 

modelling frameworks.  Additionally it is unclear if the EFV is genotype dependent, or is regulated 631 

more by the supply of assimilate than by meristematic activity (the latter is implicitly assumed by the 632 

temperature-dependent function used in the model).   633 

 634 

4.4 Differences between winter activity types in lucerne  635 

In this study we have successfully attempted to explicitly represent genotype differences, which is not 636 

a capability of most other lucerne models.  This however is an area that requires further experimental 637 
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information before model development can continue.  We were surprised to discover that, despite 638 

numerous chamber and glasshouse studies, the physiological basis of the environmental triggers for 639 

winter-activity differences in lucerne remains essentially unknown. The assumptions we have 640 

embedded in the new parameterisation of the phenology of lucerne, and in the responses of shoot growth 641 

and relocation to the period of reduced winter activity represent a hypothesis about this physiological 642 

basis that could profitably be explicitly tested. In particular, our hypothesis that winter activity expresses 643 

the intensity, rather than the duration, of the dormancy mechanism should be amenable to experimental 644 

investigation. 645 

 646 

Our attempt to represent the differences between the winter-activity types was only partially successful. 647 

Our current model correctly predicts that winter-active genotypes will have higher production in 648 

southern Australia, but the apparent advantage of winter-inactive types in northern NSW (Tamworth 649 

experiments) was not reproduced. Examination of the winter-active vs. winter-inactive genotype 650 

comparison, however, suggests that the model is predicting a south-north gradient in the differential 651 

between genotypes, albeit a gradient of smaller magnitude than the experimental datasets suggest. We 652 

therefore conclude that although the set of parameters for different winter activity types of lucerne is 653 

satisfactory in the new version, that further work on this aspect of the lucerne model will be needed. 654 

 655 

In general, comprehensive experiments investigating the interactions between genotype, different 656 

environments/climates and management have not been conducted for lucerne in Australia and therefore 657 

the interactions remain not well understood.  If model testing and validation are to continue a number 658 

of key datasets are required.  For the Australian context, in particular quantitative information data on 659 

the nutritive characteristics of the harvested forage is lacking.  At the least this would include 660 

digestibility and crude protein for different genotypes, at different phenostages and at different levels 661 

of water stress.  Most of the datasets used in the model development and validation only involved one 662 

component, for example above ground biomass.  Datasets that include the simultaneously assessment 663 

of different parts of the model are extremely helpful.  For example, herbage mass, soil water, phenology, 664 
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rooting depth and soil water gathered in a complimentary way would be incredibly valuable.  A study 665 

involving a range of genotypes, in a range of climate zones, for seedling and regrowth growth, across a 666 

number of years, combined with this auxiliary data would be the definitive dataset.  The datasets used 667 

in this study did not contain root data which was a short coming.  Datasets that enable better calibration 668 

of the dynamics of the rooting front and changes in root respiration across seasons are other areas that 669 

may potentially improve dynamics in above ground biomass (e.g. Moot et al. 2015).  Root EFV can 670 

vary throughout the life of the plant and better information could improve the accuracy of water supply 671 

and demand especially during the early stages of growth (Sim 2014). Root turnover rate may also be 672 

influenced by changes in photoperiod (Moot et al. 2015).  More experimental information on both these 673 

would help to better represent the seasonal changes in below underground biomass dynamics however 674 

and it is unclear as to if there are differences between genotypes.   675 

 676 

5 Conclusion 677 

If lucerne is to be more widely adopted, it will be important that landholders maximise the benefits 678 

(usually as a part of a diverse feedbase) to their livestock enterprises, as well as optimizing the benefits 679 

and minimizing the costs of lucerne phases to subsequent crops.  This study has improved the 680 

representation of different lucerne genotypes in terms of  important physiological processes that affect 681 

phenology, transpiration, root development and biomass partitioning which in turn improve the 682 

prediction of nutritive value and thereby livestock production potential. This study has quantified the 683 

particular strengths of the re-parameterized GRAZPLAN model for predicting plant growth rates.  684 

