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Gully erosion mapping susceptibility in a Mediterranean environment: a hybrid decision-1 

making model 2 

Abstract 3 

Gully erosion is one of the main natural hazards, especially in arid and semi-arid regions, 4 

destroying ecosystem service and human well-being. Thus, gully erosion susceptibility maps 5 

(GESM) are urgently needed for identifying priority areas on which appropriate measurements 6 

should be considered. Here, we proposed four new hybrid Machine learning models, namely 7 

weight of evidence -Multilayer Perceptron (MLP- WoE), weight of evidence –K Nearest neighbors 8 

(KNN- WoE), weight of evidence - Logistic regression (LR- WoE), and weight of evidence - 9 

Random Forest (RF- WoE), for mapping gully erosion exploring the opportunities of GIS tools 10 

and Remote sensing techniques in the El Ouaar watershed located in the Souss plain in Morocco. 11 

Inputs of the developed models are composed of the dependent (i.e., gully erosion points) and a 12 

set of independent variables. In this study, a total of 314 gully erosion points were randomly split 13 

into 70% for the training stage (220 gullies) and 30 % for the validation stage (94 gullies) sets 14 

were identified in the study area. 12 conditioning variables including elevation, slope, plane 15 

curvature, rainfall, distance to road, distance to stream, distance to fault, TWI, lithology, NDVI, 16 

and LU/LC were used based on their importance for gully erosion susceptibility mapping. We 17 

evaluate the performance of the above models based on the following statistical metrics: Accuracy, 18 

precision, and Area under curve (AUC) values of receiver operating characteristics (ROC). The 19 

results indicate the RF- WoE model showed good accuracy with (AUC = 0.8), followed by KNN-20 

WoE (AUC = 0.796), then MLP-WoE (AUC = 0.729) and LR-WoE (AUC = 0.655), respectively. 21 

Gully erosion susceptibility maps provide information and valuable tool for decision-makers and 22 

planners to identify areas where urgent and appropriate interventions should be applied. 23 

 24 
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1. Introduction 25 

Understanding how to use natural resources is essential to the existence of human communities. 26 

In addition to supporting basic human requirements like food, clean water, and air, soils are an 27 

important transporter for biodiversity. The depletion of natural resources, particularly soil, is one 28 

of the major issues of the modern era that has emerged in the past ten years (Turner et al., 2016; 29 

Wassie, 2020). Soil degradation is caused by population increase and resource extraction, which 30 

endangers human lives and property (Gomiero, 2016; Scherr, 2000). Soil erosion may impact soil 31 

productivity, surface water sources, their quality, ecological balance, and landscape (Bilotta et al., 32 

2007; Issaka and Ashraf, 2017). Preventing land degradation proves to be challenging. Among the 33 

various types of soil erosion, gully erosion stands out as one of the most complex and hazardous 34 

forms, given its capacity to displace substantial amounts of soil. A gully is characterized as a deep, 35 

relatively permanent canal with vertical walls on either side that allow passing water currents for 36 

a short period. Gully erosion occurs when rushing surface water erodes a deep channel, removing 37 

and transporting the eroded surface soil (Ghorbanzadeh et al., 2020a). Over time, these gullies 38 

cause soil erosion, alter the surrounding environment, and accelerate the sedimentation of rivers 39 

and dams (Belayneh et al., 2020; Ghorbanzadeh et al., 2020a; Hancock and Evans, 2010). One of 40 

the most important techniques for managing this phenomenon is understanding the variables 41 

influencing the incidence of this form of erosion and its zoning. Gully erosion affects the 42 

environment in two ways: first, by eroding the surface and diminishing and reducing soil horizons, 43 

leading to high sediment production and bedding degradation; and second, by escalating surface 44 

discharge and decreasing groundwater nutrition. 45 

In Morocco, gully erosion is one of the most significant environmental problems increasingly 46 

posing a threat to the country (Azedou et al., 2021; d’Oleire-Oltmanns et al., 2014; Meliho et al., 47 
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2018). There are several different types of soil erosion impacting half of Morocco's 20 million-48 

hectare watersheds, such as sheet, rill, splash, and gully, which result in around 100 million tonnes 49 

of soil annually (Mosaid et al., 2022; Tairi et al., 2021). The gully is the most harmful type of 50 

erosion, causing several times more damage than other types of erosion, such as sedimentation of 51 

dams, destruction of energy and transportation transmission lines, loss of farmland productivity, 52 

land degradation, and long-term adverse economic effects (Belasri and Lakhouili, 2016; 53 

Bouslihim, 2020; Meliho et al., 2018). Even though there are anthropogenic causes for the 54 

generation of gullies, it is sped up by variables including climate change, geologic conditions, and 55 

soil characteristics (Nir et al., 2021; Poesen et al., 2003). In this sense, the framework of watershed 56 

management includes mapping and monitoring of regions susceptible to gully erosion.  57 

Many conventional and numerical techniques were used for gully susceptibility mapping, by  58 

linking gully occurrence and conditioning factors (Jaafari et al., 2022; Rahmati et al., 2017). Field 59 

survey and data collection, although effective in mapping and evaluating gully erosion, are 60 

characterized by their time-consuming and labour-intensive nature, besides cannot forecast the 61 

spatial development of gully erosion (Jiang et al., 2021). As an alternative, the Water Erosion 62 

Prediction Project (Ghorbanzadeh et al., 2020b) and the European Soil Erosion Model (Quarteroni 63 

and Veneziani, 2003) applied physically-built models to estimate gully erosion. These models are 64 

less suitable for regional-scale study since they need extensive data and labor-intensive calibration 65 

procedures (Momm et al., 2012; Yuan et al., 2020). In addition, these models are adequate for 66 

numerically estimating the amount of gully erosion, however, they are less appropriate for gully 67 

erosion susceptibility mapping (Garosi et al., 2018; Rahmati et al., 2016).  68 

The generation of gully erosion susceptibility maps currently uses a variety of probabilistic, 69 

knowledge-driven, and machine learning methods, including bivariate statistics (Meliho et al., 70 
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2018), weights‐of‐evidence (Shit et al., 2020), logistic regression (Conoscenti et al., 2014), 71 

information value (Paul and Saha, 2019), random forest (Avand et al., 2019), bivariate statistical 72 

models (Lana et al., 2022), maximum entropy (Azareh et al., 2019), frequency ratio (Amare et al., 73 

2021), artificial neural network (Gafurov and Yermolayev, 2020), Functional tree (Tien Bui et al., 74 

2019), Naïve Bayes tree (Hosseinalizadeh et al., 2019), support vector machine (Karami et al., 75 

