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 A B S T R A C T

With the arrival of deep learning and advanced sensor technologies, the autonomous vehicle domain has gained 
increased research interest. In particular, deep learning networks developed based on 3D LiDAR sensing data 
for perception and planning in autonomous vehicles demonstrate remarkable performance. However, recent 
research reveals vulnerabilities in LiDAR-based perception tasks, such as 3D object detection and segmentation, 
to intentionally crafted adversarial perturbations. Yet, the adversarial robustness of LiDAR-based regression 
tasks like scene flow estimation, remains largely unexplored. Therefore, this study introduces a novel point 
perturbation attack named FlowCraft, based on two loss functions, along with a critical analysis of selecting 
the adversarial objective against scene flow estimation. In particular, evaluations are conducted on trainable, 
runtime optimization, supervised, and self-supervised scene flow estimation methods using the Argoverse 
2 and Waymo datasets in both black-box and white-box settings. Experimental results on the Argoverse 2 
benchmark dataset and the DeFlow network show that FlowCraft achieves a relative endpoint error increment 
of 2.9, while demonstrating a higher endpoint error increase of 5.5 per unit change in Chamfer Distance 
compared to PGD and CosPGD attacks. Furthermore, our results demonstrate that the performance of point 
perturbation attacks against runtime optimization methods involves a trade-off between their success rate and 
overall imperceptibility.
1. Introduction

Deep learning (DL) technologies demonstrate remarkable perfor-
mance in complex tasks within the computer vision domain. As a result, 
research on safety-critical applications such as developing autonomous 
vehicles (AVs) heavily employs DL technologies [1]. With the advent 
of 3D sensing technologies such as LiDAR, DL networks are used to 
perform perception and planning tasks, including 3D object detection, 
object tracking, segmentation, motion prediction, trajectory prediction, 
and scene flow estimation [2–4].

Despite DL networks demonstrating state-of-the-art performance, 
their susceptibility to intentionally crafted perturbations, known as 
adversarial attacks, is a significant problem. This was initially demon-
strated in DL networks based on images and later proved successful 
in altering DL networks developed for AVs based on LiDAR point 
clouds for perception tasks [3,5]. However, state-of-the-art studies on 
adversarial attacks against AVs have primarily focused on single-frame 
perception tasks, with less research attention given to regression tasks 
which involve multiple frames, such as flow prediction. Specifically, the 
adversarial robustness of LiDAR-based flow prediction, known as scene 
flow estimation, remains an unexplored topic. Generally, developing 
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attacks against regression tasks is challenging due to the continuous 
nature of the values, and it might require large perturbations to signifi-
cantly alter the predictions [6,7]. Further, unlike crafting perturbations 
(adding noise) on images, crafting perturbations (shifting points) on 
LiDAR point clouds highly affects the imperceptibility of the attack, as 
perturbations can alter the geometric shapes of the objects.

In this study, we first explore potential attack objectives for scene 
flow estimation and critical aspects of selecting the point cloud to 
which the perturbation is added. Then, we propose and develop a novel 
untargeted attack named FlowCraft, optimizing two loss functions: ad-
versarial objective loss and imperceptibility loss. Our experiments, con-
ducted on the Argoverse 2 [8] and Waymo [9] datasets, reveal that the 
proposed FlowCraft attack significantly alters scene flow predictions 
and demonstrates state-of-the-art performance compared to previously 
introduced 𝑙∞ norm-bounded attacks. The main contributions of this 
study are as follows:

1. We demonstrate that when adding perturbations to the first 
point cloud in a pair used for scene flow estimation, it is not 
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fair to calculate the error between predicted and ground truth 
flows.

2. Analyze the suitability of adversarial objectives commonly used 
in attacks against image-based flow estimation (Optic Flow) and 
reveal their direct inapplicability to alter scene flow estimation 
methods through point perturbations.

3. Introduce a novel adversarial attack method specifically for 
LiDAR scene flow estimation, named FlowCraft, optimized with 
dual loss functions.

4. Evaluation of FlowCraft against trainable, runtime optimization, 
supervised, and self-supervised scene flow estimation methods 
using the Argoverse 2 and Waymo datasets demonstrates its 
effectiveness in terms of attack success rate and imperceptibility 
under both white-box and black-box settings, compared to attack 
techniques targeting optical flow networks.

The rest of the article is organized as follows: Section 2 reviews the 
related works. Section 3 presents the problem formulation and the 
method for selecting the point cloud to add perturbations. Section 4 
discusses the methodology of FlowCraft and the selection of the attack 
objective. Section 5 details the experimental setup of the study. Sec-
tion 6 presents the evaluation and benchmarking results of FlowCraft 
under white-box settings. Section 7 examines the black-box transfer-
ability of FlowCraft against supervised, self-supervised, trainable, and 
runtime-optimization-based scene flow estimation methods. Finally, 
Section 8 summarizes the research findings and concludes the paper.

