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Abstract

This work attempts to contribute further knowledge to high-order approxima-

tion and associated advanced techniques/methods for the numerical solution of

differential equations in the discipline of computational science and engineering.

Of particular interest is the numerical simulation of heat conduction, highly

non-linear flows and multiscale problems. The distinguishing feature in this

study is the development of novel local compact 2-node integrated radial basis

function elements (IRBFEs) and their incorporation into the subregion/point

collocation formulations based on Cartesian grids. As a result, a new class

of C2-continuous methods are devised, representing a significant improvement

on the usual C0-continuous methods. Incorporation of the new C2-continuous

methods into the development of a high-order multiscale computational frame-

work provides advantageous features compared to other multiscale frameworks

available in the literature, including (i) high rates of convergence and levels of

accuracy; and (ii) converged C2-continuous solutions of two-dimensional multi-

scale elliptic problems.

Firstly, a new control-volume (CV) discretisation method, based on Cartesian

grid and IRBFEs, for solving PDEs is proposed. Unlike the standard CV

method (Patankar 1980), the flux values at CV faces are presently estimated

with high-order IRBF approximations on 2-node elements and the solution is

C2-continuous across the interface between two adjacent elements. Only two

RBF centres (a smallest RBF set) associated with the two nodes of the ele-

ment are used to construct the approximations locally leading to a very sparse

and banded system matrix. Moreover, a wide range of RBF-widths can be
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used to effectively control the solution accuracy. Secondly, the proposed 2-node

IRBFEs are incorporated into the subregion and point collocation frameworks

for the discretisation of the streamfunction-vorticity formulation governing the

fluid flows. Several high-order upwind schemes based on 2-node IRBFEs are de-

veloped for highly non-linear flows. Thirdly, the ADI procedure (Peaceman and

Rachford 1955, Douglas and Gunn 1964) is applied to enhance the efficiency

of the proposed methods. Especially novel C2-continuous compact schemes

based on 2-node IRBFEs are devised and combined with the ADI procedure

to yield optimal tridiagonal system matrices on each and every grid line. Such

tridiagonal matrices can be solved effectively and efficiently with the Thomas

algorithm (Fletcher 1991, Pozrikidis 1997). Finally, the proposed C2-continuous

CV method is employed in a multiscale basis function approach to develop a

high-order multiscale CV method for the solution of multiscale elliptic problems.

Accuracy, stability and efficiency of the proposed methods are verified with

extensive numerical results.
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Chapter 1

Introduction

This chapter starts with the motivation for the present research. Then model

problems are defined, followed by a review and discussion on multiscale meth-

ods. A brief review of radial basis function serve to introduce new ideas and

objectives of the present research. Finally, the outline of the dissertation is

described.

1.1 Motivation

Multiphase materials such as particulate fluids and fibre reinforced composites

have been used in many engineering applications. The inclusion of particles

and fibres into a fluid/elastic medium results in a new material that can have

certain desired properties. The dispersed phase (i.e. particles or fibres) can

be randomly distributed in the resin, giving rise to multiscale fluctuations in

the thermal or electrical conductivity. A numerical prediction of the behaviour

of such problems is thus extremely difficult since a wide range of length scales

(multiscale) is involved, i.e. the scale of the constituents can be of much lower

order than the scale of the resultant material and structure. For many prac-
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tical problems, because of overwhelming costs, a direct representation of the

full fine-scale solution is simply impossible on today’s computer resources. This

research project is concerned with the development of a high-order computa-

tional procedure which is capable of solving multiscale elliptic equations arising

from the modelling of multiphase materials on the present computing facilities.

The proposed procedure makes use of several recent advances in computational

mechanics, including the non-polynomial multiscale space approach (heteroge-

nous media) and spectral universal interpolants based on integrated radial basis

functions (high-order approximations).

1.2 Problem definition

The prediction of deformation or thermal behaviour of composites presents sig-

nificant challenges. One must take into consideration the behaviour of individ-

ual constituents (i.e. reinforcements - particles, fibres, whiskers and platelets -

and resin/matrix), the interaction between these components and the involve-

ment of multiple length scales and also possibly multiphysics. Fortunately,

certain phenomena/problems can be modeled by multiscale elliptic equations.

To capture the solution at a fine scale, the use of traditional direct approaches,

e.g. multigrid methods, domain decomposition methods and adaptive mesh re-

finement techniques, leads to discrete systems that have very large degrees of

freedom from both spatial and temporal discretisations. For a brief illustration,

we consider the following elliptic equation which arises from the modelling of

composite materials and subsurface flows

−∇ · (aǫ(x)∇u) = f(x) in Ω, (1.1)

where aǫ(x) is the material property tensor involving a small scale parameter

ǫ, u the field variable, f a given function and Ω the problem domain. It was

pointed out in Hou and Wu (1997) that applying conventional direct methods
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to (1.1) gives an overly pessimistic estimate of error O(h/ǫ) in the H1 norm,

where h is the mesh size. Direct methods clearly cannot converge when h > ǫ

and it thus requires a mesh size to be much smaller than the small length scale

(h ≪ ǫ). It can be seen that tremendous amounts of computer memory and

CPU time required by these methods can easily exceed the limit of today’s

computing resources. Consequently, several classes of numerical methods have

been developed to deal with the multiscale nature of the solution. Examples

include homogenisation methods (Kalamkarov et al. 2009), heterogeneous mul-

tiscale methods (E and Engquist 2003b) and multiscale shape function methods

(Hou and Wu 1997). These methods seek to capture the fine scale effect on the

coarse scales via a multi-stage resolution of the fine scale features. As a result,

they make the solution of a multiscale problem possible, from which the coarse

scale/bulk properties of multiphase materials such as the effective conductivity,

elastic moduli and permeability can be predicted. However, dense meshes are

still typically required in commonly employed low order approximations.

1.3 Review of multiscale methods

Consider the model problem (1.1). We assume that (i) the tensor a(y), y = x/ǫ,

is smooth and periodic in the domain of the variable y, namely Y , and (ii)

boundary conditions for u are homogeneous on the whole boundary, i.e. u = 0

on ∂Ω. We use 〈†〉 =
∫
Y

† dy/|Y | to denote the volume average of the physical

quantity † over Y .

Multiscale methods for solving (1.1) are in contrast with conventional direct

methods, e.g. refined FEMs and multigrid methods (Fish and Belsky 1995a,b).

Examples of these multiscale methods include mathematical homogenisation

method (MHM) (Kalamkarov et al. 2009), heterogeneous multiscale method

(HMM) (E and Engquist 2003b), and multiscale finite element method (MFEM)

(Hou and Wu 1997). They have been designed to overcome the prohibitively
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large system associated with the fine mesh resolution in order to achieve

cost of multiscale method

cost of direct method
≪ 1. (1.2)

For HMM and MFEM, fine-scale information is derived from the solution of the

following auxiliary fine scale problem

−∇ · (aǫ(x)∇φ(x)) = 0 in D ⊂ Ω, (1.3)

where D represents a local domain that is named a unit cell for HMM or an

element for MFEM, and φ(x)s are local adaptive functions used to calculate

coarse element stiffness matrices for HMM and shape functions for MFEM.

For MHM, fine-scale information is derived from the following cell problem

∇y · (a(y)∇yχj(y)) =
∂aij(y)

∂yi
, (1.4)

where χj(y)s, which are named influence functions, are chosen to be periodic

with zero mean, i.e. 〈χj〉 = 0.

1.3.1 Mathematical homogenisation method

The mathematical homogenisation method (MHM) has been traditionally used

as a primary tool for analysing heterogeneous medium and its details were

explained in, for example, Babuška (1976), Benssousan et al. (1978), Oleinik

et al. (1992), Guedes and Kikuchi (1990), Hassani and Hinton (1998), Takano

et al. (2000), Fish and Yuan (2005). Based on the assumptions of microstructure

periodicity and uniformity of a unit cell domain, the homogenisation theory

decomposes the boundary value problem into a unit cell (fine scale) problem

and a global (coarse scale) problem.

Suppose that a composite structure is globally heterogeneous and its con-
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stituents are linearly elastic. In the following, for brevity, we present MHM

for one component of the displacement vector. The actual displacement com-

ponent, denoted by uǫ, may be periodically oscillating due to the fine scale

heterogeneity. The homogenised model can provide the homogenised displace-

ment, denoted by u0. The differences between the actual displacement uǫ and

the homogenised displacement u0 are determined as the perturbed displace-

ment, denoted by u1, multiplied by the small parameter ǫ, and so on. Then, a

double-scale asymptotic expansion of the actual displacement is

uǫ(x) = u0(x) + ǫu1(x,y) + ǫ2u2(x,y) + · · · , (1.5)

where ui(x,y), i = (1, 2, . . .), are functions of both scales and y-periodic in

Y . The actual displacement uǫ is also a function of both scales, whereas the

homogenised displacement u0 is only a function of the coarse scale. The latter

is the solution of the homogenised equation

−∇ · a⋆∇u0 = f in Ω, (1.6)

u0 = 0 on ∂Ω, (1.7)

where a⋆ is the effective material coefficient tensor, given by

a⋆ij =

〈
aik(y)

(
δkj −

∂χj
∂yk

)〉
. (1.8)

It was proved in Benssousan et al. (1978) that a⋆ is symmetric and positive defi-

nite. The leading perturbed displacement u1 in equation (1.5) can be expressed

in terms of the homogenised displacement u0 as

u1(x,y) = −χj
∂u0
∂xj

, (1.9)

where the influence functions χj (Fish and Yuan 2005), which are the solution of
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equation (1.4), are also refereed to as the characteristic displacements (Takano

et al. 2000). The proof of the existence and uniqueness of the solution of equa-

tion (1.4) in weak-form sense and the validity of equation (1.9) were detailed in

several works (Babuška 1976, Benssousan et al. 1978, Oleinik et al. 1992, Guedes

and Kikuchi 1990, Hassani and Hinton 1998). Since there is no assumption on

the geometrical configuration of the constituents, the homogenisation theory

can tackle arbitrary complex microstructures. The fine scale stress tensor σij is

given in Xing et al. (2010). The coarse scale stresses are defined as the volume

average of the fine scale stresses within a unit cell

σH
ij = 〈σij〉. (1.10)

A salient feature of MHM is that the fine scale solution is completely described

on the coarse scale, see equations (1.9). Nevertheless, the influence functions

are computed at a material point from equation (1.4) prior to the fine scale

solution.

It is apparent that meshes of a unit cell need to be fine enough for accu-

rately computing derivatives of the influence functions and homogenised dis-

placements. Moreover, the second order perturbation u2(x,y) in equation (1.5)

may be required when the constituents have highly contrast properties. The

error source also comes from the boundary condition since in general u1 6= 0 on

∂Ω. Therefore, the boundary condition u|∂Ω = 0 should be enforced through

the first-order corrector term θǫ (Benssousan et al. 1978), which is given by

∇ · (aǫ(x/ǫ)∇θǫ) = 0 in Ω, (1.11)

θǫ = u1(x,x/ǫ) on ∂Ω. (1.12)

Reliability of computations using MHM for a heterogeneous medium depends

strongly on the validity of the periodicity and uniformity, introduced by the
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classical homogenisation theory. Recently, Kalamkarov et al. (2009) reviewed

the state-of-the-art of asymptotic homogenisation techniques in the analysis of

composite materials and thin-walled composite structures.

The implementation of MHM consists of three steps as follows.

• Solving the influence functions from equation (1.4) through FEM and

evaluating the homogenised (effective) material properties from equation

(1.8);

• Solving the homogenised displacement from equations; (1.6)-(1.7) with

the effective material properties through FEM;

• Post-processing on the micro and macro levels.

1.3.2 Heterogeneous multiscale method

The heterogeneous multiscale method (HMM) (E and Engquist 2003b, 2005;

Ming and Yue 2006; Ming and Zhang 2007; E and Engquist 2003a; Abdulle

2007; E et al. 2007) can be viewed as a general method for the computation of

multiscale problems. HMM involves two main calculations. The first one is to

select an overall macroscopic scheme such as FEM for the coarse scale variables

on a coarse mesh, and the second one is employed to estimate the missing coarse

scale data by solving locally the fine scale problem. To solve for the coarse scale

features of the problem (1.1), one can employ the strain energy U of the global

structure, which generally has the following form

U =
1

2

∫

Ω

aǫ(x)(∇u0)2dΩ. (1.13)
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Assuming that the strain energy is calculated by means of the numerical quadra-

ture rule as

U =
1

2

∑

D∈H

|D|
∑

xl∈D

αla
⋆(xl)(∇u0(xl))2, (1.14)

where H is the coarse mesh, xl and αl are respectively the quadrature points

and the weights in element D, and a⋆(xl) is the effective material coefficient

at those quadrature points and calculated by (1.8). Expression (1.14) must

be approximated by solving the problem in the small domain Iδ(xl) near the

quadrature point xl, which is governed by

∇ · (aǫ(x)∇v(x))) = 0, x ∈ Iδ(xl), (1.15)

where Iδ(xl) is a square of size δ centered at xl. Different boundary conditions

on ∂Iδ(xl) and their effects were discussed in Yue and E (2007). Equation

(1.15) can be typically solved by FEM in just several small domains of a unit

cell rather than solving a whole cell problem. Then equation (1.14) is evaluated

in the following way

U =
1

2

∑

D∈H

|D|
∑

xl∈D

αl

∫

Iδ(xl)

a⋆(xl)

δ2
(∇v(xl))2dI. (1.16)

Finally, the HMM solution u0(x) is obtained by solving

min
∑

D∈H

{
U −

∫

D

f(x)u0(x)dD

}
, (1.17)

which can be understood as the weak form of equation (1.1). It is noteworthy

that the cost of HMM depends on the size of δ. HMM can take advantages of

the possible scale separation in the problem, but becomes similar to the fine

scale solvers when there is a lack of scale separation.