2015), and boosted regression trees (Arabameri et al., 2019). 76 

When there is insufficient data about the intensity and distribution of a phenomenon, such as  gully 77 

erosion, GIS-based multi-criteria decision analysis (MCDA) models can be useful. The analytical 78 

hierarchy process (AHP) and analytical network process (ANP), two qualitative (knowledge-79 

based) MCDA, have been applied to gully susceptibility mapping in various study areas 80 

(Arabameri et al., 2019, 2018a; Chakrabortty and Pal, 2023; Choubin et al., 2019; Nhu et al., 2020). 81 

Although these models appear to offer solutions for environmental susceptibility mapping, their 82 

major limitation is the uncertainty associated with the experts' assessments, which can occasionally 83 

result in inaccurate conclusions (Ghorbanzadeh et al., 2020b). 84 

Machine Learning is a cutting-edge method for anticipating gully erosion as well as managing and 85 

minimising the harm this phenomenon causes (Chakrabortty and Pal, 2023). The use of Machine 86 

Learning algorithms in studies of natural hazards, such as floods, wildfires, sinkholes, droughts, 87 

earthquakes, land subsidence, groundwater, landslides, and gullies, has significantly advanced 88 

(Abu El-Magd et al., 2021; Ali et al., 2022, 2021, 2020; Ghorbanzadeh et al., 2019; Hitouri et al., 89 

2022; Pham et al., 2021). There are some advantages of using machine learning algorithms for 90 

gully susceptibility mapping, such as being non-parametric. Researchers have applied tree-based 91 

machine learning techniques for gully erosion modelling, which outperformed traditional 92 

techniques in terms of performance and accuracy (Mohsin et al., 2022). The overfitting issue in 93 
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these tree-based algorithms is quite minimal when compared to numerical models (Ajit, 2016). 94 

Moreover, backpropagation is a supervised learning method that is used by MLP during training. 95 

MLP differs from a linear perceptron due to its numerous layers and non-linear activation (Pham 96 

et al., 2022). One or more secret layers can be found in an MLP (apart from one input and one 97 

output layer). A multi-layer perceptron can learn non-linear functions in addition to linear 98 

functions, whereas a single-layer perceptron can only learn linear functions (Parvin et al., 2022). 99 

LR is more straightforward to use, comprehend, and train than other methods (Davis et al., 2016). 100 

Fitting the line values to the sigmoid curve is the goal of LR (Yin et al., 2020). The KNN method 101 

has the benefits of being flexible to different proximity calculations, being relatively intuitive, and 102 

using a memory-based approach (Merghadi et al., 2020).  103 

In this sense, the main aim of this study was to present four new hybrid Machine Learning 104 

models for mapping gully erosion in the province of Taroudant, located in the Souss plain of 105 

Morocco, namely: i) weight of evidence - Multilayer Perceptron (MLP- WoE); ii) weight of 106 

evidence –K Nearest neighbors (KNN- WoE); iii) weight of evidence - Logistic regression (LR- 107 

WoE); iv) weight of evidence - Random Forest (RF- WoE). These ensemble models are a novel 108 

method that has not been used for  gully erosion susceptibility in this area before. The RF, MLP, 109 

LR, and KNN algorithms were considered taking into account their advantages. In addition , the 110 

study integrated the WOE with the four machine learning algorithms due to its powerful ability to 111 

transform and select variables, and reveals the predictive ability of an independent variable in 112 

relation to the dependent variable (Elmoulat and Ait Brahim, 2018; Shafizadeh-Moghadam et al., 113 

2017). For that, we followed these steps, (1) using multi-collinearity analysis to identify significant 114 

gully erosion conditioning factors, (2) creating the hybrid machine learning models to predict gully 115 

erosion susceptibility, (3) employing the k-fold cross-validation (CV) method to mitigate the 116 
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negative effects of randomness on the results, and (4) assessing the capability and robustness of 117 

the four hybrid models by comparing their performance using the Receiver Operating 118 

characteristic Curve (ROC). 119 

While there have been many recent advances and applications of Machine Learning techniques for 120 

gully erosion mapping studies in various study areas worldwide, their applicability in regions with 121 

limited ground-based data or inadequate data quality remains uncertain. To fill this gap, our study 122 

contributes to the literature by emphasizing the importance of using freely available data sources 123 

to identify and map gully erosion susceptibility in this watershed. 124 

2. Study area 125 

El Ouaar watershed is located in the province of Taroudant, Morocco. It is limited between 126 

longitudes (8°43’30’’ W - 8°56’30’’W), and latitudes (30°28’00’’N - 30°50′ 00’’N). El Ouaar 127 

watershed covers an area of 395.18 km2 and is characterized by an arid and semi-arid climate. 128 

From a topographical point of view, the study area shows an altitude ranging between 214, located 129 

in the south of the basin, and an altitude of 3353 m, located in the north, with an average elevation 130 

of 1657.5 m and an average slope of 19° (Fig.1).The annual rainfall in the area varies significantly, 131 

ranging from 207 mm to 625 mm during the winter season, while temperatures tend to be cooler, 132 

averaging around 6.4 °C . In August, temperatures sometimes reach 45°C (Dijon, 1966). 133 
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 134 

Fig. 1 Location of the study area. 135 

   Geologically, El Ouaar watershed is characterized by a silty and clay lithological terrain of 136 

Quaternary age. The north part of this study area is presented by the Cretaceous basement 137 
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containing carbonate lithology dominated by dolomite and limestone. The study area is a part of 138 

the Souss basin, which is limited to the north by the High Atlas ranges and to the south by the 139 

Anti-Atlasic ranges. It is characterized by quaternary lithological units, in the north of this basin 140 

where the limestone and dolomite deposits of Cretaceous are very dominant and the schistose 141 

Paleozoic deposits. In the center of this basin at the level of the plain of Souss there are only the 142 

quaternary deposits not very compact, especially the silts and the clays. The quaternary formations 143 

are constituted by four lithostratigraphic units (Figs. 2 and 3).  144 

- The first 2 m of a basal unit (U1), whitish, massive, consisting of silt-sandstone 145 

encrusted and more consolidated than the overlying deposits. U1 is most likely thicker 146 

at depth;  147 

- 2 m of a sandy-limono-conglomeratic unit (U2), made up of grano-decreasing 148 

sequences where the conglomerates are polygenic lenticular, with a more or less friable 149 

sandy matrix. 2.5 m of a unit (U3) made up of red-brown sandy-clayey silts with small 150 

pebbles and rare microconglomeratic pockets.  151 

- 0.5 to 1 m of an alluvial unit (U4) consisting of polygenic conglomerate with a silty-152 

sandy matrix. The elements are well blunted and rounded, where their size varies from 153 

a few millimeters to a few centimeters and are of varied nature: limestone, sandstone, 154 

and magmatic rocks. The north of the El Ouaar watershed, the Western High Atlas is 155 

characterized by a Paleozoic terrain rich in sandstone and shale, and the Cetacean, 156 

contains carbonate rocks especially limestone and dolomite (Ambroggi, 1963). 157 

 158 
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 159 

Fig. 2 : Quaternary lithostratigraphic deposits in the study area. 160 

 161 

 162 

 163 
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 164 

Fig. 3: Quaternary lithostratigraphic deposits in the study area. 165 

3. Data and Methodology  166 

The procedure followed in this is divided into three main parts: data collection and processing, ML 167 

implementation, and model performance assessment. All ML models elaborated in this study were 168 

developed in an R programming environment and GESM was reclassified into five classes: “very 169 

low”, “low”, “moderate”, “high” and “very high” susceptibility, using the natural breaks method 170 

in ArcGIS software. The methodology of the present work is presented in Fig. 4. 171 

