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Abstract: The stability of unsupported rectangular excavations in undrained clay is examined
under the influence of anisotropy and heterogeneity using the three-dimensional finite element
upper and lower bound limit analysis with the Anisotropic Undrained Shear (AUS) failure criterion.
Three anisotropic undrained shear strengths are considered in the study, namely triaxial compression,
triaxial extension, and direct simple shear. Special considerations are given to the study of the
linearly-increased anisotropic shear strengths with depth. The numerical solutions are presented
by an undrained stability number that is a function of four dimensionless parameters, i.e., the
excavated depth ratio, the aspect ratio of the excavated site, the shear strength gradient ratio, and
the anisotropic strength ratio. To the authors’ best knowledge, this is the first of its kind to present
the stability solutions of 3D excavation considering soil anisotropy and heterogeneity. As such, this
paper introduces a novel approach for predicting the stability of unsupported rectangular excavation
in undrained clays in 3D space, accounting for soil anisotropy and non-homogeneity. Notably, it
develops a basis to formulate a mathematical equation and design charts for estimating the stability
factor of such type of excavation, which should be of great interest to engineering practitioners.

Keywords: stability; excavations; anisotropy; heterogeneity; finite element limit analysis

1. Introduction

Unsupported excavation does not require retaining wall systems, and it is considered
one of the affordable construction methods that are widely employed in many shallow
underground construction projects. Shallow underground structures such as pipelines,
shallow tunnels, and underpasses can be constructed by utilizing this excavation tech-
nique. Other examples may include the construction of piers, footings, retaining structures,
raft foundations, mat foundations, and water tanks. An unsupported excavation during
construction, if not properly assessed, can lead to an eventual collapse of the excavation
wall that could result in an injury or fatality. These unfortunate events can cost money
and cause death. It is, therefore, imperative to assess the stability of such unsupported
excavations to reduce the risk of soil failure, thereby improving site safety and preventing
death. This study aims to contribute to reducing that risk by providing a novel approach
that predicts the undrained stability of unsupported rectangular excavations in anisotropic
and non-homogeneous clays.

In general, the excavation can have either cylindrical, conical, or rectangular shapes.
Griffiths and Koutsabeloulis [1] used a displacement-based elastoplastic finite element
analysis to study the stability of cylindrical excavations under axisymmetric conditions.
The same problem was also examined by Britto and Kusakabe [2,3] using the plastic-bound
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theorems. The recent development of finite element limit analysis (FELA) is a powerful
numerical method based on the lower bound (LB) theorem, the upper bound (UB) theorem,
and the finite element technique, as demonstrated in [4–10]. The axisymmetric FELA was
employed by [11–16] to obtain stability solutions for vertical circular excavations. Recently,
the stability of unsupported conical excavations was investigated by [17–21].

Among the various shapes of excavation, rectangular and cylindrical shapes are the
most common in practice. Although cylindrical shapes may lead to smaller amounts of
excavated material and they are more stable due to the arching effect [22], rectangular
excavation is more widely used because it is less complex to build due to its shape and
it follows a similar shape to most common subsoil structures being built within the exca-
vation (e.g., footings, pile caps, piers, mat foundations). For the problem of unsupported
rectangular excavations, stability solutions were reported by Ukritchon et al. [22] using 3D
FELA. Their solutions are based on the Tresca failure criterion, which is limited to isotropic
clays. However, it is common knowledge that soil, particularly clays, normally exhibits
anisotropy and heterogeneity due to depositional geologic processes. It is generally recog-
nized that soil anisotropy can have a substantial influence on clay stability, e.g., [23–26].
Ladd [23,24] reported that partial strength anisotropy in natural clays is generated through
the processes of deposition and sedimentation with favored particle orientation. It was also
demonstrated in the same paper that the anisotropic shear strengths of clays are very much
dependent on the different shearing modes as well as the depositional axis. Thus, including
anisotropy and non-homogeneity in the stability solution of unsupported excavation will
provide a more reliable and realistic solution to excavation problems. Some studies have
explored the problem of excavation in anisotropic clays, e.g., [27,28], but most are braced
or supported.

