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ABSTRACT:
Time Scale Modification (TSM) is a well-researched field; however, no effective objective measure of quality exists.

This paper details the creation, subjective evaluation, and analysis of a dataset for use in the development of an

objective measure of quality for TSM. Comprised of two parts, the training component contains 88 source files

processed using six TSM methods at 10 time scales, while the testing component contains 20 source files processed

using three additional methods at four time scales. The source material contains speech, solo harmonic and percus-

sive instruments, sound effects, and a range of music genres. Ratings (42 529) were collected from 633 sessions

using laboratory and remote collection methods. Analysis of results shows no correlation between age and quality of

rating; expert and non-expert listeners to be equivalent; minor differences between participants with and without

hearing issues; and minimal differences between testing modalities. A comparison of published objective measures

and subjective scores shows the objective measures to be poor indicators of subjective quality. Initial results for a

retrained objective measure of quality are presented with results approaching average root mean squared error loss and

Pearson correlation values of subjective sessions. The labeled dataset is available at http://ieee-dataport.org/1987.
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I. INTRODUCTION

Time Scale Modification (TSM) is the process of modi-

fying the duration of a signal without modifying timbre and

pitch. It has found use in areas including music production,

language learning, and speech recognition systems. Despite

being a well-researched field, an effective objective measure

of quality has not yet been published, limiting comparisons

between TSM algorithms. When subjective evaluation has

been used, each paper has used a unique set of source mate-

rial and methods, further reducing comparison to only the

methods involved in the evaluation. In order to develop an

effective objective measure, a dataset with subjective qual-

ity labels is required. This work details the creation, subjec-

tive evaluation, and analysis of the first dataset for this

purpose, and gives preliminary results for a neural-network-

based objective measure of quality.

TSM algorithms most commonly modify the temporal

domain by varying the ratio between analysis (Sa) and syn-

thesis (Ss) shift sizes within an Analysis Modification

Synthesis framework. This ratio, given by

b ¼ 1

a
¼ Sa

Ss
; (1)

shows a to be the change in signal duration (Roucos and

Wilgus, 1985), while b is the playback speed (Sylvestre and

Kabal, 1992) and will be used within this paper.

Algorithms for TSM can be classified into three main

categories: frequency domain, time domain, and hybrid

methods. In general, frequency-domain methods excel in

scaling harmonically complex material but struggle to pro-

duce high quality results with highly transient signals.

Time-domain methods are more effective at scaling tran-

sient signals but give poor results for polyphonic signals.

Hybrid methods leverage the strengths of frequency and

time domain methods to produce higher quality results

(Driedger et al., 2014).

Common artefacts produced during TSM include

“phasiness” and reverberation (Laroche and Dolson, 1997;

Portnoff, 1981), musical and metallic noise or undesirable

roughness (Laroche and Dolson, 1999), a buzzy quality

(Laroche, 2002), and transient smearing (Laroche and

Dolson, 1999). Phasiness and reverberation are heard as a

loss of spectral definition and are most commonly associated

with frequency domain methods. Laroche and Dolson

(1999) suggest that this is due to a change in relationship

between the phases of bins in the spectral domain. Musical

noise, also known as musical artefacts or musical tones, is

due to isolated holes and/or peaks within the power spec-

trum (Torcoli, 2019). Within TSM, these artefacts are

caused by periodicity introduced to noise bins during phase

progression, due to the sum of sines model of the Short

Time Fourier Transform (STFT). Depending on the fre-

quency relationships between these periodic signals the

noise will be perceived as musical for simple harmonic rela-

tionships and metallic for complex harmonic relationships.

Transient smearing occurs due to the trade-off between

STFT spectral and temporal resolution in frequency domain
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algorithms. As the frame size increases to improve spectral

resolution, temporal resolution decreases leading to smear-

ing of transients in time. The buzzy quality, also known

as transient skipping or duplication, is an artefact of

time-domain methods in which transients may be skipped

for b > 1 or duplicated for b < 1.

The aim of TSM is often noted; however, an explora-

tion of ideal TSM has not been published. For the purpose

of subjective evaluation, we describe ideal TSM as indistin-

guishable from a change by the sound source, that is, the

processing should be transparent. A musician changing

tempo or a speaker changing cadence would therefore be

ideal and should be the goal for TSM algorithms.