All demonstrations of HMM assume that a⋆(x) are smooth, symmetric and

uniformly elliptic (E and Engquist 2003b, 2005; Ming and Zhang 2007). How-



1.3 Review of multiscale methods 9

ever, this assumption cannot be applicable for multiphase materials. If there

are two or more kinds of materials in Iδ(xl), the accuracy will be deteriorated

when solving equation (1.15) with the homogenised boundary conditions which

cannot model the material jumps on the boundaries of Iδ(xl). Therefore, the

application of HMM in composite structures needs to be studied in depth.

It is well known that the microstructure information in uǫ is used for the local

stress analysis. This information can be recovered using a simple postprocessing

technique based on u0 (E and Engquist 2003a, Oden and Vemaganti 2000).

Assume that we are interested in recovering uǫ and ∇uǫ only in a local domain

or a unit cell D. One of the recovering approaches is the local model refinement

(Oden and Vemaganti 2000), in which the following auxiliary problem,

−∇ · (aǫ(x)∇u(x)) = f(x) in D ⊂ Ω, (1.18)

u(x) = u0(x) on ∂D,

is solved, and the approximation uǫ with micro information, whose error is finite,

is then obtained (E and Engquist 2005). Another recovering approach is similar

to the asymptotic expansion as in MHM. Define the first order approximation

of uǫ(x) as

uǫ(x) = u0(x) + ǫχj
∂u0
∂xj

, (1.19)

where the influence function χj is the solution of equation (1.4).

HMM generally gives a framework that allows us to maximally take advantage

of the special features of the problem such as scale separation; for problems

without any special features, HMM becomes a fine scale solver. The savings

in HMM, compared with the cost of solving the full fine scale problem, comes

from the fact that Iδ(xl) can be chosen to be smaller than D, and the small

domain Iδ(xl) is determined by many factors, including the accuracy and cost

requirement, the degree of scale separation, and the microstructure in aǫ(x).
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HMM has been applied to a large variety of homogenisation problems either

linear or nonlinear, periodic or non-periodic, stationary or dynamic (E and En-

gquist 2006), and can be naturally extended to higher order by using higher

order finite elements as the macroscopic solver. Recently, E et al. (2007) pre-

sented a state-of-the-art review of HMM, including the fundamental philosophy,

and the main process for complex fluids, micro-fluidics, solids, interface prob-

lems, stochastic problems and statistically self-similar problems. Chen (2009)

has incorporated various macroscopic solvers, including finite differences, finite

elements, discontinuous Galerkin, mixed finite elements, control volume finite

elements, and nonconforming finite elements, into HMM and pointed out their

advantages, shortcomings and adaptabilities.

The computational sequence of HMM includes four steps:

• Solving the sub-local problems governed by equation (1.15) around the

quadrature points of a coarse element to capture the effects of microstruc-

ture;

• Evaluating the strain energy through equation (1.16);

• Solving the homogenised displacement u0 from equation (1.17) using FEM;

• Recovering the micro information in uǫ by solving equation (1.18) or using

equation (1.19).

1.3.3 Multiscale finite element method

The multiscale finite element method (MFEM) (Hou and Wu 1997) was pro-

posed to solve a class of elliptic problems (1.1) with multiple spatial scales

arising from modelling of composite materials. Its main idea is to capture the

coarse scale behaviour of the solution through a multi-stage resolution of the

fine scale features. This can be achieved by constructing the multiscale finite
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element shape functions reflecting the local property of the differential opera-

tor. The MFEM is applicable to general multiscale problems without restrictive

assumptions, and the construction of the shape functions for a coarse scale ele-

ment is independent from each other.

In contrast with some empirical numerical upscaling methods (Sangalli 2003),

MFEM is systematic and self-consistent. The idea of constructing finite element

shape functions based on local differential operator in MFEM is an extension

of the work of Babuška and Osborn (1983), which incorporates the fine scale

information into the basis functions by solving the original fine scale differential

equations on each element with proper boundary conditions.

The over-sampling MFEM reduces the effect of the boundary layers occurring at

the inter-element boundaries by an indirect approach in constructing the base

functions. Instead of directly working on an element D, a domain S larger than

D is used with diam(S) = H > h+ ǫ. Any reasonable boundary condition can

be imposed on the boundary of domain S in solving equation (1.3) to obtain

temporary base functions denoted as ψi with i = (1, . . . , d) in which d is the

number of element nodes. One then constructs the actual base functions from

the linear combination of ψjs

φi =

d∑

j=1

cijψj , i = (1, . . . , d), (1.20)

where cij are the constants determined by the condition φi(xj) = δij .

It has been shown that MFEM converges to the homogenised solution as ǫ→ 0

(Hou and Wu 1997, Efendiev et al. 2000, Hou et al. 1999). This property is

not shared by the conventional FEM with polynomial bases, since fine scale

information is averaged out incorrectly. Recently, the multiscale finite element

methodology has been modified and successfully applied to two-phase flow sim-

ulations (Efendiev and Hou 2007), and the consolidation analysis of heteroge-

neous saturated porous media (Zhang et al. 2009). The steps of implementing
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the over-sampling MFEM are as follows.

• Solving equation (1.3) on a domain S for the auxiliary shape functions

ψj ;

• Evaluating the over-sampling multiscale finite element shape functions φis

over a coarse element using equation (1.20);

• Solving the coarse mesh problem by using FEM.

1.4 Discussion

A brief review on multiscale computational methods (MHM, HMM, MFEM)

for multiphase materials in Section 1.3 provides an understanding of their phi-

losophy and main features. As discussed, MHM is based on the homogenisation

theory and hence its range of applications is usually limited by restrictive as-

sumptions on the media, such as scale separation and periodicity (Benssousan

et al. 1978). It is also expensive to be used for solving problems with many sep-

arate scales since the cost of computation grows exponentially with the number

of scales (Hou and Wu 1997). HMM is more general and can be applied to prob-

lems with random coefficients. However, its effectiveness is strongly dependent

on the material structure assumptions such as scale separation. Without this

assumption, HMM is equivalent to a direct solver. In the last case, MFEM is

applicable to general multiple-scale problems without restrictive assumptions.

In contrast to MHM, the number of scales are irrelevant to the computational

cost in MFEM (Hou and Wu 1997). MFEM is systematic and self-consistent,

which makes it easier to analyse especially large scale problems. Nevertheless,

the accuracy of MFEM is low in the order of O(ǫ/h) (Hou and Wu 1997) and

its convergence for continuous scale problems needs to be further studied.

Another concern in current multiscale computational methods in the literature
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is the error source coming from the cell problem (MHM, HMM) or element

problem (MFEM). It was pointed out by Babuška and Osborn (1983) in the

FEM context and recently by Yuan and Shu (2008) and Wang et al. (2011) in

the context of discontinuous Galerkin method (DGM) that an approximation

space Sr should be constructed as

Sr = {φ : ∇ · (aǫ(x)∇φ) |I ∈ P r−2(I)} for r = 1, 2, · · · , (1.21)

where I denotes the cell or element in the spatial discretisation, P r(I) denotes

the space of polynomials of degree less than or equal to r on I and P−1(I) = {0}.
It can be seen that the approximation spaces of current multiscale methods in

the literature correspond to S1 except for the DGM case (e.g. Yuan and Shu

2008, Wang et al. 2011), in which high convergence rates are obtained for r > 1.

Generally, conventional numerical methods such as finite element methods (FEMs),

finite difference methods (FDMs) and finite volume methods (FVMs) are utilised

to numerically solve both the fine scale and coarse scale problems in a theoretical

framework (MHM, HMM, MFEM). These methods are typically of low order of

accuracy and provide a C0 solution. It is noted that there are high-order formu-

lations, those using Hermite interpolation for instance, e.g. (Zienkiewicz 1971,

Watkins 1976, Holdeman 2009) for FEM and e.g. (Qiu and Shu 2003, 2005)

for FVM, that can afford higher continuity. To the best of our knowledge, such

high-order methods currently are not yet applied to multiscale model problems

of interest in this thesis. The field variables and their derivatives are highly

oscillating in multiscale problems, posing a great challenge for conventional

low-order methods.

A 1D example below, having an exact solution, can clearly display this challenge

− d

dx

(
aǫ(x)

du

dx

)
= x, 0 ≤ x ≤ 1 (1.22)
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Figure 1.1: Exact solution of problem (1.22)-(1.24) for ǫ = 0.01: (a) field
variable, (b) its zoomed part, (c) its first-order derivative, (d) its second-order
derivative.

with boundary conditions

u(0) = u(1) = 0 (1.23)

where

aǫ(x) =
1

2 + x+ sin(2πx/ǫ)
. (1.24)

The exact solution is depicted in Figure 1.1 for ǫ = 0.01 where we can see

remarkable oscillations of first and second-order derivatives. One of the most
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important issues in solving problem (1.1) is to recover the details of ∇uǫ (first-
order derivative) since they contain information of great practical interest, such

as the stress distribution and heat flux in composite materials or the velocity

field in a porous medium (Ming and Yue 2006). In addition, even in the theoreti-

cal framework such as MHM, accurate approximations of derivatives of influence

functions are necessary for evaluating the homogenised material coefficient in

equation (1.8) and coarse scale displacement u0 in equations (1.6)-(1.7). It is

also noteworthy that the first perturbation displacement u1 is also estimated

from the first-order derivative of u0 in equation (1.9). In the case of MFEM, if

the basis functions φs are obtained by a conventional linear FEM, they are only

C0 functions, causing significant error in first-order derivative approximation

and, as a result, it is impossible to approximate second-order derivatives. The

discontinuity of derivatives is usually mitigated by using fine meshes, which

can make conventional methods inefficient or even impracticable. Therefore,

it is desirable to develop a method that has a higher order continuity of the

solution across elements and also has a higher level of accuracy and efficiency.

Incorporation of radial basis functions into the discretisation frameworks as trial

functions can be a potential way to achieve these objectives.

1.5 Radial basis functions (RBFs)

Radial basis functions (RBFs) have successfully been used for the approximation

of scattered data over the last several decades. They have also emerged as an

attractive scheme for the numerical solution of ODEs and PDEs (e.g. Fasshauer

(2007) and references therein). Theoretically, some RBF-based methods can

be as competitive as spectral methods; the two types of method can exhibit

spectral accuracy. Unlike pseudo-spectral techniques, RBF-based methods do

not require the use of tensor products in constructing the approximations in two

or more dimensions. The RBF approximations usually rely on a set of distinct

points rather than a set of small elements. When this characteristic is combined
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with the point-collocation formulation, the resultant discretisation methods are

truly meshless (e.g. Kansa (1990)). RBF-based collocation methods can be

applied to differential problems defined on irregular domains without added

difficulties. Apart from point-collocation, RBFs have also been employed as trial

functions in other formulations such as the Galerkin, subregion collocation and

inverse statements, resulting in enhanced rates of convergence (error of O(hα)

with α > 2) of these approaches. Works in this research trend include Atluri

et al. (2004), Sellountos and Sequeira (2008), Orsini et al. (2008), Mohammadi

(2008).

In a conventional RBF scheme (Kansa 1990), the original function is decom-

posed into RBFs and its derivatives are then obtained through differentiation.

Some RBF schemes such as those based on multiquadric (MQ) function are

known to possess spectral accuracy with error in the O(λχ), where 0 < λ < 1.

Through numerical experiment, for a certain range of the RBF-width a, Cheng

et al. (2003) established the error estimate as O(λ
√
a/h). In the approximation

of kth derivative, Madych (1992) showed that the convergence rate is reduced

to O(λχ−k). To avoid such reduction of convergence rate caused by differentia-

tion in a conventional scheme, Mai-Duy and Tran-Cong (2001, 2003) proposed

an indirect approach. RBFs were used to represent highest order derivatives

and such RBF-based approximants are then integrated to yield expressions for

lower-order derivatives and eventually the function itself. This approach is less

sensitive to noise than the usual differential approach and appears to be more

suitable for applications involving derivatives such as the numerical solution

of ODEs and PDEs. Recently, towards the analysis of large-scale problems,

a numerical scheme, based on one-dimensional integrated RBFs (1D-IRBFs),

point collocation and Cartesian grids, was reported in Mai-Duy and Tran-Cong

(2007). In this scheme, the 1D-IRBF approximations at a grid point x only

involve nodal points that lie on grid lines crossing at x rather than the whole

set of nodal points, leading to a considerable saving of computing time and

memory space over the original IRBF schemes (Mai-Duy et al. 2008, Le-Cao
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et al. 2009, Ho-Minh et al. 2009).

Although 1D-IRBF schemes can yield a high level of accuracy using a relatively

coarse grid, their system matrices are not as sparse as those produced by con-

ventional FDMs. In addition, for a stable calculation, these schemes are limited

to small values of the RBF width.