Jo
urn

al 
Pre-

pro
of

https://www.sciencedirect.com/science/article/pii/S1574954121003137#f0010


11 
 

 172 

Fig. 4: The methodology adopted in this study. 173 

3.1. Inventory of gully erosion locations              174 

Gully erosion inventory is a primary and crucial step of gully erosion mapping. In this study, gully 175 

erosion points were collected from a variety of sources including field data and high-resolution 176 

aerial images in Google Earth. During the field survey, gully points were collected with their 177 

geographical coordinates using Global Positioning System (GPS) tools. The gully points in the 178 

study area showed that the width of erosion can reach 4 m, with a depth varying from 0.5 to 2m, 179 

and sometimes can reach 3m, especially in areas near  the Wadi El Ouaar. Infrastructures and 180 

natural resources (e.g., roads, schools, and agricultures areas) are strongly influenced by water 181 

erosion in this region (Fig. 5). Gully erosion points were randomly divided into training and 182 
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validation datasets in the ratio of 70 % (220 points) and 30 % (94 points) for models 183 

implementations. Also, a total of 314 non-gully erosion points were collected and randomly 184 

divided into 70% (220 points) and 30% (94 points) for training and testing, respectively. The gully 185 

erosion locations were assigned the value “1” and the non-gully erosion locations were assigned 186 

the value “0”. 187 

 188 

 189 

Fig. 5: Gully erosion in El Ouaar watershed from a field survey. 190 

 191 

 192 

 193 
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3.2. Gully erosion conditioning factors 194 

    Determination of environmental factors is the first step in gully erosion susceptibility modelling 195 

for identifying important factors that contribute to gully occurrence in a given terrain (Rahmati et 196 

al., 2017). In this study, 12 geo-environmental factors were selected, these include: Elevation, Plan 197 

curvature, Aspect, Slope, Rainfall, Lithology, Land use/land cover, NDVI, Distance to roads, 198 

Distance to streams, Distance to faults, Topographic Wetness Index (TWI) (See Table 1 for 199 

details). 200 

Table 1 Details of thematic data layers and data sources used in this study 201 

Data Data types in 

GIS 

  Scale                 Source 

Erosion 

inventory 

Polygon _ Google earth and field data 

Elevation  Grid 30×30 m DEM 30 m, from 

 https://earthexplorer.usgs.gov/ 

(accessed on 20 August 2021) 

Aspect Grid 30×30 m DEM 30 m, from https://earthexplorer.usgs.gov/ 

(accessed on 20 August 2021) 

Slope Grid 30×30 m DEM 30 m, from https://earthexplorer.usgs.gov/ 

(accessed on 20 August 2021) 

Plan 

curvature 

Grid 30×30 m DEM 30 m, from 

https://earthexplorer.usgs.gov/ 

(accessed on 20 August 2021) 

TWI Grid 30×30 m DEM 30 m, from https://earthexplorer.usgs.gov/ 

(accessed on 20 August 2021) 

Rainfall Grid 30×30 m ERA-Interim, from 

 https://apps.ecmwf.int/datasets(accessed on 18 July 2021) 

NDVI Grid 30×30 m Landsat-8-OLI image, from https://earthexplorer.usgs.gov/ 

(accessed on 12 July 2021) 

Lithology Polygon - Geological map of Morocco at a scale of 1:000 000 

Faults Polygon - Geological map of Morocco at a scale of 1:000 000 

Roads Polygon - https://www.geojamal.com 

Streams Polygon - https://geossc.ma 

 

Land use 

land cover 

Polygon - Landsat-8-OLI image, from https://earthexplorer.usgs.gov/ 
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3.2.1. Elevation 202 

Elevation is an important factor in the evolution of susceptibility to gully erosion, based on the 203 

occurrence and development of the gully erosion (Zabihi et al., 2018), because it affects vegetation, 204 

precipitation, and gully erosion (Golestani et al., 2014). This factor was reclassified into three 205 

classes: 1801-3353 m; 792-1801 m and 214 -792 m (Fig.6a). 206 

3.2.2. Slope angle  207 

Slope runoff and surface drainage contribute to erosion (Ghorbani Nejad et al., 2017). It is 208 

considered to be an important predictor of gully erosion processes (Conforti et al., 2011; Lucà et 209 

al., 2011). This factor was reclassified into five classes: 0-7.23%, 7.23-15.75%, 15.75-24.79%, 210 

24.79 -35.13% and 35.13-65.86% (Fig. 6b). 211 

3.2.3. Aspect 212 

Aspect is an important conditioning factor in gully erosion mapping, it determines the direction of 213 

the slope in the basin. In this study, this factor is extracted from the DEM of Morocco. It is defined 214 

by the following equation (Zhou and Liu, 2004). 215 

𝐴𝑠𝑝𝑒𝑐𝑡 = 270° +  𝑎𝑟𝑐𝑡𝑎𝑛 {
ℱ𝑦

ℱ𝑥
} − 90°

ℱ𝑥

ℱ𝑦
                   (1) 216 

  ℱ𝑥 =
𝑍8−𝑍2

2𝜔
                                                                  (2)  217 

     ℱ𝑦 =
𝑍6−𝑍4

2𝜔
                                                              (3) 218 

Where Z1 to Z9 are cells of the 30 × 30 moving window and W is the grid resolution. The aspect 219 

factor map shows nine classes: Flat (F), North (N), Northeast (NE), East (E), South (S), Southwest 220 

(SW), West (W), and Northwest (NW) (Fig. 6c). 221 

 222 

 223 
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3.2.4. Plan curvature 224 

Plan curvature contributes to the divergence or convergence of the water distribution and is 225 

generally defined as the curvature of the contour line that is formed by the intersection of a 226 

horizontal plan and the surface (Hitouri et al., 2022; Rahmati et al., 2022). The negative value 227 

represents the concave area, the positive value refers to the convex area and the zero value indicates 228 

the flat area (Fig. 6d).  229 

3.2.5. Distance to road 230 

Roads facilitate transportation and removal of eroded upland matter (Conoscenti et al., 2014). 231 

