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Testing multiple mapping conditioning mixing for Monte Carlo probability
density function simulations
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Mitarai et al. �Phys. Fluids 17, 047101 �2005�� compared turbulent combustion models against
homogeneous direct numerical simulations with extinction/recognition phenomena. The recently
suggested multiple mapping conditioning �MMC� was not considered and is simulated here for the
same case with favorable results. Implementation issues crucial for successful MMC simulations are
also discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2147609�
A number of modern turbulent combustion models have
been recently tested1,2 for a homogeneous combustion case
and compared against direct numerical simulations �DNS�.3

This case was selected because the combustion is close to
extinction/recognition and is sensitive to all the instanta-
neous properties of the flow, hence, the case tests the capa-
bilities of turbulent combustion models. The purpose of this
paper is to implement and validate the recently suggested
multiple mapping conditioning �MMC� model4 using this
case. Probabilistic MMC �Refs. 4–6� is used here with a
solitary reference variable that is similar to the mixture frac-
tion. MMC maintains localness of mixing interactions and,
effectively, unites many existing models, such as conditional
moment closure �CMC�,7 Curl’s model,8 and interaction by
exchange with the mean �IEM� or conditional mean �IECM�
�Ref. 9� into a single methodology. The scalars that are trans-
ported for this case are denoted by YI= �Z ,T�, where Z is the
mixture fraction and T is the normalized temperature defined
as in previous publications1–3 in terms of the absolute tem-
perature T0 by T= �T0−T�

0 � / �Tf
0−T�

0 � with T�
0 representing

the inlet temperatures and Tf
0 representing the adiabatic flame

temperature. The probabilistic MMC transport equations are
given by4–6

dYI = �S�YI� + WI�dt , �1�

d� = A0dt + �2B�1/2dw , �2�

where S�YI� represents the effect of the mixing model, w a
Wiener process and WI the source term: WI= �0,��, where
�=��Z ,T� is the reaction source term specified in previous
publications.1 A single-step chemical reaction was consid-
ered so this system is characterized by Z and T. The coeffi-
cients A0 and B are selected so that the probability density
function �PDF� for the reference variable � has a standard
Gaussian distribution while the magnitude of B=B�t� is de-
termined to match the required average dissipation rate4
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Here, N=D��Z�2 is the scalar dissipation rate and D is the
diffusivity. The drift coefficient becomes4 A0=−B�. The dif-
fusion coefficient B is responsible for the decay of the large-
scale unconditional fluctuations Z��Z− �Z� and the �major�
time scale associated with this process is �maj�1/B. A more
accurate definition of �maj is given by the equation

d��Z��2�
dt

= − 2�N� = − 2
��Z��2�

�maj
. �4�

Fluctuating � induces fluctuations �YI ���, which are
called the major fluctuations in MMC. The stochastic devia-
tions from the conditional values �YI���YI− �YI ��� are called
the minor fluctuations. In conditional MMC, the minor fluc-
tuations are minimized to follow the first-order CMC ap-
proach, where they are neglected. In probabilistic MMC,
which is used here, the minor fluctuations are not negligibly
small and play a noticeable role. The minor fluctuations are
generated from the major fluctuations and are dissipated by
the mixing operator S, where all species are treated in the
same manner. The overall balance equation for the minor
fluctuations is given by6

d��Z��2�
dt

= 2B	
 ��Z���
��

�2 − 2
��Z��2�

�min
, �5�

where the minor dissipation time �min characterizes the dis-
sipation rate of the operator S.

In the present work, the modified Curl’s model8 is used
for the mixing model S and this version of the MMC model
can be referred to as MMC-Curl. The minor dissipation time
affects the level of the conditional fluctuations T��T
− �T �Z� that represent an important physical quantity and
must not be confused with T��T− �T ��� that is defined only
in the MMC context. The conventional MMC regime is
achieved when �min��maj. Under these conditions, the pa-
rameter B �which is linked to �maj� is selected to match the
overall dissipation rate N, while a proper selection5,6 of �min

ensures the appropriate level of T�. �If �min��maj, then �min
determines the overall dissipation rate while the correlation
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between Z and � rapidly disappears and, without dependence
of Z on �, there is no significant difference between the
MMC-Curl and Curl’s models.�

