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Introduction 

Soil compaction is a worldwide issue for agricultural production (Soane and van 

Ouwerkerk 1995) and is considered the utmost impact of modern agriculture on 

the environment (McGarry 2003). The importance of this issue is only heightened 

by challenges placed on agricultural industries to produce more food and fibre in 

an efficient manner, and with less land resource, in order to meet the demands 

of a growing world population (Fraiture et al. 2007). Soil compaction is defined 

as a reduction in the soil pore space (Keller et al. 2007), which consequently 

leads to an increased bulk density (Hamza and Anderson 2005; McGarry 2003). 

Additionally, increasing the compaction status of a soil leads to a change in 

associated soil characteristics, such as decreased saturated hydraulic 

conductivity (Dawidowski and Koolen 1987; Lipiec et al. 1998), increased soil 

strength (Horn and Rostek 2000; McGarry 1990; McGarry 1996), decreased 

aeration (Stepniewski et al. 1994), decreased matric potential (Assouline et al. 

1997) and homogenous soil structural arrangement (Pagliai et al. 2000; Servadio 

et al. 2001; Young et al. 2001), potentially leading to mechanically induced soil 

dispersion (Rengasamy et al. 1984). Such changes can cause severe degradation 

of the soil environment resulting in reduced crop/pasture yield (Lipiec et al. 

1991), due to decreased water and nutrient availability from the physical 

constraints imposed on root growth associated with increased soil strength and 

decrease porosity (Glinski and Lipiec 1990; McKenzie and McBratney 2001), 

particularly the decrease in macropores and mesopores (Kim et al. 2010). Hence, 

it is paramount that soil compaction be minimised in order to maximise the 

productivity of agricultural land. 

Worldwide, 68 million hectares of soil are considered affected by compaction 

(Flowers and Lal 1998). Soil compaction due to vehicular traffic is considered to 

be the primary cause of this compaction (Lipiec and Hatano 2003). As vehicular 

traffic is an unavoidable process within the agricultural system, to minimise the 

risk of soil compaction it is vital that: 1) the occurrence of traffic is minimised, 2) 

traffic that must occur is controlled within permanent lanes, 3) the soil condition 

(primarily moisture content) be optimal prior to traffic, and 4) wheel load and 

contact pressure is minimised. However, farming processes are often time 

constrained, complex, limited by machine manufacturer, and limited 

economically, meaning that all four conditions will rarely be optimised to reduce 

soil compaction. Traffic may often need to occur frequently and within a set 

window of time, potentially irrespective of soil condition; in wet conditions such 

traffic can result in subsoil compaction due to deeper stresses (Van Den Akker 

and Stuiver 1989). Furthermore, larger and heavier self-propelled-machines and 

implements are increasingly being introduced into agricultural systems, which 

presents a significant cause of soil compaction and soil structural deterioration 

(Lipiec and Hatano 2003; Lozano et al. 2013). In order to limit these impacts, 

controlled-traffic is prescribed with permanent beds and permanent traffic lanes 
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(see Tullberg et al. 2007). However, controlled-traffic in its true sense is often 

difficult to achieve due to machinery manufacturers producing 

machines/implements with different wheel track widths. Ensuring all machines 

and implements operate on the same track may be perceived as a costly exercise 

but research (Kingwell and Fuchsbichler 2011; Neale 2010) has demonstrated 

that fully controlled traffic farming systems are economically viable when 

compared against the cost of soil compaction.  However, since the effects of soil 

compaction are often latent compared to those of say salinity or erosion (Hamza 

and Anderson 2005), conversion from conventional to controlled traffic farming is 

often not seen as an on-farm priority. Thus, the effect on subsequent 

crop/pasture production is often not linked to compaction as the cause by 

practitioners. 

Subsoil compaction due to machine induced soil stress has been shown to pursue 

past subsequent cultivation, and soil structural degradation shown to increase 

post deep-ripping of compacted subsoil layers (Arvidsson and Hakansson 1996; 

Hamza and Anderson 2005; McGarry and Sharp 2001). In a study utilising an 

experimental soil compaction database from 21 sites comprised of 259 location-

years, Arvidsson and Hakansson (1996) showed that the effects of soil 

compaction persisted after ploughing and that the persisting compaction caused 

a decrease in crop yield, dependant on soil clay content. Soils with finer texture 

(i.e. higher clay content) were observed to undergo yield decreases greater than 

20% that lasted for up to 3–4 years. These reductions were attributed to 

changes in the mechanical properties of the soil that caused coarse/dry 

seedbeds, poor crop emergence, high aggregate tensile strength, and reduced 

nutrient uptake. Hence, while the effects of compaction might be latent, they are 

ongoing and could have significant impact on productivity and, thus, financial 

return. To help address this, it would therefore be of use to provide practitioners 

with the means by which to make agricultural system management decisions for 

soil traffic based on soil moisture condition and likelihood of compaction as a 

function of economic return, in terms of a cost-benefit analysis 

However, measurement of soil compaction status is traditionally laborious and 

therefore expensive. Dry bulk density and total porosity are regularly used as 

indices of soil compaction, as these soil characteristics provide a clear link 

between compaction and a soil’s ability to store and transport air and water 

(Panayiotopoulos et al. 1994). However, they do not provide an absolute 

measure of soil compaction status, which means relative comparison of 

compaction between fields is not feasible, nor is the degree of compaction for 

that particular soil able to be calculated. For this reason, various authors have 

suggested methods by which to provide a soil with an absolute measure of soil 

compaction status. Hakansson (1990) suggested a ratio between the observed 

dry bulk density and a reference dry bulk density (uniaxial compression at 200 

kPa), while Bennie (1991) calculates the maximum dry density (MDD) using the 

Proctor test, (AS 1289 5.1.1) and provides a ratio between the observed dry bulk 

density and the MDD (taking into account the minimum dry bulk density of the 
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soil) corresponding to low, medium, high and very high degrees of compaction. 

These relative measures have been shown to be more useful than bulk density or 

porosity when investigating the effects of compaction on root and crop response, 

as well as for use as input parameters for modelling crop response to compaction 

(Lipiec and Hatano 2003).  While these methods utilise dry bulk density, 

Hakansson and Lipiec (2000) recommend that bulk density in soils containing 

significant 2:1 clay minerals be measure at standardised moisture content to 

avoid issues caused by shrink-swelling phenomena at various water contents. 

Vertosols (Isbell 2002) contain 2:1 clay minerals and dominate Australian cotton 

soils, which will further increase the complications of traditional methods of soil 

compaction status determination. 

Full implementation of CTF systems is heavily limited by machinery 

manufacturers (Tullberg et al. 2007). Hence, land managers make trade-offs 

concerning traversing moist soil against reaping harvests on a regular basis. 

Therefore, there is a requirement to understand both the potential effect of such 

a trade-off in partial CTF on compaction and the current compaction status of a 

soil. This might be addressed through the use of modelling machine impacts and 

likely soil response (Defossez and Richard 2002; Keller et al. 2007). However, 

modelling requires validation, which requires soil compaction to be determined, 

largely through bulk density measurement. This is laborious and therefore 

expensive, as previously discussed. So, rapid measurement methods that either 

directly or proximally (e.g. pedotransfer functions) acquire information about soil 

bulk density are therefore required. Various technologies and models exist and 

are relatively well discussed, but what is not apparent is how this technology 

might be used in rapid assessment or integrated to provide rapid 

assessment/prediction of soil compaction for use by the practitioner.  

Consequently, this review aims to investigate means to inexpensively and rapidly 

measure soil compaction status, predict likely compaction due to machine traffic 

and utilise this information to make risk based assessments for soil traffic. In this 

review, discussions are limited to assessing soil compaction due to vehicular 

traffic, whereby assessment refers to both the prediction of likely compaction, as 

well as the direct measurement of the soil compaction status. A specific focus on 

Vertosol (Isbell 2002) soils has been provided, as these soils dominate the 

Australian cotton industry, for which this review has been prepared. 

Fundamentals of soil compaction 

The soil solid phase consists of three major separates: sand, silt and clay, with 

particle size of these in Australia determined as 20–2000 µm, 2–20 µm, and <2 

µm, respectively. Particle size is used to describe soil texture whereby a soil high 

in sand is considered coarse textured, while one high in clay is considered fine 

textured (Isbell 2002). In addition to the solid phase, a soil also contains a liquid 

phase (soil solution) and gaseous phase, which are contained in the soil pore 



National Centre for Engineering in Agriculture | Technological and integrated approaches for 

practical and rapid assessment of compaction in agricultural soils 7 

 

network. The pore network is a network of voids between the solid phase 

individual units and ranges from soil macropores (>75 µm) and mesopores (30–

75 µm) that control the majority of infiltration and plant available water, to 

micropores (<30 µm) containing water generally unavailable to plants, due to 

strong matric potential (very negative potential) (SSGTC 2008).  

