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1. Abstract

A Petrov-Galerkin method for computations of fully enclosed flows is developed. It makes use

of divergence-free basis functions which also satisfy the boundary conditions for the velocity field.

This allows the elimination of the unknown pressure. The computational procedure reduces to the

solution of a system of nonlinear first order ordinary differential equations for the spectral expansion

coefficients. We illustrate the effectiveness of the method by solving the problem of the two-dimensional

thermoconvective flow in a rectangular cavity of aspect ratio � at Rayleigh number ��� ��
�.

2. Introduction

Spectral and, in particular, Galerkin-type methods are usually the first method of choice when high

accuracy of results is required in the solution of partial differential equations. But when a very large

number of spectral modes is necessary to resolve the fine structures of the solution, the application of

spectral methods becomes extremely time consuming.

The proposed method (see [1]) takes into account some of the properties of the flow and incorporates

them into the construction of specific basis functions. This guarantees a faster convergence rate than

obtained using conventional spectral methods.

3. Problem formulation

We consider the two dimensional flow of a fluid in a rectangular enclosure. The dimensionless
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governing equations, corresponding to conservations of mass, momentum and energy, under the

Boussinesq approximation, are given by
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where �� � ��� 
� ��� is the velocity vector, � � �� �� ��� is the total pressure, and �	 � ��� �� ��� is

the unit vector in the direction of gravity. Note that it is advantageous to introduce the vorticity vector

�� � ��� �� �
��� ������� since in this case only two velocity derivatives enter the convective terms

of the momentum equations instead of four.

Boundary conditions at the walls are given by
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The initial conditions used are �� � � and � � ��� �.

The independent dimensionless parameters appearing in the problem are respectively the Rayleigh

number, the Prandtl number, and the aspect ratio:
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4. Method of solution

To solve the system of Boussinesq equations (1–3) we require our expansion bases to satisfy the

following criteria: 1) the basis functions for velocity should be divergence-free, 2) the bases functions

should satisfy homogeneous boundary conditions, 3) the bases functions should be complete, and 4) the

resulting system of equations should have sparse matrices. As a result of these criteria, and because of
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the simple geometry, we are led to the following expansions for the unknown functions:
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where, upon using the transformations �� � �� �	 �� � ���� �, we have for �	 � � �	 �	 �	 	 	 	
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Note that ������ � ��
 �� �����
 ����� is the Chebyshev polynomial of the first type.

After the choice of bases, we use a Petrov-Galerkin procedure with the following test functions:
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We note that these functions are chosen to satisfy the boundary conditions and in addition that the

velocity test functions be divergence-free. Subsequently, we take the inner product of the momentum

equation with the test function ��	
 and integrate over the volume. We also integrate the thermal energy

equation over the volume after multiplying it by the test function �	
. We note that for an arbitrary

scalar function � and a divergence-free vector field ��	
 which satisfies zero boundary conditions,

�

� ��	
 �� �

�

� ��	
�� �

�

� ��	
 ��� �	 (9)

where � and � denote the volume and surface of the domain, respectively. Thus, after application of

the Petrov-Galerkin procedure, the unknown total pressure is eliminated, and we obtain a system of

nonlinear ordinary differential equations for the spectral amplitudes:

� �� � ��� �	 (10)
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Subscripts denote products of the basis functions participating in the Petrov-Galerkin integration. The

coefficients 
�� , 
�� , 
�� , 
�� , ���� , ���� , and ��� are the inner products of Chebyshev

polynomials which can be obtained analytically using integration by parts and the orthogonality property

of Chebyshev polynomials.

By re-ordering the equations in the system, it is possible to rearrange the sparse matrices � and � to

block cyclic form. The problem can then be split into two parts coupled through the nonlinear terms

in the vector �, the structure of which we have not shown explicitly. Only one component of the

submatrix ��� corresponding to � � � � � is nonzero due to the special choice of the test functions

and the orthogonality property of Chebyshev polynomials. Through its effect on the first linearly

decoupled sub-block, the top half of this vector contributes in the establishment of the centro-symmetric

solution. When �	 is small enough (less than a critical value), the bottom half of the nonlinear vector is

identically zero! Subsequently, the second sub-block, which is linearly decoupled, effectively becomes

fully decoupled and just has the trivial solution

��� � � if �� � is ��� ��� ��� � � if �� � is ����
 (12)

At higher values of �	, due to instability to asymmetric disturbances arising from machine round-off,

the bottom half of this vector becomes nonzero and the nonlinear coupling between the two sub-blocks

becomes so strong that the symmetry of the solution is broken. It is noted that the splitting of the

original problem makes the linear stability analysis of the solutions very natural and straightforward,

although it will not be discussed here.

The special form of matrices � and � allows one to solve the problem by partitioning which reduces

substantially both the memory consumption and the computational time. Further optimization of the
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solution procedure is possible if use is made of special sparse matrix solvers for multidiagonal systems.