Indeed, there are three undrained shear strengths that can be obtained in a laboratory:
(1) triaxial compression (TC), (2) triaxial extension (TE), and (3) direct simple shear (DSS).
The three undrained shear strengths have contributed to the development of mathematical
forms of failure criteria for anisotropic soils, e.g., [9,10,25,29–33]. Recently, Krabbenhoft
and Lyamin [34] developed a unique failure criterion for anisotropic clays, known as
AUS (Anisotropic Undrained Shear), by adopting the Generalized Tresca (GT) criterion
for undrained total stress analysis. Even though both Davis and Christian’s (DC) failure
criterion [29] and the AUS failure criteria consider an empirical correlation of the undrained
strength (su) of clay in triaxial compression (TC), direct simple shear (DSS), and triaxial
extension (TE), the explicit form of the DC failure criterion cannot be applied to 3D problems
since it was developed under plane strain condition. Unlike the DC model, the AUS model
was developed under 3D coordinates, which can be used to simulate 3D problems in the
Cartesian coordinates. As a result, the AUS model is preferred in this paper to investigate
the stability of 3D unsupported excavations.

The AUS model has recently been included in the 3D FELA software, OptumG3 [35],
and it has been successfully applied to the stability problems of plate anchors [36] and
caissons [37]. Apart from the recent AUS studies, FELA has previously been adopted to
report numerical results for various 3D geotechnical problems, such as determining the
capacity of a rigid pile with a pile cap in Zhou et al. [38], the trapdoor stability problem
in Shiau et al. [39], the bearing capacity of footings on slopes in Yang et al. [40], and the
tunnel stability problem in Shiau and Al-Asadi [41–43].

A thorough search of the relevant literature shows that the undrained stability numbers
for unsupported rectangular excavations considering both anisotropy and heterogeneity
have never been reported in the literature. The most recent paper by Yodsomjai et al. [44],
which has close similarities to this current study, tackled the undrained stability of un-
supported conical slopes in anisotropic clays, which was similarly analyzed using the
AUS failure criterion. However, due to its axisymmetric condition, it becomes a 2D plane
strain problem rather than 3D. Other than the study undertaken by Ukritchon et al. [22] on
the 3D undrained stability of unsupported rectangular excavations in non-homogeneous
clays, which is also similar to the current study but without considering soil anisotropy,
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most of the other studies in the literature that dealt with anisotropy and heterogeneity in
clays were related to other stability problems such as trapdoors [30], pile bearing capac-
ity [32], unlined square tunnels [33], anchors [36], and suction caissons [37]. Therefore, the
aim of this paper is to study this underexplored subject on the 3D undrained stability of
unsupported rectangular excavations in clays with linearly increasing anisotropic shear
strength. The stability solutions were formulated by a dimensionless stability number that
is a function of four dimensionless parameters: the excavated depth ratio, the aspect ratio
of the excavated site, the shear strength gradient ratio, and the anisotropic strength ratio.
The selected failure mechanisms of this problem were examined to demonstrate the effects
of all four dimensionless parameters. With the development of accurate design equations,
the study would assist practicing engineers in determining the soil stability of unsupported
rectangular excavations in clays with anisotropy and heterogeneity.

2. Statement of the Problem and Modelling Technique

Figure 1 shows the problem of defining a 3D unsupported rectangular excavation.
Due to the problem of symmetry, only a quarter of the model domain was used in the
analysis. See Figure 1a for the model. The excavation depth is denoted by H, B is the
excavation width, and L is the length.
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The AUS failure criterion with the associated flow rule was used to study the 3D
soil stability of the unsupported rectangular excavation. The three anisotropic undrained
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shear strengths obtained from triaxial compression (suTC), triaxial extension (suTE), and
direct simple shear (suDSS) were the required strengths for this failure criteria. Accord-
ing to Krabbenhoft et al. [45], two anisotropic strength ratios can be defined using the
three undrained shear strengths: (1) re = suTE/suTC and (2) rs = suDSS/suTC. The relationship
between re and rs is the harmonic mean, which can be written as follows:

rs =
2re

1 + re
(1)