Under the quasisteady conditions of d��Z��2� /dt=0, Eqs.
�3�–�5� yield

�N� = ��Z��2�/�maj = ��Z��2�/�min,

that is,

�min

�maj
=

��Z��2�
��Z��2�

. �6�

The initial distribution of Z must have the correct level
of conditional fluctuations ��Z��2� as required when their
quasisteady state is reached. Physically, if the streams have
mixed, conditional fluctuations have been generated, so that
if the initial state of the simulation is taken after some mix-
ing has occurred, in order to recreate this state correctly, the
conditional fluctuations must also be correctly recreated. If
this is not done, the initial period would be consumed with
generating conditional fluctuations while the dissipation
would not reach the required level during this period. Thus
the intensity of mixing is underpredicted until equilibrium is
reached, hence the decay rate of the unconditional variance is
also underpredicted. The initial level of conditional fluctua-
tions ��Z��2 ���= �N ����min can be set by randomly altering
particles’ positions in � space �after YI is assigned� by �� so
that P� is satisfied. The localized dispersion in � space may
be approximated by

���2��� � ��Z��2����	
 ��Z���
��

�2��−1

. �7�

This approximation is only valid where the derivative is sig-
nificant; note that adjustment of � is not needed in those
regions where this is not the case.

In the DNS,3 the mixture fraction �whose mean was
�Z�=1/2� was initialized as blobs of pure fuel �Z=1� and
oxidizer �Z=0� that mix for a short time before an igniter
brings the mixture to chemical equilibrium. The initial physi-
cal singularity of the mixture fraction gradients is reflected in
MMC by the initial rapid change of �Z ��� from 0 to 1 near
�=0. For simulations performed here, the number of par-
ticles was np=172 800 as in the preceding simulations.2 The
computational time step was divided into three fractional
steps. The solution order of the fractional steps, with each
substep using information from the preceding substeps, was
transport in � space, mixing of YI using S �using the new
values of �� and the chemical reaction for T. The chemical
reaction used is fully defined in Mitarai et al.2 For the mixing
substep, pairs of stochastic particles were selected so that
their spacing in reference space � was small, thus preserving
the localness of MMC. Care must be taken that particles do
not repetitively mix with only one other particle since they
will reach their mean values of scalars after few time steps
and would not dissipate any further. For the chemical reac-
tion, a stiff ODE solver was used, with the rate of change of
variables being the sum of the chemical reaction rate and the
rate from the finite difference of the states before and after

the �conservative� mixing substep.
The ratio �min/�maj defined using Eq. �6� was fixed dur-
ing each individual simulation and different values were used
to implement MMC across its suite of applicability with the
expectation that the CMC7 limit is attained at one extreme
��min/�maj→0� and Curl’s model at the other ��min/�maj�1�.
One goal of this work is to learn what value of the ratio
corresponds to practical results. Results for the mean tem-
perature are in Fig. 1 showing the selected time scale ratio
that best matched the DNS data overall ��min/�maj=1/8�.
Also shown are results that clearly approach the CMC limit
��min/�maj=1/100� and Curl’s model ��min/�maj=1/1.05�.
The stoichiometric temperature is plotted in Fig. 2. The me-
chanical mixing time scale, �mix—based on the scalar dissi-
pation rate—is used to normalize the temporal axis. This
quantity was used to be consistent with the reporting of other
results2 and played no part in the MMC modeling.

The Lagrangian modified flamelet model,1 which has
been specifically suggested to treat this case, matched the
reported averaged temperatures from the DNS �Ref. 3� the
best �the curve virtually coincides with the DNS curve so is
not shown in Fig. 1�. However, the simplified conditions near
the bounds of Z space lead to particles in the middle of Z
space not completely extinguishing. We tested MMC and the
results from all other models were taken from Mitarai et al.2

Among general mixing models, the EMST model10 predicted

FIG. 1. Mean temperature results np=172800. MMC �lowest to highest:
�min/�maj=1/1.05, 1 /8, and 1/100�, �. DNS �Ref. 3�, —. Other models
�Ref. 2�: EMST, �; CMC, ¯; Curl’s model, �; IEM, �; FCL, --.
FIG. 2. Stoichiometric temperature results. As per Fig. 1.
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the mean temperature well2—as did MMC at �min/�maj