Consequently, ideal TSM should be determined by the

sound source being scaled. For example, a dry recording of

individual clicks simply requires temporal realignment of

each click; however, a recording of sustained notes played

on a violin would require the extension of the sustain section

of the note’s envelope. Further, in the case of a piano, one

must consider whether the transient or harmonic nature of

the source should be maintained. If a staccato melody

played in the upper register without damping is to be

slowed, should note decay be lengthened or should the

decay be maintained with each note shifted to the new time

scale? We argue that as the piano is a percussive instrument

and unable to modify its amplitude envelope, the note decay

should be maintained. This is counter to the processing

applied by almost all published TSM algorithms. We pro-

pose that an ideal TSM algorithm would be sensitive to the

signal source and be capable of modifying only the sus-

tained portion of the amplitude envelope. This raises many

questions in the processing of reverberation, vibrato, specific

phonemes, and more. We consider that content aware or

source sensitive TSM is an area with considerable potential

for improving the quality of TSM.

The remainder of the paper is laid out as follows.

Section II describes the TSM algorithms used to create the

dataset and previous methodologies for quality evaluation.

Section III describes the source files used in the creation of

the dataset and the processing of the source material to cre-

ate the processed dataset. Section IV describes the subjec-

tive testing methodology, opinion score normalization,

results and analysis of the subjective testing, and dataset

availability. Section V compares subjective results with pub-

lished objective measures and provides preliminary results

for a novel objective measure of quality. Finally, Sec. VI

summarizes and draws conclusions from this research.

II. ALGORITHMS AND QUALITY EVALUATION

The Phase Vocoder (PV) is a frequency-domain method

that uses the known phase progression between frames at

the original time scale to calculate the phase progression

between frames at the adjusted time scale. The digital imple-

mentation by Portnoff (1976) uses the STFT to calculate

phase spectra and forms the basis for all PV methods pub-

lished since. The PV is effective at scaling signals with a

complex harmonic structure, however it introduces

“phasiness” for non-integer values of a and is prone to tran-

sient smearing. See Laroche and Dolson (1999) for a

detailed explanation.

The Identity Phase Locking Phase Vocoder (IPL)

(Laroche and Dolson, 1999) reduces phasiness introduced

by the PV algorithm. The PV maintains horizontal phase

coherence within each STFT bin; however, the vertical

phase coherence between bins is not maintained. In IPL, the

phase of magnitude spectrum peaks are modified, with

nearby bins locked to the phase progression of the closest

peak. This method was extended through multi-resolution

peak-picking and accounting for added or removed peaks by

Karrer et al. (2006). These methods reduce phasiness, how-

ever they can introduce a spectral roughness known as

metallic or musical noise.

The Waveform Similarity Overlap Add (WSOLA) algo-

rithm (Verhelst and Roelands, 1993) is a time-domain

method that uses the similarity between a frame and its natu-

ral progression in the input signal to minimize discontinu-

ities in the time scaled signal. This is in contrast to previous

methods that compare with the output signal (Moulines and

Charpentier, 1990; Roucos and Wilgus, 1985). WSOLA

effectively processes speech and monophonic musical sig-

nals, however due to the reliance on the fundamental fre-

quency for alignment, produces low quality results for

polyphonic signals.

Fuzzy Epoch Synchronous Overlap-Add (FESOLA)

(Roberts and Paliwal, 2019) uses cross-correlation of glottal

closure instants, known as epochs, for aligning frames of

speech. Epochs are calculated using a Zero Frequency

Resonator before smearing in the time-domain. The smear-

ing improves the cross-correlation of epochs and accounts

for changes in fundamental frequency. This method works

well for speech and monophonic signals, however it is not

effective at processing polyphonic signals.

Harmonic-Percussive Separation Time Scale

Modification (HPTSM) of Driedger et al. (2014) is a hybrid

method that uses median filtering of spectrograms for signal

separation. WSOLA and IPL are used for percussive and

harmonic components, respectively. Improved quality was

shown over both individual methods. The method was also

shown to compete with contemporary commercial state-of-

the-art algorithms.

Multi-component Time-Varying Sinusoidal (uTVS)

decomposition (Sharma et al., 2017) uses a Mel-scale filter-

bank and the Hilbert transform to calculate instantaneous

phase and frequency, bypassing phase unwrapping and the

quasi-stationary assumption of traditional frequency-domain

methods. As a result, temporal smearing and phasiness arte-

facts are reduced. This method slightly improves quality

over HPTSM, with large improvements over traditional

methods.

Elastique (Zplane Development, 2018) is a widely used

commercial TSM method. While the algorithm is not pub-

licly available, it is currently a state-of-the-art method and

has been used in recent TSM subjective evaluations.
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Fuzzy classification of spectral bins (FuzzyPV)

(Damsk€agg and V€alim€aki, 2017), is an extension of the IPL.