As shown in Equation (1), the parametric analysis only used one anisotropic strength
ratio, which is re. Note that rs is a function of re, and the range of re should be between
0.5 and 1. A change in the re value may vary the AUS failure criterion’s failure surface,
as shown in Figure 2 [34,45]. The form of the yield function of the AUS model with the
harmonic mean of three undrained shear strengths can be expressed by Equation (2):

Fu = σ1 − σ3 + (re − 1)(σ2 − σ3)− 2suTC = 0 (2)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses (positive in compression), and Fu is the
yield function. It should be noted that the AUS failure criterion becomes the Tresca failure
criterion when re = 1, meaning the isotropic state, i.e., suTC = suTE = suDSS. Note that, for the
AUS failure criterion, three undrained shear strengths were considered to be an empirical
correlation of the undrained strength (su) of clay in triaxial compression (TC) for suTC, direct
simple shear (DSS) for suDSS, and triaxial extension (TE) for suTE.
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The increasing shear strength with depth, i.e., heterogeneous soil behaviors, is another
important factor when determining soil stability. This variation in shear strength has been
considered by many researchers for the problems of the face stability of tunnels [10,31,33,46],
supported excavations [47], piles [48,49], floodwalls [50], and active trapdoors [30,51]. This
study considered three anisotropic undrained shear strengths that linearly increase with
depth. Mathematically, they are expressed in Equations (3)–(5).

suTC(z) = suTC0 + ρz (3)

suTE(z) = suTE0 + reρz (4)

suDSS(z) = suDSS0 + rsρz (5)
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where suTC0, suTE0, and suDSS0 are the anisotropic undrained shear strengths at the ground
level, z is the depth from the ground surface, and ρ is the linear strength gradient. See
Figure 1b for the linear distributions of the three anisotropic undrained shear strengths.

Using the dimensional analysis [52], a function combining four dimensionless param-
eters that are variables of a stability number function can be expressed by Equation (6).

N =
γH

suTC0
= f (

B
L

,
H
B

, re, m =
ρB

suTC0
) (6)

where N is the stability number, B/L is the aspect ratio of the excavated site, H/B is the exca-
vated depth ratio, re is the anisotropic strength ratio, and m is the strength gradient ratio.

In the lower bound analysis, a four-node tetrahedron element is used, where six un-
known nodal stresses are used for each node of tetrahedral elements. The statically ad-
missible stress discontinuities are allowed to produce the continuity of normal and shear
stresses along the interfaces of all the elements. The conditions of stress equilibrium, stress
boundary condition, and the AUS failure criterion are all constraints in a typical LB anal-
ysis, in which the objective function is to maximize the critical unit weight γ that yields
an excavation collapse. In the upper bound theorem, a four-node tetrahedron element
is also adopted for the upper bound analysis, where each node contains three unknown
velocities that vary linearly within the tetrahedron element. The kinematically admissible
velocity discontinuities are applied at the interfaces of all the elements. The material is set
to obey the AUS failure criterion associated flow rule. The formulated objective function
is to minimize the critical unit weight γ. The obtained critical γ from both LB and UB
analyses were then used to compute the stability number in Equation (6). More details on
the LB and UB FELA can be found in [5].

Figure 3 presents a typical 3D FELA mesh used for the analysis. The nodes around the
sides of the model are fixed in the normal direction to the planes of the sides. The same
boundary condition is applicable to the two symmetrical planes as well. At the bottom
domain, the nodes are fixed in all directions. Both the ground surface and the excavation
faces are free to move in all directions. The overall domain size is chosen to be sufficiently
large such that the stability solutions are not affected by the boundary conditions, i.e.,
the effects of boundary size on the computed LB solutions are minimized by generating
LB meshes with sufficient lateral and lower dimensions that produce a computed plastic
yielding zone that does not intersect the boundary planes. Automatic adaptive mesh
refinement is one of the advanced features of the 3D program. This technique is based
on Ciria et al. [53], where the numbers of elements in sensitive zones (i.e., with very
high plastic shear strains) are increased through successive iterations with adaptive mesh
refinement. The required input for the adaptive scheme is the original and target number
of elements, the number of adaptive iterations, and the control variable for error estimation
(i.e., shear power in this paper). In this study, 5000 initial elements were employed, which
was expanded to 10,000 elements after five iterations.