1.6 Objectives of the present research

In this research project, we further localise the 1D-IRBFs to construct a new

type of element for the discretisation of ODEs/PDEs in point/subregion col-

location formulations on Cartesian grids. The proposed element involves two

nodes, called 2-node IRBFE, wherein the 1D-IRBFs are implemented with two

RBF centres only and the approximations are nonoverlapping. It can be seen

that the use of two RBFs (a smallest RBF set) allows a wide range of the

RBF width to be used and leads to very sparse system matrices. Moreover,

the approximate solution is guaranteed to be C2-continuous across the inter-

face of IRBFEs. We then verify the novel formulations through the solution of

benchmark nonlinear flows of an incompressible Newtonian fluid (e.g. flows in

lid-driven cavities and flows past a circular cylinder in a channel). We optimise

the efficiency of the present approaches with the alternating direction implicit

(ADI) procedure (Peaceman and Rachford 1955, Douglas and Gunn 1964) via

different strategies. Finally, we introduce these proposed IRBFEs and subre-

gion collocation into the non-polynomial multiscale space framework for solving

the multiscale elliptic problems.

Accuracy will be enhanced by the following key features.

• High order RBFs rather than low order polynomials are employed to rep-

resent the solution over elements.
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• Integration rather than differentiation is employed to construct the RBF

approximations.

• The computed solution is a C2 function rather than the usual C0.

Efficiency will be enhanced by the following key features.

• The IRBFE involves only two RBF centres, leading to a sparse system

matrix.

• Cartesian grids are used to represent the problem domain. It is clear that

generating a Cartesian grid is much simpler and easier than generating

a finite-element mesh. Moreover, ADI procedure (Peaceman and Rach-

ford 1955, Douglas and Gunn 1964) can be straightforwardly applied to

accelerate computational processes.

• Point collocation formulation and control volume formulation employed

with the middle point rule are utilised to discretise the governing equation.

These discretisation approaches are integration free.

• Meaningful solutions can be obtained on a relatively coarse grid as mass

and momentum conservations are preserved over control volumes associ-

ated with the grid nodes.

The central goal of the present research is to obtain multiscale solutions accu-

rately and effectively.

1.7 Outline of the Dissertation

The dissertation has seven chapters including this chapter (Introduction); each

chapter is presented in a self-explanatory way. The outline of the remaining

chapters is as follows.
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• Chapter 2 presents a new C2-continuous control volume discretisation

method, based on Cartesian grids and 2-node IRBFEs, for the solution of

second-order elliptic problems in one and two dimensions. The proposed

2-node IRBFEs are then utilised by the following chapters.

• Chapter 3 develops 2-node IRBFEs for the simulation of incompressible

viscous flows in two dimensions. Emphasis is placed on (i) the incorpo-

ration of C2-continuous 2-node IRBFEs into the subregion and point col-

location frameworks for the discretisation of the streamfunction-vorticity

formulation on Cartesian grids; and (ii) the development of high order

upwind schemes based on 2-node IRBFEs for the case of convection-

dominant flows.

• Chapter 4 presents a C2-continuous alternating direction implicit (ADI)

method based on 2-node IRBFEs for the solution of the streamfunction-

vorticity equations governing steady 2D incompressible viscous fluid flows.

Unlike in Chapters 2 & 3 the solution strategy in this chapter consists

of multiple use of a one-dimensional sparse matrix (associated with grid

lines) algorithm that helps save the computational cost.

• Chapter 5 presents a novel C2-continuous compact scheme based on 2-

node IRBFEs. The proposed C2-continuous compact scheme is applied

to the discretisation of second-order parabolic equations in one- (1D) and

two-space dimensions (2D) in an implicit manner. As in Chapter 4 the

ADI procedure (Peaceman and Rachford 1955, Douglas and Gunn 1964)

is applied for the time integration in 2D. However, the one-dimensional

matrices associated with grid lines are optimised to be in standard tridi-

agonal form which can be solved efficiently by the Thomas algorithm.

Moreover, the typical matrix size is half of that obtained in Chapter 4

and equal to the number of nodal unknowns of the dependent variable

only.

• Chapter 6 presents a high order multiscale conservative method, based on



1.7 Outline of the Dissertation 20

multiscale basis function approach and IRBFEs, for the solution of mul-

tiscale elliptic problems with reduced computational cost. Unlike other

methods based on multiscale basis function approach, sets of basis and

correction functions here are obtained through C2-continuous IRBFE-CV

formulation.

• Chapter 7 gives some concluding remarks and suggestion of possible future

research developments.



Chapter 2

Two-node IRBF elements and a

C2-continuous control-volume

technique

This chapter presents a new control-volume discretisation method, based on

Cartesian grids and integrated-radial-basis-function elements (IRBFEs), for the

solution of second-order elliptic problems in one and two dimensions. The gov-

erning equation is discretised by means of the control-volume formulation and

the division of the problem domain into non-overlapping control volumes is

based on a Cartesian grid. Salient features of the present method include (i)

an element is defined by two adjacent nodes on a grid line, (ii) the IRBF ap-

proximations on each element are constructed using only two RBF centres (a

smallest RBF set) associated with the two nodes of the element and (iii) the

IRBFE solution is C2-continuous across the interface between two adjacent el-

ements. The first feature guarantees consistency of the flux at control-volume

faces. The second feature helps represent curved profiles between 2 adjacent

nodes and leads to a sparse and banded system matrix, facilitating the employ-

ment of a large number of nodes. The third feature enhances the smoothness of
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element-based solutions, allowing a better estimate for the physical quantities

involving derivatives. Numerical results indicate that (i) the proposed method

can work with a wide range of the shape-parameter/RBF-width and (ii) the

proposed technique yields more accurate results and faster convergence, espe-

cially for the approximation of derivatives, than the standard control-volume

technique.

2.1 Introduction

Traditional techniques used for solving second-order elliptic differential equa-

tions include overlapping finite difference methods (FDMs), non-overlapping

finite element methods (FEMs), boundary element methods (BEMs) and con-

trol volume methods (CVMs). These methods typically utilise polynomials as

an interpolator. To avoid notorious polynomial snaking phenomena, low-order

polynomials such as linear variations are widely used, usually leading to errors of

order h2, where h is the mesh spacing. For element-based solutions, only the ap-

proximating function (not its partial derivatives) is continuous across elements

(i.e. C0 continuity). The overall error can be reduced by using progressively

denser meshes. A mesh needs be sufficiently fine to mitigate the effects of discon-

tinuity of partial derivatives. It is thus desirable to have discretisation methods

that can produce a solution of higher-order continuity across elements. There

are high-order formulations in the literature, for instance those using Hermite

interpolation e.g. (Zienkiewicz 1971, Watkins 1976, Holdeman 2009) for FEM

and e.g. (Qiu and Shu 2003, 2005) for FVM that can provide such high-order

continuity. Here, we develop a high-order continuity method based on IRBF

interpolation and control-volume formulation.

Radial basis functions (RBFs) have successfully been used for the approxima-

tion of scattered data over the last several decades. They have also emerged

as an attractive scheme for the numerical solution of ordinary and partial dif-
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ferential equations (ODEs and PDEs) e.g. (Fasshauer 2007, and references

therein). Theoretically, some RBF-based methods can be as competitive as

spectral methods; the two types of methods can exhibit spectral accuracy. Un-

like pseudo-spectral techniques, RBF-based methods do not require the use

of tensor products in constructing the approximations in two or more dimen-

sions. The RBF approximations usually rely on a set of distinct points rather

than a set of small elements. When this characteristic is combined with the

point-collocation formulation, the resultant discretisation methods are truly

meshless e.g. (Kansa 1990). RBF-based collocation methods can be applied

to differential problems defined on irregular domains without added difficulties.

Apart from point-collocation, RBFs have also been employed as trial functions

in other formulations such as the Galerkin, subregion collocation and inverse

statements, resulting in enhanced rates of convergence (O(hα) with α > 2) of

these approaches. Works in this research trend include Atluri et al. (2004),

Sellountos and Sequeira (2008), Orsini et al. (2008), Mohammadi (2008).

In a pivotal paper on function approximation by Franke (1982), it was pointed

out that the multiquadric (MQ) RBF scheme yields the most accurate results.

The present work employs the MQ whose form is defined by

gi(x) =
√

(x− ci)2 + a2i , (2.1)

where ci and ai are the centre and the shape parameter of the ith MQ, respec-

tively. A set of interpolation points is taken to be a set of RBF centres. In

Mai-Duy and Tran-Cong (2001, 2003), the value of the shape parameter was

simply chosen as ai = βhi with β being a given positive number and hi the

distance between ci and its nearest neighbour. When the direct way of com-

puting the interpolants is used, RBF-based methods such as those using MQs

are known to suffer from the so-called uncertainty principle. As the value of β

increases, the error reduces while the matrix condition number increases unde-

sirably. In practice, one desires to use large βs up to a value at which the system
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matrix is still in good condition. RBF-based methods can be classified into two

categories: global and local. Global methods use every RBF on the whole do-

main to construct the approximations at a point, resulting in a fully populated

system matrix c.f. (Kansa 1990, Sarler 2005, Zerroukat et al. 1998, Mai-Duy

and Tran-Cong 2001). When the number of RBF centres and/or the value of β

increase, the condition of RBF matrices deteriorates rapidly. Such drawbacks

typically render global methods unsuitable for complex problems, where many

points are required for a proper simulation. In addition, β to be used is confined

to small values. For local methods e.g. (Tolstykh and Shirobokov 2003, Shu

et al. 2003, Lee et al. 2003, Šarler and Vertnik 2006, Divo and Kassab 2007,

Sanyasiraju and Chandhini 2008, Mai-Duy and Tran-Cong 2009a), only a few

RBFs are activated for the approximations at a point. The resultant system

matrix is sparse and banded, which is suitable for handling large-scale prob-

lems. However, trade-offs include the loss of spectral accuracy and high-order

continuity of the approximate solution. Various schemes have been proposed

to enhance the performance of local methods. Using large values of β appears

to be an economical and effective way (Cheng et al. 2003). In the case of non-

overlapping domain-decompositions, where a large problem is replaced with a

set of sub-problems of much smaller sizes, the computed solution is only a C1

function across the subdomain interfaces (Li and Hon 2004). It is noted that

errors of RBF solutions are larger near interfaces/boundaries (Fedoseyev et al.

2002) and with Neumann boundary conditions than with Dirichlet boundary

conditions (Libre et al. 2008).

In a conventional RBF scheme (Kansa 1990), the original function is decom-

posed into RBFs and its derivatives are then obtained through differentiation.

Some RBF schemes such as those based on MQs are known to possess spectral

accuracy with errors in the O(λχ), where 0 < λ < 1. Through numerical experi-

ment, for a certain range of a, Cheng et al. (2003) established the error estimate

as O(λ
√
a/h). In the approximation of kth derivative, Madych (1992) showed

that the convergence rate is reduced to O(λχ−k). To avoid such reduction of
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convergence rate caused by differentiation in a conventional scheme, Mai-Duy

and Tran-Cong (2001, 2003) proposed an indirect or integral approach. RBFs

were used to represent highest order derivatives and such RBF-based approx-

imants are then integrated to yield expressions for lower-order derivatives and

eventually the function itself. This approach is less sensitive to noise than the

usual differential approach and appears to be more suitable for applications

involving derivatives such as the numerical solution of ODEs and PDEs. Re-

cently, towards the analysis of large-scale problems, a numerical scheme, based

on one-dimensional integrated RBFs (1D-IRBFs), point collocation and Carte-

sian grids, was reported in Mai-Duy and Tran-Cong (2007). In this scheme, the

1D-IRBF approximations at a grid point x only involve nodal points that lie

on grid lines crossing at x rather than the whole set of nodal points, leading

to a considerable saving of computing time and memory space over the original

IRBF schemes (e.g. Mai-Duy et al. 2008, Le-Cao et al. 2009, Ho-Minh et al.

2009, Ngo-Cong et al. 2011).

In the present work, the problem domain, which can be rectangular or non-

rectangular, is represented by a Cartesian grid. Each grid node is associated

with a control volume (CV) of rectangular shape. To estimate the values of

the flux at the middle points on the interfaces, the approximations for the field

variable and its derivatives are constructed using IRBFs over elements defined

by two adjacent grid nodes. Unlike a previous work by Mai-Duy and Tran-

Cong (2010a), 1D-IRBFs are implemented here with two RBF centres only

and the approximations are non-overlapping. Furthermore, the constants of

integration are exploited to impose continuity of second-order derivatives across

two adjacent elements. It can be seen that the use of two RBFs (a smallest RBF

set) allows a wide range of β to be used and leads to sparse system matrices.

To enhance accuracy, one can thus increase the value of β and/or the number

of RBFs. Continuity of the approximate solution, its first and second-order

derivatives across two adjacent IRBF elements (or simply across elements for

brevity in the remaining discussion) is guaranteed in the proposed technique.
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An outline of the chapter is as follows. In Section 2.2, a brief review of IRBFs in-

cluding 1D-IRBFs is given. In Section 2.3, the proposed C2-CV technique based

on 2-node IRBFEs for second-order elliptic differential problems is presented. In

Section 2.4, the proposed technique is verified through function approximation

and solution of ODEs and PDEs. Section 2.5 concludes the chapter.