Spectral bins are given a degree of membership to three

classes, sinusoidal, noise and transient, resulting in a fuzzy

classification of each bin. Sinusoidal bins are scaled using

IPL with phase locking applied to sinusoidal bins, while ran-

dom phase is added to noise bins. Analysis phases of transi-

ents bins are simply relocated in time. Subjective evaluation

shows improvement over HPTSM and similar performance

to Elastique.

Non-Negative Matrix Factorization Time-Scale

Modification (NMFTSM) by Roma et al. (2019) decom-

poses the signal into percussive events and harmonic com-

ponents. Percussive events are copied directly to the output

signal, while IPL is used for harmonic components. The

duration of percussive events is preserved, however it is

highly reliant on correct detection of the events and introdu-

ces novel artefacts.

Little formal subjective testing has been used to evalu-

ate proposed methods, with most proposed methods pro-

viding results from informal testing. A wide variety of time

scales and algorithms are used, with little consistency.

Time scales are often limited with two to five time scales

(0:5 � b � 2) reported in formal testing, with a bias toward

b < 1. This reduces the number of files that require rating,

but also limits algorithm evaluation. The difference in

quality between b < 1 and b > 1 was mentioned briefly by

Sylvestre and Kabal (1992). Since the release of the

MATLAB TSM Toolbox (Driedger and Muller, 2014), PV,

IPL, WSOLA, and HPTSM have been used in most evalua-

tions, while comparisons to commercial algorithms are rare

(Damsk€agg and V€alim€aki, 2017; Driedger et al., 2014;

Karrer et al., 2006). The source audio used during testing

also varies between papers with some papers using the files

provided with the MATLAB TSM Toolbox. It was noted by

Moulines and Laroche (1995) that a thorough perceptual

evaluation of TSM approaches had not yet been

undertaken.

Two objective measures have been proposed, Signal to

Error Ratio (SER) by Roucos and Wilgus (1985) and syn-

thesis consistency (DM) by Laroche and Dolson (1999). SER

accounts only for successive magnitude spectra, with no

attention paid to phase spectra. DM also compares the output

frame’s magnitude to the reconstructed signal’s magnitude,

however the “measure is not a clear indicator of phasiness”

(Laroche and Dolson, 1999). Neither of these measures has

seen continued use.

III. DATASET DESCRIPTION

The source material for the dataset was collated from

the author’s previous creative projects including films, con-

cert, and field recordings as well as music written specifi-

cally for the dataset. Files were selected to give a broad

spectrum of content with variation in TSM difficulty. The

number of source files, methods, and time scales was deter-

mined by balancing the amount of content required to train

a neural network and the number of ratings required for a

“true” Mean Opinion Score (MOS). All content was con-

verted to mono by averaging each pair of samples to remove

the influence of poor handling of multi-channel files

(Roberts and Paliwal, 2018) and normalized to 61 before

TSM. All files are 16-bit with a sample rate of 44.1 kHz and

range in signal pressure level from 56.62 to 86.92 dB with a

mean and standard deviation of 73.37 and 6.75 dB.

The full dataset contains 34 musical, 37 solo instru-

ment, and 37 voice files with a complete listing provided

with the dataset. The total playback length of the source files

is 6 min and 42 s. Duration was kept short, with a mean of

3.7 s and standard deviation of 1.6 s, to limit the duration

after time-scaling. Files were recorded using a combination

of close microphone placement, multi-microphone concert

recording, digital synthesis and sampling techniques, and

shotgun, lapel, and large diaphragm condenser microphones.

These variations in source material allow for extended sub-

jective evaluation of future TSM methods. The musical and

solo files contain synthetic and organic sound sources across

classical, rock, jazz, and electronic genres. Voice files con-

tain singing and male, female, and child speech. Finally, the

evaluation source files contain a mix of each file type and

were used in the generation of the test and evaluation sub-

sets. Table I shows an overview of the signal sources.

To form the training set, the source dataset was proc-

essed using the first six methods previously mentioned at 10

time scale ratios resulting in 5280 processed files. Time

scale ratios of 0.3838, 0.4427, 0.5383, 0.6524, 0.7821,

0.8258, 0.9961, 1.381, 1.667, and 1.924 were generated ran-

domly, but adjusted to ensure coverage across the range of

interest. The testing set used Elastique, FuzzyPV, and

NMFTSM at four random time scales in four bands across

0:25 � b � 2, resulting in 240 testing files. Subjective eval-

uation was conducted for both the training and testing sets.