2. Related works

2.1. Scene flow estimation

Scene flow estimation involves estimating 3D motion using LiDAR 
point clouds, whereas optical flow estimation focuses on motion esti-
mation using 2D images. Recent scene flow estimation techniques can 
be categorized into two main approaches based on their algorithmic 
approach: (1) trainable methods [10–12] which train a feed-forward 
network with a human annotated or pseudo-labeled dataset, and (2) 
runtime optimization methods [13–15] which predict the flow using 
learning-free approaches or by utilizing Multi-Layer Perceptrons (MLPs) 
based flow refinement techniques without learned weights. While pop-
ular scene flow estimation benchmark datasets such as Argoverse 2 [8] 
and the Waymo scene flow estimation dataset [9,11] have been recently 
introduced, collecting and human-annotating a scene flow estimation 
dataset remains challenging and time-consuming. As a result, there 
has been growing interest in developing self-supervised scene flow 
estimation techniques, such as training the network using pseudo-
labels generated via a ‘teacher’ method and data exploration-based 
approaches [12–15].

2.2. Adversarial attacks against flow estimation

Research into adversarial attacks targeting AVs is undergoing signif-
icant development. This encompasses attacks against both 2D and 3D 
perception tasks, such as object detection, segmentation, and tracking. 
Specifically, when it comes to adversarial attacks against LiDAR-based 
3D perception, threat models such as shifting LiDAR points (Perturba-
tion Attack) [16], injecting LiDAR points [17], removing/filtering out 
LiDAR points [18], or adversarially optimized objects [19] have been 
used.

However, a significant gap remains in research on adversarial at-
tacks targeting 3D LiDAR-based perception and regression tasks that 
incorporate multiple frames or temporal information, such as scene 
flow estimation and motion prediction. Our study aims to address this 
gap by focusing on LiDAR scene flow estimation, a dense regression task 
involving at least two LiDAR frames. To the best of our knowledge, the 
study in [20] is the first to investigate adversarial attacks against LiDAR 
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scene flow estimation. However, in their experiments, perturbation 
is added without considering the attack’s imperceptibility, which is 
a crucial aspect in designing adversarial attacks against LiDAR point 
clouds. In contrast, study [21] proposed a LiDAR scene flow estimation-
based approach to identify adversarial point injection-based fake object 
attacks.

Due to the limited literature, we subsequently review adversarial 
attacks introduced for image-based optic flow networks, which closely 
resemble LiDAR scene flow estimation.

Ranjan et al. [22] first developed an adversarial patch-based at-
tack against optical flow networks, placing it in both frames to cause 
incorrect flow predictions. Schrodi et al. [23] developed a global per-
turbation attack to make the network predict a given target flow from 
the same or a different domain, based on the I-FGSM [24] attack, which 
was originally introduced for image classification tasks. Schmalfuss 
et al. [7] proposed a gradient optimization-based attack method in-
spired by the C&W attack [25]. This technique is capable of generating 
disjoint or joint perturbations for the input frame pair. Additionally, 
instead of limiting the perturbation to individual frames, they extended 
their attack to create universal perturbations.

To adapt the projected gradient descent (PGD) [26] attack for dense 
perception tasks, Agnihotri et al. [27] proposed an approach to scale 
the pixel-wise adversarial loss using cosine similarity between ground 
truth and predicted labels, thereby giving more emphasis to pixels 
where the predictions are close to the ground truth under untargeted 
settings. Koren et al. [28] emphasized the importance of altering only 
the flows of critical target objects while leaving the rest of the predic-
tions unaffected. They introduced a masking-based perturbation attack, 
along with a regularization term to encourage off-target consistency.

The aforementioned attacks against optical flow mainly focused 
on adding noise perturbation to the input. However, since this is 
not realistic in real-world instances, Schmalfuss et al. [29] proposed 
an adversarial weather effects-based attack, using a novel differen-
tial weather particle rendering method to generate elements such as 
snowflakes, rain streaks, or fog clouds, together with an adversar-
ial optimization of the particle parameters (e.g., color) to alter flow 
predictions.