2.2 Brief review of integrated RBFs

The indirect/integral RBF approach consists in decomposing highest-order deriva-

tives under consideration into RBFs and then integrating these RBFs to yield

expressions for lower-order derivatives and finally the original function itself

(Mai-Duy and Tran-Cong 2003). In the case of second-order PDEs in two di-

mensions, integrated MQ expressions are given by

∂2φ

∂η2
(x) =

n∑

i=1

wi

√
(x− ci)2 + a2i =

n∑

i=1

wiI
(2)
i (x), x ∈ Ω, (2.2)

∂φ

∂η
(x) =

n∑

i=1

wiI
(1)
i (x) + C1(θ), (2.3)

φ(x) =

n∑

i=1

wiI
(0)
i (x) + C1(θ)η + C2(θ), (2.4)

where Ω is the domain of interest, φ a function, η a component of x, n the

number of RBFs, {wi}ni=1 the set of RBF weights, C1(θ) and C2(θ) the constants

of integration which are functions of θ (θ 6= η), I
(2)
i (x) conveniently denotes the

MQ, I
(1)
i (x) =

∫
I
(2)
i (x)dη, and I

(0)
i (x) =

∫
I
(1)
i (x)dη. Explicit forms of I

(1)
i (x)

and I
(0)
i (x) can be found in appendix A.
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When the analysis domain Ω is a line segment, expressions (2.2)-(2.4) reduce to

d2φ

dη2
(η) =

n∑

i=1

wi

√
(η − ci)2 + a2i =

n∑

i=1

wiI
(2)
i (η), (2.5)

dφ

dη
(η) =

n∑

i=1

wiI
(1)
i (η) + C1, (2.6)

φ(η) =

n∑

i=1

wiI
(0)
i (η) + C1η + C2, (2.7)

where C1 and C2 are simply constant values.

Expressions (2.5), (2.6) and (2.7), called 1D-IRBFs, can also be used in con-

junction with Cartesian grids for solving 2D problems. Advantages of 1D-

IRBFs over 2D-IRBFs are that they possess some “local” properties and are

constructed with a much lower cost. However, numerical experiments show

that 1D-IRBFs still cannot work with large values of β. In the present work,

1D-IRBF-based schemes are further localised.

2.3 Proposed C2-continuous control-volume tech-

nique

The problem domain is embedded in a Cartesian grid. In the case of non-

rectangular domains, we remove grid points outside the problem domain. Grid

points inside the problem domain are taken to be interior nodes, while bound-

ary nodes are defined as the intersection of the grid lines and the boundaries.

Generally, each nodal point is associated with a control volume, over which

the differential equation is directly integrated. For illustrative purposes, the

proposed technique is presented for the following 2D PDE

∂2φ

∂x2
+
∂2φ

∂y2
= b(x, y), (2.8)
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Ω

Semi−interior element

Interior grid nodeInterior element

Boundary node

Figure 2.1: A domain is embedded in a Cartesian grid with interior and semi-
interior elements.

where b(x, y) is some prescribed function. Following the work of Patankar

(1980), (2.8) is transformed into a set of discretised equations. A distinguishing

feature of the proposed technique is that the approximations used for the flux

estimation at the interfaces are based on 1D-IRBFs rather than linear poly-

nomials. In Mai-Duy and Tran-Cong (2010a), 1D-IRBFs were implemented

using every node on a grid line. In contrast, the present 1D-IRBFs are con-

structed locally over straight-line segments between two adjacent nodal points

only, called 2-node IRBF elements (IRBFEs). There are two types of elements,

namely interior and semi-interior IRBFEs. An interior element is formed using

two adjacent interior nodes while a semi-interior element is generated by an

interior node and a boundary node (Figure 2.1). In the remainder of this sec-

tion, 1D-IRBFs are first utilised to represent the variation of the field variable

and its derivatives on interior and semi-interior elements, and IRBFEs are then

incorporated into the CV formulation. It will be shown that the approximate

solution is a C2 function across IRBFEs.
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2.3.1 Interior elements

1D-IRBF expressions for interior elements are of similar forms. Consider an

interior element, η ∈ [η1, η2], and its two nodes are locally named as 1 and

2. Let φ(η) be a function and φ1, ∂φ1/∂η, φ2 and ∂φ2/∂η be the values of

φ and dφ/dη at the two nodes, respectively (Figure 2.2). The 2-node IRBFE

η

φ1 φ2

∂φ1
∂η

∂φ2
∂η

Figure 2.2: Schematic outline for 2-node IRBFE.

scheme approximates φ(η) using two MQs whose centres are located at η1 and

η2. Expressions (2.5), (2.6) and (2.7) become

∂2φ

∂η2
(η) = w1

√
(η − c1)2 + a21 + w2

√
(η − c2)2 + a22 = w1I

(2)
1 (η) + w2I

(2)
2 (η),

(2.9)

∂φ

∂η
(η) = w1I

(1)
1 (η) + w2I

(1)
2 (η) + C1, (2.10)

φ(η) = w1I
(0)
1 (η) + w2I

(0)
2 (η) + C1η + C2, (2.11)

where I
(1)
i (η) =

∫
I
(2)
i (η)dη, I

(0)
i (η) =

∫
I
(1)
i (η)dη with i = (1, 2), and C1 and

C2 are the constants of integration. By collocating (2.11) and (2.10) at η1 and

η2, the relation between the physical space and the RBF coefficient space is

obtained




φ1

φ2

∂φ1
∂η

∂φ2
∂η




︸ ︷︷ ︸
ψ̂

=




I
(0)
1 (η1) I

(0)
2 (η1) η1 1

I
(0)
1 (η2) I

(0)
2 (η2) η2 1

I
(1)
1 (η1) I

(1)
2 (η1) 1 0

I
(1)
1 (η2) I

(1)
2 (η2) 1 0




︸ ︷︷ ︸
I




w1

w2

C1

C2




︸ ︷︷ ︸
ŵ

, (2.12)
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where ψ̂ is the nodal-value vector, I the conversion matrix, and ŵ the coefficient

vector. It is noted that not only the nodal values of φ but also of ∂φ/∂η are

incorporated into the conversion system and this imposition is done in an exact

manner owing to the presence of integration constants. Solving (2.12) yields

ŵ = I−1ψ̂. (2.13)

Substitution of (2.13) into (2.11), (2.10) and (2.9) leads to

φ(η) =
[
I
(0)
1 (η), I

(0)
2 (η), η, 1

]
I−1ψ̂, (2.14)

∂φ

∂η
(η) =

[
I
(1)
1 (η), I

(1)
2 (η), 1, 0

]
I−1ψ̂, (2.15)

∂2φ

∂η2
(η) =

[
I
(2)
1 (η), I

(2)
2 (η), 0, 0

]
I−1ψ̂, (2.16)

which allows one to express the values of φ and ∂φ/∂η at any point η in [η1, η2]

in terms of four nodal unknowns, i.e. the values of the field variable and its

first-order derivatives at the two extremes (also grid points) of the element.

2.3.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an inte-

rior node and a boundary node. The subscripts 1 and 2 are now replaced with b

(b represents a boundary node) and g (g an interior grid node), respectively. Ex-

perience shows that boundary treatments strongly affect the overall accuracy of

a numerical solution. Thus several semi-interior elements for the Dirichlet-type

and Neumann-type boundary conditions are proposed and investigated. Their

construction processes are similar to that for interior elements, and therefore

only the main differences are presented in the following sections.
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Dirichlet boundary conditions

At ηb, the value of φ is given. We propose three types of semi-interior elements.

The first one can work with problems with irregular geometries while the last

two are limited to the case of 1D problems and 2D problems defined on rectan-

gular domains. For 1D and rectangular domain cases, a boundary node is also

a grid node and one can express the governing equation at that node in terms

of one independent variable only, i.e. either η ≡ x or η ≡ y. The last two types

of semi-interior elements will take into account information on the governing

equation at ηb.

Element IRBFE-D1: At η = ηb, this element uses information on φ only. The

conversion system (2.12) reduces to




φb

φg
∂φg
∂η


 =




I
(0)
b (ηb) I

(0)
g (ηb) ηb 1

I
(0)
b (ηg) I

(0)
g (ηg) ηg 1

I
(1)
b (ηg) I

(1)
g (ηg) 1 0







wb

wg

C1

C2



. (2.17)

It can be seen that the interpolation matrix for element IRBFE-D1 is under-

determined and its inverse can be obtained using the SVD technique (pseudo-

inversion).

Element IRBFE-D2: At η = ηb, this element uses information on φ and the

governing equation, which leads to the conversion system




φb

φg
∂2φb
∂η2

∂φg
∂η




=




I
(0)
b (ηb) I

(0)
g (ηb) ηb 1

I
(0)
b (ηg) I

(0)
g (ηg) ηg 1

I
(2)
b (ηb) I

(2)
g (ηb) 0 0

I
(1)
b (ηg) I

(1)
g (ηg) 1 0







wb

wg

C1

C2



. (2.18)

In (2.18), ∂2φb/∂η
2 is a known value, obtained from the governing equation

(2.8). For example, if η represents x, one has ∂2φb/∂x
2 = b(x, y)− ∂2φb/∂y

2 in
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which ∂2φb/∂y
2 is easily calculated from the given boundary condition φ on the

vertical line x = xb.

Element IRBFE-D3: At η = ηb, this element uses information on φ and ∂φ/∂η,

resulting in the following system




φb

φg
∂φb
∂η

∂φg
∂η




=




I
(0)
b (ηb) I

(0)
g (ηb) ηb 1

I
(0)
b (ηg) I

(0)
g (ηg) ηg 1

I
(1)
b (ηb) I

(1)
g (ηb) 1 0

I
(1)
b (ηg) I

(1)
g (ηg) 1 0







wb

wg

C1

C2



, (2.19)

which has the same form as the interior element.

Neumann boundary conditions

In the context of Cartesian-grid-based methods, the implementation of a Neu-

mann boundary condition still presents a great challenge. Special treatments,

e.g. a boundary node does lie on a grid point, are required. Here, we restrict

our attention to rectangular domains. At ηb, the value of ∂φ/∂η is given. In

the following, we propose two types of semi-interior elements.

Element IRBFE-N1: At η = ηb, this element uses information on ∂φ/∂η and

∂2φ/∂η2. The resultant conversion system is




∂φb
∂η

φg
∂2φb
∂η2

∂φg
∂η




=




I
(1)
b (ηb) I

(1)
g (ηb) 1 0

I
(0)
b (ηg) I

(0)
g (ηg) ηg 1

I
(2)
b (ηb) I

(2)
g (ηb) 0 0

I
(1)
b (ηg) I

(1)
g (ηg) 1 0







wb

wg

C1

C2



, (2.20)

Element IRBFE-N2: At η = ηb, this element uses information on φ and ∂φ/∂η.

The corresponding conversion system is exactly the same as that of IRBFE-D3.

It should be pointed out that all nodal values at η = ηb in IRBFE-D1 and



2.3 Proposed C2-continuous control-volume technique 33

IRBFE-D2 are given, while there is one nodal unknown at η = ηb in IRBFE-

D3, IRBFE-N1 and IRBFE-N2. For the latter cases, one extra equation is

needed and how to generate this equation will be discussed later. Table 2.1

provides a list of semi-interior elements and their characteristics. Owing to

the facts that point collocation is used and the RBF conversion matrix is not

over-determined, all boundary values here are imposed in an exact manner in

the sense that the error is due to the numerical inversion only and there is no

intrinsic approximation errors such as those associated with “unconstrained”

boundary conditions imposed by certain finite element methods (Burnett 1987).

Table 2.1: List of semi-interior elements and their characteristics.

Boundary condition Element Nodal values at a boundary point Unknowns

Dirichlet IRBFE-D1 φb None

IRBFE-D2 φb and ∂
2φb/∂η

2 None

IRBFE-D3 φb and ∂φb/∂η ∂φb/∂η

Neumann IRBFE-N1 ∂φb/∂η and ∂2φb/∂η
2 ∂2φb/∂η

2

IRBFE-N2 φb and ∂φb/∂η φb

2.3.3 Incorporation of IRBFEs into the control-volume

formulation

Assuming that a Cartesian-grid represents the problem domain Ω. In a control-

volume approach, the domain is subdivided into a set of control volumes in such

a way that there is one control volume surrounding each grid point without gaps

or overlapped volumes between adjacent elements. A typical control volume

associated with a grid point P , denoted by ΩP , is shown in Figure 2.3, where

E,W,N and S are the neighbouring points of P on the horizontal and vertical

grid lines. The governing equation (2.8) is discretised by means of subregion
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collocation and this process is conducted in a similar fashion for all interior

grid points of the problem domain. By directly integrating (2.8) over ΩP , the

x

y

ΓP ΩP

N

S

W EP

n

s

ew

Figure 2.3: Schematic outline for a control volume in 2D.

subregion-collocation equation is obtained

∫

ΩP

(
∂2φ

∂x2
+
∂2φ

∂y2
− b(x, y)

)
dΩP = 0. (2.21)

Applying the Gauss divergence theorem to (2.21) results in

∫

ΓP

(
∂φ

∂x
dy − ∂φ

∂y
dx

)
−
∫

ΩP

b(x, y)dΩP = 0, (2.22)

where ΓP denotes the faces of ΩP . It is noted that partial derivatives of φ

in (2.22) are of first order only and no approximation is made at this stage.

Following the work of Patankar (1980), (2.22) reduces to

[(
∂φ

∂x

)

e

−
(
∂φ

∂x

)

w

]
∆y+

[(
∂φ

∂y

)

n

−
(
∂φ

∂y

)

s

]
∆x−b(xP , yP )AP = 0, (2.23)

where AP is the area of ΩP and the subscripts e, w, n and s are used to indicate

that the flux is estimated at the intersections of the grid lines with the east,

west, north and south faces of the control volume, respectively (Figure 2.3).
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In the presently proposed technique, 2-node IRBFEs, which are defined over

line segments between P and its neighbouring grid points (E,W,N and S), are

incorporated into (2.23) to represent the field variable φ and its derivatives.

