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Abstract— The 3rd Generation Partnership Project (3GPP)
will use the Session Initiation Protocol (SIP) as a session
signalling protocol in the IP Multimedia Subsystem (IMS)
of next generation UMTS systems. Certain nodes on the
signalling layer have to process a large number of SIP
messages. This paper introduces a concept for efficient SIP
message routing and user assignment. The SIP Message
Overflow Routing Scheme (SMORS) scheme is defined that
has two major advantages over existing persistent hash
routing: The content or user location in SMORS is arbitrary
and it provides overflow and backup routing capabilities.

I. I NTRODUCTION

The Session Initiation Protocol (SIP) is defined in
RFC 3261 [1] and performs user location, session setup
and session management. The 3rd Generation Partnership
Project (3GPP) is a global initiative to develop standards
and specifications for next generationUniversal Mobile
Telecommunications System(UMTS) networks. 3GPP has
decided to use SIP as the signalling protocol for the IP
Multimedia Subsystem (IMS) and introduces a number of
SIP proxy servers calledCall Session Control Function
(CSCF). These servers are used by Commercial service
providers to control session signalling message flows and
enable authentication, billing and service provisioning.
3GPP Technical Specification 23.228 [2] (R5) explains
these functions in more detail.

Logically, SIP nodes are located on the application layer
and can be connected by virtual SIP Links (VSLs) [3].
VSLs and SIP nodes formVirtual SIP Overlay Networks
(VSONs). Messages traversing VSONs can take alternative
routes. In 3GPP IMS most routing decisions are made
during the registration of users since intermediate nodes
record registration state and/or session state information.

3GPP uses several different SIP proxy server functions
to perform specific tasks.ProxyCSCFs (P-CSCFs) are the
network entry points for theUser Equipment(UE). Serving
CSCFs(S-CSCFs) hold a copy of the user profile, record
session state information and provide higher level session
handling functions.Interrogating CSCFs(I-CSCFs) are
network entry points for terminating sessions and decide
the message routing to S-CSCFs. I-CSCFs have to route
SIP messages with minimal (state) information, and since
they serve a large number of requests, messages have to
be served as efficient as possible. Usually, the associations
between users and S-CSCFs in the I-CSCF are set during
registration of users and subsequent messages have to be
routed through the same nodes.

SIP message routing in 3GPP can be divided into two
areas: Routing decisions have to be made for routes from I-
CSCFs to S-CSCFs and routing decisions are required for
routes from UEs/P-CSCFs/S-CSCFs to I-CSCFs. Where
the first requires methods that resemble load balancing
schemes, the latter can be solved by shortest path routing
methodologies [4].

The challenge of efficient message routing is similar to
existing server/resource allocation problems which include
server load balancing, hash routing and web caching
schemes. In recent years, these areas have been major
research targets. Barish and Obraczka discuss in [5] trends
and techniques in web caching and Ross introduces in [6]
classical hash based routing to allow load balancing in web
server pools. Robust hashing or persistent hashing, such as
Highest Random Weight(HRW) mapping [7], calculates
hash values over the object addresses and servers where the
object is located, so rearranging the hash space does not
disrupt the assignments. The major focus of these efforts
relates to issues concerning the location of distributed
document sets, such as web pages that consist of several
files. The article by Kencl and Le Boudec [8] uses robust
hashing to implement an adaptive load sharing scheme for
network processors.

The principal concept of overflow routing is not new
and has been extensively studied in the context ofPublic
Switched Telephone Networks(PSTNs). Gerald Ash’s book
[9] presents a comprehensive discussion of this topic.
It includes examples such asDynamic Non-Hierarchical
Routing (DNHR) which uses different path sets for dif-
ferent times of the day for voice carriers and was ini-
tially developed by AT&T. The scheme that is proposed
in this paper, is based on theScheme for Alternative
Packet Overflow Routing(SAPOR) [10] which uses similar
methodologies for IP packet routing.