Soil compaction is generally described as the process whereby a given mass of 

soil is compressed due to mechanical stress resulting in a decrease in volume 

and increase in bulk density (Keller et al. 2007; Shroff and Shah 2003). Soil bulk 

density is not an intrinsic property of soils, being related to the void space 

between aggregates, and for a given soil is a function of the stress 

characteristics (magnitude, uniformity, contact area, and motion) applied, and 

the in situ soil characteristics (soil moisture, soil texture, clay type, and initial 

density). Soil compaction results in structural rearrangement of the soil 

separates, expulsion of air from the soil, increase in the packing density of the 

separates and reduction in soil pore diameter (Defossez and Richard 2002; Keller 

et al. 2007; Lipiec and Hatano 2003). Compaction alters physical characteristics 

of the soil, as well as being dependent on these characteristics. The following 

discussion concentrates on the major physical changes occurring in soil, due to 

an applied stress, and investigates the implication of these for measurement of 

soil compaction status. 

Soil strength 

Resistance to compaction and increased bulk density is a function of soil 

strength, which describes a soils ability to withstand an imposed stress without 

structural failure (Defossez and Richard 2002). This is a simple concept, but in 

actuality soil strength is hard to measure due to high variability (Hillel 1980). Soil 

cohesiveness and angle of internal friction describe a soils resistance to 

compaction, where cohesion refers to bonding of soil particles, and the angle of 

internal friction to the resistance of soil compelled to slide over soil. Considering 

soil from a mechanics perspective, irreversible compaction occurs when the 

applied stress exceeds a critical soil strength value known as the precompression 

strength. Defossez and Richard (2002) explain that a soil undergoing compaction 

combines aspects of elastic, plastic deformation and failure behaviours. When 

soils are dry, the precompression strength is high and the chance of plastic 

deformation and structural failure a low. In such circumstances where the 

prcompression strength is not exceeded by the imposed stress, the soil generally 

undergoes elastic, reversible compaction. However, soil strength, and thus the 

precompression strength, weakens rapidly as the soil moisture approaches field 

capacity (Van den Akker and Soane 2005). Hence, moisture content affects soil 

strength, and the moisture content a soil is subject to stress at is particularly 

important. 

There is an optimum moisture content at which a stress will cause soil 

compaction (Hillel 1998), largely dictated by the clay content (Håkansson et al., 
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1987). When soils are dry there is a high degree of inter-particle bonding 

(cohesion), interlocking of particles and frictional resistance between particles 

(angle of internal friction), although as soil moisture is increased the intial effect 

is that of lubrication decreasing inter-particle friction. Further increases in soil 

moisture affect inter-particle bonding, causing a less cohesive soil prone to 

compaction, with the greatest compaction at the optimum moisture content 

(Hillel 1998). At moisture contents above optimum, the pore space filled by air is 

less and introduction of further water, an icompressible fluid, adsorbs the energy 

of compaction (Shroff and Shah 2003). 

The effect of moisture on soil strength is also affected by soil texture. In coarse 

textured soils, strength is derived from a high angle of internal friction, whereby 

coarse fragments are more likely to interlock as they are forced to slide by one-

another (Hillel 1980). On the other hand, the strenght of high clay soils depends 

heavily on the cohesiveness of the soil, and less so on the angle of internal 

friction, due to high electrical charge to surface area ratio (electrochemical 

propreties governing diffue double layer and clay swelling) (Hillel 1998; Sparks 

2003; Sposito 1989). Clays such as smectite, contained in the Vertosols that 

dominate the Australian cotton industry (McKenzie 1998), are more highly 

affected due to this process than kaolinite clays (e.g. Chromosols; Isbell 2002). 

Soil hydraulic properties 

Numerous researches has demonstrated that soil compaction results in a 

reduction of larger pores (macropores and mesopores) and increase in 

micropores (Assouline et al. 1997; Bottinelli et al. 2014; Kim et al. 2010; 

Motavalli et al. 2003; Schäffer et al. 2008a; Schäffer et al. 2008b; Van Dijck and 

Van Asch 2002). In compacted soils, lower volumetric water contents have been 

observed at high matric potential (~0 to –10 kPa), with higher water contents at 

low matric potentials (in the range –100 to –1550 kPa) and relatively little 

difference in the intermediate matric potential zone (Assouline et al. 1997; 

Ferrero and Lipiec 2000; Kutílek and Nielsen 1994). In the study of Kim et al. 

(2010) , a silt loam soil (Vertic epiaqualfs, Mexico) containing smectite and vertic 

properties (similar to Australian Vertosols) was compacted from 1.34–1.45 g cm-

1 where they found that macropores decreased by 69% and coarse mesopores 

(200–1000 µm) by 75%, which corresponded to a 69% reduction in soil 

hydraulic conductivity. Similarly, Bottinelli et al. (2014) studied the effects of 

heavy forestry machine traffic on soil macroporosity and found that this 

decreased by between 96–49% from 0–45 cm in two neoluvisol (ruptic) (WRB 

2007). Soil pore networks control infiltration of water and nutrient movement 

into the soil, with macropores generally attributed the majority, or preferential, 

flow (Håkansson and Lipiec 2000; Jarvis 2007; Lipiec et al. 1998). As discussed 

above, compaction decreases macropores and thus saturated flow is observed to 

drastically decrease as compaction increases (Dawidowski and Koolen 1987; 

Debicki et al. 1993; Håkansson and Medvedev 1995; Kim et al. 2010; Lin 1999) 

Lin et al. (1996) demonstrated the importance of larger pores  on total water flux 
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where contributions of 10% for macropores (>0.5 mm) and 89% for mesopores 

(0.06–0.5 mm) were observed. This and the changes in volumetric water content 

at low and high matric potentials demonstrate that small increases in bulk 

density [8% in this case of Kim et al. (2010)] significantly decrease the major 

pore size distribution. Whilst this might lead to identification of dry and wet 

zones in comparison of compacted and uncompacted soil, respectively, the soil 

structural arrangement and effect of this on flow with depth also needs to be 

considered. 

Soil structural arrangement 

Soil compaction alters aggregate dimensions and realigns separates 

homogenously (reduction of heterogeneity) into platy and massive soil structure. 

The effects of structural rearrangement and the ramifications for this on the 

continuity of pores is also a consideration. Active macropores have a significant 

effect on water flow (Lipiec and Hatano 2003). Compaction of soils not only 

decreases the macroporosity of a soil, but it also modifies the shape, orientation 

and continuity of soil pores (Boizard et al. 2013; Bottinelli et al. 2014; Bullock et 

al. 1985; Kim et al. 2010; Pagliai 1987; Pagliai et al. 2003). Using dye to trace 

infiltrating water in saturated and unsaturated conditions throughout a soil profile 

and subsequent computer supported image analysis of soil pits, Etana et al. 

(2013) showed that persistent subsoil compaction (up to 14 years) could 

enhance preferential flow. Where pore networks are bimodal, as could be 

expected in compacted soils, bypass flow is enhanced and the filtering capacity 

of the soil is reduced (Jarvis 2007). This should result in drier dense areas 

consisting of compacted soil and clear preferential flow paths, which may hold 

ramifications for soil compaction methods aimed at soil water differential 

measurements. 

Lipiec and Hatano (2003) discuss advances in imaging technology such as 

computer assisted tomography (CAT) scanning, single photon emission computed 

tomography (SPECT) scanning, and various other scanners and high resolution 

cameras for assessment of soil structural arrangement. More recently, Marchuk 

et al. (2013) used X-ray computed tomography to assess soil structure. 

However, such technology is generally limited to laboratory analysis, often 

requiring dye or resin impregnated soil cores. Discussion of these techniques is 

avoided below, but as this equipment advances, the continuity and orientation of 

pores, and the structural arrangement of soil separates in the field could provide 

valuable rapid assessment of soil compaction status. 

Aeration 

Furthermore, the increase in microscopic pores results in higher volumetric water 

contents at lower (more negative) matric potentials. Thus, these changes also 

affect soil aeration, and are often quantified as air-filled porosity, redox potential, 

air permeability and oxygen diffusion rate (Stepniewski et al. 1994). Compacted 
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soils with similar air filled porosity to uncompacted soils were shown to have 

much smaller pores by Simojoki et al. (1991), which led Lipiec and Hatanto 

(2003) to conclude that a better reflection of compacted soil aeration might be 

obtained from transmission parameters and contribution of active pores. In 

measuring soil pore continuity, air permeability can be used as it is a measure of 

the ability to transport gas by convection. However, there is a dependence of air 

permeability on pore diameter and as such the variability is high, meaning that 

significant replication is required to obtain meaningful results (Gysi et al. 1999; 

Iversen et al. 2001; Koszinski et al. 1995). Soil compaction decreases the 

relative gas coefficient (Stepniewski et al. 1994), the oxygen diffusion rate 

(Dexter and Czyż 2000) and increases redox potential (Whalley et al. 2000). 

Lipiec and Hatano (2003) explain that these factors are best measured in wet 

soils, often near, or at, saturation. 