Weaknesses relate to differences in the ecophysiology between genotypes and transpiration in warm 685 

and moist environments.  The GRAZPLAN pasture growth model is robust and has been configured to 686 

model lucerne, both in grazing and in mixed farming systems but there are a number of areas where the 687 

performance of the model is known to be in need of improvement and with further testing against data 688 

sets that contain information about the nutritive value of harvested herbage and below ground biomass 689 

would be particularly useful. 690 

 691 
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Appendix A 695 

Table 1.  GRAZPLAN pasture parameters for lucerne.  Parameters in bold have their definition changed, or are new, since 696 

previously published in Moore et al. (1997).  Previous (prev.) parameter values for lucerne are given in square brackets. NR = 697 

the parameter is not required to represent lucerne. 698 

Parameter Value Units Meaning 

grass FALSE  TRUE for grasses 

legume TRUE  TRUE for legumes 

annual FALSE  TRUE for annuals, FALSE for perennials 

isc4 FALSE  TRUE if the species has the C4 photosynthetic pathway 

longday FALSE  TRUE if long days required to induce reproductive growth 

KV3j 1.0 ºC Base temperature for degree-day computations [prev. 5.0] 

KV4j NR hr Day length for commencement of reproductive growth [prev. 12.0] 

KV5j 350 ºd Degree-day sum for commencement of reproductive growth [prev. not 

implemented] 

KV6j 600 ºd Degree-day sum for commencement of flowering 2 [prev.: 100] 

KV7j NR d Maximum length of flowering period 

KV8j NR d Effect of soil moisture stress on flowering duration 

KV9j NR ºd Degree-day sum beyond which the reproductive phenostage ends3 [prev. 2900] 

KV10j 0.25 0-1 Value of the soil moisture growth-limiting factor that defines "drought" for the 

senescence calculations 3  

KV15j 0.5 0-1 Reduction in the rate of development due to water stress in pre-flowering, 

reproductive plants [prev. 0] 

KV20j 15.0 d Length of the drought period required to induce senescence (i.e. end reproductive 

growth) when DD(j)= KV9j 4 

KV21j NR ºd Value of DD(j) at which senescence occurs in the absence of drought4 [prev. 5000] 

KV22j 0.0 0-1 Upper margin of phenology-sensitive horizon during vegetative growth5  

KV23j 1.0 0-1 Thermal time (as fraction of K(V,6)) for upper margin of phenology-sensitive 

horizon to reach top of sward 5 

KV24j 0.5 0-1 Final lower boundary of phenology-sensitive horizon5 

KV25j 0.0 0-1 Height of removal for reset of phenology (as fraction of lower boundary of 

phenology-sensitive horizon)5 
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Parameter Value Units Meaning 

KV26j 0.0 °C Lagged mean temperature below which reduced winter activity always ensues6 

KV27j 13.0 °C Lagged mean temperature above which dormancy is not promoted6 

KV28j 8.0 hour Day length below which dormancy always ensues7 

KV29j 14.0 hour Day length above which dormancy is not promoted6 

KV30j 5 day Lag period for computing mean temperatures6 

KI1j 0.0260 m²/g Reference specific leaf area (ratio of leaf area index to leaf weight) 

KI2j 0.0040 m²/g Reference specific stem area8 [prev. 0.0065] 

KI3j 13.5 MJ/m²/d Curvature factor for effect of light on specific area  

KI4j 15 ºC Temperature threshold for maximal specific area 

KI5j 0.6 0-1 Relative specific area at 0 ºC 

KI6j 0.12 - Relative decrease in specific leaf area at twice reference (CO2) 

KI7j 0.80 0-1 Apparent light extinction coefficient under ungrazed conditions9 [previously 0.5] 

KI8j 0.80 0-1 Apparent extinction coefficient under heavily grazed conditions9 [previously 0.6] 