This paper introduces theSIP Message Overflow Rout-
ing Scheme(SMORS). It targets efficient message routing
for high volume SIP servers, in the 3GPP IMSs context
and it specifically addresses message routing between
I-CSCFs and S-CSCFs. The contribution in this paper
is twofold: Firstly a concept for efficient SIP message
routing and user assignment is introduced, and secondly,
the SMORS hash routing scheme is defined. SMORS has
several benefits: It is fast and requires little processing
for subsequent message routing, it has load balancing,
backup provisioning and overflow routing capabilities. One
major advantage of this scheme is that the user-to-S-
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Fig. 1. SMORS Scheme

CSCF assignment is flexible. S-CSCFs can be assigned,
by user priority, service subscription or alphabetically by
user name. The assignments do not have to be calculated
at runtime. These associations can be pre-calculated.

This paper is organised as follows: Section II defines
SMORS, Section III discusses issues concerning the ex-
tension of SMORS to multiple servers, Section IV elab-
orates on the different functional components. The paper
concludes with remarks on requirements, performance and
operation of SMORS in Section V.

II. CONCEPT

Certain SIP servers have to route large numbers of
messages as quickly as possible. Discussions above out-
lined that I-CSCF’s act as network entry points for SIP
messages in the 3GPP IMS. A primary process is required
that matches messages and their appropriate S-CSCFs. To
use SMORS overflow routing, servers require a SMORS
subfunction.

Figure 1 depicts the schema of the SMORS function.
The main functional groups are theHash Function, the
Token Systemand theRouting Tables. The hash function
consists of two parts: the actual hash function (2) and the
hash space (3). The token system consists of the token
buffers (6), the token scheduler (5), and the token list (4),
which is equivalent to the hash space (3). The routing
tables (7) are a selection of different tables. Incoming
messages are accumulated (1), and routed to the servers
(8). The dotted lines indicate the token flows, the dash-
dotted lines indicate requests to the routing tables, and the
solid lines show the virtual message flows in this scheme.
Every server has an associated token buffer. To distinguish
the different servers and buffers, colours (shading) are used
to indicate their affiliation.

Incoming messages (1) are processed by the hash func-
tion (2) and are assigned to a (unique) hash space (3). If
the corresponding token space in the token list (4) holds
a token, the message is directly routed to the appropriate
server (8). If the token space is empty, the primary routing
table (7) is consulted. The tables have entries or rules that
allow the selection of servers. Once the server is known,

a token is taken from the appropriate token buffer (6) and
assigned to the token list. This reduces the number of
tokens in the token buffer by one. If no more tokens are
available in the token buffer, the secondary routing table is
consulted and the same process is repeated. The actual SIP
server message processing is located before and/or after
the routing tables are consulted. Message overflow occurs
when the token buffer of one server is empty. Existing
assignments remain, however additional users are routed
to alternative servers, specified in the secondary routing
tables. Tokens in SMORS represent available users-spaces
in servers. If new messages arrive that map onto the same
hash space which already holds a token, the messages are
sent to the appropriate server. Tokens have a finite time to
live. The lifetime is longer than the registration period. If a
token space is not visited by a register message during this
period, it is cleared and returned to the appropriate token
buffer by the token scheduler (5). If a register-message
arrives before the timer has expired, it is reset.

Usually the process of user-to-server assignment is
executed during registration, but SMORS triggers routing
decisions when the first message of a particular user is
received. In this case, the token list is empty. Under normal
operating conditions, this occurs at the time of the first
registration. This concept is basic and practical imple-
mentations will consist of a large number of processing
functions (servers). Therefore, the next section explains a
scheme that takes several server nodes into account and
has no single point of failure.

III. SMORS FARM

In the case that I-CSCFs have to serve a large num-
ber of users, several servers that belong to the same I-
CSCF (server farm), serve multiple requests simultane-
ously. Here, a more elaborate configuration with several
SMORS functions is required. Figure 2 depicts a scheme
that addresses the problem. It consists of a number of
possible gateway nodes (1) that perform persistent hashing
(2) to assign the messages to a SMORS function (3). To
divide the users betweenn SMORS functions, the hash
space is divided inton parts and every part is mapped
to a SMORS function. The SMORS functions operate
as described in Section II and route the messages to the
appropriate S-CSCFs (5).