=1/8—but MMC performed somewhat better in predicting
the stoichiometric temperature by reproducing the correct
shape. All other models �first-order CMC, IEM, Curl’s, and
fast chemistry limit �FCL�� cannot adequately predict the
DNS results for this difficult case. The main source of dif-
ference between the models is the different levels of simu-
lated conditional fluctuations T�, which is nonexistent in
first-order CMC and is overpredicted by Curl’s model. The
other models �IEM and FCL� are too simple to predict the
complex phenomena occurring. The capability of MMC may
be seen from observation of the scatter plots �Fig. 3� which
are very similar to those produced by the DNS.3 Those gen-
erated by EMST indicate strange behavior since the scalars
are not treated independently, causing mixing between par-
ticles along preferential lines.2 Different realizations of the
mean temperature, which seem to be typical, are shown in
Fig. 4 for varying numbers of particles. The convergence of
the method for large np is clear.

Localness is one of the major advantages of MMC over
the conventional mixing models �IEM and Curl’s�. MMC

FIG. 3. Scatter plots of T�Z� for �min/�maj=1/8 �showing 16384 particles�.
Conditional averages, �; equilibrium temperature, --.

FIG. 4. Sample realizations of mean temperature. np=172800, �; �a� np
=8; �b� 20; �c� 100; �d� 1000.
defines locality in terms of the reference variables in a way
that preserves independence of the simulated scalars. The
minor fluctuations are treated in MMC by conventional mix-
ing models that are not local in their usual formulations. The
EMST model has a more strict definition of locality using the
scalar values themselves but this makes mixing of different
scalars dependent on each other. In general, MMC is ex-
pected to work well under conditions when localness is not
grossly violated by the approximate treatment of the simu-
lated problem. While no model can be implemented without
compromising localness due to the discrete nature of nodes
or stochastic particles, MMC’s compromise in its treatment
of localness does not allow any completely nonlocal interac-
tions to occur.

The problem considered in the present work involves a
rapid initial change of Z in the reference space that can allow
two particles with quite different values of Z �but similar
values of �� to be mixed. The initial singularity disappears as
the simulations advance in time. Thus, the localness is com-
promised to a larger extent at the initial stages �compared to
the final stages� even if the value of �min/�maj remains con-
stant. The less local treatment of mixing in MMC skews the
results towards Curl’s model and overpredicts the level of the
conditional fluctuations T� while the more local treatment
shifts the curves towards CMC and underpredicts the level of
T�. This behavior can be noticed in Fig. 1 and, after careful
comparison of the scatter plots with the DNS,3 in Fig. 3. A
more accurate evaluation of the ratio �min/�maj, which may
change in time and should be selected to match the level of
conditional fluctuations,5,6 will remove the bias. The physical
behavior of the conditional fluctuations �such as T�� in re-
acting systems needs further examination. Another difficulty
can appear due to dependence of the conditional generation
on reaction rates, with fast reactions suppressing the genera-
tion and reducing the effective generation time.5,6,11 Accord-
ing to analysis,11 universal modeling of the conditional gen-
eration may need explicit and accurate emulation of the
Lagrangian behavior of the scalar dissipation.

The MMC model has been shown to perform well �pro-
vided the ratio �min/�maj is properly selected� for a combus-
tion case that is close to extinction, with no unusual behavior
observed in its scatter plots. In determining the appropriate
ratio �min/�maj, the rate of generation of conditional variance
is important. The correct selection of this ratio will be im-
portant depending on the relative importance of the chemical
processes to the mixing processes—it is especially important
in cases such as that simulated here, where partial extinction
occurs. Effectively, MMC unites most major turbulent com-
bustion models �CMC, Curl’s, and IECM� into a combined,
consistent approach.

The authors are grateful to Satoshi Mitarai and George
Kosály for supplying pertinent information enabling us to
perform these simulations, as well as Steve Pope and Zhuyin
Ren for helpful discussions and assistance in efforts that
paved the way to the present work.
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