Soil thermal properties 

Soil compaction alters the thermal properties of soils causing differences in soil 

temperature and affecting the spatial and temporal variation of this (Lipiec and 

Hatano 2003). Research has established that properties such as thermal 

conductivity, heat capacity and thermal diffusivity increase as soil compaction 

increases, with greater increase observed as soil moisture increases (Abu-

Hamdeh 2000; Abu-Hamdeh and Reeder 2000; Guérif et al. 2001; Jassar et al. 

1997; Malicki 1990; Usowicz et al. 1996). These differences between compacted 

and uncompacted soils are primarily ascribed to increased contact between soil 

separates associated with structural realignment from the imposed force during 

compaction. However, the water status of soil pores is also important whereby 

Horn (1994) showed that convection and diffusion of heat through connectivity of 

water filled pores also affected thermal differences. Additionally, bulk density was 

shown to be the primary driver of soil thermal spatial variability and that this is 

less variable in compacted soils (Usowicz et al. 1996) and to greater depths 

(Lipiec et al. 1991).  

Whilst soil compaction affects the soil thermal properties, there is a paucity of 

information pertaining to its usefulness as a proximal variable for rapid 

assessment. Some information on thermal property measurement is provided by 

Abu-Hamdeh and Reeder (2000), Oschner et al. (2001) and Abu-Hamdeh 

(2003), while information of thermal resistivity can be found in Singh et al. 

(2001) and Sreedeep et al. (2005). Further discussion has not been afforded to 

sensing of thermal properties in this review. 

Soil acoustic properties 

The acoustics of a soil are affected by soil properties; specifically, the relative 

characteristic impedance and the propagation constant  (Hess 1988; Kinsler et 

al. 1982). Moore and Attenborough (1992) state that these acoustic properties 

are dependent on the air-filled porosity connected to the surface, flow resistivity, 
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pore shape, pore size and tortuosity of pores. In a compacted soil where these 

are reduced, changes in acoustic properties within the solid phase occur, as well 

as a reduction of sound wave transfer through liquid and air filled pores (Moore 

and Attenborough 1992; Shin et al. 2012). However, the moisture content is 

highly dynamic in soils throughout time, which means that point measurements 

of acoustic differences for compaction would need to be comparative at a single 

time point (reference soil versus compacted soil), or measured repetitively 

throughout numerous moisture contents. Shin et al. (2012) further discusses 

that most models used to derive soil physical characteristics from acoustic 

properties are usually either assumed to be 100% air-filled, or water saturated, 

which is rarely the case. Whilst Moore and Attenborough (2002) found relatively 

good relationships between acoustic properties and the predicted depth of a 

harder layer, the limit of acoustic predictive capacity was 10 cm for dry clay soil 

and 8 cm for wet clay soil. Furthermore, difficulties were encountered with 

cracking as soils dried. Shin  et al. (2012) investigated linear Biot-Stoll theory 

using acoustic-to-seismic coupling in determining soil physical properties related 

to soil pores and found relatively weak predictions of soil strength to 50cm in 

sandy soils. They concluded that the current capacity to utilise acoustic 

properties is limited, even with the introduction of three soil layers of differing 

inherent properties (each assumed individually isotropic). However, the 

introduction of layers increased predictive accuracy and further research should 

occur. Hence, this technique has not been afforded discussion below. 

Determining soil compaction 

There is a plethora of methods by which to measure the various factors affecting 

soil compaction, with many of these methods being time consuming and 

laboratory based (see Lipiec and Hatano 2003; McKenzie 1996). Hence, this 

review focuses on methods that allow rapid measurement of associated factors 

throughout the soil profile or bulk in order to consider both topsoil and subsoil 

compaction impacts. Additionally, this section discusses measurement of soil 

compaction once a stress has been imposed. Implications of imposing stress and 

the factors that affect stress impact are discussed in the section on predicting 

soil compaction. 

Penetration resistance 

The use of a cone penetrometer to determine the penetration resistance at a 

known energy transfer (dynamic cone penetrometer; DCP) or insertion velocity 

(static cone penetrometer; SCP) is considered a traditional method by which to 

rapidly obtain information concerning soil strength. The relative inexpensiveness 

of the cone penetrometer (push rod, or vertical weight drop versions), as well as  

the fact it is easily transportable and simplistic to use (Rawitz and Margolin 

1991), has seen this method favoured for field-scale and applied investigations 

(Smith 1987). Subsequently, practitioners regularly prefer this method and 
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relate well to the use of the instrument, although can often be heard to describe 

it as a moisture probe. This is an apt description, as soil moisture affects the 

measurement of soil strength and varies considerably in both spatial and 

temporal dimensions (Vaz and Hopmans 2001). As discussed above, soil strength 

decreases in a non-linear fashion as the soil field capacity is approached (Van 

den Akker and Soane 2005), which means that in situ soil moisture is incredibly 

important in standardising the estimated soil strength, as penetration resistance 

also varies with this (Aksakal et al. 2011; Bayat et al. 2008; Busscher et al. 

1997; Ley et al. 1993; Perumpral 1987; Şeker 1999; Topp et al. 2003). 

Numerous authors have investigated the relationships between penetration 

resistance and soil water content finding linear (Ley et al. 1995), exponential 

(Ohu et al. 1988), and inverse (water content squared, Ayers and Perumpral 

1982) relationships. While soil strength, and hence penetration resistance, are 

affected by numerous variables, water content is considered to be the most 

important, featuring in all empirical and conceptual models explaining 

penetration resistance in soils (Busscher et al. 1997). By examining literature 

data and using curve fitting software Busscher et al. (1997) suggested three 

equations to explain the relationship of penetration resistance to soil moisture, 

which were similar to other equations already in the literature: 

      Eqn 1 

          Eqn 2 

       Eqn 3 

where C is cone index in MPa, W is water content on a dry basis (g g-1), and a 

and b are empirical parameters calculated using the least squares method for 

each interval/treatment. From these equations they further investigated the 

effect of water content using: 

      
  

  
        

Eqn 4 

where sC/dW is the first derivative of any of Eqn 1–3 and the subscripts c and o 

denote the corrected and original, respectively, values for cone index (C) and 

water content (W). These equations were evaluated against existing 

experimental data and it was concluded that correction for water content (Eqn 4) 

caused significant improvement in treatment differences.  

More recently, Aksakal et al. (2011) sought to determine the time dependent 

changes in penetration distribution in a 5 ha field. They use an equation similar 

to Eqn 3, but allowing for incorporation of measured water content and adjusting 

the penetration resistance to a water content of 10%. The justification for this 

appears to be on the basis of determining soil specific effects, as the calibration 

was done using intact cores of the loam soil (23% clay). Their exponential 
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relationship produced a fit of r2=0.93 for a moisture range of ~5–70% moisture 

content, which suggests the soil specific calibration process is of value. 

Comparatively, Lapen et al. (2004) used multivariate adaptive regression splines 

(linear regression based) to force linear piecewise trends to penetration data for 

tilled and no-till soils. It was found that cultivation caused any single penetration 

response trend to water content to be insufficient to predict penetration 

resistance throughout the season; that is, penetration resistance and water 

content relationships in cultivated soils are growing season time dependent. 

Perhaps if the point in the growing season that measurement of penetration 

resistance is made is kept constant, then the calculated relationship may remain 

suitable.  

Vertosol soils present another problem, which is their shrink-swell properties, 

and none of the literature discussed above is representative of this. McKenzie 

(2001b) and McKenzie and McBratney (2001) showed that penetration resistance 

was a poor indicator of bulk density and performed poorly at high water content 

in Vertosols. The former paper indicated that a cone penetrometer provided 

valuable data when the Vertosol soils were close to the plastic limit. Therefore, 

Vertosol specific calibrations would need to be conducted and the effect of voids 

at soil moisture content less than the plastic limit should be considered. 

Static cone penetrometers (SCP), or push rod penetrometers, require that the 

operator supply a constant velocity when pushing the cone into the soil in the 

vertical plane. However, it is notoriously difficult to supply constant velocity when 

manually operating a SCP, which means that variation within datasets and 

between operators is increased and analysis is fraught with error (Herrick and 

Jonesb 2002). Motorised versions of SCPs use platforms to hold the 

penetrometer upright and rigid and then supply a constant velocity to produce 

less variable datasets and remove operator effects (Topp et al. 2003), but in 

doing this the expense of equipment is increased and accessibility is therefore 

decreased. The DCP utilises a known weight dropped from a known height along 

the penetration rod. Therefore, kinetic energy is supplied at a constant rate, 

provided the rod is maintained in the vertical state. Maintaining this vertical state 

is just as important for penetration resistance with SCPs as it is for DCPs. By use 

of constant energy transfer, the operator effect is removed, and because a DCP 

can be cheaply constructed they are readily accessible as compared to motorised 

SCPs. The majority of field penetrometers utilise a penetration cone with 

diameters from 11–25 mm and semi-angles of 15˚ or 30˚ (ASABE 1999; 

Campbell and O'Sullivan 1991; Ehlers 1975). If a cone head that is smaller, or 

larger, than the soil structural unit (structured soils) is used, then the 

penetration resistance measured is related to intra-aggregate, or inter-

aggregate, strength, respectively (Bradford 1986; Lowery and Morrison 2002). 