An additional evaluation set was created and is discussed in

Sec. V. Full dataset generation took approximately 3 days

on a medium to high end workstation.

TABLE I. Signal sources in each dataset class. Sources considered are Total, Brass, Percussion, Piano, Rhythm Section, Sound Effects, Strings,

Synthesizers, Woodwinds, Child, Female, Male, and Singing. All sources within a file are counted separately.

Total Br. Perc. Piano Rhythm SFX String Synth. Wood. Ch. F. M. Sing.

Music 27 6 7 6 8 2 3 9 12 — — 1 2

Solo 31 — 11 3 4 1 1 3 11 — — — —

Voice 30 — — — — — — — — 3 12 15 4

Eval. 20 1 2 2 3 1 1 2 9 1 3 3 —
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The MATLAB TSM Toolbox (Driedger and Muller, 2014)

was used with default settings for WSOLA, HPTSM, and

Elastique time-scaling. FuzzyPV and NMFTSM used pro-

vided implementations with default settings. Author imple-

mentations of PV, IPL, uTVS, and FESOLA were used with

Hann windowing throughout and parameters chosen to max-

imize informal subjective evaluation. All files were normal-

ized after processing. The PV and IPL used a frame length

of 2048 samples (46.4 ms) and synthesis hop of 512 sam-

ples. FESOLA used a frame length of 1024 samples

(23.2 ms). WSOLA used a frame length of 1024 samples

(23.2 ms), a synthesis hop of 512 samples, and a tolerance of

512 samples. HPTSM used identical IPL parameters while

WSOLA had a frame size of 256 samples (5.8 ms) and a

synthesis hop of 64 samples. uTVS was implemented using

six times oversampling and a filterbank containing 88 filters

to maintain the relationship between the signal sample rate

and filterbank length of the original paper. During testing,

an error in the uTVS implementation was found that intro-

duced discontinuities within spectra during processing at

0:9 � b � 1:1 for some files. However, as the purpose of

the subjective testing was to rate multiple files with a variety

of artefacts, they were not removed from the dataset. The

error was rectified before creation of the evaluation subset.

IV. SUBJECTIVE TESTING

Subjective testing was undertaken in two phases. Initial

testing was conducted internally within the laboratory. Due

to the large number of responses needed per file, testing

transitioned to an online browser-based test using the Web

Audio Evaluation Tool (WAET) (Jillings et al., 2015),

shown in Fig. 1. Remote testing greatly increased the num-

ber of participants in the study. Participants were contacted

in person, directly through social media and email, through

mailing lists, and public posts on websites such as Reddit

and Facebook.

Testing followed ITU-R BS.1248–1 (ITU-T, 2019) rec-

ommendations for general methods for the subjective

assessment of sound quality as close as practicable, resulting

in the following testing parameters. Files were presented in

reference-processed pairs with no limits placed on the

amount of playback before moving to the next file. Checks

were included to ensure both files were played at least once.

A continuous grading scale was used in conjunction with a

quality scale, where Poor–Excellent corresponds to scores

of 1–5. Sessions contained a randomised selection of proc-

essed files, presented in random order, with participants free

to choose the session they would evaluate. The amount of

content per session was refined during testing, for a maxi-

mum session duration of 20 min. Toward the end of testing,

the sessions were restricted to files that had limited

responses to reduce MOS standard deviation.

Initial testing was undertaken using a bespoke MATLAB

GUI that presented individual reference-processed pairs,

allowed for saving and restoring of sessions, user input of

name, sound transducer, and a check that the participant had

no known hearing issues. Participants received training

before beginning testing, including explanations of the pur-

pose of TSM and common artefacts with audio examples. A

small initial test session of 33 files was completed before a

random session was assigned. Each session contained

18 min of audio, approximately 200 files, randomly selected

from the pool of processed audio files. Participants could

elect to evaluate additional sessions following a break equal

in length to the completed session.

To increase the number of participants, the WAET was

used. A small number of sessions were evaluated containing

100 files before reduction to 60 files based on participant

feedback of session duration. Training identical to labora-

tory testing was available from the index page, which con-

tained links to each test session. The index page contained

reminders to use headphones in a quiet space during testing

and a random number generator to suggest which test ses-

sion the participant should complete. Before each session,

name, age, sound transducer, experience in critical evalua-

tion of sound, and any known hearing issues were collected.

Participants could also elect to provide an email address to

FIG. 1. WAET user interface used for remote testing. Shown with two file pairs.