The road distance map was extracted from the road network map of Morocco, using the 232 

Euclidean distance tool available in ArcGIS software (version 10.8). It was subdivided into five 233 

classes: 1 – 1,308m; 1,308- 2,956m; 2,956- 4,894m; 4,894 -7,462 and 7,462 -12,357 m (Fig. 7a). 234 

3.2.6. Distance to stream 235 

This factor allows us to study the influence of the watercourses on gully erosion. It has an impact 236 

on erosion activities and also influences the wetting capacity of the surface. The values of this 237 

factor are classified into five categories: 0–1,229m; 1,229–2,683m; 2,683–4,322m; 4,322–6,297m 238 

and 6,297–9,502m (Fig. 7b). 239 

3.2.7. Distance to faults 240 

This factor is based on the geological structure of the study area. It was extracted from the 241 

geological map of Morocco with a scale of 1,000,000 and from the faults detected during the 242 

mission fields and from the interpretation of geophysical data. It is characterized by values 243 

classified into five categories: 0–2,184 m; 2,184–4,817m; 4,817–7,561m; 7,561–10,586m and 244 

10,586–14,283m (Fig. 7c). 245 

 246 
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3.2.8. Rainfall 247 

   Rainfall determines the probability of gully occurrence in a given area. It represents the climate 248 

conditions of a study area (Roy and Saha, 2019).The annual average rainfall of the study area is 249 

416 mm. We used the Inverse Distance-Weighted (IDW) interpolation method for preparing the 250 

rainfall map of El Ouaar watershed. Rainfall data used in this study were downloaded from 251 

(https://apps.ecmwf.int/datasets, accessed on 18 July 2021) and classified into five classes: 207–252 

273 mm, 273–363 mm, 363–443 mm, 443–525 mm, and 525–625 mm (Fig. 7d). 253 

3.2.9. TWI 254 

The topographic wetness index calculates the quantity of water in the study area, which contributes 255 

to gully erosion (Moore and Wilson, 1992). It is defined by applying the following equation  256 

(Moore et al., 1991): 257 

                            𝑇𝑊𝐼 = 𝑙𝑛(𝐴𝑠 𝑡𝑎𝑛𝛽)⁄                        (4)  258 

               Where AS is the basin area and β is the slope gradient in degrees. 259 

In this study, TWI was classified into five classes: -6.50 – (-5.53); -5.53 –1.55; 1.55 – 4.76, and 260 

4.76 –12.51 (Fig. 8a). 261 

3.2.10. Lithology 262 

The lithology plays an important role in erosion; it is considered a fundamental variable for 263 

mapping the susceptibility of dust sources and terrain. It allows us determining the source areas 264 

with low hardness compared to other resistant units as well as the nature and types of soil 265 

(Sissakian et al., 2013). The lithology layer of this area study was prepared by digitizing the 266 

geological map of Morocco at a 1:1000, 000 scale, and field data.  267 

The study area is composed of nine geological formations: A) Upper Pleistocene and Holocene, 268 

B) Middle and Upper Miocene, C) Phosphate Eocene, D) High Cretaceous, E) Upper Cretaceous 269 
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phosphate facies, F) Middle Cretaceous, G) Granites and granodiorites (Tichka and Jbilet), H) 270 

Ordovician, I) Cambrien (Fig. 8b). 271 

3.2.11. Land use / Land cover 272 

This factor controls the occurrence of gullies, depending on the type of land use/ Land cover (Band 273 

et al., 2020).  It indicates a negative correlation between erosion rate and vegetation density 274 

(Hughes et al., 2001). In this study, one Landsat 8 Operational Land Imager (OLI) satellite image 275 

acquired on 12 July 2021, downloaded from the United States Geological Survey website (USGS) 276 

was used for land cover / land use information. Therefore, the radiometric and atmospheric 277 

corrections are performed based on the Dark Object Subtraction (DOS) algorithm in ENVI 5.2 278 

software. After, the land cover classification process was applied using Support Vector Machine 279 

(SVM) supervised classifier and five land cover / land use (LULC) classes were identified, namely, 280 

water, greenhouses, barelands, construction/buildings, and agricultural land (Fig. 8c). 281 

 A total of 150 training sample points, i.e., 30 samples per LULC class, were done by visual and 282 

manual on-screen digitizing based on our expert knowledge of the study area and high-resolution 283 

imagery from Google Earth. The generated land cover output achieved an overall accuracy of 284 

95.32%. 285 

3.2.12. NDVI  286 

The Normalized Difference Vegetation Index (NDVI) represents a good indicator of 287 

photosynthetic activity (Pourghasemi et al., 2014). In our study, NDVI was calculated using one 288 

Landsat 8 OLI satellite image acquired on 12 July 2021 downloaded from the United States 289 

Geological Survey website (USGS) website following equation 5. NDVI was calculated and 290 

reclassified into 5 classes using ArcGIS 10.8. 291 

NDVI =
NIR−Red

NIR+Red
                                     (5) 292 
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Where NIR and Red values represent the infrared and red portion of the electromagnetic spectrum 293 

respectively. For Landsat 8 OLI image, the NIR and RED bands are band 5 (0.85–0.88 µm) and 294 

band 4 (0.64–0.67 µm), respectively. After, NDVI values were reclassified into 5 classes: (-0.30-295 

0.12), (0.12-0.17), (0.17-0.25), (0.25-0.36), and (0.36-0.71) (Fig. 8d).  296 

 297 

 298 

 299 
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 300 

Fig. 6: Gully erosion conditioning factors: (a) Elevation, (b) Slope, (c) Aspect , and (d) Plan 301 

curvature. 302 
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 303 

Fig. 7: Gully erosion conditioning factors: (a) Distance to road, (b) Distance to stream, (c) 304 

Distance to Faults and (d) Rainfall. 305 
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 306 

Fig. 8: Gully erosion conditioning factors: (a) TWI, (b) Lithology, (c) Land use/Land cover , and 307 

(d) NDVI. 308 

4. Modelling process 309 

4.1. Multi-Layer Perceptron Neural Network (MLP NN) 310 

   The MLP NN is an artificial neural network algorithm, widely used for classification approaches 311 

(Roy and Saha, 2021). It consists of an input layer, hidden layer, and output layer. The hidden 312 
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layers process the data, while the output layers provide the classification results (Paola and 313 

Schowengerdt, 1995). Connection weights between neurons are updated (Oliveira et al., 2015). 314 

The main advantage of MLP is the non-dependency of prior assumptions of data distribution 315 