Small diameter, sharp penetrometers are more representative of roots, thus 

presenting better correlations to effect on roots, as compared to penetrometers 

with greater diameter that increase the friction component of total penetration 
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resistance measured (Groenevelt et al. 1984; Lipiec and Hatano 2003; Voorhees 

et al. 1975; Whalley et al. 2000). 

Godwin et al. (1991) developed a drop-cone penetrometer for rapid assessment 

of soil strength. It consists of releasing a 2 kg, 30° apex angle cone from a 

height of 1 m, and determining its penetration on the ground. The authors 

established linear relationships between soil moisture content and drop-cone 

penetration, and between this and tortional shear vane strength. Linear 

relationships were also found between rut depth and drop-cone penetration 

(Antille et al. 2013; Godwin et al. 1991), which enable prediction of soil damage 

(compaction) prior to field traffic. 

Whilst cone penetrometers provide rapid and inexpensive measurement of 

spatial soil strength distribution, and potentially temporal distribution depending 

on correction for soil moisture, they do have limitation in terms of measurement 

reliability. Spatial variation of penetration resistance is affected by numerous 

factors and can vary over centimetres (Lipiec and Hatano 2003). Thus, high 

amounts of replication are required, with the suggestion of 10 replicates at small 

plot scale (size unspecified) and 20 measurements post compaction along the 

wheel rut (assuming wheeled traffic) (Smith 1987). The spatial dependence of 

penetration resistance was also shown to increase in loose soil, as compared to 

compacted soil, meaning that smaller sampling intervals need to be used in loose 

soil (Lipiec and Hatano 2003; Lipiec and Usowicz 1997; Perfect et al. 1990). 

O’Sullivan et al. (1987) state that penetration resistance can be related to 

compaction, but that interpretation can be difficult. This is partially due to the 

effect of compaction on soil pore relations, whereby soil saturation content is 

decreased and differences in penetration resistance may be masked by the 

changes in matric potential and hydraulic conductivity (Campbell and O'Sullivan 

1991). Thus, soil strength should be measured as soon after traffic as possible if 

to be compared to prior compaction or a reference soil (without adjusting for 

moisture content). Furthermore, Sun et al. (2011) discusses the complications 

with describing the transferred energy and compares the SCP and DCP 

concluding that ideal solutions require further investigation. 

It is apparent that soil moisture and spatial sensitivity associated with using a 

cone penetrometer to rapidly determine in situ soil compaction status at multiple 

points in time present some issues for interpretation of data, although a major 

advantage is the low associated cost and the fact that practitioners relate well to 

the method of measurement. Comparing relative differences in penetration 

resistance at a single point in time, or over a short period of time (e.g. day 

before and after soil traffic) where moisture content could be assumed to be 

unchanged, or fairly distributed, improves the usefulness of the data. Further 

developments of the cone pentetrometer have introduced combined probes for 

penetration and soil moisture estimation (see Kosugi et al. 2009; Masaoka et al. 

2012; Vaz et al. 2001; Vaz and Hopmans 2001). 
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Electromagnetic induction 

The electromagnetic induction (EMI) survey technique induces alternating 

currents within the soil that are linearly related to the soil electrical conductivity 

(EC) using a varying magnetic field (McNeill 1980). The below-ground response 

is then analysed to determine electromagnetic fields and the ramification of 

differences depending on the depth response of the instrument. The EM38 

(Geonics, Ontario, Canada) is predominantly used in precision agriculture due its 

depth response functions relating to shallower soil depths that correlate with 

plant rooting depths (Corwin and Lesch 2005). EMI instruments use a 

transmitting and receiving coil to interrogate electromagnetic field response, and 

the coils used in an EM38 are situated 1.0 m apart. The transmitting coil is 

excited using sinusoidal current (EM38 – frequency 14.6 kHz), which creates a 

time-varying magnetic field that induces eddy currents (secondary magnetic field 

within the primary magnetic field) within the soil (Lamb et al. 2005). It is the 

magnitude of these eddy currents that is proportional to soil EC, and the receiver 

intercepts a fraction of these which are returned as an amplified summation in 

the form of an output voltage. While this method is considered a measure of EC, 

it is actually measuring the apparent EC (ECa) which is the EC integrated 

throughout the depth of measurement; a depth weighted EC according to the 

theoretical respective depth response functions (McNeill 1980). Hence, at any 

single point of measurement, the ECa returned by the instrument is an 

integration value determined by both the depth related sensitivity and the 

predominant, depth dependent, drivers of the soil EC (Hossain et al. 2010; 

Sudduth et al. 2001). As explained by Roades et al. (1989) the current flows 

through three pathways: 1) a liquid phase pathway (soil pore water and it salt 

content); 2) a liquid-solid phase pathway (exchangeable ions associated with 

clay minerals); and, 3) a solid pathway (direct, continuous contact between soil 

separates). However, the soil matrix does not provide sufficient direct, 

continuous contact between soil separates for continuous current flow. For 

further understanding of the physical theory and principles of EMI, readers are 

directed to Hendrickx  et al. (2002) and Hendrickx and Kachanoski (2002). 

When producing field-scale maps using EMI instruments, such as the EM38, the 

ECa point values are interpolated to provide spatial mathematical prediction 

between point predicted measurements, which further affects the accuracy 

attributed to the output results (O'Leary and Peters 2004). However, due to the 

rapid and non-destructive nature of EMI instruments, spatial interpolation of 

point predictions provides a valuable tool to precision agriculture for determining 

the spatial trends of ECa driving edaphic properties (Corwin and Lesch 2005; 

Friedman 2005; Johnson et al. 2005). 

The EC of a soil is governed by multiple soil properties (McKenzie et al. 2008), 

predominantly: 1) Pore network characteristics (primarily defined by clay content 

and type) and connectivity; 2) Water content with depth; 3) Concentration of 

dissolved salts in the soil water; and, 4) Temperature and phase of the pore 
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water (phase referring to frozen/unfrozen). Hence, soil bulk density (and 

compaction) is considered to affect ECa measurement (Corwin and Lesch 2003; 

Corwin and Lesch 2005; Hossain et al. 2010). According to McBratney et al. 

(2005) if a soil has a profile thickness deeper than the effective measuring depth 

of an EM38, then volumetric moisture content and clay content are the primary 

drivers of ECa, with soil moisture being the single most important factor (Brevik 

and Fenton 2002). This describes increased accuracy ascribed to predicting soil 

moisture in homogenous medium, such as the uniform soil profile of a Vertosol. 

Hossain et al. (2010) showed that use of an EM38 provided reliable prediction of 

soil moisture in a Vertosol, provided propagation models, rather than an 

inversion model, was used in the prediction of depth specific soil moisture. It was 

also shown that the horizontal dipole configuration was better suited to depth 

related volumetric soil moisture, as compared to the vertical dipole configuration.  

Guyonnet et al. (2003) compacted a pond clay liner (62–71% clay) using eight 

passes of a 20 Mg roller at optimum moisture content (20% moisture) to achieve 

a soil bulk density between 83–92% of the soil maximum dry density (1.55 g 

cm3) using 20 cm lifts to a thickness of 1.0 m. They introduced heterogeneous 

zones within the clay liner that consisted of loosened soil (0–30 cm) and 

backfilled uncompacted topsoil, sand and gravel mixture (60–100 cm), although 

the subsequent overlying layers were compacted above these latter 

heterogeneities. They found that the EM38 was capable of identifying 

heterogeneities in the horizontal dipole configuration, but not the vertical dipole 

configuration. However, this method did not clearly detect the heterogeneities at 

depth. Hoefer and Bachmann (2012) reported high correlations between soil 

strength (measured as penetration resistance) and EM38 ECa values in detecting 

subsoil compaction in a typic Luvisol (10–17% clay) derived from loess at depth 

30–40 cm.  

Further studies by Hoefer et al. (2010), Krajco (2007) and Malo  et al. (2001) all 

detailed reasonable relationships between ECa measured using an EM38 and 

measures of soil compaction (bulk density, penetration resistance etc.). 

Furthermore, Al.Gaadi (2012) used a sand soil (3.8% clay, 88.7% sand) to 

demonstrate the capability of an EM38 to detect soil compaction as a result of 

surface applied force. They imposed compaction at a force between 220 and 

2061 kPa, depending on soil moisture treatment (between 5.0, 5.3, 6.9 and 

8.0%), using a small, hand propelled, vibrating plate compactor. Their results 

showed that ECa generally correlated with soil compaction, although at 8% 

moisture content correlations between soil compaction and ECa were weak. They 

attributed this to soil moisture dominating the effect on ECa and suggested that 

at moisture contents above 8% the EM38 may not be suitable, although 

Guyonnet  et al. (2003) found suitable identification at 20% soil moisture in a 

clay soil. Furthermore, the depth extent of soil compaction was only measure to 

17.5 cm by Al-Gaadi (2012) and the effect of compaction past this point is 

questionable given the packing phenomena in high sand content soils, due to the 

high angle of internal friction causing interlocking of coarse particles. Given the 
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integrated nature of ECa measurement, dilution of compaction effect in the EM38 

response at either horizontal or vertical dipole configuration might have 

occurred, which could also have affected the ability to detect changes in soil 

compaction. 