The attack objectives in the above studies can be classified into four 
main categories: (1) altering the flow in an untargeted manner; (2) 
making the network predict the reverse of the initial flow, defined as 
𝐅𝑡 = −𝐅𝑖, where 𝐅𝑡 is the targeted flow and 𝐅𝑖 is the initial flow; (3) 
forcing the network to predict zero flow, defined as 𝐅𝑡 = 0; and (4) 
making the network predict any other arbitrary target flow. In optic 
flow noise perturbation attacks, directly optimizing reverse flow or zero 
flow objectives is feasible since there is no coordinate change of the 
image pixels. However, in LiDAR scene flow estimation, this remains 
challenging due to the shifting of the coordinates of the LiDAR points 
during perturbation. We will explore this further in Section 4.

3. Problem formulation

The main task of scene flow estimation is to utilize two consecutive 
point clouds, 𝑃𝑡 and 𝑃𝑡+1 at times 𝑡 and 𝑡+1 without having a strict one-
to-one mapping between points, along with ego-motion represented 
as the transformation matrix 𝑇𝑡,𝑡+1, to estimate the motion vector for 
each point as 𝐅𝑡,𝑡+1(𝑝) = (𝑥, 𝑦, 𝑧)𝑇 , where 𝑝 ∈ 𝑃𝑡. Notably the flow 
between two point clouds is decomposed as 𝐅𝑡,𝑡+1 = 𝐅𝑒𝑔𝑜 + 𝛥𝐅, where 
𝐅𝑒𝑔𝑜 is the ego motion and 𝛥𝐅 is the output of the scene flow estimation 
method. Typically the training of a scene flow estimation network 
involves minimizing the endpoint error (Eq.  (1)) between ground truth 
and predicted flows. 

EPE = 1
‖𝑃𝑡‖

∑

𝑝∈𝑃𝑡

‖𝐅pred(𝑝) − 𝐅gt(𝑝)‖2. (1)

In this study, we consider the problem of altering predictions of 
scene flow estimation methods by shifting the coordinates of points by 
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Fig. 1. Scene flow estimation under point perturbation attack on 𝑃𝑡. The attack 
performance should be evaluated with respect to the shifted points ground truth flow 
𝐅̂gt. Note: Each circle represents a LiDAR point. Black and blue color lines demonstrate 
flows and EPE before and after the attack.

perturbation extent 𝛿 in an imperceptible manner, such that 𝐅𝑔𝑡 ≠ 𝐅̂, 
where 𝐅̂ represents the flow after the attack. As stated in the previous 
section, study [20] is the only work that focuses on this problem. 
Specifically, in this study, an adversarial perturbation 𝛿 is added, and 
the point coordinates in 𝑃𝑡 are shifted. However, in such an attack, 
comparing the predicted flow against the original flow does not provide 
meaningful insights into the attack’s performance. This is because, 
for each point in 𝑃𝑡, the EPE is calculated as the distance between 
the predicted and actual flow vectors, with the points in 𝑃𝑡’s position 
serving as the origin. Moreover, though the points in 𝑃𝑡 are shifted, the 
predicted flow might still align well with the altered ground truth flow 
between shifted points in 𝑃𝑡 and their expected positions in 𝑃𝑡+1.

Further explained, as shown in Fig.  1, we argue that if 𝛿 is added 
to 𝑃𝑡, it should evaluate the attack performance with respect to the 
ground truth flow of the shifted points 𝐅̂gt instead of original ground 
truth flow 𝐅gt. To mitigate this problem, we decided to add the adver-
sarial perturbation 𝛿 to 𝑃𝑡+1, as 𝑃𝑡+1 provides only correspondence and 
implied motion information without managing any one-to-one mapping 
between points in 𝑃𝑡, thus enabling the evaluation of the predicted flow 
of points in 𝑃𝑡 with the original ground truth flow 𝐅gt.

4. Proposed approach: FlowCraft

Accurate scene flow estimation is crucial for identifying the motions 
of critical movable objects, and altering these flow estimations can 
significantly harm public safety. Hence, in the FlowCraft attack, we 
only consider perturbing the point clouds of pre-identified critical 
object categories (e.g., Vehicles, Pedestrians), leaving all other off-
target points unchanged. In the real world, an attacker could potentially 
identify the points of critical objects using a pre-trained LiDAR seg-
mentation network. Let 𝑀𝑡+1 be the binary mask that represents the 
critical object points in 𝑃𝑡+1, then FlowCraft intends to synthesize the 
adversarially corrupted 𝑃𝑡+1 by shifting the coordinates of these critical 
objects’ points via perturbation extent 𝛿, as follows. 
𝑃𝑡+1 = 𝑀𝑡+1 ⊙ (𝑃𝑡+1 + 𝛿) + (1 −𝑀𝑡+1)⊙ 𝑃𝑡+1. (2)

We defined the generation process of 𝑃𝑡+1 as an iterative optimiza-
tion process inspired by the C&W attack [25] and guided by two loss 
functions that reflect the FlowCraft attack objective and control the 
imperceptibility of the attack.