KI9j 0.80 0-1 Apparent extinction coefficient of standing dead 

KI10j 1.00 0-1 Apparent extinction coefficient of litter 

KWU1j 0.35 0-1 Available soil water threshold for growth limitation 

KWU2j 1.0 0-1 Proportion of any transpiration deficit that can be recovered from moist layers 

KWU5j 150 s/m Reference leaf stomatal resistance at 350 ppm CO2 

KWU6j 0.5 - Relative change in leaf stomatal resistance at 700 ppm CO2 

KRU1j 2.35 g/MJ Radiation use efficiency (gross assimilation) under reference conditions 

KRU2j 99.9 MJ/m²/hr Effect of radiation intensity on radiation use efficiency 

KRU3j 0.6 0-1 Relative photosynthetic efficiency of stems 

KRU4j 16.0 ppm CO2 compensation point at 0ºC 

KRU5j 35.0 Ppm CO2 compensation point at 20ºC 

KRU6j 55.0 ºC Maximum temperature for CO2 compensation function 

KBT1j 15.0 kPa g/kg Biomass-transpiration coefficient 

KT1j 6.0 ºC Mean daytime temperature for 5% of maximum gross assimilation rate (NB not mean 

temperature for day and night)  

KT2j 18.0 ºC Mean daytime temperature for 95% of maximum gross assimilation rate8 [prev. 

15.0]  

KW1j 0.70 0-1 Transpiration ratio below which assimilation rate decreases 

KWL1j 0.85 0-1 WFPS threshold for waterlogging 
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Parameter Value Units Meaning 

KWL2j 23.0 - Curvature of growth limitation by waterlogging 

KMR1j
* cvv /d Maximum relative growth rate of shoots during reduced winter activity10 

KTL1j
† cvv - Threshold growth-limiting factor for translocation from belowground reserves 10 

[prev. called KU1j] 

KTL2j
‡ cvv /d Relative rate of translocation from belowground reserves9 [prev. called KU2j] 

   Genotype KMR1  

(g/g/d) 

KTL1  

(g/g/d) 

KTL2  

(g/g/d) 

Highly winter active 0.020 0.30 0.05 

Winter active 0.010 0.30 0.04 

Semi-winter active 0.005 0.40 0.03 

Winter inactive 0.000 0.40 0.02 

 

KRE1j 0.3 g/g/d Maintenance respiration rate at 10 ºC (g DM/g N/d) 

KRE2j 1.8 - Q10 factor for maintenance respiration 

KRE3j 0.20 0-1 Reduction in maintenance respiration in summer- or winter-inactive plants11 [prev. 1.0] 

KRE4j 0.25 g/g Growth respiration rate 

KA1j 0.80 - Target root:shoot ratio during vegetative growth8 [prev. 1.2] 

KA2j 0.30 - Target root:shoot ratio during reproductive growth8 [prev. 0.8] 

KA4j 0.80 0-1 Maximum value of the ratio (leaf allocation):(shoot allocation)8 [prev. 0.7] 

KA5j 0.80 0-1 Minimum value of the ratio (leaf allocation):(shoot allocation)8 [prev. 0.25] 

KMO1j -0.3 - Parameter governing height distribution of leaves  

KR1j 3000 mm Maximum rooting depth under optimal soil conditions 

KR2j 0.65 mm/ºd Maximum rate of root front extension8 [prev. 2.0] 

KR3j 0.0 ºC Base temperature for root front extension 

KR4j 0.25 0-1 ASW below which root extension is reduced 

KR5j 1.95 Mg/m³ Threshold bulk density for reduced root extension in 100% sand11 [prev. 1.4] 

KR6j -0.65 Mg/m³ Threshold bulk density for reduced root extension in 0% sand11 [prev. 1.2] 

KR7j 1.20 m³/Mg Rate of decrease in root extension with increasing bulk density11  [prev. 2.0] 