There are 4 IRBFEs associated with a control volume. Assuming that PE and

WP are interior elements and making use of (2.15), the values of the flux at the

faces x = xe and x = xw are computed as

(
∂φ

∂x

)

e

=
[
I
(1)
1 (xe), I

(1)
2 (xe), 1, 0

]
I−1ψ̂ =

[
I
(1)
1 (xe), I

(1)
2 (xe), 1, 0

]
I−1




φP

φE
∂φP
∂x

∂φE
∂x




with η1 ≡ xP and η2 ≡ xE , (2.24)

(
∂φ

∂x

)

w

=
[
I
(1)
1 (xw), I

(1)
2 (xw), 1, 0

]
I−1ψ̂ =

[
I
(1)
1 (xw), I

(1)
2 (xw), 1, 0

]
I−1




φW

φP
∂φW
∂x

∂φP
∂x




with η1 ≡ xW and η2 ≡ xP , (2.25)

where I
(1)
1 (x), I

(1)
2 (x) and I−1 are defined in (2.9)-(2.13). Vector ψ̂ may change

if PE and WP are semi-interior elements. For example, one has

ψ̂ = (φW , φP , ∂φP/∂x)
T if WP is a D1 element,

ψ̂ = (φW , ∂
2φW/∂x

2, φP , ∂φP/∂x)
T

if WP is a D2 element,

ψ̂ = (φW , ∂φW/∂x, φP , ∂φP/∂x)
T if WP is a D3 element,

ψ̂ = (∂φW/∂x, ∂
2φW/∂x

2, φP , ∂φP/∂x)
T

if WP is a N1 element,

ψ̂ = (φW , ∂φW/∂x, φP , ∂φP/∂x)
T if WP is a N2 element.

Expressions for the flux at the faces y = yn and y = ys are of similar forms.
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2.3.4 Inter-element C2 continuity

It can be seen from IRBFE expressions for computing the flux at the faces (e.g.

(2.24) and (2.25)), there are three unknowns, namely φ, ∂φ/∂x and ∂φ/∂y, at a

grid node P . Unlike conventional CVMs, the nodal values of ∂φ/∂x and ∂φ/∂y

at P here constitute part of the nodal unknown vector. One thus needs to gen-

erate three independent equations. The first equation is obtained by conducting

subregion-collocation of (2.8) at P , i.e. (2.23). The other two equations can

be formed by enforcing the local continuity of ∂2φ/∂x2 and ∂2φ/∂y2 across the

elements at P

(
∂2φP
∂x2

)

L

=

(
∂2φP
∂x2

)

R

, (2.26)

(
∂2φP
∂y2

)

B

=

(
∂2φP
∂y2

)

T

, (2.27)

where (.)L indicates that the computation of (.) is based on the element to the

left of P , i.e. element WP, and similarly subscripts R,B,T denote the right

(PE), bottom (SP) and top (PN) elements.

Substitution of (2.16) into (2.26) and (2.27) yields

([
I
(2)
1 (η2), I

(2)
2 (η2), 0, 0

]
I−1ψ̂

)
L
=
([
I
(2)
1 (η1), I

(2)
2 (η1), 0, 0

]
I−1ψ̂

)
R
, (2.28)

where η represents x and η2 ≡ η1 ≡ xP , and

([
I
(2)
1 (η2), I

(2)
2 (η2), 0, 0

]
I−1ψ̂

)
B
=
([
I
(2)
1 (η1), I

(2)
2 (η1), 0, 0

]
I−1ψ̂

)
T
, (2.29)

where η represents y and η2 ≡ η1 ≡ yP . The conditions (2.26)-(2.27) or (2.28)-

(2.29) guarantee that the solution φ across IRBFEs is a C2 function.

As discussed earlier, for IRBFE-D3, IRBFE-N1 and IRBFE-N2 elements, there

is one unknown at a boundary node and one more extra equation needs be

formed. This equation can be generated by integrating (2.8) over a half control
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volume associated with that boundary node (Patankar 1980).

Collection of the discretised equations at the appropriate nodal points and the

continuity equations at the interior grid points leads to a square system of

algebraic equations that is sparse and banded. Two-point line elements are well

suited to discretisation methods based on Cartesian grids.

2.4 Numerical results

IRBFEs are now validated through function approximation and solution of

boundary-value problems governed by ODEs and PDEs. For all numerical

examples presented in this study, the MQ width a is simply chosen propor-

tionally to the element length h by a factor β. The value of β is considered in

a wide range from 1 to 85 to study its influence on the accuracy. In the case

of non-rectangular domains, there may be some nodes that are too close to the

boundary. If an interior node falls within a distance of h/2 to the boundary,

such a node is removed from the set of nodal points.

The solution accuracy of an approximation scheme is measured by means of

the discrete relative L2 errors for the field variable and its first-order partial
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derivatives

Ne(φ) =

√
∑M

i=1

(
φ
(e)
i − φi

)2

√
∑M

i=1

(
φ
(e)
i

)2 , (2.30)

Ne

(
∂φ

∂x

)
=

√
∑M

i=1

(
∂φ

(e)
i

∂x
− ∂φi

∂x

)2

√
∑M

i=1

(
∂φ

(e)
i

∂x

)2
, (2.31)

Ne

(
∂φ

∂y

)
=

√
∑M

i=1

(
∂φ

(e)
i

∂y
− ∂φi

∂y

)2

√
∑M

i=1

(
∂φ

(e)
i

∂y

)2
, (2.32)

where the superscript (e) refers to the exact solution and M is the length of a

test set that is comprised of groups of 500 uniformly distributed points on grid

lines. Another important measure is the convergence rate of the solution with

respect to the refinement of spatial discretisation

Ne(h) ≈ γhα = O(hα), (2.33)

in which α and γ are exponential model’s parameters. Given a set of ob-

servations, these parameters can be found by the general linear least squares

technique. To assess the performance of the proposed technique, the standard

CVM (Patankar 1980) is also implemented here.

2.4.1 Function approximation

The present 2-node IRBFE scheme is first applied to the representation of

functions. Consider four different test functions, namely straight line y = x,

quadratic curve y = x2, cubic curve y = x3 and trigonometric function y =

sin(2πx). The domain of interest is [0, 1] that is represented by one element
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only. Values of y and dy/dx are given at x = 0 and x = 1. Figure 2.4 shows the

plots of the approximate and exact functions for the first three cases where good

agreement is achieved with only one element. It should be pointed out that, for

the second and third functions, curved lines are reproduced even only two nodes

(i.e. only one element) are employed. The fourth function y = sin(2πx) is in-

finitely smooth and it is clear that one can construct several other approximate

functions that would satisfy the four given input data. The present scheme

picks up one of them, probably the simplest one (Figure 2.5(a)). As more el-

ements are used, a closer approximation to the exact function is obtained as

shown in Figure 2.5(b). Numerical results for the last three functions show that

the present two-node IRBFE has the ability to produce curved lines between its

two extremes. This can be seen as a strength of IRBFEs over linear elements

used in conventional techniques.

2.4.2 Solution of ODEs

Problem 1

Consider a 1D problem governed by

d

dx

(
dφ

dx

)
+ φ+ x = 0, 0 ≤ x ≤ 1, (2.34)

and subject to two cases of boundary conditions

Case 1: φ(0) = 0 and φ(1) = 0 (Dirichlet boundary conditions only)

Case 2: φ(0) = 0 and dφ(1)/dx = cot(1)−1 (Dirichlet and Neumann boundary

conditions).

The exact solution of this problem can be verified to be

φ(e)(x) =
sin(x)

sin(1)
− x. (2.35)



2.4 Numerical results 40

(a) Straight line & first-order derivative
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(c) Cubic curve & first-order derivative
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Figure 2.4: Function approximation: Approximation for functions (left) and
their first-order derivative (right) by using one IRBFE only. It can be seen
that the present two-node IRBFE is able to produce non-linear behaviours (i.e.
curved lines) between the two extremes.
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(a) 1 IRBFE
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Figure 2.5: Function approximation (continued), trigonometric function: Ap-
proximations for the function (left) and its first-order derivative (right).

The problem domain is discretised by n uniformly-distributed points. Each

node xi is associated with a control volume denoted by Ωi. For 2 ≤ i ≤ n − 1,

Ωi is defined as [xi−1/2, xi+1/2] (full CV). For i = 1 and i = n, Ωi is taken to

be [x1, x1+1/2] and [xn−1/2, xn] (half CV), respectively. A schematic outline of

a full CV and a half CV is presented in Figure 2.6. Generally speaking, to

form a set of algebraic equations, (2.34) is integrated over full CVs at xi with

i = (2, 3, · · · , n−1) for Case 1, and over full CVs at xi with i = (2, 3, · · · , n−1)

and a half CV at xn for Case 2. The resultant system is thus of dimensions

(n−2)× (n−2) for Case 1 and (n−1)× (n−1) for Case 2. Hereafter, Di-Dj is

used to denote the boundary treatment strategy in which the boundary region
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b
W E

i ≡ P

i− 1/2 i+ 1/2

Full CVHalf CV

Figure 2.6: Control volumes associated with interior and boundary nodes in
1D.

[x1, x2] is represented by element IRBFE-Di and [xn−1, xn] by IRBFE-Dj, while

Di-Nj represents the strategy in which [x1, x2] and [xn−1, xn] are modelled by

elements IRBFE-Di and IRBFE-Nj, respectively. We employ the values of n

ranging from 7 to 151 for h-adaptivity studies and the values of β from 1 to 85

for β-adaptivity studies.

Case 1: Figure 2.7 shows the plots of φ and dφ/dx by the proposed technique

using the D1-D1 strategy and by the standard CVM. It can be seen that the

present solution is smooth for both φ and dφ/dx even with only a few interior

nodes used. On the other hand, using linear interpolations, the standard CV

solution for dφ/dx has a stair-case shape. To alleviate this zigzag variation,

much more grid points are needed. Grid convergence studies for the proposed

method employed with various values of β and for the standard CVM are de-

picted in Figure 2.8. It can be seen that the former outperforms the latter. At

dense grids, in terms of the error Ne, the results for dφ/dx show a remarkable

four orders of magnitude improvement (Figure 2.8(b)).

Figure 2.9 and Table 2.2 compare the performance of the proposed method

among three types of semi-interior element strategies, namely D1-D1, D2-D2

and D3-D3. Results obtained by the standard CVM are also included and

they are taken here as the reference. With more information incorporated into

the IRBFE approximations, the D2-D2 and D3-D3 strategies yield much more

accurate results than D1-D1, and D3-D3 works better than D2-D2 as shown in
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Figure 2.9(a)-(b). Table 2.2 indicates that rates obtained by the three strategies

are generally higher than those by the standard CVM. For example, D1-D1

yields O(h2.99) for φ and O(h2.61) for dφ/dx, while the standard CVM gives

O(h2.00) for φ and O(h1.03) for dφ/dx. An improvement in the approximation

quality for dφ/dx is thus much bigger than that for φ. It should be noted that

D1-D1 exhibits higher rates of grid convergence but produces less accurate

results than D2-D2 and D3-D3.

(a) Field variable
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(b) First-order derivative
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Figure 2.7: ODE, Problem 1, Dirichlet boundary conditions, n = 9: Comparison
of the exact and approximate solutions for φ and dφ/dx by the present D1-D1
strategy (left) and the standard CV method (right).
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(a) Field variable (b) First-order derivative
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Figure 2.8: ODE, Problem 1, Dirichlet boundary conditions: h-adaptivity stud-
ies conducted with several values of β for the D1-D1 strategy. It is noted that
results with β = (5, 10, 15) are undistinguishable.
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Figure 2.9: ODE, Problem 1, Dirichlet boundary conditions: Effects of types of
semi-interior elements on the solution accuracy for β = 15.

In Figure 2.10, the effects of β on the solution accuracy for coarse (n = 9)

and dense (n = 153) grids are studied. As β increases, the overall error of the

IRBFE solution is first reduced and then becomes flat/fluctuated. There are

dramatic reductions (i.e. exponential convergence) in Ne(φ) and Ne(dφ/dx) for

the D2-D2 and D3-D3 strategies. In the case of large n and using D2-D2 and

D3-D3, it appears that there exists an optimal value for β, e.g. β = 42 for

D2-D2 and β = 32 for D3-D3. Nevertheless, the present method can work with

a wide range of β. This ability is also clearly seen in Figure 2.8.
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Table 2.2: ODE, Problem 1, Dirichlet boundary conditions: rates of convergence
O(hα) for φ and ∂φ/∂x for several large β values and semi-interior element types.

α

φ ∂φ/∂x

β D1-D1 D2-D2 D3-D3 D1-D1 D2-D2 D3-D3

5 2.995 2.057 2.009 2.604 1.719 2.096

10 2.987 2.188 2.086 2.606 1.842 2.180

15 2.985 2.332 2.185 2.606 1.983 2.283

20 2.984 2.475 2.332 2.606 2.119 2.391

Standard CVM 2.000 1.034

Table 2.3: ODE, Problem 1, Dirichlet-Neumann boundary conditions: rates of
convergence O(hα) for φ and ∂φ/∂x for two semi-interior element types.