The use of EM38 in identifying soil compaction has been shown to yield some 

promise, although issues concerning the depth of detection and the moisture 

content at which detection occurs for soil compaction should be provided further 

attention. Hossain  et al. (2010) found good agreement between ECa and soil 

moisture in Vertosols. Using a similar experimental approach, the corresponding 

depth and moisture content at which soil bulk density is outweighed as an ECa 

driver in high clay content soils could be investigated. 

Electrical resistivity tomography 

Electrical resistivity tomography (ERT) works on similar principles to EMI, but 

instead measures the resistance distribution of the soil medium. Electrical 

currents are applied to the soil, normally using two probes to supply the current 

and two probes to record the resulting differences in potential. These differences 

in potential supply information the electrical properties and form of 

heterogeneities within the soil (Kearey et al. 2002). Differences in resistance 

between soil, water and air (solid, liquid and gaseous phases in soil) supplies 

information that can be used as a proxy for soil physical properties (Banton et al. 

1997), and the greater the electrical property contracts between the soil and 

heterogeneities, or imposed factots such as compaction, the easier these are to 

detect using ERT (Samouëlian et al. 2005). Thus, it is imperative to identify the 

optimal ranges of various soil physical properties that allow the greatest contrast 

in ERT response. The primary factors that affect electrical resistivity are as for 

EMI, so the reader is directed to the section on EMI. 

Laboratory relationships between resistivity and volume of water were 

established by McCarter (1984) whereby clay resistivity is a function of both 

moisture content and the degree of saturation. In investigating this, soils were 

initially equilibrated to a known moisture content (range 4.1 to 23.3%), which 

was held constant for each core, but the level of compaction was changed 

incrementally to decrease pore volume and therefore saturation content. 

McCarter’s (1984) results demonstrated that resistivity decreased as moisture 

content increased and degree of saturation increased, which thus also 

demonstrated that compaction of soil decreases resistivity. This was further 

confirmed by Seladji et al. (2010) for a clay (38.5% clay), loam (20.0% clay) 

and high organic matter loam (23.3% clay, 4.2% organic matter). They 

concluded that resistivity is sensitive to an increase in soil bulk density, 

irrespective of soil texture and at gravimetric water content <25%. Three bulk 

densities were investigated (1.1, 1.3 and 1.6 g cm3) with clear contract in 

resistivity between all densities for the clay and loam soil, although the high 

organic content loam exhibited no clear distinction in resistivity between i.1 and 
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1.3 g cm3. They explain that this may be attributed to organic matter reducing 

surface charges, but concede that better information on the effect of organic 

matter of soil electrical properties, and thus compaction, is required. The 

literature (Islam et al. 2012; McCarter 1984; Seladji et al. 2010) agrees for a 

range of clay contents (~<15–54% clay, with or without silt fraction included) 

that the optimal range of moisture content for difference in bulk density to be 

detected by ERT in soil is 10–25%, although this depends on the degree of 

saturation, which is a function of clay content, soil moisture and compaction 

level. This range appears sufficient for use in Vertosols, where the specific 

volume of soils with vertic properties (shrinkage) ranges from approximately 

0.6–0.75 cm3 g for soil moisture 10–25% (Figure 1) (Vervoort et al. 2003). 

The smectitic content and vertic properties result in shrink-swell phenomena in 

Vertosols and the subsequent cracking can cause issue with measures of 

compaction, as discussed in some of the above sections. However, these cracks 

in Vertosols are an important hydraulic mechanism. Greve  et al. (2012) and 

Greve  et al. (2012) used ERT to show how Vertosols initially wet non-uniformly 

from within the profile due to cracks, important for subsoil water storage. Thus, 

these cracks control important processes for deeper storage of water that are 

likely affected in compacted soils due to changes in structural arrangement and 

internal swelling pressures. Tabbagh  et al. (2000) identified electrical resistivity 

as an important tool for identification of soil structural horizionation and Besson  

et al. (2004) further showed that electrical resistivity was an important tool for 

the characterisation of cultivated soils. Subsequently Tabbagh  et al. (2007) have 

produced a method by which to quantify the cracking patters of Vertosols based 

on this work. Tang  et al. (2008) investigated the effect of increasing the 

thickness of a soil layer in the laboratory using reconstructed soil slurries and 

found that increasing the soil layer 

thickness the average crack 

length, width, aggregate area and 

crack intensity factor are 

enhanced, as well as the primary 

distribution ranges of those 

parameters. The reconstructed 

nature of the soils in this 

experiment, and known structural 

homogenous realignment soil 

separates in compacted soil, 

implies that similar behaviour 

could be expected in compacted 

soils. This reinforces that in 

compacted clay soils, the 

compaction conditions affect the 

drying behaviour of the soil 

(Daniel and Yung-Kwang 1993; 

 

Figure 1. Shrink-swell data for Vertosol clods 
(100 mm depth) from the Gwydir valley, 

indicating the typic S-shaped curve, although 
with indistinct shrinkage phases (Vervoort et 
al. 2003). 
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Holtz and Kovacs 1981). Differences in cracking patters between compacted and 

uncompacted soils, as measured using ERT, might prove to be a useful index of 

soil compaction and its effect on the soil system. While other methods of 

measurement are impeded by soil cracking patterns inherent to Vertosols, the 

capacity of ERT to determine compaction status and structural behaviours in 

these soils appears promising. 

Time domain reflectometry 

The time domain reflectometry (TDR) method determines the dielectric constant 

(К) by way of an electromagnetic wave pulse generator and measurement of the 

propagation time of these waves (Noborio 2001). Simple electrode rods 

(commonly stainless steel or brass) are inserted into the soil and the 

elecytromagnetic wave passes along the probes being reflected back at the full 

extent of the probe. An incident electromagnetic wave is also reflected at the 

start of the probe due to an impedance difference between the probe and the 

cable. By way of knowing the physical probe length and the distance between the 

initial and final reflections, the dielectric constant of the soil can be calculated 

(Baker and Allmaras 1990). Hoekstra and Delaney (1974) explain that difference 

in the dielectric constant between soil and water is stark and that because of this 

is it reasonable to measure the volumetric moisture content of moist soils by 

obtaining the apparent dielectric constant. The equation of Top et al. (1980) is 

most generally used for homogenous soils to calculate the volumetric moisture 

content (θ): 

                                             Eqn 5 

It was found that the apparent dielectric constant was not strongly sensitive to 

temperature, soil texture bulk density (non-vertic soils) or soluble salt content 

(Topp et al. 1980). The calibration curve of Topp et al. (1980) has been 

confirmed by numerous investigations for soil textures ranging from sand to clay, 

with ferric and non-ferric properties and with saline/non-saline soil water 

(Drungil et al. 1989; Grantz et al. 1990; Nadler et al. 1991; Patterson and Smith 

1981; Reeves and Elgezawi 1992; Smith and Patterson 1984; Topp and Davis 

1985; Topp et al. 1982; Topp et al. 1984). However, Eqn 5 has been found to 

underestimate volumetric moisture content in vertic soils (Bridge et al. 1996) 

and over estimate it in soils with saline water (Dalton et al. 1990; Noborio 2001). 

Subsequently, it has been shown that soils high in organic matter, or of fine 

texture, change the relationship between the apparent dielectric constant and 

volumentric water content (Dasberg and Hopmans 1992; Dirksen and Dasberg 

1993b; Dobson et al. 1985; Roth et al. 1992). This change in relationship was 

attributed to soil density and texture by Abdulla et al.  (1988) and Ponizovsky et 

al. (1999), although Dirksen and Dasberg (1993a) showed that the change was 

more due to density than texture. 

In an effort to extend TDR to geotechnical applications, Siddiqui and Drnevich 

(1995) adapted calibrations to convert soil moisture from volumetric to 
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gravimetric. Their specific purpose was to develop procedures for use of TDR in 

geotechnical compaction control. They undertook laboratory calibration to obtain 

soil-dependent constants for subsequent field measurements. Field testing 

involved determining the apparent dielectric constant from four coaxially 

configured spikes driven into the soil and then immediately repeating this on the 

soil excavated from under the spikes and compacted in a mould. The assumption 

is that the gravimetric water content remains the same for both tests. Then the 

two apparent dielectric constants (field state and compacted) are used with the 

known total density of the soil in the mould to calculate gravimetric soil water 

content and dry density. Further evaluation of this method has shown is to be 

sufficiently reliable geotechnical purposes (Drnevich et al. 2001; Drnevich et al. 