KR8j 0.15 0-1 Minimum value of the bulk density effect on root extension11 [prev. 0.1] 

KR9j 85 m/g Specific root length 

KR10j 0.00022 m Average radius of effective roots 

KD1j 800 ºd Thermal age at which death of shoots commences 
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Parameter Value Units Meaning 

KD2j 0.005 /ºd Background death rate of old shoots in seedlings & established plants 

KD3j 0.003 /ºd Additional death rate of all shoots in senescing plants 

KD4j -4.0 ºC Temperature for 5% mortality at the first frost (formerly KD2j) 

KD5j -11.0 ºC Temperature for 95% mortality at the first frost (formerly KD3j) 

KD6j 1.0 ºC Frost-hardening factor (formerly KD4j) 

KD7j - 0-1 Value of the seedling stress index at which seedling mortality commences 

(formerly KZ1j) 

KD8j - 0-1 Value of the seedling stress index for 100% seedling mortality (formerly KZ2j) 

KDR2j 0.0025 /d Specific root loss rate at 10ºC 

KDR3j  g/g Recovery rate of mass from dying roots  

KDR4j 1.5 - Q10 for root aging and loss 

KF1,leaf,j 0.003 /d Fall of standing dead: reference rate for leaf 

KF1,stem,j 0.001 /d Fall of standing dead: reference rate for stem 

KF2j 40 - Fall of standing dead: maximum relative effect of precipitation 

KF3j 10 /mm Fall of standing dead: curvature of precipitation effect 

KF4j 30 /kg animal/d Fall of standing dead: trampling effect 

KBR1j,leaf 0.10 /d Background specific rate of breakdown of leaf litter 

KBR1j,stem 0.02 /d Background specific rate of breakdown of stem litter 

KBR2j 10 - Litter breakdown: trampling effect 

KBR3j 0.02 /d Specific rate of incorporation under dry soil conditions 

KBR4j 0.05 /d Specific rate of incorporation under wet soil conditions 

KQ1,leaf,j 0.85 g/g Average digestibility of newly-produced leaf 12 [prev. 0.8] 

KQ2,leaf,j 0.75 g/g Minimum digestibility of green leaf during vegetative growth12 [prev. 0.7] 

KQ3,leaf,j 0.70 g/g Minimum digestibility of green leaf during reproductive growth 

KQ4j 300 ºd Thermal time during which green leaf maintains its digestibility 

KQ5,leaf,j 0.006 /ºd Rate parameter for decline of DMD of green leaf 

KQ6,leaf,j 4 ºC Base temperature for maturation- senescence of green tissue 

KQ1,stem,j 0.85 g/g Average digestibility of newly-produced stem12 [prev. 0.8] 

KQ2,stem,j 0.70 g/g Minimum digestibility of green stem during vegetative growth12 [prev. 0.6] 

KQ3,stem,j 0.45 g/g Minimum digestibility of green stem during reproductive growth 

KQ5,stem,j 0.002 /ºd Rate parameter for decline of DMD of green stem12 [prev. 0.004] 

KQ6j 4.0 ºC Base temperature for maturation & senescence of green tissue 
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Parameter Value Units Meaning 

KY1j 0.024 /d Reference rate of microbial decomposition of digestible DM 

KY2j 4.7 - Factor for temperature response of decomposition 

KY3j 32 ºC Factor for temperature response of decomposition 

KY4j 0.05 - Minimum value of the moisture factor for standing dead 

KY5j 7 g/g Maximum moisture content of standing dead 

KY6j -0.2 - ASW for 5% of maximum decomposition 

KY7j 0.85 - ASW for 95% of maximum decomposition 

KY8j 0.125 0-1 Relative rate of decomposition of indigestible DM 

KNU1N,leaf,j 0.060 g/g Maximum content of N in green leaf at maximum DMD 

KNU2N,leaf,j 0.030 g/g Minimum content of N in green leaf at maximum DMD  

KNU3N,leaf,j 0.026 g/g Minimum content of N in green leaf at midpoint DMD  

KNU4N,leaf,j 0.022 g/g Minimum content of N in green leaf at minimum DMD  

KNU5,leaf,j 0.1 - Relative decrease in leaf N content (per unit leaf area) at twice reference (CO2) 