204 J. Acoust. Soc. Am. 148 (1), July 2020 Timothy Roberts and Kuldip K. Paliwal

https://doi.org/10.1121/10.0001567

https://doi.org/10.1121/10.0001567


be contacted for future studies. Each session was split into

pages containing six reference-processed pairs.

To remove bias and variability between sessions, opin-

ion scores were normalized according to ITU-R BS1284

(ITU-T, 2019) using

Zi ¼
xi � �xsi

rsi
rs þ �xs; (2)

where Zi is the normalized result, xi is the opinion score of

subject i, �xsi is the mean score for subject i in session s, �xs is

the mean score of all subjects in session s, rs is the standard

deviation for all subjects in session s, and rsi is the standard

deviation for subject i in session s. As the files in each ses-

sion were unique, means and standard deviations were cal-

culated on the subset of files matching those in the session.

Normalized opinion scores were not truncated, however

MOS were limited to the subjective interval of 1–5.

A. Results

A total of 42 529 file ratings were collected from 263

participants across 633 sessions, with 10 354 ratings col-

lected during laboratory testing. Participants ranged in age

from 16 to 66 with a median age of 30. Expert listeners con-

tributed 52.36% of ratings. Twelve files were limited to a

MOS of 1, while 28 files were limited to a MOS of 5.

Due to the different files and time scale ratios used for

the testing subset, direct comparison between methods in

training and testing subsets was not appropriate. However, a

general comparison was achieved through local averaging

of MOS, centered around training time scale ratios. Means

of adjacent time scale ratios, bounded by 0.3 and 3, defined

the local areas. While 0.3 is greater than some time scales

used within the testing set, it was set empirically to include

enough data points, while limiting the impact of much

slower time scales. Mean MOS for testing subset methods

are noisier due to the smaller number of files, and non-

uniform difficulty in processing each signal.

Two measures of reliability were used for each session.

The Root Mean Squared Error (RMSE) denoted by L is

given by

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

�xi � xið Þ2

N

vuuuut
; (3)

where the number of files within the session is denoted by

N, xi is the participants opinion score for the file, and �xi is

the overall MOS for the file. The Pearson Correlation

Coefficient (PCC), denoted by q, given by

q ¼ covðx; �xÞ
rxr�x

; (4)

was also used where x and �x denote sets of opinion scores

and MOS for the session and rx and r�x are the standard

deviation of x and �x. These measures were calculated for

each session before and after normalization. Outliers, calcu-

lated prior to normalization and shown in Fig. 2, were deter-

mined as sessions in which L or q were further than three

scaled median absolute deviations away from their respec-

tive medians. This resulted in the removal of 45 sessions

containing a total of 2102 ratings (4.94%) from the final

pool of sessions.

Following outlier removal and normalization, L and q
means of 0.771 and 0.791 improved to 0.682 and 0.799.

Distributions of L and q pre- and post-normalization can be

seen in Fig. 3.

The use of Intraclass Correlation Coefficients (ICC)

was explored, however as the subjective results are neither

fully crossed nor fully nested, ICC cannot be used. Instead,

the interrater reliability for Ill-Structured Measurement

Designs of Putka et al. (2008) was used, calculated by

Gðq; kÞ ¼ r̂2
T

r̂2
T þ qr̂2

R þ
r̂2

TR;e

k̂

 ! ; (5)

where r̂2
T is the estimated variance for file main effects (true

score), r̂2
R is the estimated variance for participant main

effects, r̂2
TR;e is the estimated variance components for the

combination of residual effects and file-participant interac-

tion, and k̂ is the harmonic mean of the number of partici-

pants per file. q scales the contribution of r̂2
R based on the

overlap between the sets of participants who rate each file,

and is calculated by

q ¼ 1

k̂
�

X
i

X
i0

ci;i0

kiki0

NtðNt � 1Þ ; (6)

where ci;i0 is the number of participants that each pair of files

(i; i0) share, ki and k0i are the number of participants who

rated files i and i0, respectively, and Nt is the total number of

participants in the sample. This measure gives an overall

FIG. 2. (Color online) Distribution of PCC and RMSE for all sessions

before normalization and outlier removal. Blue plus symbols mark PCC

outliers, while red crosses mark RMSE outliers.

J. Acoust. Soc. Am. 148 (1), July 2020 Timothy Roberts and Kuldip K. Paliwal 205

https://doi.org/10.1121/10.0001567

https://doi.org/10.1121/10.0001567


rater reliability [G(q, k)] of 0.871 prior to normalization and

0.909 post normalization.