2002; Lin 1999; Siddiqui et al. 2000). Xiong et al. (2004) adapted this procedure 

further removing the requirement of mould compaction in order to create a 

onestep procedure. They observed satisfactory results for a variety of soils, but 

found that high clay content with high water content produced unsatisfactory 

results due to unclear reflection of the electromagnetic waves. 

Alaoui and Helbling (2006) used changes in soil porosity and pore connectivity to 

explore the use of TDR in determining compaction effects. Their experiment 

consisted of auguring holes and installing probes at different depths. They 

showed that wheeled traffic caused a change in soil structure in the 0–0.1 m 

depth that stopped significant water movement to lower probes. However, this 

method is focused on evaluating the effects of soil compaction, rather than 

determining an indication of the compaction status of the soil. 

Predicting soil compaction 

An important aspect to managing soil compaction within the farming system is 

the ability to make operational decisions concerning when to traffic the soil. 

However, as has been discussed, understanding when to traffic soil is complex, 

due to the various contributing factors such as soil water status, soil texture, soil 

organic content and type, machine characteristics and climate (Raghavan et al. 

1990; Troldborg et al. 2013) that affect soil compaction, as well as the 

competing tensions, such as risk of rain ruining harvest. Prediction of likely soil 

compaction due to traffic of a specific machine, given the current soil condition, 

is more useful for maintaining soil productivity than measuring soil compaction 

after the fact. Hence, the use of modelling of soil compaction degree provides a 

useful means to provide estimates of compaction likelihood prior to traversing 

the field. 

Soil compaction models can be separated into two main categories: 1. analytical 

(often referred to as pseudo-analytical models); and 2. numerical (finite element 

models – FEM) (Abu-Hamdeh and Reeder 2003; Defossez and Richard 2002; 

Keller et al. 2007). However, both categories include determination of loading 

force propagation throughout the soil, resulting from machine imposed forces 
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acting on contact at the wheel-soil interface, and modelling of stress-strain 

behaviour of the soil; stress-strain behaviour describes the relationship between 

the applied stress and the subsequent changes in soil volume (Defossez and 

Richard 2002). The main difference between these two model categories is the 

determination of loading force propagation, whereby the propagation calculus for 

analytical models uses semi-empirical formulas (Fröhlich 1934) derived from the 

analytical solution of Boussinesq (1885) and the propagation calculus of 

numerical models linearise the equation describing static deformation of a soil 

body in order to create a soil displacement field based on nodal points. Defossez 

and Richard (2002) comprehensively evaluated analytical and numerical models 

that had been tested in laboratory soil bins or the field in their review in order to 

establish the suitability of these to simulate realistic agronomic situations. While 

they concede that the experimental conditions differed between model 

validations and that simulations could not be conducted over a wide range of 

conditions due to the number of soil and wheel variables influencing compaction, 

they submit that even though numerical models might supply a more accurate 

representation of likely compaction, the analytical modelling approach was 

adequate at a wide range of field conditions when simulating homogenous layers 

0.5–1.0 m deep. Given the large number of parameters required to satisfy the 

complexity of numerical models and the demonstrated practicality of analytical 

models (Defossez and Richard 2002; Keller et al. 2007; Keller and Lamandé 

2010; Keller et al. 2013), analytical models are discussed here. Specifically, 

SoilFlex (Keller et al. 2007) is presented because of its ability to remain flexible 

(important to farming systems), incorporate differing wheel configurations and 

its relative simplistic use. 

SoilFlex 

Whilst numerous analytical models exist such as those presented in Gupta and 

Larson (1982), Diserens and Steinmann (2002) – ‘TASC’, Van Den Akker (2004) 

– ‘SOCOMO’, Johnson and Burt (1990) and O’Sullivan et al. (1999) – ‘Compsoil’, 

SoilFlex (Keller et al. 2007) provides the user greater flexibility and thus greater 

practicality. Readers are directed to Seig (1985) Keller et al. (2007) and 

Defossez and Richard (2002) for a discussion of the differences between existing 

models. Chi et al. (1993) predicted stress and strain of a sandy loam, and a clay 

soil, and indicated that the assessment of soil parameters required by models is 

the main source of error. Hence, soil compaction models which can account for a 

range of soil conditions are valuable for machinery manufacturers at the design 

stage to pre-assess soil impact derived from vehicular traffic under such soil 

conditions. For example, these models may enable investigation of tyre 

specifications and axle configuration. The main advantage of COMPSOIL 

(O’Sullivan et al. 1999) over SOCOMO (van den Akker 2004) or TASC (Diserens 

and Steinmann 2002) is that it enables quantification of soil density increases 

resulting from traffic as opposed to a simple indication of soil compaction danger 

for given load and inflation pressure. 
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SoilFlex was given its name due to the flexibility provided in describing soil 

surface stress, modelling of the stress-strain behaviour, and estimation of soil 

mechanical parameters by use of pedotransfer functions (PTFs), including the 

ability to add PTFs to the model (Keller et al. 2007). Unlike other analytical 

models, SoilFlex contains decision points that affect the output 

comprehensiveness (provide the flexibility); these being: wheel configuration; 

distribution of normal stress; consideration of traction; calculation of stress only; 

consideration of shear strain; and which stress-strain relationship to use. Based 

on the user decisions, output supplied can include the vertical stress state only, 

the complete stress state only, or the complete stress state along with resultant 

bulk density and vertical soil displacement. Thus, SoilFlex is a 2-dimensional 

model that estimates the stress state, induced bulk density changes and vertical 

displacement of soil due to wheeling ruts (Keller et al. 2007). SoilFlex uses 

existing contact area functions (Janosi 1962; Keller 2005; O'Sullivan et al. 1999; 

Soehne 1953), stress propagations equations (based on the concentration factor; 

Boussinesq 1885; Cerruti 1888; Fröhlich 1934; Soehne 1953) and stress-strain 

relationships (Bailey and Johnson 1989; Larson et al. 1980; O'Sullivan and 

Robertson 1996). An in depth discussion of the calculations and decisions 

involved in SoilFlex is avoided here (readers are directed to Table 2 and 3 in 

Keller et al. 2007), as the purpose of this discussion is to demonstrate the 

usefulness of the modelling approach.  

Keller et al. (2007) calculated the vertical stress and vertical displacement of soil 

due to wheeling from a single passage of a sugar beet harvester (tyre inflation 

pressure 100 kPa, wheel load 86 kN) on a moist Eutric Cambisol (loam 0-30 cm 

depth and silty clay loam >30 cm depth) and compared this to measured values. 

Whilst the vertical stress calculated agreed well with that measured, in all 

instances (models for calculation of vertical displacement) vertical displacement 

in the subsoil was overestimated and under estimated in the topsoil, resulting in 

rut-depth underestimation. A similar result was obtained by Defossez et al.  

(2003), who used ‘Compsoil’  (O'Sullivan et al. 1999), which they speculated was 

due to not considering lateral displacement, although in the case of SoilFlex 

lateral displacement is accounted for. Keller et al. (2007) thus attribute this 

underestimation due to the difficulty in easily obtaining soil mechanical 

parameters (cohesion, angle of internal friction, and shear modulus). They 

conclude through sensitivity analysis that accurate soil displacement is 

contingent on accurate values for these parameters. However, these parameters 

are notoriously hard to measure. SoilFlex provides flexibility to obtain 

information that does not include the vertical displacement, or reasonable 

estimates of these paramters could be used based on empirical data, or 

laboratory determination, such as Keller et al. (2007) undertook. When 

comparing SoilFlex to other an FEM model used by Gysi (2001) it was found that 

the predicted mean normal stress and bulk density agreed well with the FEM 

model. Hence SoilFLex as an analytical approach to stress distribution calculation 

is justified (Keller et al. 2007).  



National Centre for Engineering in Agriculture | Technological and integrated approaches for 

practical and rapid assessment of compaction in agricultural soils 23 

 

While SoilFlex provides a flexible model structure for calculation of vertical stress 

and vertical displacement, the model has not been extensively tested on a wide 

range of soils and would require further investigation for us in prediction of soil 

compaction in Australian Vertosols. Keller et al. (2007) also point out that soil 

deformation is a time dependent process and that SoilFlex does not account fot 

this. Thus, they suggest that future iterations could couple SoilFLex with SISOL 

(Roger-Estrade et al. 2000), which models time dependent changes in soil 

structure sue to various management practices. 