KNU1N,leaf,j 0.040 g/g Maximum content of N in green stem at maximum DMD 

KNU2N,leaf,j 0.030 g/g Minimum content of N in green stem at maximum DMD  

KNU3N,leaf,j 0.022 g/g Minimum content of N in green stem at midpoint DMD  

KNU4N,leaf,j 0.015 g/g Minimum content of N in green stem at minimum DMD  

KNU5,leaf,j 0.0 - Relative decrease in stem N content (per unit mass) at twice reference (CO2) 

KNU1N,root,j 0.015 g/g Maximum content of N in live root 

KNU2N,root,j 0.015 g/g Minimum content of N in live root 

KNU5,root,j 0.0 - Relative decrease in root N content (per unit mass) at twice reference (CO2) 

KFX1j 0.20 0-1 N-fixation: relative depth of nodulation 

K FX2j 0.15 0-1 N-fixation: nodulation at depth:nodulation at surface 

K FX3j 0.85 0-1 N-fixation: ASW for maximum fixation rate 

K FX4j 30 mg/l N-fixation: solution NO3 conc. for maximum fixation rate 

K FX5j 90 mg/l N-fixation: solution NO3 conc. for suppression of fixation 

KUE1,NO3,j 1.0 - Uptake effectiveness parameter for nitrate 

K UE1,NH4,j 1.0 - Uptake effectiveness parameter for ammonium 

KRL1Nj 0.33 /d Relocation rate parameter for element e (e=N, P, S) 

KAA1j 1.2 mol/kg Ash alkalinity of newly-grown leaves 

KAA2j 1.2 mol/kg Ash alkalinity of newly-grown stems 

KAA3j 0.6 mol/kg Ash alkalinity of newly-grown roots 
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Parameter Value Units Meaning 

KAA4j 1.2 mol/kg Ash alkalinity of newly-grown seeds 

KAA5j 4.5 - pH below which no cation uptake takes place 

KAA6j 5.0 - pH above which maximal cation uptake takes place 

KHRj 1.6 - “Height ratio”: also governs the size of the ungrazeable portion of the pasture 

KSFj 0.0 - Parameter controlling the relationship between DMD and relative nutritive value 

*Parameter KMR1 is the maximum relative growth rate of shoots during the reduced winter activity phenological stage; 699 

parameter †KTL1 is the threshold value of growth-limiting factors above which translocation from below-ground reserves takes 700 

place; ‡KTL2 is the proportion of effective root mass that can be re-mobilized above ground in a single day if both environmental 701 

conditions are suitable and the current root:shoot ratio is above a target level set by the phenological stage. Paramaters with 702 

NI value are not implemented in the current version. 703 

1 adjusted following Moot et al. (2001) and Brown et al. (2005) 704 
2 fitted to data in  Zahid (2009) 705 
3 based on reanalysis of data presented in Halim et al. (1989) and Hattendorf et al. (1988) 706 

4,5,6 from parameter fitting across all the datasets 707 
7 based on reanalysis of data presented in Schonhorst et al. (1957) 708 
8 based on Teixeira (2007) 709 

9,10 from parameter fitting across all the datasets 710 
11 based on reanalysis of data presented in Dolling et al. (2005a) 711 
12 fitted data based on Hayes et al. (2010) from Cootamundra  712 
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 873 

Figure 1. (left) Observed vs fitted root extraction front velocities for B horizons in the data set of Dolling et al. (2005a).  The 874 

1:1 line is shown and the relationship is significant (R2=0.97, p=0.02)  (right)  Fitted response of root extraction front velocity 875 

to bulk density and sand content in the layer containing the current rooting depth, on a (summer) day where 20° C.d of thermal 876 

time accrues. 877 

  878 



45 

 