As mentioned previously, two common attack objectives used in 
optic flow attacks are making the network predict reverse flow 𝐅̂ = −𝐅𝑖
or predicting zero flow 𝐅̂ = 0. However, shifting point coordinates to 
achieve this objective might require a large perturbation and result 
in low imperceptibility. Moreover, it may require a larger number 
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of iterations. Hence, we design FlowCraft to be an untargeted attack 
with the objective of maximizing the EPE. In particular, given a pre-
trained scene flow estimation network 𝜃 , two consecutive point clouds 
𝑃𝑡, 𝑃𝑡+1 and ground truth flow 𝐅𝑔𝑡, FlowCraft intends to maximize EPE 
of critical objects as follows: 
𝐅̂ = 𝜃(𝑃𝑡,𝑀𝑡+1 ⊙ (𝑃𝑡+1 + 𝛿) + (1 −𝑀𝑡+1)⊙ 𝑃𝑡+1). (3)

𝐿𝑜𝑏𝑗 = − 1
‖𝑃𝑡‖

∑

𝑝∈𝑃𝑡

‖𝐅̂(𝑝) − 𝐅gt(𝑝)‖2. (4)

Specifically, we developed two variants of the final objective loss: 
(1) Global objective loss: calculates 𝐿obj for all points in 𝑃𝑡 to obtain 
gradients for critical objects in 𝑃𝑡+1, and (2) Local objective loss: 
computes 𝐿obj[𝑀𝑡] specifically for critical object points in 𝑃𝑡, using 
the corresponding critical object mask 𝑀𝑡 and obtaining gradients for 
critical objects in 𝑃𝑡+1.

The shifting of point coordinates should be done imperceptibly. 
Given that FlowCraft perturbs critical object point clouds with distinct 
geometric shapes, using a loss function that captures shape similarities 
is essential to manage the attack imperceptibility. Hence, we adopt 
Chamfer Distance (Eq.  (5)) as the imperceptibility loss function.

𝐿cd(𝑃𝑡+1, 𝑃𝑡+1) =
∑

𝑝∈𝑃𝑡+1

min
𝑞∈𝑃𝑡+1

‖𝑝 − 𝑞‖22 +
∑

𝑞∈𝑃𝑡+1

min
𝑝∈𝑃𝑡+1

‖𝑞 − 𝑝‖22. (5)

The final process of generating adversarial 𝑃𝑡+1 could be formulated 
as a norm unbounded optimization problem of the above two loss 
functions as denoted in Eq.  (6)
argmin
𝑀⊙𝑃𝑡+1

𝜆1𝐿𝑜𝑏𝑗 + 𝜆2𝐿𝑐𝑑 , (6)

where 𝜆1, 𝜆2 are balancing parameters. The main steps of the FlowCraft 
attack are presented in Algorithm 1.
Algorithm 1 FlowCraft Attack Steps
Require: Point Clouds:𝑃𝑡, 𝑃𝑡+1,Critical object masks in 𝑃𝑡, 𝑃𝑡+1 ∶

𝑀𝑡,𝑀𝑡+1,  Scene Flow Network: 𝜃 , Iterations: 𝑁,Ground truth
flow: 𝐅𝑔𝑡,Optimizer :𝑂, Learning Rate: 𝜂
𝑃𝑡+1 ← 𝑃𝑡+1
𝑛 ← 0
Enable Gradient on 𝑃𝑡+1
Assign 𝑃𝑡+1 to the 𝑂
while 𝑛 < 𝑁 do
 𝐅̂ ← 𝜃(𝑃𝑡, 𝑃𝑡+1)
 if Local Loss == True then
 Get 𝜆1𝐿𝑜𝑏𝑗 (𝐅̂,𝐅𝑔𝑡)[𝑀𝑡] + 𝜆2𝐿𝑐𝑑 (𝑃𝑡+1, 𝑃𝑡+1)
 else
 Get 𝜆1𝐿𝑜𝑏𝑗 (𝐅̂,𝐅𝑔𝑡) + 𝜆2𝐿𝑐𝑑 (𝑃𝑡+1, 𝑃𝑡+1)
 end if
 Calculate gradients ∇𝑃𝑡+1 ∇𝑃𝑡+1

[!𝑀𝑡+1] ← 0 ⊳ Zero the gradients of non targeted points
 𝑃𝑡+1− = 𝜂 × ∇𝑃𝑡+1

⊳ Take gradient step using 𝑂
 𝑛+ = 1
end while
Return 𝑃𝑡+1

5. Experimental setup

This section summarizes datasets, scene flow estimation methods, 
and evaluation metrics used to assess the performance of the FlowCraft 
attack.