α

φ ∂φ/∂x

β D1-N1 D1-N2 D1-N1 D1-N2

1 1.722 1.722 2.183 2.183

15 3.016 3.016 2.529 2.529

Standard CVM 1.971 1.029

Case 2: Results obtained by the D1-N1 and D1-N2 strategies using β =

1 and β = 15 and by the standard CVM are depicted in Figure 2.11. The

two strategies have similar performances which are far superior to that by the

standard CVM. At dense grids, an improvement is up to one order of magnitude

for φ and four orders of magnitude for dφ/dx. It is also observed that β can be

used as an effective tool to enhance the solution accuracy. Table 2.3 shows that

the present two schemes converge faster than the standard CVM. For example,

the rates are O(h3.02) for φ and O(h2.53) for dφ/dx by the present two strategies

(β = 15), and O(h1.97) for φ and O(h1.03) for dφ/dx by the standard CVM.
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Table 2.4: ODE, Problem 2, Dirichlet boundary conditions: rates of convergence
O(hα) for φ and ∂φ/∂x for several β values and semi-interior element types.

α

φ ∂φ/∂x

Boundary treatment β = 1 β = 15 β = 1 β = 15

D1-D1 2.540 2.582 2.554 2.670

D2-D2 2.679 3.965 2.713 3.932

D3-D3 2.971 4.229 2.588 3.801

Standard CVM 2.194 0.971

Table 2.5: ODE, Problem 2, Dirichlet and Neumann boundary conditions, D3-
N2 treatment: rates of convergence O(hα) for φ and ∂φ/∂x for several β values.

α

β φ ∂φ/∂x

1 3.240 2.706

15 4.380 3.919

Standard CVM 2.268 0.970

Problem 2

In this example, the ODE involves more terms and its solution is highly oscil-

latory. The equation takes the form

d2φ

dx2
+
dφ

dx
+φ = −e−5x (9979 sin(100x) + 900 cos(100x)) , 0 ≤ x ≤ 1. (2.36)

We consider two cases of boundary conditions: Dirichlet-Dirichlet (Case 1) and

Dirichlet-Neumann (Case 2). The plots of the exact solution φ(e) = sin(100x)e−5x

and its first-order derivative are shown in Figure 2.12. Computations are con-

ducted with the values of n varying from 23 to 403 and the values of β from 1

to 80. Results concerning h adaptivity and β adaptivity are presented in Figure

2.13, Figure 2.14 and Table 2.4 for Case 1, and in Figure 2.15 and Table 2.5 for

Case 2. Remarks here are similar to those in Problem 1. It should be pointed
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(a) Field variable
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(b) First-order derivative
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Figure 2.10: ODE, Problem 1, Dirichlet boundary conditions: β-adaptivity
studies conducted with n = 9 (left) and n = 153 (right) for three boundary
treatment strategies.

out that

(i) very high rates of grid convergence, i.e. up to O(h4.23) for φ and O(h3.80)

for dφ/dx (Case 1), and O(h4.38) for φ and O(h3.92) for dφ/dx (Case 2),

are achieved here,

(ii) the IRBFE solution is very stable (i.e. no fluctuation) at large values of β,

(iii) given a grid size h and a value of β, the overall errors for Case 2 are as low

as those for Case 1,

(iv) the accuracy improvement is more significant for dφ/dx than for φ.

This problem (Case 1) was also solved in (Mai-Duy and Tran-Cong 2008) us-

ing the multidomain (MD) RBF collocation method. Two versions, namely

differentiated-RBF (MD-DRBF) and integrated-RBF (MD-IRBF) schemes, were

implemented. Using two non-overlapping subdomains, β = 1 and 201 nodes per

subdomain (i.e. 401 nodes for the whole domain), the obtained Ne errors for φ
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were 0.2 for MD-DRBF and 2.72 × 10−4 for MD-IRBF. Using the same set of

nodes (i.e. 401 points or 400 IRBFEs), β = 15 and D3-D3, the present method

yields Ne = 1.28×10−5, which is much lower than those by the MD-RBF collo-

cation method. It is noted that conventional/global RBF methods are able to

work with low values of β such as β = 1.
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Figure 2.11: ODE, Problem 1, Dirichlet and Neumann boundary conditions:
Effects of types of semi-interior elements on the solution accuracy for β = 1
(left) and β = 15 (right). It is noted that plots have the same scaling and
results by the two boundary treatment strategies are undistinguishable.

2.4.3 Solution of PDEs

The proposed CV method is further validated through the solution of PDEs

on both rectangular and non-rectangular domains. Elements IRBFE-D1 and

IRBFE-D2 are employed to deal with Dirichlet boundary conditions, while
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Figure 2.12: ODE, Problem 2: Exact solution (a) and its first-order derivative
(b).

IRBFE-N2 is used for Neumann boundary conditions. It is noted that IRBFE-

D1 can be applicable to problems with regular as well as irregular geometries.

All IRBFE calculations here are carried out with two values of β, namely 1 and

15.

Problem 1: rectangular domain

Consider the following Poisson equation

∂2φ

∂x2
+
∂2φ

∂y2
= −2π2 cos(πx) cos(πy), (2.37)

on a square domain 0 ≤ x, y ≤ 1 with two different cases of boundary conditions

Case 1:

φ = cos(πy) for x = 0, 0 ≤ y ≤ 1

φ = − cos(πy) for x = 1, 0 ≤ y ≤ 1

φ = cos(πx) for y = 0, 0 ≤ x ≤ 1

φ = − cos(πx) for y = 1, 0 ≤ x ≤ 1
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Figure 2.13: ODE, Problem 2, Dirichlet boundary conditions: h-adaptivity
studies conducted with β = 1 (left) and β = 15 (right).
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Figure 2.14: ODE, Problem 2: β-adaptivity studies conducted with n = 103
(left) and n = 383 (right) for three different semi-interior element strategies.
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Figure 2.15: ODE, Problem 2, Dirichlet and Neumann boundary conditions:
h-adaptivity (left) and β-adaptivity (right) studies for the D3-N2 strategy.
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Figure 2.16: Half control volume associated with a boundary node in 2D.
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(b) First-order derivative with respect to x
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(c) First-order derivative with respect to y
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Figure 2.17: PDE, Problem 1, rectangular domain, Dirichlet boundary condi-
tions: h-adaptivity studies for the D1-D1 (left) and D2-D2 (right) strategies.
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(a) Field variable
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Figure 2.18: PDE, Problem 1, rectangular domain, Dirichlet and Neumann
boundary conditions: h-adaptivity studies conducted with β = 1 and β = 15
for the D1-N2 strategy.
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Case 2:

φ = cos(πy) for x = 0, 0 ≤ y ≤ 1

φ = − cos(πy) for x = 1, 0 ≤ y ≤ 1

∂φ

∂y
= 0 for y = 0, 0 ≤ x ≤ 1

∂φ

∂y
= 0 for y = 1, 0 ≤ x ≤ 1.

The exact solution to this problem can be verified to be

φ(e)(x, y) = cos(πx) cos(πy). (2.38)

In Case 1 (i.e. Dirichlet boundary conditions only), the system of algebraic

equations is generated by integrating (6.85) over full CVs associated with the

interior nodes. In Case 2 (i.e. Dirichlet and Neumann boundary conditions),

apart from the interior nodal variable values, there are additional unknown

values of φ at the boundary nodes on y = 0 and y = 1. As a result, one needs

to generate not only full-CV equations associated with the interior nodes but

also half-CV equations associated with the boundary nodes on y = 0 and y = 1.

For the latter (Figure 2.16), the IRBFE approximations on y = 0 and y = 1 are

constructed as in the case of a grid line and hence the approximate solution φ is

also C2-continuous on these lines. It can be seen that the size of the discretised

system in Case 2 is slightly larger than that in Case 1.

To study the convergent behaviour of the proposed technique, various grids,

namely (5× 5, 9× 9,..., 73× 73), are employed. Results concerning the relative

L2 error and the rate of convergence with grid refinement by the present and

standard CV methods are shown in Figure 2.17 for Case 1, Figure 2.18 for Case

2, and Table 2.6 for Case 1 and Case 2.

It can be seen from Figure 2.17 and Figure 2.18, the present D1-D1, D2-D2

and D1-N2 strategies employed with a wide range of β produce much more
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Table 2.6: PDE, Problem 1 and Problem 2: Rates of grid convergence O (hα) for the field variable and its first-order partial
derivatives, (1): standard CVM.

α

Problem 1 Problem 2

(Rectangular domain) (Circular domain)

Dirichlet Dirichlet & Neumann Dirichlet

D1-D1 D2-D2 D1-N2 D1-D1

(1) β = 1 β = 15 β = 1 β = 15 (1) β = 1 β = 15 β = 15

φ 1.997 2.262 2.273 2.089 2.094 1.997 2.141 2.149 2.223

∂φ/∂x 0.997 1.787 2.350 1.583 2.101 0.997 1.833 2.200 2.140

∂φ/∂y 0.997 1.787 2.350 1.583 2.101 0.997 1.566 2.171 2.144
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accurate results especially for ∂φ/∂x and ∂φ/∂y than the standard CV method.

For instance, at a grid of 73 × 73 and β = 15, the improvement is about one

order of magnitude for the field variable and about three orders of of magnitude

for its first-order partial derivatives. For Case 1 (Figure 2.17), results at coarse

grids by the D2-D2 strategy are a bit more accurate than those by D1-D1,

probably owing to the fact that the former uses information about (6.85) on

the boundary.

It can be seen from Table 2.6, the present method yields a faster convergence,

especially for ∂φ/∂x and ∂φ/∂y, than the standard CV method for both Case 1

and Case 2. For example, in Case 1, the solutions ∂φ/∂x and ∂φ/∂y converge at

the rate O(h2.35) using the D1-D1 strategy, O(h2.10) using D2-D2, and O(h1.00)

using the standard CV method.

Like in 1D problems, the use of β = 15 (i.e. large values) here also leads to better

accuracy and faster convergence especially for first-order partial derivatives than

the use of β = 1 (i.e. small values), and the IRBFE solutions for Case 1 and

Case 2 have similar degrees of accuracy.

Problem 2: circular domain

Find φ such that

∂2φ

∂x2
+
∂2φ

∂y2
= 0, (2.39)

on a circular domain of radius π/2 centred at (π/2, π/2) with Dirichlet boundary

conditions. The exact solution to this problem is chosen to be

φ(e)(x, y) =
1

sinh(π)
sin(x) sinh(y), (2.40)

from which one can easily derive the boundary values of φ.



2.4 Numerical results 57

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

Figure 2.19: PDE, Problem 2: Geometry and discretisation. Boundary nodes
denoted by ◦ are generated by the intersection of the grid lines and the boundary.

The problem domain is discretised by a Cartersian grid as shown in Figure

2.19. Calculations are carried out with grids of (5 × 5, 11 × 11,..., 151 × 151)

and β = 15. We employ semi-interior elements IRBFE-D1 for the handling

of boundary conditions. Results obtained are presented in Figure 2.20, which

plots the solution accuracy Ne against the grid size h. It can be seen that the

error is consistently reduced as a grid is refined. Table 2.6 also compares the

rate of convergence by the proposed technique between Problem 1 (rectangular

domain) and Problem 2 (circular domain). Using the same D1-D1 strategy and

β = 15, the orders of accuracy of the solutions φ, ∂φ/∂x and ∂φ/∂y for the

two types of domains are all greater than 2. It can be seen that the proposed

technique is able to work well not only for rectangular domains but also for
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non-rectangular domains.

2.5 Concluding remarks

In this chapter, a new Cartesian-grid-based control volume technique is pro-

posed for the solution of second-order elliptic problems in one and two dimen-

sions. Integrated RBFs are utilised to construct the approximations for the

field variable and its derivatives, which are based on two-node elements and

expressed in terms of nodal values of the field variable and its first-order partial

derivatives. Various strategies for the imposition of boundary conditions are

presented. The proposed control volume method leads to a system matrix that

is sparse and produces a solution that is C2-continuous on the grid lines. Its so-

lution accuracy can be effectively controlled by means of the shape parameter (β

up to 85) and/or grid size. A series of test problems including those defined on

non-rectangular domains are employed to verify the present method. Numerical

results show that the method is much more accurate and faster convergent, es-

pecially for the approximation of derivatives, than the standard control volume

method.
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Figure 2.20: PDE, Problem 2, circular domain, Dirichlet boundary conditions:
the solution accuracy using the D1-D1 strategy and β = 15.



Chapter 3

High-order upwind methods

based on C2-continuous two-node

IRBFEs for viscous flows

In this chapter, the proposed 2-node IRBFEs in Chapter 2 are further de-

veloped for the simulation of incompressible viscous flows in two dimensions.

Emphasis is placed on (i) the incorporation of C2-continuous 2-node IRBFEs

into the subregion and point collocation frameworks for the discretisation of the

streamfunction-vorticity formulation on Cartesian grids; and (ii) the develop-

ment of high order upwind schemes based on 2-node IRBFEs for the case of

convection-dominant flows. High levels of accuracy and efficiency of the present

methods are demonstrated by solutions of several benchmark problems defined

on rectangular and non-rectangular domains.
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3.1 Introduction

Cartesian-grid-based subregion/point collocation methods can be very econom-

ical owing to the facts that (i) generating a grid and integrating the governing

equations in these methods are low-cost; and (ii) FFT can be applied to ac-

celerate computational processes (e.g. Huang and Greengard 2000). The ap-

proximations for the dependent variables and their spatial derivatives can be

constructed globally on the whole grid or locally on small segments of the grid.

Examples of local approximation schemes include standard control-volume (CV)

methods and finite-difference methods. For the former, the fluxes are estimated

by a linear variation between two grid points (e.g. Patankar 1980, Huilgol

and Phan-Thien 1997). The use of two grid points allows for the consistency

of the fluxes at CV faces - one of the four basic rules to guarantee a physi-

cally realistic solution (Patankar 1980). For the latter, local approximations

can be constructed in each direction independently using two nodes (first-order

accuracy) and three nodes (second-order accuracy). With two-node-based lo-

cal approximations, Cartesian grid based methods typically produce solutions

which are continuous for the fields but not for their partial derivatives, i.e. C0

continuity. The grid thus needs to be sufficiently fine to mitigate the effects of

discontinuity of partial derivatives.