 879 

Figure 2.  Locations of the experimental data sets that were used for testing and developing the lucerne parameter set for the 880 

GRAZPLAN pasture model.  Climate zonation is based on the season of highest rainfall in each area and use the median 881 

annual rainfall (based on the 100 year period from 1900 to 1999) and seasonal incidence (the ratio of the median rainfall over 882 

the period November to April to the period May to October) to identify these six major zones (Data source: Commonwealth 883 

of Australia, Bureau of Meteorology 2005).  Gatton was used in long-term simulations to examine patterns of growth.   884 
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887 

888 

889 

 890 

Figure 3.  Average daily growth rate (kg/ha/d) of lucerne modelled with GRAZPLAN (open) and experimental data (grey) 891 

over four seasons for various locations throughout Australia. Seasons are: winter (Win), spring (Spr), summer (Sum) and 892 

autumn (Aut); genotypes are WD (winter dormant), SWA (semi-winter active), WA (winter active), HWA (highly winter 893 

active).  Note: Tamworth is the Boschma data set; Lodge dataset is not shown. 894 
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     896 

Figure 4. Actual and predicted (modelled) harvested daily pasture growth rates (PGR, kg/ha/d) for winter-active lucerne 897 

growing at various locations.  In the actual-vs-model chart, a 1:1 relationship is shown as a solid line and the regression of 898 

actual on modelled PGR is shown as a segmented line.  Note: the Tamworth dataset shown is from Boschma, the Lodge dataset 899 

is not shown.   900 
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Figure 5.  Modelled, long term (over 40 year period) daily pasture growth rates (kg/ha/d) of four winter activity types of lucerne 908 

in contrasting rainfed environments (boxes show the 25th and 75th percentile; whiskers show the maximum and minimum).  909 

The furthest left-hand charts show modelled daily pasture growth rate for winter-active lucerne.  Inset is the long-term average 910 

(LTA) annual pasture growth (t/ha/y) and their variability (standard deviation).  The remaining columns show the difference 911 

between pasture growth rates of other winter activity types of lucerne relative to the winter-active genotype. 912 
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 914 

Figure 6.  Actual vs modelled average seasonal growth rates in each of the 7 experiments. A 1:1 relationship is shown as a 915 

solid line and the regression of actual on modelled PGR is shown as a segmented line. 916 
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Table 2.  Details of experimental datasets used in the evaluation of the new GRAZPLAN parameters for lucerne (Climate 918 

summaries are for 1950-2013.) The Cootamundra experiment was the only one with forage nutritive value; both Cootamundra 919 

and Quairading also had soil water information.  Soil descriptions are based on the Australian soil classification system (Isbell 920 

2002). 921 

Location 

(descriptor) 

Latitude Average 

temperatur

e (°C) 

Average 

Rainfall 

(mm) 

Soil Genotype 

Classes*  

Key references 

WD SWA WA HWA  

Forth 41°20'S 12.1 975 Red Ferrosol X X X X Pembleton et al. 

2010 

Cranbrook 42°01'S 12.9 632 Red Ferrosol X X X X Pembleton et al. 

2010 

Tamworth 

(Boschma) 31°15'S 16.7 678 

Brown Chromosol X   X Li et al. 2010 

Tamworth (Lodge) Brown Chromosol X X X X Lodge 1985 

Hamilton 37°84'S 13.1 681 Brown Chromosol  X X X Li et al. 2010 

Cootamundra 34°40'S 15.3 572 Yellow Dermosol   X  Hayes et al. 2010 

Quairading 32°02'S 17.6 366 Gravelly pale deep 

sand 

  X  Dolling et al. 

2005b 

Latta and Lyons 

2006 

*Genotype classes were winter dormant (WD), semi-winter active (SWA), winter active (WA) and highly winter 922 

active (HWA). 923 
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