(Gardner and Dorling, 1998). In this study, we considered 30 neurons and 2 hidden layers, the 316 

Linear Unit Rectification (Relu) activation function, and the Adam optimizer (Adaptive Moment 317 

Optimization) developed by (Kingma and Ba, 2017). 318 

4.2. Logistic Regression (LR) 319 

     LR is a multivariate statistical model, used for fitting Bernoulli distributions (Arabameri et al., 320 

2018b). Unlike linear regression, logistic regression outcomes are binary or dichotomous (Hosmer 321 

et al., 2000). The model describes the relationship between dependent and independent variables, 322 

such as the presence or absence of gully erosion and the conditioning factors (Lucà et al., 2011). 323 

  324 
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4.3. K-Nearest Neighbours (KNN) 325 

   The KNN is a non-parametric model, considered one of the simplest machine learning algorithms 326 

(Zhang et al., 2018). The classification is based on the nearest neighbours. The number of 327 

neighbours (𝐾) should be defined, which is used for the voting process (Abraham et al., 2021). 328 

The output consists of class membership likelihoods, according to Euclidean distance (Avand et 329 

al., 2019; Hussain et al., 2022). The most voted class is assigned to the analyzed data point. In this 330 

study, we select 8 nearest neighbours (𝐾=8). 331 

4.4. Random Forest (RF) 332 

  RF is a non-parametric ensemble learning algorithm that combines multiple decision tree models 333 

(Breiman, 2001).  It randomly separated the input data into subsets for each internal decision tree 334 

(Quevedo et al., 2021). This study used the regression approach to generate numeric outcomes, for 335 

gully erosion susceptibility. The result is obtained by averaging the prediction of trees. RF also 336 

calculates the variable importance using mean decrease accuracy and mean decrease Gini index 337 

(Hitouri et al., 2022). In this study, 200 trees and 2 variables were selected for the main node split. 338 

4.5. Weight of Evidence 339 

The Weight of Evidence is a bivariate statistical test based on Bayesian probability (Bonham-340 

Carter et al., 1988) that estimates the relative importance of each conditioning factor (Saha et al., 341 

2020; Yang et al., 2021), using prior and posterior probability. The prior probability of gully 342 

erosion occurrence considers the number of pixels containing gully erosion and the total number 343 

of pixels in the study area (Pradhan et al., 2010). Then, positive and negative weights are calculated 344 

to  identify the relationship between gully erosion conditioning factors and gully erosion 345 

occurrence. Finally, we calculate the standardized value of the difference to estimate the posterior 346 

probability relative certainty (Chen et al., 2018). 347 
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4.6. Modelling evaluation 348 

The model performance assessment is used to determine and select the appropriate model for 349 

environmental hazards modelling (Chu et al., 2019; Lin and Chen, 2012; Pham et al., 2020). In 350 

this study, several statistical metrics widely used in previous studies were considered, including;  351 

AUC, specificity, sensitivity, and accuracy.  352 

The ROC curve area (AUC) measures the performance of machine learning models. AUC values 353 

were classified into four precision categories, which are comprised between 0 and 1: poor (AUC 354 

= 0.6 to 0.7), fair (AUC = 0.7 to 0.8), good (AUC = 0.8–0.9), and excellent (AUC = 0.9–1) 355 

(Fressard et al., 2014). High values indicate a strong model, while low values mean a weak model 356 

(Hong et al., 2017). Overall accuracy (OA) represents the probability of occurrence of correctly 357 

classified pixels. It is calculated by the sum of true positive and true negative divided by all 358 

available singular tests (equation 7). Precision is used to measure the quality of the results. It is 359 

calculated by dividing the true positive by the sum of the true positive and false positive (equation 360 

8). Sensitivity is calculated by dividing the true-negative values by the sum of true negatives and 361 

false positives (equation 9) (Huang et al., 2023). Specificity represents the proportion of gully 362 

erosion pixels correctly predicted as gully erosion (equation 10). 363 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄ )                           (6) 364 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃⁄ )                                                           (7) 365 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝑇𝑁⁄ )                                                         (8) 366 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃⁄ )                                                       (9) 367 

AUC =  X=1-specificity=1-(
𝑇𝑃

𝑇𝑁+𝐹𝑃
)                                         (10) 368 

                                        𝑌 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                         369 
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Where TP represents true positive, TN represents true negative, FP represents false positive and 370 

FN represents false negative. The receiver operating characteristic (ROC) curve is represented 371 

through the AUC (Area Under the ROC curve), plotting sensitivity on the y-axis, and specificity 372 

on the x-axis. 373 

4.7. Multicollinearity analysis  374 

  The multicollinearity test determines the relationship among the gully erosion conditioning 375 

factors and values the level of non-independence among them (Ghosh and Maiti, 2021). The 376 

presence of collinearity may generate bias in the modelling process and decrease the predictive 377 

performance (Arabameri et al., 2021). In this study, two indices were used:  Tolerance (TOL) and 378 

Variance Inflation Factors (VIF), calculated as follows: 379 

𝑇𝑂𝐿 = 1 − 𝑅𝑖
2                    (11) 380 

                                            𝑉𝐼𝐹𝑖 =
1

𝑇𝑂𝐿
                            (12) 381 

Where 𝑅 indicates the coefficient of determination of each conditioning factor 𝑖 (O’brien, 2007). 382 

If the value of TOL is less than 0.1 and the value of VIF is greater than 10, collinearity exists 383 

amongst the variables. Table 2 represents the multicollinearity analysis of the gully erosion factors 384 

used. 385 

Table 2 Multi-collinearity among conditioning factors. 386 

Factors Collinearity Statistics 

Tolerance VIF 

Elevation 0.427 2.341 

Slope 0.881 1.135 

Aspect 0.968 1.033 

Lithology 0.718 1.393 

Plan curvature 0.903 1.108 

Distance to fault 0.910 1.098 

Rainfall 0.414 2.413 

Distance to stream 0.856 1.168 
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Distance to Road 0.920 1.087 

TWI 0.967 1.034 

NDVI 0.812 1.232 

LULC  0.957 1.045 

 387 

5. Results 388 

5.1. Weight of evidence  389 

Table 3 represents the results of W+, W- and the Cw, calculated for the 12 factors used in this 390 

study. It is shown that: the greatest sensitivity to erosion has a slope in the range of 7.23° to 15.75º 391 

(Cw=1.857), this confirms the interpretation that the phenomenon of erosion is less visible due to 392 

the fact that some steeply sloping areas are made of very hard rocks (dolomites and limestones). 393 