Since robust hashing is used, the SMORS-to-user as-
signment remains the same, even if messages use differ-
ent entry points. They are routed to the same SMORS
subfunction. New server subfunctions can be added to
increase the capacity and response time of the I-CSCF.
The only information that has to be shared between the
different SMORS functions is the number of available S-
CSCF users spaces, i.e. the number of tokens in buffers.
The Update Buffer Function(4) equalises the number
of tokens in the different SMORS components after an
update interval. For practical implementations, this func-
tion requires a backup function. It can also be used by a
feedback system where the S-CSCFs inform theUpdate
Buffer Functionabout their capabilities. The next section
discusses the SMORS components in more detail.
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Fig. 2. SMORS Farm

IV. BUILDING BLOCKS

SMORS uses three major building blocks: The hash
function, the token system and the routing tables. This
section discusses the functional components in more detail.

A. Hash Function

The purpose of the hash function is to separate single
users on the basis of message specific parameters such as
the source IP address, User ID and other parameters. A
wide range of possible hash functions exist. The work by
Cao et al. [11] discusses hashing based schemes for Inter-
net load balancing. The important attributes of a hashing
scheme for SMORS can be summarised as follows: The
results have to be evenly distributed over the hash space
and, if possible, the hash space should be large enough to
ensure that no frequent overlapping occurs. A 16 bit hash
function, for example, yields65, 536 hash spaces. For the
purpose of SMORS, the XOR folding of the source (user
ID) address appears to be sufficient. Equation (1) shows
this calculation.

H(.) =
(
S1 ⊕ S2 ⊕ S3 ⊕ S4

)
modN (1)

The ith byte of the source IP address is denoted bySi.
N limits the size of the hash space. [11] indicates a suf-
ficient spreading and this scheme is simple to implement.
Collisions have to be accounted for by a secondary data
structure such as linked lists etc. Alternative hash functions
can also be used.

If the mapping of the hash space changes, disruptions
can occur since the mapping has to be reorganised. The
concept of robust hashing [7] combats this setback. How-
ever, this problem does not occur for SMORS, since
the token mapping is persistent, even when new servers
are added or they disappear. However SMORS farms
use robust hashing at the ingress to split users between
several SMORS functions. In this case it is required that
existing associations between parts of the hash space and
single SMORS functions encounter a minimal number
of disruptions if the topology changes. The next section
discusses the token system.

B. Token System

The token system is a major part of the SMORS scheme.
The number of available tokens defines the number of
possible users in destination servers. Tokens are used in a
similar way to the token buffers, used for the leaky bucket
scheme (e.g. [12]). A token buffer is associated with a
server and has a limited number of tokens. Every time a
user is registered at a server, a token is assigned to the
destination. If no tokens are available, no new users can
be routed to this server. Tokens have a (token) time to live
(TTTL). If a server receives no more register messages
and the TTTL has expired, the tokens are returned to
the appropriate buffer. In this case, I-CSCFs record a
minimal amount of registration state information: Tokens
identify S-CSCF; they are quasi-state information. The
token system components are:

1) Token Buffers:Token buffers can be implemented
by a counter that denotes the number of tokens in a
buffer. If a token is removed, the number decreases. If
a token is returned, the number increases. Under normal
operating conditions, this number is positive, but if the
bucket size changes during operation, the bucket count can
be negative. No tokens are available if the token count is
less than one.

2) Number of Tokens:The major parameter that speci-
fies a token buffer is the number of available tokensν. It
defines the maximum number of users in the associated
server. The calculation, shown in this section, assumes
that the average user number is a valid approximation.
The registration period is denoted byt and is measured
in seconds. The user arrival rate is denoted byϑ and
measured per second. The number of active usersA can
be calculated by Equation (2).

A = ϑ · t (2)

Equation (3) shows the calculation of the number of
required tokensνs for servers. As is the capacity of server
s in users. The second sum calculates the number of tokens
that are required due to the TTTL of the tokens and the
delayed reset ofτ .