5.1. Scene flow estimation methods and datasets

We evaluate the adversarial robustness across all categories of 
scene flow estimation techniques. In particular, FlowCraft attack perfor-
mance is evaluated against trainable, runtime optimization, supervised, 
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Table 1
Scene flow estimation approaches used in the evaluation.
 Method Trainable Supervision C𝐴 C𝑊  
 DeFlow [10] ✓ Full ✓ 7  
 FastFlow3D [11] ✓ Full ✓ ✓  
 ZeroFlow [12] ✓ Self ✓ ✓  
 ICP Flow + FNN [15] ✓ Self ✓ ✓  
 NSFP [13] 7 Self NA NA 
 FastNSF [14] 7 Self NA NA 
Note: C𝐴, C𝑊  - Checkpoint availability for the Argoverse 2 dataset and the Waymo 
dataset, respectively.

and self-supervised scene flow estimation approaches. Details of the 
selected scene flow estimation approaches are summarized in Table  1.

Notably, FastFlow3D is based on a 2D U-Net style network with 
Pillar encoding [30], while DeFlow improves upon this by integrat-
ing Gated Recurrent Units to refine various point features within the 
same voxel, along with an improved version of EPE loss to adjust the 
weights based on each point’s motion type. On the other hand, NSFP 
and FastNSF employ a runtime optimization-based data exploration 
approach grounded on non-trained MLPs to extract flows, which fall 
under the self-supervised paradigm. NSFP uses the Chamfer distance 
loss as its main objective function to extract flows, while FastNSF 
introduces a novel, correspondence-free distance transform loss func-
tion to overcome NSFP’s slow execution time. Further, ZeroFlow and 
ICP Flow + FNN use a network identical to FastFlow3D as the main 
network, while generating pseudo-labels for training using NSFP and 
an Iterative Closest Point (ICP) algorithm-based approach, respectively. 
We specifically experimented with the white-box version of FlowCraft 
using DeFlow and evaluated the black-box transferability of the attack 
using other approaches.

We use the evaluation subset1 extracted from the Argoverse 2 [8] 
validation dataset, which consists of 23,547 LiDAR samples across 150 
scenarios, as our main dataset. We also conduct further experiments 
using the Waymo [9] dataset, which contains over 39k LiDAR samples 
across 202 scenes. Both datasets were collected at a LiDAR frequency 
of 10 Hz. Notably, for the evaluations, we subsampled 4040 LiDAR 
samples from the Waymo dataset by selecting the first 20 samples from 
each scene. In both datasets, we employ classes related to vehicles and 
human subjects (e.g., pedestrians, motorcyclists) as critical objects.

We use a desktop computer equipped with an Nvidia RTX 3090 
GPU and a configuration featuring an Nvidia Tesla V100 from a su-
percomputer cluster for our experiments. We utilize PGD [26] and 
CosPGD [27] attacks as benchmarks, as they have been utilized in 
studies on attacks against optic flow. In both techniques, we set the 
step size to 0.01, the maximum allowable perturbation to 0.5, and the 
number of iterations to 100. In the FlowCraft attack against the DeFlow 
network, we optimize it for 100 iterations using the Adam optimizer 
with a learning rate of 0.01, keeping 𝜆1 at 1 and 𝜆2 at 0.5. Moreover, 
all the attacks are initiated with zero perturbation instead of random 
initialization.

5.2. Evaluation metrics

The most common metric for evaluating scene flow is the EPE, 
which measures the 𝐿2 norm between the predicted and ground truth 
flow vectors. The Argoverse 2 benchmark uses the 3-Way EPE intro-
duced in [31]. This metric calculates the average EPE error across three 
classifications: foreground dynamic, foreground static, and background 
static.

Inspired by this approach, and since FlowCraft focuses on altering 
the flow predictions of critical objects, we calculate the relative incre-
ment of EPE before and after the attacks for all critical object points 

1 https://argoverse.github.io/user-guide/tasks/3d_scene_flow.html
40 
(𝐸𝑃𝐸𝑅), as defined in Eq. (7). We refer to this as the attack success 
rate throughout the rest of the article. Additionally, we calculate the 
same metric for static (EPE𝑆𝑅) and dynamic (EPE𝐷𝑅) critical objects. 
Specifically, as per [10,31], a point is classified as static or dynamic 
based on Eq. (8). 