For an overview of all results, Fig. 4 shows all normal-

ized file ratings ordered by ascending MOS. All opinion

scores are shown in the histogram with the overlaid red line

showing the MOS for each file. It can be seen that when the

TSM quality is very high or very low there is a greater con-

sensus amongst participants, however there is a large vari-

ance in opinion for files with mid-range quality. It can also

be seen that the MOS tracks below the majority of responses

in the Good to Excellent range, suggesting a difference

between MOS and a majority of opinion scores. Median

opinions scores were explored, based on Jamieson (2004),

resulting in tighter groupings, however there was no signifi-

cant change in averaged scores nor improvement in session

reliability. Median opinion scores have nonetheless been

included as labels with the dataset, along with mean and

median opinion scores calculated before normalization.

All methods show improvement in quality as b
approaches 1, as is to be expected. However, the implemen-

tation of uTVS gave poor performance when time-scaling at

0.9961, see Sec. III, but achieved state-of-the-art perfor-

mance for all other time scales. Figure 5 shows the results of

each method for each time scale, averaged across all files.

When comparing two inverse time scale ratios, for example

b ¼ 0:5 and b¼ 2, the slower of the pair is lower in quality,

suggesting that slowing a file down is perceptually more

difficult than increasing its speed. This is consistent with the

testing of Sharma et al. (2017), however the effect is more

pronounced within this testing. Of interest are two specific

cases, that of PV and WSOLA. For b < 1, PV is perceived

to have a higher quality than WSOLA, however this is

reversed for b > 1. It can then be inferred that different arte-

facts are perceived as having a greater impact on the quality

of the TSM. We propose that for b < 1, the transient-

doubling of WSOLA is perceived as worse than the

phasiness and transient smearing of the PV, while for b > 1

transient skipping is less detrimental than the artefacts intro-

duced by the PV. This is a similar finding to Moinet and

Dutoit (2011), who noted that some listeners preferred PV

artefacts in some cases. Similarly, comparison of PV and

IPL shows a change in preference toward the smeary PV

artefacts for large reductions in speed, over the metallic

artefacts of IPL. The PV was rated comparably to state-of-

the-art methods for the three smallest b.

A surprising result is the high performance of IPL in

comparison to HPTSM and uTVS. HPTSM achieved numer-

ically similar results to those given in Driedger et al. (2014).

However, while HPTSM was shown to be greater in MOS

by 1, our testing found IPL to be rated higher for all except

the two slowest time scale ratios. Artefacts due to harmonic-

percussive separation, the use of WSOLA with a very short

frame length or the lower sample-rate of the files used in the

MATLAB TSM Toolbox may be the cause. Similarly, the

reduced sample-rate in original uTVS testing may have con-

tributed to the variance in MOS between testing. Future

research should include comparisons between different IPL

implementations.

Algorithm performance per class generally follows that

of the overall results. As expected however, there are differ-

ences in performance quality between methods dependent

on the source material. When the mean MOS for each class

are considered and b ¼ 0:9961 results excluded, uTVS is

preferred for music and solo instrument sources while

WSOLA is preferred for voice sources. However, the

FIG. 3. (Color online) Distribution of PCC and RMSE for each session

before normalization. Horizontal and vertical lines denote means.

FIG. 4. (Color online) Two-dimensional histogram of normalized

responses, ordered by ascending MOS (red line).

FIG. 5. Overall means for each method at each time scale for all evaluated

files.
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differences in averaged ratings are minor in most cases.

Exact mean results have not been reported here as the pri-

mary focus is rating time scaled files, rather than definitive

evaluation of different TSM methods.

Perception of processing quality for musical sources,

Fig. 6, confirms the lower quality of time-domain methods,

with FESOLA and WSOLA giving poor results. The most

interesting result here is that the PV is consistently rated

higher than other methods for b < 0:7 and is comparable for

other b. If ratings are averaged for each source file, it is pos-

sible to identify “difficult” files to process. Files with uncor-

related high frequency content were rated poorly, while

clean, harmonically simple musical excerpts were rated

highly. Signals containing more transient material were

rated lower than less transient material. Mean ratings ranged

from 2.76 for Jazz_1.wav to 3.94 for Yellow_2.wav.

Mean MOS results for the solo instrument class of sig-

nals, shown in Fig. 7, improve over musical and voice

classes with the exception of the PV for b > 1. Synthesizer

bass sounds were the lowest rated, followed by noisy per-

cussion, polyphonic instruments, and tuned percussion, with

monophonic harmonic instruments rated highest. The com-

bination of low frequencies with significant transients within

the synthesizer bass was particularly troublesome for all

TSM methods. Mean file ratings ranged from 2.54 for

Synth_Bass_1.wav to 4.17 for Ocarina_01.wav.