Note that, the range of four dimensionless parameters in all studies of the paper are:
(1) H/B = 0.5, 1, 2, 3, 4; (2) B/L = 1, 2/3, 1/2, 1/4, 1/8; (3) re = 0.5, 0.6, 0.7, 0.8, 0.9, 1;
(4) m = 0, 4, 12, 25, 100. The ranges of H/B and B/L used in this study are based on the previ-
ous work by Ukritchon et al. [22]. For the range of re, Krabbenhoft et al. [45] suggested that
the value of this parameter should be between 0.5 and 1, which corresponds to the natural
ratios of compressive and tensile undrained shear strengths. The range of m or ρB/suTC0
constitutes the combined effect of the excavation size B, the compressive shear strength
at the ground surface suTC0, and the linear strength gradient ρ. In practice, suTC0 and ρ
depend on the geological nature of the sites where the excavated width B can range from
1 to 20 m in practice. Theoretically, the ρB/suTC0 parameter ranges from 0 (homogeneous
case) to a large value (non-homogeneous case). The homogeneous cases correspond to
a case with ρ = 0 and/or a very large value of suTC0. For the non-homogeneous cases, they
represent the cases with a relatively low suTC0 and/or a relatively large value of ρ.
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3. Comparison for Model Validation

In the first step of the investigation, the stability numbers, N, determined by the
rigorous FELA solutions, were compared with the published results in Ukritchon et al. [22].
The comparison shown in Figure 4a is for the effect of H/B on the stability number N,
as well as its effect on various B/L with isotropic (re = 1) and homogeneous (m = 0) clays.
Note that re is the anisotropic strength ratio, and m is the strength gradient ratio. Moreover,
note that the present solution is the average (Avg) results calculated from the UB and LB
FELA solutions. In general, the stability number increases with the increasing depth ratio
H/B. The increase can be either nonlinearly or linearly, depending on the value of B/L. When
B/L is smaller (B/L = 1/4, 1/8), fewer 3D constraints are observed, and a linear relationship
between N and H/B is presented.

Whilst in Figure 4b, the comparison is made for (re = 1 and m = 4). It is interesting
to note that, for the large strength gradient ratio such as m ≥ 4, N increases linearly
with an increase in H/B for all values of B/L. Overall, the numerical results have shown
an excellent agreement between the two solutions. The neglectable numerical differences
between the two results can be attributed to the use of the perfectly plastic Tresca failure
criterion in Ukritchon et al. [22] as opposed to the AUS failure criterion, with re = 1 used in
the present study. To the best knowledge of the authors, there are currently no other values
of re to be compared since this is the first work to consider the stability of unsupported
rectangular excavations in anisotropic and non-homogeneous soils.
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4. Results and Discussion

The effects of H/B on the stability number N are presented in Figure 5 for various
values of re (the anisotropic strength ratio). Those shown in Figure 5a–f are for B/L = (0.25,
1.0) and m = (0, 12, 100). The numerical results have shown that the stability number N
increases linearly with an increase in the excavation depth ratio H/B, except for the case of
(B/L = 1.0 and m = 0). See Figure 5b for this special case of a square (B/L = 1.0) excavation in
homogeneous (m = 0) clay, where N increases nonlinearly with the increasing H/B. One of
the possible reasons could be attributed to the greater corner effects (geometrical arching).
Note that the rate of increase in N (i.e., the gradient) increases as the strength gradient
ratio m increases. Furthermore, note that a decrease in the anisotropic ratio re results in
a decrease in the stability number. The selected failure mechanisms (shear dissipation) are
presented in Figure 6 for the different values of H/B = (0.5, 1, 2, 3, 4). The comparison is
based on the case of (re = 0.7, m = 4 and B/L = 1), and the results of the shear dissipation
contour plots have shown a toe-failure mode for the shallow cases of H/B = (0.5 and 1).
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On the other note, for H/B > 1, a face-failure mode is obtained owing to the effect of the
strength gradient ratio m.
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Figure 6. Potential failure mechanisms—effect of H/B (re = 0.7, m = 4, and B/L = 1).