EPE𝑅 =
EPEattacked − EPEoriginal

EPEoriginal
. (7)

Dynamic or Static =
{

Dynamic if ‖𝐅𝑡,𝑡+1 − 𝐅ego‖2 >= 0.05m
Static otherwise

(8)

Using Eq.  (8), we calculate the metric 𝑅𝐼𝑂𝑈 , which represents 
the ratio of the mean intersection over union (mIoU) of static and 
dynamic points before and after the attack. Finally, we evaluate the 
imperceptibility of the attack by calculating the increase in EPE error 
corresponding to a unit change in a distance measurement 𝐿𝐷, such as 
the chamfer distance or L2, as shown in Eq.  (9). Getting a higher value 
for this metric implies that the attack can achieve a higher error with 
less change to the point cloud. 

𝐼𝐷𝐸𝑃𝐸 =
EPEattacked − EPEoriginal

𝐿𝐷(𝑃𝑡+1, 𝑃𝑡+1)
. (9)

Notably, following the Argoverse 2 scene flow evaluation protocol, 
we calculate the EPE and mIoU for the flows of critical objects predicted 
by the algorithm, excluding those beyond ±50 m in the 𝑥 and 𝑦
directions and ±3 m in the 𝑧 direction from the origin.

6. Evaluation results

We present EPE𝑅, EPE𝐷𝑅 , EPE𝑆𝑅, R𝐷
𝐼𝑂𝑈 , R𝑆

𝐼𝑂𝑈  and I𝐷EPE before and 
after the attack on critical objects in Argoverse 2 dataset while using 
global and local objective losses under the white-box setting in Table  2. 
When considering the EPE, these findings demonstrate that FlowCraft 
significantly outperforms both PGD and CosPGD attacks. Further, when 
using the local loss, FlowCraft achieves a higher attack success rate, 
while both CosPGD and PGD show nearly identical performance under 
both local and global loss methods.

Furthermore, Table  3 presents the same quantitative evaluation of 
the attack’s performance against the DeFlow network trained on the 
Argoverse 2 dataset but evaluated on the Waymo dataset. These re-
sults further highlight the state-of-the-art performance of the FlowCraft 
attack and demonstrate its strong generalizability to entirely unseen 
data distributions compared to the one used for training the network. 
Further, on both datasets, FlowCraft shows slightly better R𝐷

𝐼𝑂𝑈  and 
R𝑆
𝐼𝑂𝑈  values with local loss. Additionally, the performance of CosPGD 
and PGD attacks is nearly identical across both datasets. This behavior 
is also observed in the CosPGD attack on optical flow networks under 
untargeted settings [27].

The 𝐼𝐷𝐸𝑃𝐸 metric calculated using the Chamfer distance metric and 
presented in Tables  2 and 3, illustrates that, compared to the other two 
attacks, FlowCraft significantly increases the EPE for a unit increment 
in Chamfer distance, highlighting its imperceptibility. Moreover, when 
considering both imperceptibility and attack performance, FlowCraft 
using global loss is more effective than the one using local loss. Fig.  2 
illustrates several qualitative results of the FlowCraft attack with local 
loss on the DeFlow network. Meanwhile, Fig.  3 differentiates the 𝑃𝑡+1
before and after the attack, highlighting how the attack shifts the points 
without completely vanishing the geometric shapes of the objects in an 
imperceptible way.

7. Black box transferability analysis

Utilizing the DeFlow network as a surrogate, we evaluate the cross-
method transferability of point clouds modified by FlowCraft with 
global loss in a black-box manner, against FastFlow3D, ZeroFlow, ICP 
Flow+FNN, NSFP, and FastNSF. Specifically, we set the number of 
inference iterations to 1000 for the NSFP and FastNSF methods.

https://argoverse.github.io/user-guide/tasks/3d_scene_flow.html
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Table 2
FlowCraft performance comparison on DeFlow [10], using the Arogverse 2 Dataset [8]: Global Loss 
vs. Local Loss.
 Loss Type Attack EPE𝑅 ↑ EPE𝐷𝑅 ↑ EPE𝑆𝑅 ↑ R𝐷

IoU ↓ R𝑆
IoU ↓ I𝐷EPE ↑  

 
Global Loss

PGD 2.143 1.7205 2.4757 0.803 0.716 5.2779  
 CosPGD 2.148 1.7218 2.4824 0.803 0.715 5.2883  
 FlowCraft 2.462 1.9137 2.7914 0.817 0.734 15.613 
 