νs = As + ϑ · τ · As∑smax
i=1 Ai

(3)

wheresmax is the number of servers. The second product
is necessary to scale the rate.

If SMORS farms are used, the number has to be divided
by the number of possible alternative SMORS functions,
and security margins have to be added to account for
statistical effects.

3) Token Scheduler:The token scheduler is the function
that determines “expired tokens”, clears the token list and
returns them to the token buffers. The token scheduler is
the most expensive function of the SMORS scheme, but it
is not frequently used. It requires two major sub functions:
The traversing of the token list and the implementation of
the TTTL.

The token list can be implemented by using a combined
array-linked-list data structure. This avoids the require-
ment that all spaces have to be traversed for the price of



additional memory. The TTTL can be implemented with a
simple counter variable. Every token list item has one such
variable associated with it. Zero indicates that the space
is empty, i.e. no messages are using this space. Empty
spaces are skipped by the iteration operation. If the number
is positive it is increased every time it is traversed by
the iteration function. If a register message arrives during
the update interval, the number is reset by this event.
The iteration function is executed everyTc seconds. If
n reaches the maximum countnmax, the counter is reset
to zero and the token is returned to the appropriate token
buffer.nmax is a positive integer which is larger than one.

4) Token Update Interval:Since the token scheduler is
the most expensive function, the token update intervalTc
should be as long as possible. On the other hand, long
intervals require more tokens, a larger token list and the
traversing of more active tokens in the token list. The
number should be chosen on the basis of the evaluation of
the given constraints.

C. Routing Tables

The function that routes the different users utilises a
number of alternative routing tables. They are denoted by
primary, secondary, tertiary, ... n-ary table etc. These tables
specify associations between servers and users and they
can be generated by any means that are appropriate and
useful for the network configuration. The process where
these associations are formed is not in the scope of this
work.

In practice, the routing tables will use similar criteria
to the ones that are discussed in [4] and consider operator
policies, delay, reliability, etc. Other criteria can include
user (profile) specific information such as user class,
subscription type, frequency of use etc. SMORS uses one
primary routing table per node and subsequent routing
tables can be S-CSCF specific. The routing decisions for
the n-ary routing tables can be based on any factors, e.g.
administrative decisions by human network operators.

Secondary routing tables could also define a complete
redundant server system, only used if the primary sys-
tem is overloaded or fails. Existing teletraffic engineering
methodologies can be applied to optimise the performance
and the reliability of the server system.

V. REMARKS

A. Simple Admission Control

SMORS can be used to implement a simple first barrier
security check: If the token list has an additional mark
that indicates valid users, requests are only served if their
addresses map to a valid token space otherwise they are
ignored. This does not provide a high level of security,
but reduces the processing which is required to identify
invalid requests.

B. Overflow Users

In practical applications users will be registered for
periods that might extend periods with high user volumes
and overflow situations. If no additional conditions are
implemented, these users will remain in the overflow

nodes, even when capacities in the primary servers become
available. This can be resolved if, in the case of empty
spaces in the primary server, a reroute is requested during
re-registration. In this way the users will be moved to the
primary server and the overflow servers are vacated. Users
with long registration periods will be placed in the primary
servers.

C. Topology Changes

1) SMORS: In the case of server topology changes,
the scheme has to adapt. When new servers come online,
SMORS will simply shift users onto new server capaci-
ties as they become available. If a server is failing, the
corresponding token buffer is emptied and all tokens in
the token list that belong to this server are flushed. In this
way, all existing users will be assigned to new servers.

2) SMORS Farm:The SMORS farm is designed in a
way that it has no single point of failure. The configuration
minimises the disruption if one of the functions fails. The
first nodes that can fail are the persistent hashing functions.
Since these functions perform exactly the same tasks and
record no state information, they can simply be substituted
for each other. The next function that can fail is one of
the SMORS functions. In this case, all messages that were
routed using this SMORS function have to be reassigned.
This is done by the persistent hashing function block.
Under normal load conditions without any overflow users,
the users will be assigned to the same server as before and
no disruption occurs.