Figure 7 shows the effects of B/L (the aspect ratio of the excavated site) on the stability
number N for the various values of re (the anisotropic strength ratio). All of the values of
m (m = 0, 4, 12, 25, 100) are considered for the chosen depth ratio H/B = 3, and they are
presented in Figure 7a–e respectively. The numerical results have shown that N increases
nonlinearly with the increasing B/L for all values of re. The gradient of the nonlinear curves
becomes smaller as the strength gradient ratio m increases (see Figure 7a–d)—a linear
relationship is observed for the case with m = 100. It is also noted that the stability number
N decreases as the anisotropic strength ratio re decreases (transforming from isotropic to
anisotropic soils). The comparison of five failure mechanisms for the various B/L = (1/8,
1/4, 1/2, 2/3, 1) is shown in Figure 8. The chosen plots are for H/B = 1 (re = 0.7, and
m = 4). The shear dissipation contour plot of B/L = (1/8, 1/4) has shown a mechanism that
resembles a 2D plane strain condition (see Figure 8a,b). As the value of B/L increases (so as
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the stability number N), a stronger system is presented, owing to full 3D corner effects (see
Figure 8e for B/L = 1). Interestingly, a two-way failure mechanism is found in Figure 8e for
B/L = 1. It should also be noted that the failure patterns are for the toe-failure mode in this
shallow case of H/B = 1.
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Figure 9 shows the relationship between the stability number N and the strength gradi-
ent ratio m for the various values of re (the anisotropic strength ratio). The presentations are
for B/L = (1/8, 1) and H/B = (0.5, 1.0, 4.0). In general, an increase in m results in an increase
in N. A linear relationship between N and m is observed in all investigated cases. Same as
the previous discussions, the smaller the re, the smaller the stability number N. The chosen
case for the failure mechanism comparison is presented in Figure 10 for (re = 0.7, H/B = 1,
B/L = 1) with different values of m = (0, 4, 12, 25, 100). It should be noted that the size of
the failure zone decreases as m increases. As a result, the failure mechanism changes from
a toe-failure mode to a face-failure mode when m is larger than 4.
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Figure 11 shows the relationships between the stability number N and the anisotropic
strength ratio re for various values of m = (0, 4, 12, 25, 100). The plots are for the selected
ratios of H/B = (0.5, 4) and B/L = (1/8, 1/2, 1). The numerical results have shown that the
larger the m, the greater the stability number N. Overall, the stability number N varies
linearly with the increase in the anisotropic ratio re. The rate of increase (gradient of the line)
in N is dependent on the value of m. The larger the m, the greater the gradient of the line.
Figure 12 shows a comparison of failure mechanisms among the various anisotropic ratios,
re = (0.5–1). The comparison is for the excavation problem of (m = 4, H/B = 1, B/L = 1). The
results have shown that the failure patterns are all in a toe-failure mode, and the variation
of anisotropic ratio re does not seem to affect the failure size of the problem. The same
conclusion can be drawn from Figure 13, where an additional study of m = 100 is presented.
Indeed, as discussed previously, the face-failure mode is always the one observed for the
large strength gradient ratio such as m = 100. It should be noted that all of the numerical
results of this paper study are summarized in Tables 1–3.
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Table 1. Stability numbers, N (re = 1.0 and 0.9).

re = 1 re = 0.9
B/L B/Lm

H/B 1 2/3 1/2 1/4 1/8 H/B 1 2/3 1/2 1/4 1/8
0.5 4.559 4.372 4.234 3.959 3.860 0.5 4.299 4.128 4.027 3.764 3.460
1 5.291 4.953 4.677 4.153 3.955 1 4.958 4.661 4.420 3.931 3.759
2 6.420 5.969 5.553 4.637 4.125 2 5.968 5.560 5.201 4.384 3.917
3 7.170 6.707 6.279 5.135 4.362 3 6.657 6.243 5.849 4.833 4.137