Local Loss

PGD 2.162 1.7264 2.5044 0.802 0.716 5.333  
 CosPGD 2.152 1.7194 2.4984 0.803 0.718 5.301  
 FlowCraft 2.909 2.2578 3.5535 0.800 0.696 10.847 
Table 3
FlowCraft performance comparison on DeFlow [10], using the Waymo Dataset [9]: Global Loss vs. 
Local Loss.
 Loss Type Attack EPE𝑅 ↑ EPE𝐷𝑅 ↑ EPE𝑆𝑅 ↑ R𝐷

IoU ↓ R𝑆
IoU ↓ I𝐷EPE ↑  

 
Global Loss

PGD 1.1543 0.66956 2.4523 0.8437 0.573 4.393  
 CosPGD 1.1561 0.67597 2.4474 0.8430 0.571 4.395  
 FlowCraft 1.4298 0.81796 2.9880 0.8535 0.593 16.822 
 
Local Loss

PGD 1.1546 0.67567 2.4401 0.8402 0.572 4.404  
 CosPGD 1.1530 0.67278 2.4490 0.8396 0.571 4.403  
 FlowCraft 1.7945 1.0648 3.7017 0.8396 0.546 11.629 
Table 4
Transferability analysis of FlowCraft with Global Loss on the Argoverse 2 Dataset [8].
 Network Attack EPE𝑅 ↑ EPE𝐷𝑅 ↑ EPE𝑆𝑅 ↑ R𝐷

IoU ↓ R𝑆
IoU ↓ I𝐷EPE ↑  

 
FastFlow 3D [11]

PGD 0.4419 0.3432 0.9009 0.9151 0.9021 1.8394  
 CosPGD 0.4442 0.3428 0.8924 0.9143 0.9013 1.8476  
 FlowCraft 0.5117 0.3802 0.9627 0.9176 0.9038 5.4833 
 
ZeroFlow [12]

PGD 0.4550 0.29863 0.9884 0.8727 0.8660 1.8342  
 CosPGD 0.4574 0.29952 0.9882 0.8739 0.8672 1.8425  
 FlowCraft 0.5186 0.34398 0.9431 0.8964 0.8888 5.3825 
 
ICP Flow + FNN [15]

PGD 2.7695 2.2513 5.4090 0.725 0.7028 6.8196  
 CosPGD 2.7715 2.2498 5.4120 0.724 0.7031 6.8179  
 FlowCraft 3.0467 2.3312 5.7737 0.764 0.7480 19.313 
 
NSFP [13]

PGD 2.5829 1.0240 5.7952 0.740 0.320 10.494  
 CosPGD 2.6094 1.0288 5.8686 0.742 0.321 10.592 
 FlowCraft 0.7234 0.3922 1.1236 0.863 0.795 7.5671  
 
FastNSF [14]

PGD 1.6132 0.6241 4.7079 0.8121 0.4720 9.1815  
 CosPGD 1.6182 0.6257 4.7295 0.8123 0.4743 9.2010 
 FlowCraft 0.3461 0.2080 0.3110 0.8934 0.9211 5.0710  
Note: NSFP and FastNSF yield slightly different results each time.
Table 5
Transferability analysis of FlowCraft with Global Loss on the Waymo Dataset [9].
 Network Attack EPE𝑅 ↑ EPE𝐷𝑅 ↑ EPE𝑆𝑅 ↑ R𝐷

IoU ↓ R𝑆
IoU ↓ I𝐷EPE ↑  

 
FastFlow 3D [11]

PGD 0.3099 0.1890 0.9661 0.9363 0.9473 1.2714  
 CosPGD 0.3055 0.1883 0.9576 0.9388 0.9487 1.2520  
 FlowCraft 0.2845 0.1679 0.9039 0.9338 0.9513 3.6080 
 
ZeroFlow [12]

PGD 0.3629 0.1827 1.3481 0.8237 0.8336 1.6458  
 CosPGD 0.3531 0.1778 1.3336 0.8280 0.8367 1.5996  
 FlowCraft 0.3142 0.1406 1.2514 0.8578 0.8732 4.4055 
 
ICP Flow + FNN [15]

PGD 0.6040 0.4489 3.7377 0.5435 0.9057 4.0395  
 CosPGD 0.6027 0.4484 3.7740 0.5497 0.9056 4.0259  
 FlowCraft 0.7200 0.4488 8.1584 0.6313 0.8831 14.887 
 
FastNSF [14]

PGD 1.6039 0.4944 4.6151 0.8125 0.6340 7.2621 
 CosPGD 1.5655 0.4755 4.5340 0.8103 0.6372 7.0807  
 FlowCraft 0.2912 0.1492 0.3327 0.8673 0.9363 4.0765  
Note: FastNSF yields slightly different results each time.
Table  4 presents a quantitative comparison of FlowCraft’s transfer-
ability against PGD and CosPGD attacks on the Argoverse 2 dataset, 
along with the results of the 𝐼𝐷𝐸𝑃𝐸 metric using the Chamfer dis-
tance. These results indicate that point perturbation attacks, including 
FlowCraft, exhibit a higher degree of transferability on both trainable 
and runtime optimization scene flow estimation methods. Specifically, 
41 
FlowCraft outperforms both PGD and CosPGD attacks when using 
the trainable seen flow estimation techniques in terms of both attack 
success rate and imperceptibility.