The Navier-Stokes (N-S) equations involve two main terms, namely convection

and diffusion. At high values of the Reynolds number, the convection term

is dominant and the numerical simulation of the N-S equations becomes chal-

lenging. Various treatments for the convection term have been proposed in the

literature. Those which take the influence of the upstream information of the

flow into account, e.g. the upwind differencing (Courant et al. 1952, Gentry

et al. 1966), hybrid (Spalding 1972), power-law (Patankar 1981) and QUICK

(Leonard 1979) schemes are known to provide a very stable solution. To main-

tain a high level of accuracy, an effective way is to employ high-order upwind

schemes with the deferred-correction strategy (e.g. Khosla and Rubin 1974,
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Ghia et al. 1982).

Radial basis functions (RBFs) have been successfully used for the approxima-

tion of scattered data. They have recently emerged as an attractive tool for

the solution of ordinary and partial differential equations (ODEs and PDEs),

e.g. Fasshauer (2007), Atluri and Shen (2002), Chen et al. (2008). RBF-based

approximants are able to produce fast convergence especially for regular node

arrangements such as those based on Cartesian grids. They can be constructed

through a conventional differentiation process (e.g. Kansa 1990), or an integra-

tion process (e.g. Mai-Duy and Tran-Cong 2001, Mai-Duy and Tanner 2005,

Mai-Duy and Tran-Cong 2005). The latter helps avoid the reduction of con-

vergence rate caused by differentiation and provide effective ways of imposing

the derivative boundary values. RBF-based approximants can be constructed

globally or locally. Global RBF-based methods are very accurate (e.g. Cheng

et al. 2003, Huang et al. 2007). However, they result in a system matrix that

is dense and usually highly ill-conditioned. The use of RBF-approximants in

local forms has the ability to circumvent these difficulties (e.g. Shu et al. 2003,

Šarler and Vertnik 2006, Divo and Kassab 2007). Recently, a local high order

approximant based on 2-node elements and integrated RBFs (IRBFs) for solv-

ing second-order elliptic problems in the CV framework has been proposed by

An-Vo et al. (2011a). In such 2-node elements (IRBFEs), the integration con-

stants are exploited to include the first derivatives at the element extremes in

the approximations. It was shown that such elements lead to a C2-continuous

solution rather than the usual C0-continuous solution.

In this study, C2-continuous 2-node IRBFEs are incorporated into the sub-

region and point collocation frameworks for solving the N-S equations in the

streamfunction-vorticity formulation on Cartesian grids. Unlike conventional

finite-element-based methods, the proposed methods can guarantee inter-element

continuity of derivatives of the streamfunction and vorticity of orders up to 2. At

high values of the Reynolds number, to achieve both good accuracy and stabil-
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ity properties, several high-order upwind schemes are proposed. The resultant

system of algebraic equations is sparse and banded; the solution accuracy can

be controlled by means of the number of RBFs and/or the shape parameter.

Several viscous flows defined on rectangular and non-rectangular domains are

considered to verify the proposed methods.

The remainder of the chapter is organised as follows. Brief reviews of the gov-

erning equations and integrated RBF elements are given in Section 3.2 and 3.3,

respectively. Section 3.4 describes the proposed C2-continuous subregion/point

collocation techniques for the streamfunction-vorticity formulation. In Section

3.5, two benchmark problems, namely the lid-driven cavity flow and the flow

past a circular cylinder in a channel, are presented to demonstrate the attrac-

tiveness of the present techniques. Section 3.6 concludes the chapter.

3.2 Governing equations

The dimensionless N-S equations for steady incompressible planar viscous flows,

subject to negligible body forces, can be expressed in terms of the streamfunc-

tion ψ and the vorticity ω as follows

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (3.1)

∂2ω

∂x2
+
∂2ω

∂y2
= Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
, (x, y)T ∈ Ω, (3.2)

where Re = UL/ν is the Reynolds number, in which L is the characteristic

length, U the characteristic speed of the flow and ν the kinematic viscosity.

The vorticity and streamfunction variables are defined by

ω =
∂v

∂x
− ∂u

∂y
, (3.3)

∂ψ

∂y
= u,

∂ψ

∂x
= −v, (3.4)
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where u and v are the x and y components of the velocity vector. In this study,

the method of modified dynamics or false transients (e.g. Mallinson and Davis

1973, Pozrikidis 1997) is applied to obtain the structure of a steady flow. The

governing equations (3.1) and (3.2) are modified as

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω =

∂ψ

∂t
, (3.5)

∂2ω

∂x2
+
∂2ω

∂y2
−Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
=
∂ω

∂t
. (3.6)

Solutions to (3.5) and (3.6), which are obtained from integrating the equations

from a given initial condition up to the steady state, are also solutions to (3.1)

and (3.2) respectively.

In the case of subregion collocation, one needs to define control volumes for grid

nodes. Integrating (3.5) and (3.6) over a CV of a grid point P , ΩP , leads to the

following equations

∫

ΩP

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
dΩP +

∫

ΩP

ωdΩP =

∫

ΩP

∂ψ

∂t
dΩP ,

(3.7)
∫

ΩP

(
∂2ω

∂x2
+
∂2ω

∂y2

)
dΩP −

∫

ΩP

Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
dΩP =

∫

ΩP

∂ω

∂t
dΩP ,

(3.8)

which ensure that the flow field is conservative for a finite CV.

Applying the Green theorem to (3.7) and (3.8), one has

∮

ΓP

(
∂ψ

∂x
dy − ∂ψ

∂y
dx

)
+

∫

ΩP

ωdΩP =

∫

ΩP

∂ψ

∂t
dΩP , (3.9)

∮

ΓP

[(
∂ω

∂x
−Re ω

∂ψ

∂y

)
dy −

(
∂ω

∂y
+Re ω

∂ψ

∂x

)
dx

]
=

∫

ΩP

∂ω

∂t
dΩP ,

(3.10)

where ΓP is the CV boundary. The governing differential equations (3.5) and

(3.6) are thus transformed into a CV form (3.7)-(3.8) or (3.9)-(3.10). It is noted
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that no approximation is made at this stage.

3.3 Two-node IRBFEs

These elements are applicable to problems defined on rectangular and non-

rectangular domains. The problem domain is simply discretised by using a

Cartesian grid. In the case of non-rectangular domain, grid points outside the

problem domain are removed while grid points inside the problem domain are

taken to be interior nodes. Boundary nodes are defined as the intersection of

the grid lines and the boundaries. Over straight-line segments between two

adjacent nodal points, 1D-IRBFs are utilised to represent the variation of the

field variable and its derivatives, which are called 2-node IRBFEs. It can be

seen that there are two types of elements, namely interior and semi-interior

elements. An interior element is formed using two adjacent interior nodes while

a semi-interior element is generated by an interior node and a boundary node

(Figure 2.1).

3.3.1 Interior elements

Consider an interior element, η ∈ [η1, η2], and its two nodes are locally named

as 1 and 2. Let φ(η) be a function and φ1, ∂φ1/∂η, φ2 and ∂φ2/∂η be the values

of φ and ∂φ/∂η at the two nodes, respectively (Figure 2.2). Expressions (2.14),

(2.15) and (2.16) can be rewritten in the form

φ(η) = ϕ1(η)φ1 + ϕ2(η)φ2 + ϕ3(η)
∂φ1

∂η
+ ϕ4(η)

∂φ2

∂η
, (3.11)

∂φ

∂η
(η) =

dϕ1(η)

dη
φ1 +

dϕ2(η)

dη
φ2 +

dϕ3(η)

dη

∂φ1

∂η
+

dϕ4(η)

dη

∂φ2

∂η
, (3.12)

∂2φ

∂η2
(η) =

d2ϕ1(η)

dη2
φ1 +

d2ϕ2(η)

dη2
φ2 +

d2ϕ3(η)

dη2
∂φ1

∂η
+

d2ϕ4(η)

dη2
∂φ2

∂η
, (3.13)



3.4 Proposed C2-continuous subregion/point collocation methods 65

where {ϕi(η)}4i=1 is the set of basis functions in the physical space. These

expressions allow one to compute the values of φ, ∂φ/∂η, and ∂2φ/∂η2 at any

point η in [η1, η2] in terms of four nodal unknowns, i.e. the values of the field

variable and its first-order derivatives at the two extremes (also grid points) of

the element.

3.3.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an interior

node and a boundary node. The subscripts 1 and 2 are now replaced with b

(b represents a boundary node) and g (g an interior grid node), respectively.

Assume that the value of φ is given at ηb. The element IRBFE-D1 is employed

here. The conversion system (2.17) leads to

φ(η) = ϕ1(η)φb + ϕ2(η)φg + ϕ3(η)
∂φg
∂η

, (3.14)

∂φ

∂η
(η) =

dϕ1(η)

dη
φb +

dϕ2(η)

dη
φg +

dϕ3(η)

dη

∂φg
∂η

, (3.15)

∂2φ

∂η2
(η) =

d2ϕ1(η)

dη2
φb +

d2ϕ2(η)

dη2
φg +

d2ϕ3(η)

dη2
∂φg
∂η

. (3.16)

For other types of semi-interior elements, the reader is referred to Chapter 2 for

details.

3.4 Proposed C2-continuous subregion/point col-

location methods

In this study, 2-node IRBFEs are extended to the solution of the streamfunction-

vorticity formulation. In addition, several high-order upwind schemes are in-

corporated into the 2-node IRBFE methods to enhance their performance for

the case of convection-dominant flows. The proposed methods lead to a sparse
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system and their solution is a C2 function across IRBFEs.

3.4.1 Discretisation of governing equations

Two formulations, namely subregion collocation and point collocation, are em-

ployed to discretise the governing differential equations. As mentioned earlier,

the structure of a steady flow is found through the method of false transients.

Time derivative terms in (3.5) and (3.6) are simply approximated here with a

first-order backward difference.

Subregion collocation

Consider a grid point P surrounded by a rectangular control volume ΩP (Figure

2.3). There are no gaps and overlapping regions between control volumes. For

integrals involving the rate of change and generation, the value of the quantity

at P is assumed to prevail over ΩP . Using the middle-point rule to evaluate

the integrals of the convection and diffusion terms over ΩP , equations (3.9) and

(3.10) become

− AP
∆t

ψP +

[(
∂ψ

∂x

)

e

∆y −
(
∂ψ

∂x

)

w

∆y +

(
∂ψ

∂y

)

n

∆x−
(
∂ψ

∂y

)

s

∆x

]
=

− AP

(
ω0
P +

ψ0
P

∆t

)
, (3.17)

− AP
∆t

ωP +

[(
∂ω

∂x

)

e

∆y −
(
∂ω

∂x

)

w

∆y +

(
∂ω

∂y

)

n

∆x−
(
∂ω

∂y

)

s

∆x

]

+Re

[
−
(
ω
∂ψ

∂y

)

e

∆y +

(
ω
∂ψ

∂y

)

w

∆y +

(
ω
∂ψ

∂x

)

n

∆x−
(
ω
∂ψ

∂x

)

s

∆x

]

= −AP
∆t

ω0
P , (3.18)
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where the superscript 0 represents the value obtained from the previous time

level; the subscripts e, w, n and s denote the values of the property at the

intersections of grid lines and the east, west, north and south faces of a CV;

and AP the volume of ΩP . It can be seen that equations (3.17) and (3.18) require

the estimation of first derivative values of ψ and ω at the interface points e, w, n

and s.

Point collocation

Consider a grid point P . Collocating (3.5) and (3.6) at P , one obtains

−ψP
∆t

+
∂2ψP
∂x2

+
∂2ψP
∂y2

= −
(
ω0
P +

ψ0
P

∆t

)
, (3.19)

−ωP
∆t

+
∂2ωP
∂x2

+
∂2ωP
∂y2

− Re

(
∂ψP
∂y

∂ωP
∂x

− ∂ψP
∂x

∂ωP
∂y

)
= −ω

0
P

∆t
. (3.20)

It can be seen that equations (3.19) and (3.20) require the estimation of both

first and second derivative values of ψ and ω at the collocation point P .

3.4.2 Approximations of diffusion term

The diffusion term is treated implicitly. Its role is important at regions where

the strength of the convection term is small. 2-node IRBFEs are employed

here for the approximation of the second terms on the LHSs of (3.17) and

(3.18) in the subregion collocation framework and (3.19) and (3.20) in the point

collocation framework. Let E,W,N and S denote the east, west, north and

south neighbouring nodes of P , respectively. One can form 4 two-node IRBFEs,

namely WP,PE, SP and PN .
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Subregion collocation

In the case that WP and PE are interior elements, the values of the flux at

x = xe and x = xw are computed by using (3.12)

(
∂φ

∂x

)

e

=
dϕ1(xe)

dx
φP +

dϕ2(xe)

dx
φE +

dϕ3(xe)

dx

∂φP
∂x

+
dϕ4(xe)

dx

∂φE
∂x

,

(3.21)
(
∂φ

∂x

)

w

=
dϕ1(xw)

dx
φW +

dϕ2(xw)

dx
φP +

dϕ3(xw)

dx

∂φW
∂x

+
dϕ4(xw)

dx

∂φP
∂x

,

(3.22)

where φ represents ψ and ω.

