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The authors report the identification and quantification of the components of a ternary vapor mixture
using a microcantilever-based electronic nose. An artificial neural network was used for pattern
recognition. Dimethyl methyl phosphonate vapor in ppb concentrations and water and ethanol
vapors in ppm concentrations were quantitatively identified either individually or in binary and
ternary mixtures at varying concentrations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2763965�

After several decades of extensive research that involved
the compilation of massive databases, researchers have made
significant advances in using mass spectrometry to identify
the constituents of complex mixtures of analytes;1,2 even
then the components of a complex mixture need to be first
separated using gas chromatography. Such diagnoses involve
large and expensive equipment and are time consuming. The
demands of the 21st century �e.g., the war on terrorism, land
mine detection, in-office medical diagnostics� dictate a need
for miniaturized and inexpensive sensors providing fast de-
tection. After four decades of research on ion mobility mass
spectrometry �IMS�, somewhat inexpensive and relatively
small IMS detectors are being used for chemical and explo-
sive detections.3 However, poor resolution in ion mobility
spectra is likely to prevent IMS detectors from becoming
significantly smaller. Therefore, a paradigm shift in sensor
technology is needed to realize truly miniature and inexpen-
sive sensors.

The biological nose �in particular, the canine nose� is one
of the most sensitive detectors in existence today. Its high
selectivity originates from the pattern recognition analysis of
the output from an entire sensor array. Two decades ago,
Persaud and Dodd proposed an “electronic nose” based on
this concept.4 Just as in the case of olfactory receptors,5 the
individual sensors in an electronic nose can be only broadly
selective since the binding of an analyte needs to be revers-
ible. An advantage of an electronic nose is that all the
“trained” components of the mixture are identified and quan-
tified simultaneously. Furthermore, since the sensor response
is reversible, the detection can be repeated after a short re-
covery time.

The biological olfactory system is quite complex and has
evolved over millions of years. Recently, exhaustive searches
of the almost complete genome sequences of human and
mouse have led to the identification of around 900 odorant
receptors in humans and around 1500 in mice.6 The human
olfactory system is able to distinguish thousands of different
odors,6 and some odors are due to complex mixtures of pure
compounds: A particular mixture of odor molecules creates a
unique response pattern in the olfactory bulb, which the
brain subsequently interprets as a particular odor. At least in
the initial stages, the electronic nose does not need to be that
complex. In particular, detection of explosive or chemical
vapors requires the identification of mostly one or a few pure
compounds. Furthermore, some of the “interferent” vapors
could be removed with the use of a preconcentrator located
in front of the electronic nose. Therefore, the ability to detect
a few pure compounds in simple mixtures could lead the way
to a practical electronic nose for chemical and explosive va-
por detections in the near future.

Research on the development of electronic noses based
on several sensor platforms has been conducted over the past
two decades; see Refs. 7 and 8 and references therein. The
holy grail of chemical sensors is the ability to selectively
identify target analytes. Even though much of the work so far
has been devoted to sensitive detection of individual ana-
lytes, any practical applications cannot be realized until se-
lective detection is achieved. Since a single reversible sensor
is inherently nonselective, selectivity needs to be achieved
via a sensor array. Even with the increased activity in sensor
array research recently, successful quantitative identification
of component vapors has not been reported for mixtures with
more than two components; see, for example, Refs. 9–15 and
references therein. The ability to accurately identify differenta�Electronic mail: llp@ornl.gov
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odors presented individually to the sensor arrays has been
demonstrated,16–18 and binary mixtures have been success-
fully analyzed11–15 using arrays of different sensors. Partial
success on the analysis of ternary mixtures has been de-
scribed in Ref. 11, and quantitative identification of a single
component in a ternary mixture has recently been reported.14

In all these studies,9–18 the concentrations of the component
vapors were in the ppm range or higher. In this letter, we
report the detection of ppb concentrations of the nerve gas
simulant dimethyl methyl phosphonate �DMMP� and ppm
concentrations of ethanol and water vapors in ternary mix-
tures. We recently reported the sensitive detection of DMMP
using a miniature sensor unit.19

The apparatus used in the present study is shown in
Fig. 1. A set of computer-controlled flow meters and three-
way valves together with manually controlled metering
valves were used to direct either the carrier gas nitrogen or
any selected combination of the three vapors �in 30 s pulses�
to the flow cell containing the microcantilever sensor array.
The flow cell accommodating the four Canti-4™ piezoresis-
tive microcantilever chips was 6�5�1.1 cm3 and had an
estimated internal flow volume of 0.5 cm3. Each Canti-4™
chip had two coated levers and two uncoated �reference� le-
vers. We used a combination of self-assembled monolayer
coatings and other coatings in these experiments. During the
experiments, a flow rate of 50 SCCM �SCCM denotes cubic
centimeter per minute at STP� through the microcantilever
flow cell was maintained, and thus microcantilever bending
due to change in flow was avoided.