Table  5 demonstrates the black-box cross-method and cross-domain 
transferability of the three attacks, where the perturbations are gener-
ated using the DeFlow network trained on the Argoverse 2 dataset to 
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Fig. 2. Qualitative results of flow predictions before and after the attack on DeFlow [10]: Color intensity represents the speed, and the angle of the flow vector is represented by 
color variation.
Fig. 3. Visualization of 𝑃𝑡+1 before and after the attack. Red color: points before the 
attack. Blue color: points after the attack.

attack scene flow estimation techniques on the Waymo dataset. In this 
context, under the ZeroFlow and FastFlow3D, the CosPGD and PGD 
attacks slightly outperform FlowCraft. However, as indicated by the 
imperceptibility results in the 𝐼𝐷𝐸𝑃𝐸 metric, FlowCraft still outperforms 
these two attacks. Additionally, in both datasets, CosPGD and PGD 
attacks show relatively better R𝐷

𝐼𝑂𝑈  and R𝑆
𝐼𝑂𝑈  values than FlowCraft.

Although the ICP Flow + FNN architecture is the same as Fast-
Flow3D and ZeroFlow, it demonstrates comparatively high adversarial 
vulnerability to the evaluated attacks on both datasets. This might be 
due to the use of rigid pseudo-labels for scene flows, generated by the 
ICP algorithm to train the network, which assumes that each moving 
point cluster (e.g., a vehicle) in the AV domain has a rigid motion.

When considering the two runtime optimization methods, NSFP and 
FastNSF, both CosPGD and PGD outperform FlowCraft, which exhibit 
higher Chamfer distance values or lower imperceptibility. This outcome 
is acceptable, as the objective of the FlowCraft attack is to increase 
the EPE while decreasing the Chamfer distance. Similarly, NSFP calcu-
lates the scene flow using Chamfer distance as a regularization term. 
Additionally, the original NSFP paper highlighted its vulnerabilities to 
partial point clouds and occlusions, which indicates the importance of 
having accurate correspondences and geometric shapes between the 
two point clouds and their point clusters for precise scene flow estima-
tion. Given these results, it is possible to argue that the success rate of 
adversarial point perturbation attacks against the runtime optimization 
techniques, NSFP and FastNSF, is a trade-off between the total attack 
success rate and its imperceptibility.

8. Conclusions

In this paper, we explore how to perform adversarial attacks against 
LiDAR scene flow estimation. Specifically, we introduce a point per-
turbation attack tailored for LiDAR scene flow estimation, considering 
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imperceptibility and analyzing potential attack goals. Given that scene 
flow estimation involves two consecutive LiDAR point clouds, we first 
determine which point cloud the perturbation attack will target, en-
suring its suitability for accurately evaluating the attack’s performance. 
We then develop the FlowCraft attack, which perturbs the current point 
cloud as an optimization of two loss functions. Evaluations conducted 
on trainable scene flow estimation networks using the Argoverse 2 and 
Waymo datasets reveal that both the white-box and black-box transfer 
versions of FlowCraft outperform PGD and CosPGD attacks, considering 
both attack performance and imperceptibility, while also demonstrat-
ing strong generalizability to unseen domains during network training. 
On the other hand, our results on NSFP and FastNSF reveal that 
the success rate of perturbation attacks against self-supervised run-
time optimization methods primarily depends on the lower geometric 
consistency between the two point clouds.

Future research in this area involves developing physically real-
izable attacks against scene flow estimation and experimenting with 
adversarial defense methods to mitigate the highlighted vulnerabilities. 
Since runtime optimization scene flow estimation techniques demon-
strate strong adversarial robustness, we hope that improving these 
methods will be beneficial and have the potential to be integrated into 
commercial AVs. Further, investigating concepts such as multi-body 
rigidity, novel clustering techniques, and multi-sensor fusion methods 
could be identified as promising research areas for developing robust 
scene flow estimation techniques. Moreover, universal adversarial per-
turbations that can be applied to any frame without requiring prior 
knowledge should also be investigated.
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