For the elevation, the most important class for erosion is the class; 792 m to 1.801, which is 394 

characterized by Cw= 2.201. The greatest susceptibility to erosion is in the southwestern aspect 395 

class (Cw=0.316). For the curvature plane, the strongest erosion factor is represented by the 396 

concave land; the most erosion-sensitive class is between 792 m and 1801 m (Cw= 1.849). The 397 

highest erosion sensitivity is observed when the distance to roads parameter is between 1818 m 398 

and 3783 m (Cw= 2.694) and the distance to faults is between 4817 m and 7561 m (Cw= 2.081). 399 

The highest sensitivity to erosion is observed when the TWI parameter is between 10.54 and 17.88 400 

(Cw= 0.8) and the precipitation is between 273 mm and 363 mm (Cw= 2.635). For the lithology, 401 

the maximum sensitivity to erosion was observed in the loose formations of Quaternary age in 402 

class A (Cw= 2.152). The non-agricultural areas in Elouar watershed, represent the highest 403 

vulnerability areas to erosion, due to the absence of vegetation. The LC/LU factor shows that the 404 

building and construction areas in the study area represent the most erodible areas (Cw= 4.513). 405 

The NDVI class most susceptible to erosion is characterized by index values between (-0.3) and 406 

0.12 (Cw= 2.833). The high and very high frequency erodible areas were observed in the middle 407 
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and south of the El Ouaar watershed. The interpretation of the table shows that the higher the value 408 

of Cw, the more sensitive the class is to erosion, in consideration with the measurements of W+ 409 

and W-. 410 

Table 3 WoE (C) values and factors affecting gully erosion. 411 

Factors Class/type              W+                 W-                     Cw 

Slope 0-7.23 -1.411 0.465 -1.876 

7.23-15.75 1.297 -0.560 1.857 

15.75-24.79 0.435 -0.122 0.557 

24.79-35.13 -0.764 0.101 -0.865 

35.13-65.86 -0.764 0.047 -0.811 

Elevation 214-792 -1.004 0.550 -1.554 

792-1,801 0.948 -1.254 2.201 

1,801-3,353 0.000 0.267 -0.267 

Aspect F 0.022 -0.003 0.025 

N -0.878 0.078 -0.956 

NE -0.360 0.053 -0.413 

E -0.378 0.061 -0.439 

SE -0.551 0.091 -0.642 

S 0.099 -0.020 0.119 

SW 0.264 -0.052 0.316 

W -0.063 0.007 -0.070 

NW -0.573 0.039 -0.612 

Plan 

curvature 

Concave 1.456 -0.393 1.849 

Flat -1.227 1.457 -2.685 

Convex 0.651 -0.251 0.902 

Distance to 

road 

0-1,818 -1.554 0.346 -1.900 

1,818-3,783 1.652 -1.041 2.694 

3,783-5,995 -0.082 0.020 -0.102 

5,995-8,550 -1.042 0.091 -1.134 

8,550-12,531 0.000 0.148 -0.148 

Distance to 

stream 

0-1,229 -0.094 0.057 -0.152 

1,229-2,683 -0.204 0.081 -0.285 

2,683-4,322 -0.071 0.021 -0.092 

4,322-6,297 -0.490 0.078 -0.568 

6,297-9,502 -0.653 0.055 -0.708 

Distance to 

fault 

0-2,184 -0.309 0.144 -0.453 

2,184-4,817 -0.611 0.176 -0.786 

4,817-7,561 1.953 -0.128 2.081 
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7,561-10,586 0.220 -0.046 0.266 

10,586-14,283 0.486 -0.114 0.601 

TWI 10.54-17.88 0.714 -0.085 0.800 

17.88-19.63 0.455 -0.172 0.626 

19.63-21.30 0.436 -0.202 0.638 

21.30-29.07 0.592 -0.061 0.654 

Rainfall 207-273 -1.218 0.451 -1.670 

273-363 1.904 -0.731 2.635 

363-443 1.032 -0.253 1.286 

443-525 0.000 0.267 -0.267 

525-625 0.000 0.167 -0.167 

Lithology A 2.071 -0.082 2.152 

B 0.000 -0.123 0.123 

C 0.000 -0.208 0.208 

D 0.000 -0.348 0.348 

E 0.000 -0.045 0.045 

F 0.000 -0.477 0.477 

G 0.000 0.004 -0.004 

H 0.000 -0.070 0.070 

I 0.000 0.041 -0.041 

LC/LU Water 0.000 0.000 0.000 

Greenhouse 0.196 -0.011 0.207 

Agriculture 0.689 -0.045 0.734 

Building/Construction 4.329 -0.184 4.513 

Soil -0.262 1.083 -1.345 

NDVI (-0.3)-0.12 1.634 -1.199 2.833 

0.12-0.17 -1.333 0.474 -1.808 

0.17-0.25 -0.224 0.025 -0.249 

0.25-0.36 -0.199 0.009 -0.208 

0.36-0.71 -1.526 0.030 -1.556 

 412 

5.2. Gully erosion susceptibility mapping and models performance  413 

The gully erosion susceptibility of each model was classified into 5 classes: very low, low, 414 

moderate, high, and very high. The results were presented in Fig. 9 and Table 4. 415 

The gully erosion susceptibility map developed using the RF model showed that 23.44% of the 416 

study area had very high erosion susceptibility, while 17.02%, 11.67%, 17.01%, and 30.85% of 417 

the area were classified as very low, low, moderate and high susceptibility, respectively.  418 
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For the MLP model, 28.39% of the area was classified as very high susceptibility, while 8.37%, 419 

18.3%, 15.58%, and 29.37% had very low, low, moderate, and high susceptibilities, respectively.  420 

For the KNN model, 27.64% of the study area was classified as very high gully risk, while 17.72%, 421 

30.96%, 18.47%, and 5.21% had very low, low, moderate, and high sensitivities, For the LR model 422 

19.66% of the study, the area was classified as very high gully, while 6.4%, 24.02%, 24.23%, and 423 

25.69% had very low, low, moderate and high susceptibilities, respectively.  424 

The spatial distribution of gully erosion susceptibility within this study area was quite similar for 425 

all Machine Learning models developed here. These models show that the most eroded areas are 426 

located in the southern part of Elouar watershed. These areas are characterized by a very high 427 

intensity of erosion where the lithological formation is mainly dominated by poorly consolidated 428 

quaternary deposits (silts and clays). These areas are characterized by a variation in slope, which 429 

rapidly increases the transport of fine sediments in this area. In addition, inappropriate agricultural 430 

practices and overgrazing of the area may also act as driving forces of gully erosion in the study 431 

area. The northern part is characterized by less intense erosion than the southern part of this basin. 432 