0

4 7.770 7.280 6.862 5.606 4.632 4 7.216 6.774 6.388 5.262 4.378
0.5 9.259 9.008 8.758 8.362 8.255 0.5 8.749 8.495 8.288 7.870 7.898
1 15.758 14.648 13.891 12.832 12.437 1 14.778 13.806 13.189 12.151 11.775
2 30.562 28.105 26.095 22.663 21.168 2 28.283 26.251 24.639 21.455 19.996
3 45.966 42.212 39.161 33.462 30.330 3 42.365 39.288 36.776 31.691 28.730

4

4 61.106 56.160 52.214 44.704 39.942 4 56.528 52.402 48.986 42.238 37.914
0.5 18.213 17.662 17.175 16.735 16.561 0.5 17.156 16.730 16.444 15.785 15.516
1 34.964 32.841 31.468 29.458 28.713 1 32.745 31.043 29.716 27.916 27.309
2 69.931 65.641 62.571 57.045 53.981 2 65.470 61.913 59.186 53.975 51.219
3 104.996 98.597 93.842 85.662 80.372 3 98.151 92.897 88.782 81.116 76.146

12

4 140.088 131.336 125.132 114.290 107.172 4 130.918 124.024 118.326 108.284 101.830
0.5 32.254 31.504 30.613 30.072 29.207 0.5 30.536 29.713 29.120 28.351 28.198
1 64.231 61.253 59.346 56.412 55.183 1 60.475 57.966 56.147 53.315 51.845
2 128.460 122.685 118.597 111.345 107.223 2 120.981 115.931 112.269 104.690 101.445
3 192.627 183.920 178.077 167.298 160.784 3 181.659 174.002 168.429 158.561 152.492

25

4 256.720 245.260 237.102 223.242 214.300 4 241.932 231.924 224.580 211.538 203.318
0.5 111.392 109.320 107.744 106.143 105.742 0.5 105.461 103.419 101.948 100.684 100.869
1 223.302 218.275 215.000 209.382 206.320 1 211.114 206.404 203.672 198.231 196.114
2 446.620 436.122 429.972 415.484 411.352 2 423.437 413.457 407.257 396.090 389.648
3 671.124 654.846 645.300 627.836 617.555 3 632.489 620.067 611.184 594.366 585.180

100

4 894.322 873.216 859.562 837.478 823.428 4 845.674 827.874 813.880 793.196 780.282

Table 2. Stability numbers, N (re = 0.8 and 0.7).

re = 0.8 re = 0.7
B/L B/Lm

H/B 1 2/3 1/2 1/4 1/8 H/B 1 2/3 1/2 1/4 1/8
0.5 3.998 3.880 3.807 3.531 3.255 0.5 3.696 3.571 3.503 3.273 3.043
1 4.594 4.327 4.129 3.697 3.525 1 4.206 3.983 3.807 3.415 3.257
2 5.502 5.126 4.825 4.103 3.668 2 5.006 4.694 4.418 3.790 3.398
3 6.120 5.741 5.400 4.518 3.885 3 5.576 5.232 4.935 4.155 3.590

0

4 6.608 7.654 5.868 4.896 4.100 4 6.010 5.658 5.350 4.494 3.788
0.5 8.192 8.020 7.753 7.399 7.252 0.5 7.574 7.352 7.212 6.878 6.741
1 13.733 12.929 12.311 11.406 11.087 1 12.572 11.952 11.463 10.533 10.203
2 26.032 24.326 22.942 20.133 18.797 2 23.642 22.283 21.126 18.623 17.413
3 38.835 36.234 34.224 29.712 26.985 3 35.222 33.110 31.422 27.500 25.028

4

4 51.836 48.330 45.558 39.574 35.560 4 46.896 44.168 41.810 36.482 32.908
0.5 16.080 15.921 15.174 14.900 14.827 0.5 14.856 14.759 14.108 13.673 13.539
1 30.498 29.064 27.867 26.213 25.641 1 28.015 26.842 25.829 24.231 23.713
2 60.747 57.799 55.401 50.671 47.946 2 55.688 53.260 51.218 46.939 44.337
3 91.143 86.838 83.121 76.007 71.582 3 83.531 79.896 76.892 70.436 66.102