Challenges for analytical modelling 

Keller and Lamande (2010) have produced a comprehensive paper on future 

directions for analytical soil compaction modelling. Readers are directed to their 

paper for a more inclusive discussion on the following summarised points. The 

main challenges that they identified were: 1) need for better characterisation and 

estimation of the upper boundary condition (that defining the soil contact area, 

as well as the magnitude and distribution of the contact stress); 2) requirement 

for more accurate means by which to measure soil stress (i.e. transducers and 

stress sensors requiring greater accuracy and an understanding of their 

limitations); 3) need to develop analytical models that can handle changes in soil 

structural layers such as those between A and B horizons in texture contrast 

soils; and 4) better assessment of soil compaction is required whereby field 

determination is the focus, as laboratory stress experiments have been shown to 

largely differ to the field. Furthermore, the precompression stress calculated in 

the laboratory was found to not be useful for calculation in the field. In relation 

to point 4, Keller and Lamande (2010) recommend that in situ stress-strain 

behaviour needs to be determined for short-term and dynamic loading with 

research to clarify the relationship between this and soil mechanical properties in 

standard laboratory tests. 

From the above challenges, point 3 is perhaps the most important for practical 

use of analytical soil compaction models. In using the analytical approach, 

currently only one homogeneous layer for stress propagation can be considered, 

which is a serious limitation considering many soils contain texture contrasting 

layers. However, (Keller et al. 2007) suggests that the error may not be large for 

many of the simulated cases. Furthermore, the homogenous layer limitation may 

not be as important for soils that are considered uniform to have uniform soil 

texture profiles, such as Vertosols. This needs to be considered further through 

field validation, however. In this sense, future research is required to define the 

application limits for analytical models (Defossez and Richard 2002; Keller and 

Lamandé 2010; Keller et al. 2013). Keller et al. (2007) also point out that the 

concentration factor used in SoilFlex, and analytical models based on solution of 

Boussinesq (1885), is not a directly measurable factor, which should be 

considered as a weak point of the analytical approach. In strengthening the 

approach, better calculation, estimation or measurement of the proximal soil 

mechanical factors affecting the concentration factor are required. 
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Pedotransfer functions 

A further consideration for analytical modelling is that soil deformation 

computation strongly depends on soil mechanical properties (Keller et al. 2007; 

Van Den Akker 2004). There is a lack of easily accessible and representative soil 

mechanical properties, which speaks to point 2 of Keller and Lamande (2010), 

thus creating a major hurdle to accurate soil deformation calculation. A clear 

requirement for development of PTFs functions that estimate soil mechanical 

properties was identified by Van Den Akker (2004) and then by Keller et al. 

(2007). Wosten (1999) discuss the reliability and use of PTFs soil hydraulic 

properties, although there remain few PTFs for soil mechanical parameters. 

Additionally, the performance of these has not been properly evaluated in a 

range of circumstance, as far as we are aware, and therefore the reliability of 

these is not well understood. 

Using soil moisture deficit to predict risk 

From the discussion above, it is observed that soil plasticity increases with 

increased soil moisture and further that the timing of traffic has a significant 

effect on soil compaction due to this. Ayres (1987) suggests that soil volumetric 

moisture content is a good indicator of vulnerability to soil compaction. However, 

it is somewhat difficult to accurately predict soil volumetric moisture content, 

which led Vero et al. (2013) to consider the use of a soil moisture deficit hybrid 

model (Schulte et al. 2005) for predicting the soil compaction vulnerability. This 

model predicts the soil wetness relative to the field capacity of the soil, which 

can be defined as the water held after a period of drainage (Kerebel et al. 2010). 

This period is, however, somewhat contentious depending on whether the soil is 

used for irrigation or dryland farming. Vero et al. (2013) consider three soil 

classes based on drainage ability (poorly-, moderately- and well-drained soil) 

and found that SMD significantly affected the changes in soil bullk density and 

rut area, indicating that the SMD hybrid model is an effective proximal measure 

for soil trafficability prediction. From the study of Vero et al. 2013 and the earlier 

work conducted by Earl (1997), it appears that prediction of soil vulnerability to 

compaction is particularly important at moisture deficits lower than 10 mm. 

However, they concede that the model requires further testing, especially in 

relation to trafficking of the soil during wetting phases. Importantly, this method 

could be used to forecast soil traffic based decisions in non-CTF systems, 

although further in-field observation and testing of this approach is required. This 

should consider a wider range of soil types as well as vehicular traffic and 

running gear. 

Integrated approaches and future directions 

According to Lipiec and Hatano (2003) there are few integrated systems capable 

of measuring more than one property explaining soil compaction. While we tend 

to agree with this, based on the reviewed literature, they were only referring to 



National Centre for Engineering in Agriculture | Technological and integrated approaches for 

practical and rapid assessment of compaction in agricultural soils 25 

 

direct measurement of soil properties simultaneously; for example, the coupling 

of a TDR probe with a soil penetrometer. Keller et al. (2013) reviewed 

compaction based soil deformation from an interdisciplinary approach where 

compaction was considered from both a soil physics and soil mechanics point of 

view (in our review we have tried to incorporate this approach also), specifically 

geomechanics, geophysics, and physics of granular media. Subsequently, they 

investigated and discussed data collection through modelling and non-destructive 

measurement techniques of soil structure and deformation to develop integrated 

approaches.  

We define integration more closely aligned to that of Keller et al. (2013) where 

numerous approaches including modelling are utilised to flesh out the complex 

framework of variables contributing to soil compaction. As communications 

technology advances and the cost of in situ semi-/ permanent measurement 

devices (e.g. soil moisture probes) become more affordable, the integration of 

hardware with software and data analytics approaches becomes more feasible on 

the individual farming scale. In this respect, we see two focuses for integration of 

technology: 1) integration for more accurate and complete 

measurement/prediction of soil compaction; and 2) integration of information 

and devices to provide broader predictive advice for on-farm decision making 

processes. The first is a reductionist approach conducive to rigorous and 

traditional scientific methodology. On the other hand, the latter approach moves 

away from the traditional reductionist scientific method and seeks to utilise 

existing data (literature, on-farm etc.), predictive tools and expert opinion to 

build a functioning and practical understanding of a system. Both approaches are 

important to advancing soil compaction research. 

An important consideration for integration of approaches is the time scale 

dependency of soil structural state and the behaviour associated with this. Keller 

et al. (2013) and Keller and Lamande (2010) discuss that analytical modelling 

treats the soil as an isotropic medium with a single layer, although this is not the 

case of soils in field state. The former investigation suggests that soil needs to be 

considered as anisotropic and phase dependent; for example in soils with vertic 

properties (e.g. Vertosols) in a drier state, where soil has shrunk and cracking 

patterns have developed, the structural deformation changes might better be 

described by granular medium physics, while when swollen and moist it might be 

more appropriate to consider the soil as a continuum. This highlights the 

importance of using semi-/ permanent in situ measurement devices that 

measure soil properties with strongly developed relationships to soil compaction 

(e.g. soil moisture potential). Thus, field dynamics are encapsulated for use with 

other approaches, or to augment other approaches. What follows is some 

discussion on the use of various indicators and soil properties toward an 

integrated approach. 
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Plant response as a potential indicator 

Plant response can provide an indication of soil compaction impact on the 

farming system, but plant productivity is affected by many other variables. 

Hence, compaction effects may not be observed in productivity, or alleviation of 

compaction may not result in increased productivity. For example, the plant can 

compensate the effects of compaction by increasing root development near the 

surface, and if water and nutrients supply are not limiting, crop yield may be 

unaffected (Hamza and Anderson 2005). Lipiec and Hatano (2003) discuss the 

fundamentals of soil compaction in relation to plant response and we further 

discuss the effects of compaction on cotton and common Australian cotton-

rotation crops in Antille et al. (2014 – to be submitted to Cotton Research and 

Development Corporation). However, the plant provides a useful potential long-

term, or trend based indicator of soil compaction that could be usefully factored 

into an integrated approach.  

Jensen et al. (2001), Radford et al. (2001), Botta et al. (2007), Chan et al.  

(2006), Braunack (2008), and Neale (2010) have all demonstrated that soil 

compaction can relate in reduction in grain yield, although this varies spatially 

and throughout seasons, sometimes not being detected through yield expression 

in subsequent seasons. Thus, if yield were monitored with each harvest and 

traffic records kept from GPS guidance systems, then this data might provide 

useful trends over the lifetime of a producing field. Most modern harvesters are 

equipped with GPS and yield monitors, although yield is monitored usually for 

the entire frontage of the machine, which would likely dilute the impact of 

compaction on yield. However, if monitoring of yield could occur on a row basis, 

which is achievable where individual picker heads are utilised like in cotton 

harvesting, then wheel track impact on immediate row yield could be determined 

(Jensen et al. 2001). Such information compiled over time could be used as input 

for a farming system based model (see section on Bayesian belief networks 

below) or be subject to big-data analytics. The latter option is emerging in 

agriculture, but currently the value placed on data by practitioners, the 

willingness to share this data and the record keeping of such is not well 

understood. 