At this point we have not focused our attention on this issue, and subsequently have used a general

sparse matrix package (YSMP).

The procedure just described is ideal if one is interested in the low order dynamical system

approximating the given problem. In this case all integrals, including triple products entering the

nonlinear terms, can be computed analytically and stored. Then the system of first order ordinary

differential equations with known constant coefficients can be solved using any appropriate initial value

integration technique. When accurate solutions are required for higher values of Rayleigh numbers, the

total number of spectral modes becomes sufficiently large. The storage space required for triple product

integrals in the two-dimensional case is proportional to �
�, where � is the number of modes in one

direction (assumed equal in each direction). Thus memory limitations become extremely restrictive

for the proposed method. Alternatively, a direct calculation of triple products at each time step

makes the method extremely time consuming. Fortunately, this last difficulty can be resolved since

the Chebyshev polynomial basis enables us to use fast Fourier transforms (FFTs) which require only

����
���� operations to evaluate nonlinear terms, where � is the spacial dimension of the problem.

Algorithmically, we first find the expansions for ��, ��, � in terms of Chebyshev polynomials using

recurrence differentiation formulae applied to the original expansion. Then we apply the inverse 2D

FFT to find the values of ��, ��, � at �� �� Gauss-Lobatto collocation points. The choice of

�� collocation points in each direction allows us to retain full spectral accuracy since it leads to the

exact triple-product integrals. Lastly, we find values of nonlinear terms in physical space using � �
�

operations and subsequently apply the forward 2D FFT to find the expansion of nonlinear terms as

Chebyshev series. Since the expansion of the trial functions in terms of Chebyshev polynomials is

known, the integral evaluation reduces to the trivial use of orthogonality formulas.

To avoid the solution of the nonlinear equations at each time step, and preserve the stability

5



characteristics of implicit schemes as much as possible, we implement a semi-implicit time integration

procedure combining the second order (implicit) Gear method for the linear part and the second order

(explicit) Adams-Bashforth method for the nonlinear term. In the application to our matrix equation

this becomes

�
��� � ��� � ����� � ���

�
��� � � � ��� �

��� � (13)

where � is the identity matrix. Note that if the time step � is fixed, then the matrix inversion is

only done once and the integration procedure reduces to matrix-vector multiplications which can be

accomplished efficiently if one takes advantage of the sparseness of matrices � and �.

5. Results

We apply the Petrov-Galerkin method to the case �� � ��� ���, �� � ��	�, and � � 
. We

take 	 � 
 � �� and � � � � ��. The computations are performed on a Sun UltraSPARC 30,

Model 300 with a 296 MHz UltraSPARC-II CPU having 128 MBytes of total memory. For the above

parameters, the algorithm requires approximately 85 MBytes of memory and the computational cost is

approximately � ���� sec/time-step/mode. A summary of the computed results are given in Tables

1–3 and Figures 1 and 2. A major observation from the results is that the flow is periodic. Below

we report the average, rms and dominant frequency observed from the stationary results. We note that

while we report the results of a single computation, we have checked the correctness and accuracy of the

code by performing a number of other computations with different number of modes, different aspect

ratios, and different Rayleigh numbers. For example, a steady solution exists for relatively small values

of the Rayleigh number and � � �. The results compare favorably with those obtained by Le Quéré

(1991)[2] using a pseudo-spectral Chebyshev algorithm (to the authors’ knowledge these are the most

accurate published results). With our Petrov-Galerkin algorithm we obtain the same order of accuracy

using a substantially smaller total number of modes.
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6. Conclusions

The Petrov-Galerkin method used permits the efficient and spectrally accurate solution of incompress-

ible fully enclosed flows using primitive variables. Pressure is eliminated identically from the system

of equations by the special choice of the divergence-free basis satisfying homogeneous boundary con-

ditions. Further reduction of the total number of unknown functions is obtained since the two velocity

components are represented by one set of spectral coefficients. The even-odd decomposition of the

modes is straightforward and allows to partition the problem leading to substantial computational sav-

ings. The numerical procedure is made very efficient by computing analytically and storing all necessary

inner products and using FFTs for the explicit evaluation of nonlinear terms. Although not shown here,

this technique is easily generalized to three dimensions resulting in even more substantial computer

storage and computational time savings in comparison with standard computational techniques.
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FIGURE 1. Stationary results at Point 1 (� � ������, � � ������).
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FIGURE 2. Stationary wall Nusselt numbers.
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Time Duration: ��� � ���
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FIGURE 3. Stationary square roots of global kinetic energy, ��, and enstrophy, �
.
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FIGURE 1. History of temperature at Point 1 (� � ������, � � ������), ��, with detail.

FIGURE 2. History of temperature skewness between Point 1 (� � ������, � � ������) and Point 2
(� � ������, � � ������), ���, with detail.
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