If overflow users were routed to other servers this
might cause a marginal disruption. All users that were
served by the failed SMORS function are reassigned,
in the order which new messages arrive to these nodes.
The first arrivals are routed to the primary S-CSCF, later
arrivals might be routed to the overflow S-CSCF. Since
this order may be different from the original order, users
that were located in the primary S-CSCF before, are now
located in the overflow S-CSCF and vice versa. In these
cases, the S-CSCFs have to reload the user specific data,
i.e. user profiles etc. Since this process concerns only a
small fraction of users, it is very limited and only causes
additional delays in the S-CSCF message processing. The
details of this process depend on the exact implementation
of the registration function. If S-CSCF servers fail, the
overflow capability of SMORS functions is used: The
token buffer which corresponds to the failing server, is
flushed and messages are rerouted to new S-CSCFs.

D. Requirements and Performance

1) Complexity:The complexity of SMORS is twofold.
All operations that are required during message routing are
of the order of one:O(1) i.e. the hash function, the check
if a token is assigned, the lookup of the routing table, the
assignment of a new token and the changes in the token
buffer, therefore, it is possible that all messages are routed
in O(1) time. If a token is already assigned to the buffer,
fewer O(1) steps are required. The second operation is
more complex but it is less frequently required. To clear
and update the token list, all spaces have to be traversed.
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The complexity of this process is thereforeO(l), where
l indicates the size of the token list and the hash space.
Using more memory and intelligent data structures can
reduce the number of spaces that have to be traversed.

2) Memory: The memory requirements for the routing
tables are equivalent to the requirements for tables of
legacy systems. The token buffers are simple counters and
require only several bytes per buffer. The token list is of
size l and requiresl bytes. However, a more advanced
token list requiresk · l bytes.

VI. SIMULATION RESULTS

This section introduces simulation results that show the
operation of SMORS. A discrete event simulator was used
which utilises the Mersenne Twister [13] with a period
of 219937−1 as a random number generator. A topology
with three SIP servers was simulated. The users were split
between two nodes (Node 1 and Node 2) on the basis
of arbitrary address values. Overflow users were routed
to a third node (Node 3). The registration requests in
this simulation followed a Poisson arrival process, with
an initial mean arrival rate of1.5 users per time unit for
users destined for Node 1 and0.5 users per time unit for
users destined for Node 2. The registration period was
exponentially distributed with a mean of100 time units.
The capacity of the servers was set to be250 users for
Node 1, 150 for Node 2 and200 for Node 3. During
the simulation, the arrival rate was doubled for sessions
destined for Node 1 and towards the end of the simulation
the session arrivals of register requests destined for Node
2 were strongly increased.

Figure 3 depicts the simulation results. The occupancy
of Node 1, Node 2 and Node 3 were measured every 10
time units. The graph depicts the node occupancy versus
time. At time 300 it shows a increase of users in Node
1. When the server limit of 250 users is reached, the
overflow users were routed to Node 3. This is reflected
in the increase in occupancy in Node 3 from zero to about
50 users. As the users, destined for Node 1 decrease,
Node 3 is eventually vacated. Towards the end of the
simulation period, at time 1300, the users destined for
Node 2 are increased. If the threshold of 150 users is

reached the overflow users are again routed to Node 3.
The simulation showed the overflow capability of SMORS
with two primary and one overflow server.

VII. C ONCLUSION

This paper defined the SMORS scheme allowing ef-
ficient SIP message routing in high volume 3GPP SIP
I-CSCF servers. Routing decisions are persistent for all
requests that have the same local destination. Further
work has to consider the adaptation of the scheme to
practical implementations and configurations, so further
performance evaluations become possible. Exact routing
decisions have to be further investigated once more spe-
cific implementation details become available.

SMORS can use redundant servers to reduce the dis-
ruption in cases of node failures and additional resources
can be added without disruption of the existing users-
assignment. SMORS is a highly flexible framework that
allows for extensions to address specific emerging chal-
lenges. The concept that was introduced in this paper
can also be adapted to other scenarios. Examples include
distributed caching systems and load sharing in between
different processors.
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