Use of visual methods to inform soil compaction status 

Irrespective of whether a predictive tool for soil compaction is used, an 

understanding of the initial soil compaction status is required to truly understand 

the implications of further traffic and management methods. A major criticism of 

the traditional methods, and the more rapid methods discussed in this review, is 

that they are expensive, require expertise external to the farming system and/or 

are time consuming. In-field, rapid visual assessment may help alleviate this, or 

augment predictive models. In the 1980s and 1990s, the cotton industry 

invested strongly in understanding the interaction of Vertosol soils with the 

irrigated cotton farming system. Daniells et al. (1996) produced SOILpak for 
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cotton growers as a result of this work, which focussed on empowering 

practitioners in assessing their soil systems; a component of this was a visual 

soil structural assessment approach with a compaction component (Daniells and 

Larsen 1991) based on Peerlkamp (1967) and Batey’s (1988) modification of 

this. McKenzie (2001a) was concerned that operator bias was a major issue, due 

to the requirement for well-trained operators, of the structural assessment 

method in Daniells and Larsen (1991). He suggests a revised SOILpak scoring 

procedure that deals with contradictory component scores and allows for 

important soil features (e.g. macropore continuity and smeared layers). 

However, it is conceded that the system is highly reliant on skilled operators and 

that inexperienced operators would require frequent calibration.  

Hatley et al. (2005) reviewed and compared visual assessment methodologies 

and concluded that SOILpak was comprehensive and considered pedological and 

edaphic linkages (strengths), although was time consuming and required skilled 

operators (weaknesses). SOILpak, VSA (Sheppard 2000) and the root growth 

method (Spoor et al. 2003) appear to be more useful than other methods 

reviewed. However, whilst (Spoor et al. 2003) presents a basic methodology 

without the need for highly skilled training, and considers the soil profile to >1.0 

m, it involves opening up pits, which may not be desirable on a regular basis. 

Especially as once a pit site has been used and back-filled it is no longer 

representative of the paddock and cannot be used for subsequent assessment. 

Sheppard (2000) presents a method that requires little training as a result of the 

use of reference photographs and figures linked to easily understood scoring 

sheets. Furthermore, this method provides a comparison between trafficked and 

untrafficked soil as part of the assessment. The main issue with this method is 

the fact is only provides ability to assess the topsoil.  

Visual assessment, irrespective of the method use, is a relatively simple method 

of assessment compared to geophysical and soil mechanics based approaches. 

The information could be linked with long-term plant trends and targeted 

sampling undertaken. This is not a new concept and is the premise of precision 

agriculture. The results can be semi-quantitative, but are largely based on a 

qualitative approach. Training of operators appears to be an issue as the method 

becomes more comprehensive, but importantly the visual assessment method 

empowers practitioners. Such an approach, as Spoor et al. (2003) suggests, 

could be integrated with other tools to provide powerful relative trend differences 

linked back to quantitative information. 
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An integrated approach to predicting soil moisture 

The National Centre for Engineering in Agriculture in conjunction with the Grains 

Research and Development Corporation (GRDC) is currently undertaking a 

project (USQ00014; pers. comm. Raine 2013) developing an application for 

smart-phones and tablets where soil water is estimated rapidly and reliably. The 

importance of this project is providing practitioners with the ability to makes 

decisions and manage costs that are soil moisture dependent (e.g. planting) 

within their farming system. Figure 2 depicts a prototype view of the application, 

which is based on water-

balance simulation, online 

climate data, local rainfall 

data and soil descriptions, 

with a view to integrating 

automatic rain gauges and 

soil water sensors. The 

prototype view shows the soil 

water estimates up to the 

current point (15 December 

2013 in this case) based on 

the simulations and historic 

data and then forecasts the 

likely soil water as a function 

of climatic forecasts and 

simulations of crop water 

requirement. The application 

aims to take in multiple data 

sources and synthesise them 

in order to simply depict 

complex relationships as easy 

to understand information for 

practitioners. Thus, complex 

farming systems based 

decisions become more 

informed and planning is improved. 

Vero et al. (2013) presented a similar notion for aiding in decision making 

process through their use of soil moisture deficit to predict suitable traffic soil 

water content (discussed previously). Their work supports the concept of a 

forecasting approach in providing important information for soil traffic decisions. 

Importantly, they highlight that a forecasting approach allows informed decisions 

to be made on site specific conditions rather than on a broad calendar basis, as 

is the current common practice. Soil moisture deficit is one proximal variable for 

estimating soil compaction likelihood, but using a similar forecasting based 

approach further proximal variables could be identified and incorporated to 

 

Figure 2. Prototype view of the Soilwater application 
for rapid and reliable estimation of soil water status 
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provide an integrated and reliable soil compaction predictive model using all 

available information. 

Bayesian belief networks 

Soil compaction processes are complex and driven by numerous variables, such 

as soil specific conditions (water content, soil texture, soil structure) and the 

characteristics of the imposed stress (wheel load, contact area, shear forces). 

Bayesian belief networks offer an alternative to the reductionist approach and 

allow incorporation of numerous data sources to provide diagnostic and 

forecasting probabilities. Bayesian belief networks (BBN) to determine the 

susceptibility of Scottish soils to soil compaction at a national level were 

investigated by Troldborg et al. (2013). BBNs are probabilistic models that take 

into account variables that contribute to an outcome (in this case soil 

compaction) and represent the complex relationships between these variables. 

They have more recently been provided greater attention and increased 

popularity based on their ability to accommodate uncertainty and variability in 

modelled predictions through the probabilistic approach (Henriksen et al. 2007; 

Uusitalo 2007). Thus, they are able to analyse complex systems. The major 

advantage of a Bayesian approach is that where empirical data are not available, 

the network can use a mixture of both qualitative and quantitative data to 

information to strengthen outcomes (Henriksen and Barlebo 2008). Additionally, 

they have the capability of producing both diagnostic and predictive outcomes. 

By incorporation of existing empirical data, discrete data, derived data (e.g. 

PTFs) and expert knowledge, Troldborg (2013) demonstrated that reasonable 

predictions could be made for susceptibility of soils to compaction.  

The modelling approach normally seeks to simplify the system of interest via 

assumptions, whereas the BBN approach captures the complexity of the system 

and explicitly accounts for uncertainties in it (Troldborg et al. 2013). Tranter et 

al. (2007) developed a PTF using multiple linear regression to determine soil bulk 

density and concluded that increased model complexity does not necessarily 

improve model accuracy. They showed that their PTF outperformed both an 

artificial neural networks PTF and a regression tree based PTF. However, they 

further concede that more complex approaches would likely fare better with 

larger more comprehensive datasets. Predicting soil compaction is inherently 

complex, as discussed throughout this review, and being able to account for that 

complexity is desirable. Hence, the ability for BBNs to account for complex 

relationships and variable data quality appears attractive. 

Developing the network is the most important aspect to the BBN approach and is 

done through determination of the contributing variables and their relationships. 

While Marcot et al. (2006) provides general guidelines to generic model 

structure, a conceptual confluence diagram containing the key drivers of the 

system is initially very important (Troldborg et al. 2013). The conceptual 

confluence diagram produced by Troldborg et al. (2013) was based on the 
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generic model (Marcot et al. 2006), but importantly was developed using existing 

literature, author knowledge and external experts. In the instance of future 

research to predict soil compaction at the paddock scale, their confluence 

diagram will be useful. Future research using BBN should also consider the use of 

climatic and economic data to help drive practitioner decision making processes. 

By using the BBN to produce both a diagnostic of soil compaction status, that 

could be ground-truthed, and a predictive soil compaction status based on 

current variable status and future variable likelihood, it could be possible to 

provide a means by which to demonstrate expected compaction to practitioners 

and produce alternative options based on expected changes in the contributing 

variables. 

Conclusion 

To address more accurate determination of soil structural deformation due to soil 

compaction, effort needs to be concentrated on more accurate input data for 

models and more accurate direct sensing by reducing assumptions associated 

with isotropic medium and homogenous soil state behaviours. On the other hand, 

to provide a predictive framework of soil compaction likelihood that provides 

practical information on which to base on-farm traffic decisions, the approach 

should focus on encapsulating the complexity of the system, including climate 

forecasts and economic data, moving away from the reductionist approach. 

Importantly, both approaches require attention and further development in the 

immediate future.  

Regarding in field determination of soil compaction status, ERT presents the most 

promising approach for Vertosol soils, with an ability to account for cracking 

patters and clear relationships developed for compaction and soil moisture 

potential. However, the moisture measurement limit thresholds need to be 

further understood in high smectitic clay content soils.  

In terms of providing practical decision making frameworks for practitioners, the 

fundamental changes in the soil medium resulting from soil deformation due to 

compaction need to be considered, an appropriate suite of tools needs to be 

utilised to collect numerous data for integrated use, and this data needs to be 

augmented with expert opinion and semi-qualitative data to inform predictive 

models. Bayesian belief networks present one opportunity and novel soil 

property determination approaches, such as soil moisture deficit as a predictor 

for compaction likelihood, should be afforded further research. Analytical models, 

such as SoilFlex, should provide useful information that could augment a BBN, or 

similar framework, to help develop risk assessments. As a priority for industry 

integration, future research needs to focus on integrated whole system 

methodologies and data collection networks with forecasting capabilities. 
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