12

4 121.484 115.712 110.738 101.452 95.462 4 111.290 106.608 102.410 93.984 88.160
0.5 28.631 27.955 27.377 26.578 25.636 0.5 26.442 25.683 25.257 24.657 24.445
1 56.445 54.317 52.686 50.016 49.108 1 51.882 50.107 48.741 46.161 45.508
2 112.831 108.652 105.268 99.169 95.067 2 103.890 100.505 97.455 91.487 87.891
3 169.331 162.911 157.857 148.704 142.529 3 155.756 150.548 146.213 137.873 132.387

25

4 225.288 231.924 210.434 198.498 190.700 4 207.658 200.882 194.796 183.884 176.652
0.5 98.804 97.060 95.754 94.274 92.989 0.5 91.379 89.479 88.734 87.369 82.820
1 197.710 193.955 190.910 183.274 183.608 1 182.879 179.463 176.887 171.749 169.835
2 395.618 387.909 382.134 372.104 364.822 2 365.556 359.051 353.148 340.475 337.916
3 594.897 581.319 573.506 558.114 548.117 3 549.108 538.401 530.817 517.062 502.274

100

4 794.012 775.738 763.674 744.168 731.800 4 733.122 719.498 706.896 689.530 677.690
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Table 3. Stability numbers, N (re = 0.6 and 0.5).

re = 0.6 re = 0.5
B/L B/Lm

H/B 1 2/3 1/2 1/4 1/8 H/B 1 2/3 1/2 1/4 1/8
0.5 3.317 3.256 3.181 2.955 2.771 0.5 2.944 2.882 2.820 2.628 2.319
1 3.774 3.586 3.450 3.117 2.969 1 3.314 3.155 3.029 2.758 2.631
2 4.479 4.207 3.977 3.444 3.097 2 3.901 3.674 3.495 3.050 2.743
3 4.979 4.679 4.421 3.753 3.254 3 4.328 4.085 3.857 3.309 2.898

0

4 5.366 5.048 4.784 4.054 3.440 4 4.666 4.390 4.188 3.564 3.052
0.5 6.823 6.675 6.550 6.294 6.027 0.5 6.038 5.960 5.753 5.559 5.491
1 11.358 10.816 10.409 9.624 9.369 1 9.967 9.521 9.226 8.561 8.277
2 21.138 19.958 19.048 16.942 15.852 2 18.563 17.571 16.751 15.037 14.072
3 31.406 29.540 28.229 24.951 22.737 3 27.335 25.931 24.728 22.184 20.210

4

4 41.728 39.450 37.670 33.366 29.942 4 36.506 34.454 32.832 29.342 26.568
0.5 13.475 13.208 12.811 12.563 11.985 0.5 11.915 11.702 11.428 11.133 10.896
1 25.262 24.302 23.432 22.134 21.623 1 22.330 21.468 20.794 19.667 19.228
2 50.092 48.210 46.566 42.644 40.585 2 44.187 42.254 41.138 37.943 35.950
3 75.329 72.156 69.764 64.122 60.272 3 66.371 63.263 61.695 56.939 53.634

12

4 100.316 96.282 92.980 85.524 80.114 4 88.410 84.236 82.204 75.902 71.372
0.5 24.129 23.467 23.007 22.585 22.364 0.5 21.192 20.744 20.493 19.967 19.757
1 47.000 45.646 44.432 42.214 41.395 1 41.437 40.252 39.182 37.430 36.636
2 93.925 91.067 88.624 83.521 80.038 2 82.907 80.487 78.697 74.134 70.683
3 141.065 136.667 132.840 125.496 120.269 3 124.328 120.735 118.287 111.372 107.109

25

4 188.000 182.288 177.256 167.254 160.868 4 165.788 160.782 157.210 148.552 141.700
0.5 83.089 81.711 79.615 79.360 75.411 0.5 73.433 72.459 71.454 70.765 69.833
1 165.317 163.306 160.071 156.043 154.564 1 147.068 144.681 142.492 139.251 137.323
2 332.289 326.784 322.154 313.455 305.386 2 294.210 289.922 285.932 278.151 272.439
3 500.166 489.830 483.281 470.489 462.878 3 440.799 433.592 428.594 416.861 408.983

100

4 664.460 653.052 644.744 627.270 617.136 4 587.558 579.212 571.564 556.762 545.928

5. Design Equations

A mathematical equation is developed and presented in this section by using a trial-
and-error method of curve fitting. Nonlinear regression with multiple variables to the Avg
bound solutions is employed to develop design equations for estimating the stability factor
of unsupported rectangular excavations in clays with anisotropy and heterogeneity, as
shown in Equation (7).