In considering mean MOS for voice signals, shown in

Fig. 8, WSOLA is preferred for b > 1, while the preference

is less clear for b < 1. Most methods, except the PV and

NMFTSM, were rated similarly for 0:6 < b < 1, however

the PV is clearly preferred for b < 0:6. After this point,

smoothness is preferred over transient doubling and metallic

artefacts. When considering mean file ratings, the 11 lowest

rated files were all male voices, with female and child voices

as the seven highest rated files. This mirrors results by

Sylvestre and Kabal (1992) who suggested poor frequency

resolution for lower frequencies as well as short frame sizes

as causes for lower quality. Mean file ratings ranged from

2.73 for Male_18.wav to 3.59 for Child_01.wav.

The mean standard deviation across all files was 0.802

and 0.718, before and after normalization, respectively. As

can be seen in Fig. 9, the range of standard deviation values

FIG. 6. Mean MOS for each method at each time scale for musical source

material.

FIG. 7. Mean MOS for each method at each time scale for solo instrument

source material.

FIG. 8. Mean MOS for each method at each time scale for voice source

material.

FIG. 9. (Color online) MOS standard deviation against the number of

responses for that file.
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converges as the number of responses for the file increases.

During testing (around 19 000 ratings) this graph showed

convergence at around seven ratings per file. As a result, a

minimum of seven ratings per file was set as the target to

give a true representation of the quality of the audio file.

While there are files that have yet to converge, this is a small

subset of the total dataset.

Comparisons between expert and non-expert listeners,

participants with and without known hearing issues and test-

ing modalities were undertaken using the two one sided tests

(TOST) of Hauck and Anderson (1984) and Lakens (2017).

TOST begins with the null hypothesis of non-equivalent

means and uses TOST to show equivalence within a given

interval. The interval can be given as a raw score or a stan-

dardized difference. If the confidence interval (CI) for the

difference of the means falls within the equivalence interval,

the null hypothesis is rejected and equivalence can be

claimed. Analysis was undertaken on session RMSE and

PCC values before normalization. The equivalence interval

was calculated at 5% of the reference sample’s mean and

CIs of 95% were used throughout. Cohen’s sample d is also

given for indication of effect size, where d � 0.2 is a small

effect size.

ITU Recommendation BS.1284 (ITU-T, 2019) recom-

mends investigation of the relationship between expert and

non-expert listeners. Participants selected if they had experi-

ence critically evaluating the quality of audio. RMSE and

PCC for non-expert listeners were found to be equivalent to

those of expert listeners, with equivalence intervals shown

in Fig. 10. Testing RMSE gave a maximum p value of

0.0498 and d of 0.1273. Testing PCC gave a maximum p
value of 4.67� 10�6 and d of 0.1059. We propose that

equivalence is a result of the reference-test style of testing

and the medium to large impairment in the processed signal,

reducing the importance of highly trained critical listening

skills for this type of subjective testing.

Participants also reported any known hearing issues,

with an open answer text box given for responses. Results

were not excluded if known issues were reported, but were

instead manually sorted into a binary classification of “No

known hearing issues” and “Any known hearing issues.”

Hearing issues included highly descriptive explanations

such as “-6 dB above 14 kHz,” a range of tinnitus severity,

age related hearing changes, and “I like punk music.” PCC

for participants with any hearing issues were found to be

equivalent to those without issue, while RMSE was not

found to be equivalent. Equivalence intervals are shown in

Fig. 11. Testing RMSE gave a maximum p value of

0.2467 and d of 0.0958. Testing PCC gave a maximum p

value of 0.0245 and d of 0.1219. Our proposed explanation

is two-fold. Those participants who reported known hear-

ing issues in great detail were also expert listeners and

familiar with the shortcomings of their own auditory sys-

tem. Additionally, as the participants were presented with

the source and processed files and asked to rate the quality

of the processing, any issue within the auditory system

would affect perception of both files. The small number of

sessions classified as “any issue,” 33 compared to 554 for

“no issue,” also impacts this result, greatly increasing the

standard error. A t-test applied to RMSE was unable to

reject that the means are equal with a p-score of 0.4985.

Increasing the equivalence interval to 69.32% allows

RMSE equivalence to be claimed. Due to the strong PCC

equivalence and close RMSE equivalence, we find no rea-

son to reject sessions in which hearing issues were

reported.