Indeed, this area is constituted by highly consolidated geological deposits which are represented 433 

by limestones and dolomites (Ambroggi, 1963). 434 

From a geomorphological point of view, the study area is part of the Souss plain which is located 435 

between the High Atlas to the north and the Anti Atlas to the south, their geomorphological 436 

position gives a great variation in the altitude, and for this reason the factors of erosion during 437 

rainy periods are very intense. In addition, the intersection between the High Atlas and the Souss 438 

plain shows a very strong water current and favours water erosion, and add to this, the sudden 439 

succession of floods in the region during the past years.  440 

 441 

 442 

Jo
urn

al 
Pre-

pro
of



30 
 

Table 4 Percentages of gully erosion susceptibility classes. 443 

Models % RF - WoE % MLP- WoE % KNN- WoE % LR- WoE 

Very low 23.44 8.37 5.21 6.40 

Low 17.02 18.30 18.47 24.02 

Moderate 11.67 15.58 30.96 24.23 

High 17.01 29.37 17.72 25.69 

Very high 30.85 28.39 27.64 19.66 
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 444 

Fig. 9: Gully erosion susceptibility mapping using: (a) RF-WOE, (b) MLP-WOE, (c) KNN-445 

WOE and LR-WOE. 446 

 447 

 448 

 449 
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 450 

             Fig. 10: (a) ROC curves of success rate and (b) ROC curves of prediction rate. 451 

The performance of the developed models was evaluated using the receiver operating 452 

characteristic (ROC) curve analysis. 453 

For RF model, the area under the curve (AUC) values are equals to 0.800 and 0.838 in the training 454 

and testing sets, respectively, as shown in Fig. 10.a and 10.b and Table 5. The model's accuracy of 455 

over 80% in the study area indicates that it is appropriate for mapping gully erosion susceptibility. 456 

The accuracy of the classification models decreases in the following order: MLP, KNN, and LR 457 

with AUC of 0.796, 0.777, and 0.692, respectively, on the testing set. The study demonstrated that 458 

the RF model exhibited good performance in classification problems compared to other models, 459 

which is consistent with the findings of several previous studies (Avand et al., 2019; Rahmati et 460 

al., 2017; Saha et al., 2020). 461 

 462 

 463 
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Table 5 Model statistical measures assigned to the training and testing datasets 464 

 RF- WoE MLP- WoE KNN- WoE LR- WoE 

Training Testing Training Testing Training Testing Training Testing 

Accuracy 96.744 86.869 92.093 79.208 81.395 84.466 92.093 80.808 

Precision 99.408 98.611 91.979 88.095 82.212 87.368 91.979 88.095 

Sensitivity 96.552 85.542 98.851 87.059 98.276 95.402 98.851 89.157 

Specificity 97.561 93.750 63.415 37.500 9.756 25.000 63.415 37.500 

AUC 0.800 0.838 0.729 0.796 0.796 0.777 0.655 0.692 

 465 

The RF model is a powerful and well-functioning model that has been demonstrated to be robust 466 

and consistent with previous research. It is a sophisticated technique in spatial sciences that has 467 

the ability to utilize multiple input variables and produce high accuracy predictions for various 468 

classes. It has the ability to use explanatory variables and identify nonlinear relationships between 469 

independent and dependent variables, making it a strong model for environmental hazard 470 

assessment. Compared to other models, the RF model has the advantage of being able to handle 471 

large datasets and manage numerous input variables efficiently. Its accurate machine learning 472 

algorithms make it a highly accurate classifier for many datasets. In this study, the importance of 473 

variables for gully erosion mapping for the El Ouaar watershed was performed based on the RF 474 

model.  The variable importance values were  LULC (0.06), NDVI (0.03), TWI (0.09), distance to 475 

Road (0.13), distance to Stream (0.11), Rainfall (0.19), Distance to fault (0.01), Plan curvature 476 

(0.04), Lithology (0.21), Aspect (0.07) and Slope (0.04) and Elevation (0.03). The most important 477 

factors for gully susceptibility mapping in the Ouaar watershed were lithology (0.21) and rainfall 478 

(0.19), while distance to fault (0.01), was the least important (Fig. 11). 479 
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 480 

Fig. 11: The importance of conditioning factors. 481 

6. Discussion 482 

Gully erosion susceptibility models based on machine learning algorithms have been recognized 483 

as an effective tool for soil ecosystem management worldwide (Arabameri  et al., 2021; Roy and 484 

Saha 2022; Wang et al., 2022) . In general, among other machine learning techniques, RF with its 485 

capacity to efficiently handle large datasets, non-linear parameters, categorical and continuous 486 

data, over-fitting, outliers, and multiple features was reported to produce the best performance in 487 

terms of high accuracy (Chen et al., 2021; Hembram et al., 2021; Lana et al., 2022; Pourghasemi 488 

et al., 2020; Saha et al., 2021) 489 

The RF model has more precision than the other models, according to the results of this analysis, 490 

in creating a map of susceptibility to gully erosion (Fig. 10 and Table 5). An approach to  modelling 491 

and analysing numerical data that includes both independent and dependent variables is called the 492 
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analysis of regression. In order to forecast the future behaviour of the dependent variable, 493 

regression analysis aims to represent the dependent variable as an independent function of 494 

variables, coefficients, and error values. When the link between the dependent and independent 495 

variables is positive in certain areas of the research area and negative in other areas, it is obvious 496 

that  logistic regression cannot accurately and precisely detect the relationship. 497 

This study, in agreement with recently published studies, also found that the RF algorithm is the 498 

most suitable model for mapping gully erosion susceptibility in the El Ouaar watershed based on 499 

different performance criteria. Although several studies reported that other machine learning 500 

models, for example, boosted regression tree (BRT) (Amiri et al., 2019)  or extreme gradient 501 

boosting (XGBoost) (Yang et al., 2021), generated better performance compared to the RF model, 502 

the additional advantage of RF lies in its ability to evaluate the importance of each  conditioning 503 

factor in modelling process. This beneficial feature makes RF-based models widely used for 504 

modelling processes in general and suitable for gully erosion susceptibility mapping in particular. 505 

In addition, studies that better explain the model performance through the analysis of insight 506 

mechanisms such as the distributions of variables and their interaction, rather than a pure 507 

comparison based on the statistical criteria (e.g., RMSE and MAE), are strongly encouraged.  508 

The present study indicated that lithology, rainfall, and distance to stream and road were the most 509 

important variables influencing gully erosion susceptibility modelling. These findings are largely 510 

in agreement with recent research (Rahmati et al., 2016; Amiri et al., 2019; Tien Bui et al., 2019; 511 