N = a1 + a2
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(7)

where a1 to a8 are constant coefficients. To determine the optimal value of the constant
coefficients (a1–a8), the nonlinear least square regression [54] is utilized. The sum of the
squares of the deviation in N between the computed Avg solutions shown in Tables 1–3
and the approximate solutions from Equation (7) is then minimized to obtain the optimal
values of constant coefficients.

Note that, to achieve high accuracy, Equation (7) is a “step-wised” equation developed
for the different values of re. Using the complete data in Tables 1–3, the optimal values of
the coefficients a1 to a8 for the different values of re are computed and presented in Table 4.
On the other hand, the comparisons of N between the computed Avg bound solutions and
the approximate solutions from Equation (6) are shown in Figure 14a–f, respectively, for
different values of re = (0.5 to 1.0). It is pleasing to see the highly accurate solutions of the
equation development—the coefficient of determination (R2) = 99.99%.
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Table 4. Constant coefficients for the proposed design equation.

Constant
Coefficients

re

0.5 0.6 0.7 0.8 0.9 1

a1 3.16697 3.3617 3.73044 4.1027 3.81764 4.28435
a2 1.35068 1.52276 1.66728 1.80244 1.92334 2.02793
a3 −0.69739 −0.55146 −0.64589 −1.47779 −0.09287 −0.55003
a4 0.46763 0.6014 0.72694 0.99956 1.01361 1.18849
a5 1.96752 2.24958 2.55588 3.08414 3.30362 3.39274
a6 0.92331 0.99065 1.14742 1.57205 1.5951 1.54619
a7 −0.07001 −0.07579 −0.081989 −0.12147 −0.13622 −0.13032
a8 −0.05667 −0.05068 −0.06182 −0.10530 −0.10229 −0.09884

R2 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
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a8 −0.05667 −0.05068 −0.06182 −0.10530 −0.10229 −0.09884 
R2 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 
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6. Conclusions

Rigorous stability solutions of the unsupported rectangular excavation in anisotropic
and heterogeneous clays have been successfully studied in the paper using 3D LB and UB
FELA. The stability number (N) that is a function of the excavation aspect ratio, B/L, the
excavated depth ratio, H/B, the strength gradient ratio, m = ρB/suTC0, and the anisotropic
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strength ratio, re, was presented throughout the paper. The following conclusions are
drawn based on the study.

1. The stability number, N, increases with an increase in all of the investigated parameters
of B/L, H/B, m, and re. The increases can be either in a linear or nonlinear relationship.
The linear relationship was obtained for all investigated cases except for cases with
smaller values of m, where a nonlinear relationship exists between N and B/L.

2. The failure patterns of unsupported rectangular excavation in anisotropic and hetero-
geneous clays are either in a toe-failure mode (for small values of H/B, i.e., H/B = 0.5,
1) or a face-failure mode (for large values of H/B > 1) due to the effect of the strength
gradient ratio m. For large values of m > 4, the failure modes are predominately the
face-failure mode. The variation in the anisotropic ratio, re, does not seem to affect the
failure size of the unsupported rectangular excavation problem.

3. A new equation for predicting the stability number, N, of the unsupported rectangular
excavation in anisotropic and heterogeneous clays is proposed. With the coefficient of
determination (R2) being 99.99%, the proposed equation is highly accurate and useful
for practical uses.

The proposed study provides deeper contextualized insights into the understanding
of 3D unsupported excavations in undrained clay under the influence of soil anisotropy
and heterogeneity. Future work directions may include the seismic stability performance
as well as the soil random field probabilistic analysis.
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