As testing was undertaken in different modalities, com-

parative analysis of results is necessary. PCC for remote par-

ticipants were found to be equivalent to laboratory

participants, while RMSE was not found to be equivalent.

Equivalence intervals are shown in Fig. 12. Testing RMSE

gave a maximum p value of 0.3474 and d of 0.2126. Testing

PCC gave a maximum p value of 0.0013 and d of 0.0931. A

t-test applied to RMSE was unable to reject that the means

are equal with a p-score of 0.4693. Increasing the equiva-

lence interval to 68.14% allowed RMSE equivalence to be

claimed. Due to the strong PCC equivalence and close

RMSE equivalence, we found no reason to reject either test-

ing mode.

Analysis of the possible impact of age on the quality of

the participant’s responses was undertaken. Correlations of

0.108 and -0.001 were found between the age of the partici-

pant and the RMSE or PCC, respectively, showing no

impact of age on evaluation ability.

The labeled dataset is available, under the Creative

Commons Attribution 4.0 International (CC BY 4.0) license,

through IEEE-Dataport at http://ieee-dataport.org/1987.

Implementation and additional source code is available at

github.com/zygurt/TSM.

FIG. 10. TOST (1� a) 100% CI for equivalence of participant experience

for a ¼ 0:05. Equivalence interval of 65% of expert participant means.

FIG. 11. TOST (1� a) 100% CI for equivalence of means of participants

with and without hearing issues for a ¼ 0:05. Equivalence interval of 65%

of mean for participants without hearing issues.

FIG. 12. TOST (1� a) 100% CI for equivalence of testing modality means

for a ¼ 0:05 Equivalence interval of 65% of laboratory participant means.
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V. TOWARD AN OBJECTIVE MEASURE OF QUALITY

Comparison between MOS and previous objective mea-

sures, SER and DM, found correlations of 0.3707 and

0.1574, respectively, by averaging absolute correlations for

b < 1 and b > 1. Signals were aligned through time axis

interpolation of the reference magnitude spectrum to the

duration of the test spectrum.

Perceptual Evaluation of Audio Quality (PEAQ) (ITU-

T, 2001; Thiede et al., 2000) is often used for objective

quality evaluation. PEAQ extracts perceptually informed

features, using differences between reference and test sig-

nals, which are fed into a small neural network to predict

subjective scores. Direct application to time-scaled signals

is not possible however, due to a loss of alignment during

TSM. Initial testing, applying the dataset in the design of an

objective measure of quality, was undertaken using a modi-

fied version of PEAQ. Signals were aligned as above and

gave similar correlation to MOS as SER and DM. The origi-

nal PEAQ basic neural network was retrained to the subjec-

tive MOS, with 10% of the training set reserved for

validation. Training used seeds of 0 to 99, with the optimal

epoch given by the minimum overall distance (D)

D ¼k½q̂; L̂�k2; (7)

where q̂ and L̂ are calculated by

q̂ ¼k 1� �q; ðmaxðqÞ �minðqÞÞ½ �k2; (8)

L̂ ¼ k½ �L; ðmaxðLÞ �minðLÞÞ�k2; (9)

where q ¼ ½qtr; qval; qte�; L ¼ ½Ltr;Lval;Lte� and tr, val, and

te denote training, validation, and testing. The best network

achieved a D of 0.731 and an �L of 0.668 and �q of 0.719,

placing it at the 11th and 17th percentiles of subjective

sessions.

An evaluation set was created by processing the testing

subset source files with all methods previously mentioned,

at 20 time scale ratios in the range of 0:22 < b < 2:2. The

mean objective output for each method across the range of

time scales is shown in Fig. 13.

The output exhibits a similar shape to the subjective

results, however it only moves away from the mean for

b < 0:75 and b¼ 1. Development of an accurate objective

measure of quality for TSM algorithms is now achievable

and the aim of future work.

VI. CONCLUSION

This paper detailed the creation, subjective evaluation,

and analysis of a dataset and its use in the development of

an objective measure of quality for time-scaled audio. Six

TSM methods processed 88 source files at 10 time scales

resulting in 5280 processed signals for a training subset.

Three additional methods at four random time scales

resulted in 240 signals for a testing subset. Ratings (42 529)

were collected from 633 sessions using laboratory and

remote collection methods. Preliminary results for an objec-

tive measure of quality were presented, which achieved an

RMSE loss of 0.668 and PCC of 0.719. The aim of future

work is the design of an improved objective measure of

quality for TSM using the dataset, to assist in comparative

evaluation of novel methods.
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