Chen et al., 2021) where rainfall, lithology, and the distance from streams/rivers are generally 512 

more important variables contributing to gully erosion than other conditioning factors. The results 513 

from the four machine learning models used in this study also confirmed that the regions with 514 

moderate rainfall, elevation, and slope but close to streams and roads are located in very high gully 515 
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erosion susceptibility areas. In contrast, the influence of LULC on gully erosion was found to be 516 

not significantly strong (ranked 7th out of 12 variables) in this study. However, it is worth noting 517 

that bare lands cover most of the study area. The results show a greater concentration of gully 518 

erosion in areas with bare land in this study, which is in line with the report by  Lei et al. (2020) 519 

and Chen et al. (2020). The impact of land use/land cover on gully activity was also reported 520 

previously (Vandekerckhove et al., 2003) ; nevertheless, there remain many doubts about the 521 

features, such as mismanagement (Hosseinalizadeh et al., 2019) , that induce subsurface gully 522 

development. Therefore, future research should explore further the uncertainties of LULC 523 

variables in the development of gully erosion.        524 

Recently, hybrid models based on the combination of two or more techniques have been highly 525 

recommended for gully susceptibility prediction and mapping (Arabameri et al., 2020; Hitouri et 526 

al., 2022; Roy and Saha 2022). This study also developed a hybrid machine learning model for 527 

gully susceptibility prediction by integrating the Weight of Evidence (WoE) with Multilayer 528 

Perceptron (MLP-WoE), Logistic Regression (LR-WoE), K-Nearest Neighbors (KNN-WoE) and 529 

Random Forest (RF-WoE). While a comparison with stand-alone models was not performed by 530 

the present study, other authors have reported that hybrid models can deliver better and perfect 531 

results (Arabameri et al., 2020; Hembram et al., 2021).  Tien Bui et al.  (2019) proposed a hybrid 532 

RF-ADTree model based on RF and alternating decision tree (ADTree) algorithms that were able 533 

to significantly improve the prediction accuracy of the stand-alone ADTree model. Roy and Saha 534 

(2022) also indicated that the integrated RSS-RBFnn and RTF-RBFnn models, i.e., radial basis 535 

function neural network (RBFnn) combined with random sub-space (RSS) and rotation forest 536 

(RTF), showed better results than the single RBFnn model for gully erosion susceptibility maps. 537 

With the significant increase in the number of machine learning algorithms, future comparative 538 
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evaluations of single and hybrid models are important for the assessment of performance and 539 

accuracy, since different modelling techniques may produce very different results and 540 

performances. In addition, hybrid models developed from a combination with deep learning (Band 541 

et al. 2020; Chen et al., 2021) can be promising studies of gully erosion susceptibility.   542 

The geological and geographical situation of the Elouar watershed contribute to the risk of gully 543 

erosion. Indeed, this watershed is part of the Souss Basin. The plain of this basin is filled with 544 

recent Quaternary deposits, consisting of loose to semi-compact layers that are sensitive to erosion. 545 

These deposits are composed of lithostratigraphic units U1 to U4 mentioned above (Aït Hssaïne, 546 

1994; Ambroggi, 1963; Hssaisoune et al., 2012). Climate factors also play an important role in this 547 

area. The study area is characterized by an arid and semi-arid climate, influenced by the 548 

geographical location, especially the High Atlas Mountains to the north, the Anti-Atlas Mountains 549 

to the south, and the Atlantic Ocean to the east. The variation in rainfall between the north and 550 

south promotes strong water currents in the rivers due to the altitude difference between the 551 

upstream area of the study area, which can reach over 3000 meters, and its downstream area, which 552 

can be as low as 194 meters, facilitating water transport and contributing to the gully erosion risks. 553 

Overgrazing and anthropogenic factors also contribute to erosion risks in this area, and laws should 554 

be enacted to regulate irresponsible land use practices. The effect of this phenomenon is manifested 555 

in the destruction of infrastructure (roads, bridges, houses...), which results in significant material 556 

and economic losses for the country. For instance, the Faculty of Sharia and Law in Taroudant,  557 

constructed in a highly area-prone to erosion by ravines, has led to the destruction of walls and the 558 

emergence of erosive areas both inside and outside of the faculty (Fig. 12). 559 
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 560 

Fig. 12: Photos showing the influence of gully erosion on the infrastructure within the study area. 561 

  To minimize this influence, several measures have been taken to address the issue of gully erosion 562 

in the Taroudant region. These include the construction of walls along the banks of the Elouar river 563 

and the gullies that are particularly prone to erosion. Additionally, the construction of sidewalks 564 

next to roads and the implementation of greenhouse agriculture have also been considered as part 565 

of the actions to mitigate and overcome the spread of this phenomenon (Fig. 13). 566 
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 567 

Fig. 13: Photos showing some solutions implemented to prevent the distribution of gully erosion 568 

in the study area. 569 

In this context, our study underscores the critical importance of the developed models in the field 570 

of gully erosion mapping. However, we recognize that there is a room for improvement in future 571 

research. For instance, in our study, we based on freely available GIS data due to the lack of high-572 

resolution datasets. We acknowledge that this choice of data has certain limitations, specifically 573 

regarding data resolution for controlling factors, which resulted in the low accuracy and low 574 

precision of the developed models. It should be noted that accurate and detailed gully erosion 575 

requires high spatial resolutions (Garosi et al., 2018; Rahmati et al., 2016). In addition, it is 576 
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essential to highlight the significance of data quality and recognizing the uncertainties associated 577 

with using controlling factors with different pixel sizes is of utmost importance. Although many 578 

studies have investigated the susceptibility of gully erosion based on different pixel size of some 579 

controlling factors (Garosi et al., 2018; Rahmati et al., 2016). There is still ongoing debate 580 

regarding the most appropriate pixel size to consider when examining controlling factors for gully 581 

mapping susceptibility. 582 

7. Conclusion  583 

In conclusion, this study successfully achieved its goal of using multi-collinearity analysis to 584 

identify significant factors in gully erosion, creating hybrid machine learning models to map 585 

erosion-prone areas, employing k-fold cross-validation to mitigate randomness, and assessing the 586 

capability and robustness of the models using ROC. This study shows that the weight of evidence 587 

is very important in identifying the most suitable conditioning factors to generate an effective map 588 

of gully erosion susceptibility in the El Ouaar watershed. The results showed that RF-WoE 589 

obtained the best performance (AUC = 0.8), followed by KNN-WoE (AUC = 0.796), then MLP-590 

WoE (AUC = 0.729) and LP-WoE (AUC = 0.655), respectively. These results showed that the 591 

good precision obtained is due to the fact that each type of erosion has its own set of conditioning 592 

factors, which must be evaluated separately. The results obtained from this work provide planners 593 

and researchers with an appropriate perspective on the effect of conditioning factors in future 594 

analysis. Further research could explore the use of other machine learning techniques and consider 595 

additional factors to improve the accuracy of gully erosion prediction models. 596 
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