We used diffusion vials purchased from VICI Metronics,
Inc. to generate the vapors of DMMP, water, and ethanol.
These vials have fixed diffusion rates that depend only on the
particular diffusion vial and its temperature. Each diffusion
vial was located in a “U” shaped holder that was immersed
in a heated/refrigerated circulator bath and was maintained at
a particular temperature. The estimated concentrations of
DMMP, water, and ethanol vapors were 100 ppb, 60 ppm,
and 60 ppm, respectively. Flushing of the vapor generators
for several days was required to remove water vapor from
the system and to achieve a stabilized rate of delivery of the
vapors from the generators. Nitrogen gas was used as the
carrier and nitrogen flows through all the vapor generators

were maintained 24 h a day during the 2 week data acquisi-
tion period.

Each data run began with the continuous N2 flow
through the flow cell, with a flat cantilever base line re-
sponse. A 30 s pulse of a vapor �or a vapor mixture� was
introduced and the cantilever response was recorded both
during the pulse and afterward until the response returned
�partially� to the base line level. An example of a set of
“signatures” resulting from the response of the seven sensors
in the array due to DMMP, water, and ethanol vapors is
shown in Fig. 2. Even though most of the sensors responded
to all three vapors, the differences in the signal profiles al-
lowed an artificial neural network �ANN� to differentiate
among the three vapors. This is similar to the odor discrimi-
nation in the biological olfactory system.20 The biologically
inspired ANN is a self-adapting system that can modify its
response to external forces using previous experience, offer-
ing a more flexible and faster method of analysis.21 The pat-
tern recognition algorithm we used was a feed-forward back-
propagation error-correction neural network written in
MATLAB.

FIG. 1. �Color online� Schematic diagram of the experimental apparatus.
The three vapor generators are immersed in temperature-controlled baths.
For the three-way electronic valves, NO is normally open and NC is nor-
mally closed. This arrangement allows the vapor generators to be purged
24 h/day, so that a steady stream of vapor with fixed concentration is avail-
able at any time.

FIG. 2. �Color online� Typical response signatures derived from responses
of the set of microcantilever sensors to individual vapor streams of DMMP,
water, and ethanol.

FIG. 3. �Color online� Comparison of the estimated concentrations of
DMMP vapor with the actual concentrations that were presented to the
sensor array for a single test data set. The data consisted of those for binary
mixtures �15 mixtures� and ternary mixtures �30 mixtures�, where the mix-
ture compositions were different from the compositions of mixtures used in
the training set. Similar results were obtained for water and ethanol vapors.
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The neural net was trained using a data set with 25 mix-
tures corresponding to different combinations �unitary, bi-
nary, and ternary� of the three vapors, and then was tested
with five other data sets obtained within the following
2 week period. Three of the five test data sets were for the
same mixture combinations as the data set used for training
�25 mixtures each� and the other two were for different com-
binations �45 mixtures each�. The training of the ANN using
the 25 mixture data set took about 1 h with between 1000
and 10 000 epochs on a personal computer. The trained ANN
took much less than 1 s to identify and quantify a ternary
mixture signature. One of the data sets from the second cat-
egory �45 mixtures� when presented to the trained ANN
yielded the results for DMMP detection shown in Fig. 3.

Figure 4 shows a summary of the results from all five
test data sets. This included data for unitary, binary, and ter-
nary mixtures. The bulk of the data taken was for ternary
mixtures where all three component vapor had nonzero con-
centrations �see the caption of Fig. 4�. More data were taken
at low concentrations as stated in the figure caption, since it
is important to evaluate the ability of the sensor array/neural
net algorithm to detect low concentrations. For example,

there were 24 data points taken for 0% of DMMP and the
neural net outcome was �2% ±2% �, with the predicted value
below 8% for all the measurements. Thus, there were no
“false alarms” for DMMP detection if the threshold of detec-
tion was set at 10% DMMP concentration, i.e., about 10 ppb.

In conclusion, this study shows that vapor mixtures can
be analyzed by an electronic nose to identify and quantify
the presence of up to three components even with one of the
components �DMMP� in the ppb concentration range. Fur-
ther studies are underway to improve the sensor array �by
adding more sensors/coatings�, and also to incorporate a pre-
concentrator so that more complex vapor mixtures could be
analyzed.
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FIG. 4. �Color online� Comparison of the estimated concentration of
DMMP, water, and ethanol vapors, with the actual concentrations that were
presented to the sensor array. The data shown are from all five test data sets
taken over the 2 week period. For concentrations over 70%, each point was
the average of four to eight data points; for concentrations in the range of
30%–60%, each point was averaged over 10–20 data points; for concentra-
tions in the 0%–20%, each point was averaged over 24–30 data points.
There were nine mixtures for unitary, 72 mixtures for binary, and 92 mix-
tures for ternary mixtures. So, the bulk of the data taken were for ternary
mixtures where all three component vapors had nonzero concentrations.
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