In the case that WP is a semi-interior element, the value of the flux at x = xw

is computed by using (3.15)

(
∂φ

∂x

)

w

=
dϕ1(xw)

dx
φW +

dϕ2(xw)

dx
φP +

dϕ3(xw)

dx

∂φP
∂x

. (3.23)

Expressions for the flux at y = yn and y = ys are of similar forms.

Point collocation

The values of ∂2ψ/∂x2 and ∂2ω/∂x2 at P can be derived from 2-node IRBFEs in

the x direction, i.e. WP and PE. It will be shown later that these two elements

give the same results, and one can thus choose one of them for calculation, e.g.

WP . Through (3.13) if WP is an interior element and (3.16) if WP is a semi-

interior element, the required values are, respectively, estimated as

∂2φP
∂x2

=
d2ϕ1(xP )

dx2
φW +

d2ϕ2(xP )

dx2
φP +

d2ϕ3(xP )

dx2
∂φW
∂x

+
d2ϕ4(xP )

dx2
∂φP
∂x

(3.24)
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and

∂2φP
∂x2

=
d2ϕ1(xP )

dx2
φW +

d2ϕ2(xP )

dx2
φP +

d2ϕ3(xP )

dx2
∂φP
∂x

, (3.25)

where φ represents ψ and ω.

The values of ∂2ψ/∂y2 and ∂2ω/∂y2 at P can be computed in a similar fashion.

3.4.3 Approximations of convection term

At high values of the Re number, the third term (i.e. convection term) on

the LHS of (3.18) or (3.20) is dominant and strongly affects the stability of a

numerical solution. From a physical point of view, convection is directed by the

velocity field from the upstream to the downstream of the flow. Three high-

order upwind schemes, namely Scheme 1, Scheme 2 and Scheme 3, are proposed

here for the discretisation of the convection term.

Scheme 1 for subregion collocation

This scheme is concerned with an upwind treatment with the deferred correction

strategy. Let f be the intersection of the CV face and the grid line. The value

of ω at point f is computed as

ωf = ωU +∆ωf , (3.26)

where ωU is the upstream value and ∆ωf the correction term that is a known

value. It is noted that f represents w, e, s and n. ∆ωf is presently derived from

the 2-node IRBFE approximation, i.e. (3.11) and (3.14). As an example, when



3.4 Proposed C2-continuous subregion/point collocation methods 70

f ≡ w and uw > 0, one has

ωU = ωW , (3.27)

∆ωf = (ϕ1(xw)− 1)ω0
W + ϕ2(xw)ω

0
P + ϕ3(xw)

∂ω0
W

∂x
+ ϕ4(xw)

∂ω0
P

∂x
, (3.28)

where the superscript 0 is used to denote the values obtained from the previous

time level. For a special case, where W is a boundary point, expression (3.28)

reduces to

∆ωf = (ϕ1(xw)− 1)ω0
W + ϕ2(xw)ω

0
P + ϕ3(xw)

∂ω0
P

∂x
. (3.29)

When the solution reaches a steady state, ωfs are purely predicted by 2-node

IRBFEs and their accuracy is thus recovered. Velocity values in the convection

term are simply estimated by a linear profile

(
∂ψ

∂y

)

e

=
1

2

(
∂ψ0

P

∂y
+
∂ψ0

E

∂y

)
, (3.30)

(
∂ψ

∂y

)

w

=
1

2

(
∂ψ0

W

∂y
+
∂ψ0

P

∂y

)
, (3.31)

(
∂ψ

∂x

)

n

=
1

2

(
∂ψ0

P

∂x
+
∂ψ0

N

∂x

)
, (3.32)

(
∂ψ

∂x

)

s

=
1

2

(
∂ψ0

S

∂x
+
∂ψ0

P

∂x

)
. (3.33)

Scheme 2 for point collocation

Without loss of generality, assuming that uP > 0. W thus becomes an upstream

node. A special approximation is constructed over WP for the purpose of

computing ∂ωP/∂x; not only ωW and ∂ωW /∂x but also ∂2ωW/∂x
2 are employed
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in the conversion process




ωP

ωW
∂ωW

∂η

∂2ωW

∂η2




=




I
(0)
1 (xP ) I

(0)
2 (xP ) xP 1

I
(0)
1 (xW ) I

(0)
2 (xW ) xW 1

I
(1)
1 (xW ) I

(1)
2 (xW ) 1 0

I
(2)
1 (xW ) I

(2)
2 (xW ) 0 0







w1

w2

C1

C2



. (3.34)

This leads to

∂ωP
∂x

=
dϕ1(xP )

dx
ωP +

dϕ2(xP )

dx
ωW +

dϕ3(xP )

dx

∂ωW
∂x

+
dϕ4(xP )

dx

∂2ωW
∂x2

. (3.35)

Scheme 3 for point collocation

Assuming that uP > 0. W becomes an upstream point. The value of ∂ω/∂x at

P is estimated over WP with the deferred correction strategy

∂ωP
∂x

=

(
ωP − ωW

h

)
+∆

(
∂ωP
∂x

)
, (3.36)

where h is the length of WP , the first term on the RHS is simply a standard

linear estimation; and the second term is a correction amount defined as

∆

(
∂ωP
∂x

)
= −

(
ω0
P − ω0

W

h

)
+

(
∂ωP
∂x

)0

, (3.37)

The value (∂ωP/∂x)
0 in (3.37) is obtained using (3.12) if WP is an interior

element and using (3.15) if WP is a semi-interior element. When the flow is

steady, the first term on the RHS of (3.36) and the first term on the RHS of

(3.37) will cancel out each other.
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3.4.4 C2 continuity solution

It can be seen from IRBFE expressions for computing the flux (∂φ/∂x or ∂φ/∂y)

at the CV faces (e.g. (3.21), (3.22)) and ∂2φ/∂x2 and ∂2φ/∂y2 at a nodal point

P , e.g. (3.24), there are three unknowns, namely φ, ∂φ/∂x and ∂φ/∂y, at

a nodal point P . It is noted that φ represents ψ and ω. Unlike conventional

subregion/point collocation methods, the nodal values of ∂φ/∂x and ∂φ/∂y at P

here constitute part of the nodal unknown vector. One thus needs to generate

three independent equations. The first equation is obtained by conducting

subregion/point collocation at P , i.e. (3.17)-(3.18) or (3.19)-(3.20), respectively.

The other two equations can be formed by enforcing the local continuity of

∂2φ/∂x2 and ∂2φ/∂y2 across the elements at P similar to (2.26)-(2.27) or (2.28)-

(2.29).

Collection of the governing equations and the continuity equations at the in-

terior grid points leads to a square system of algebraic equations. Since local

approximations are presently based on two RBFs only, the resultant system

matrix is sparse and a wide range of β can be used. One can thus control the

solution accuracy by means of the number of RBFs and/or the shape parame-

ter. It can be seen that two-point line elements are well suited to discretisation

methods based on Cartesian grids.

3.5 Numerical examples

The performance of the proposed C2 discretisation methods with three upwind

schemes, i.e. Scheme 1, Scheme 2 and Scheme 3, is studied through the simu-

lation of lid-driven cavity flows and flows past a circular cylinder in a channel.

The subregion collocation version is from now on denoted by IRBFE-CVM while

IRBFE-CM is used to represent the point collocation version. For all numerical

examples presented in this study, the MQ shape parameter a is simply chosen
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proportionally to the element length h by a factor β. The effects of the shape

parameter on the solution accuracy is thus investigated through the parameter

β. In the case of non-rectangular domains, there may be some nodes that are

too close to the boundary. If an interior node falls within a distance of h/2 to

the boundary, such a node is removed from the set of nodal points. A steady

solution is obtained with a time marching approach starting from a computed

solution at a lower Reynolds number. For the special case of Stokes equation,

the starting condition is the rest state.

The solution procedure involves the following steps

(1) Guess the initial distributions of the streamfunction and vorticity in the

case of Stokes flow. Otherwise, take the solution of a lower Reynolds number

as an initial guess.

(2) Solve the streamfunction equation (3.17)/(3.19) subject to Dirichlet bound-

ary conditions, and calculate the nonlinear terms in the vorticity equation

(3.18)/(3.20) by the upwind schemes.

(3) Estimate Dirichlet boundary conditions for the vorticity equation (3.18)/(3.20)

from the Neumann boundary conditions of the streamfunction.

(4) Solve the vorticity equation (3.18)/(3.20).

(5) Check to see whether the solution has reached a steady state through a

condition on convergence measure

CM(ψ) =

√
N∑
i=1

(ψi − ψ0
i )

2

√
N∑
i=1

ψ2
i

< 10−9, (3.38)

where N is the total number of grid nodes.

(6) If CM is not satisfactorily small, advance pseudo-time and repeat from step

(2). Otherwise, stop the computation and output the results.
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Figure 3.1: Lid-driven cavity flow, IRBFE-CVM, Re = 1000, grid = 81 × 81,
solution at Re = 400 used as initial guess: convergence behaviour. Scheme 1
using a time step of 3 × 10−4 converges remarkably faster than the no-upwind
version using a time step of 7×10−6. It is noted that the latter diverges for time
steps greater than 7 × 10−6. CM denotes the convergence measure as defined
by (3.38).

3.5.1 Lid-driven cavity flow

Lid-driven cavity flow is a very useful benchmark problem for the validation of

new numerical methods in CFD because of its simple geometry and rich flow

physics at different Reynolds numbers. The cavity is taken to be a unit square,

with the lid sliding from left to right at a unit velocity. The boundary conditions

for u and v become
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Figure 3.2: Lid-driven cavity flow, IRBFE-CM, Re = 1000, grid = 81 × 81,
solution at Re = 400 used as initial guess: convergence behaviour. Scheme 2
and Scheme 3, using a time step of 3 × 10−4 and 10−4, respectively, converge
remarkably faster than the no-upwind version using a time step of 8 × 10−6.
It is noted that the latter diverges for time steps greater than 8 × 10−6. CM
denotes the convergence measure as defined by (3.38).

ψ = 0, ∂ψ/∂x = 0, x = 0, x = 1,

ψ = 0, ∂ψ/∂y = 0, y = 0,

ψ = 0, ∂ψ/∂y = 1, y = 1.

Both IRBFE-CVM and IRBFE-CM are considered here. We take Dirichlet

boundary conditions, ψ = 0, on all walls for solving (3.17) and (3.19). The

Neumann boundary conditions, ∂ψ/∂n (i.e. ∂ψ/∂n = ∇ψ · n̂, where n̂ is the

outward unit normal vector at a point on the boundary), are used to derive

computational boundary conditions for ω in solving (3.18) and (3.20). Making
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Figure 3.3: Lid-driven cavity flow, IRBFE-CVM, Re = 3200, grid = 91 × 91,
solution at Re = 2000 used as initial guess: convergence behaviour. Scheme
1 using a time step of 10−4 converges remarkably faster than the no-upwind
version using a time step of 8 × 10−7. It is noted that the latter diverges for
time steps greater than 8 × 10−7. CM denotes the convergence measure as
defined by (3.38).

use of (3.1), the values of ω on the boundaries are computed by

ωb = −∂
2ψb
∂x2

, x = 0 and x = 1, (3.39)

ωb = −∂
2ψb
∂y2

, y = 0 and y = 1. (3.40)

In computing (3.39) and (3.40), one needs to incorporate ∂ψb/∂x into ∂2ψb/∂x
2,

and ∂ψb/∂y into ∂
2ψb/∂y

2, respectively. We present a simple technique to derive

boundary values for ω in the context of 2-node IRBFEs. Assuming that node 1

and 2 of an IRBFE are a boundary node and an interior grid node respectively
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(i.e. 1 ≡ b and 2 ≡ g). Boundary values of the vorticity are obtained by

applying (3.13) as

ωb = −∂
2ψb
∂η2

= −
(
d2ϕ1(ηb)

dη2
ψb +

d2ϕ2(ηb)

dη2
ψg +

d2ϕ3(ηb)

dη2
∂ψb
∂η

+
d2ϕ4(ηb)

dη2
∂ψg
∂η

)
,

(3.41)

where η represents x and y; ψb and ∂ψb/∂η are the Dirichlet and Neumann

boundary conditions for ψ, and ψg and ∂ψg/∂η are known values taken from

the solution of the streamfunction equation (3.17)/(3.19). It is noted that (i)

all given boundary conditions are imposed in an exact manner; and (ii) this

technique only requires the local values of ψ and ∂ψ/∂η at the boundary node

and its adjacent grid node to estimate the Dirichlet boundary conditions for the

vorticity equation (3.18)/(3.20).

It can be seen that the set of 2-node IRBFEs is generated here from grid lines

that pass through interior grid nodes. As a result, the set of interpolation points

does not include the four corners of the cavity and hence corner singularities do

not explicitly enter the discrete system.

Simulation is carried out for a wide range of Re, namely (100, 400, 1000, 3200).

Grid convergence is studied using 12 uniform grids, i.e. (11 × 11, 21× 21, . . . ,

121×121). Results obtained are compared with the benchmark solutions taken

from Ghia et al. (1982) and Botella and Peyret (1998) to assess the performance

of the present methods. The former was obtained using a multi-grid based finite-

difference method with fine grids. For the latter, spectral scheme and analytical

method were employed to calculate the regular and singular parts of the solution

and the benchmark results were given for Re = 100 and Re = 1000. In addition,

global 1D-IRBF subregion/point collocation (1D-IRBF-CVM/CM) results and

also standard CV results, recently given in Mai-Duy and Tran-Cong (2009b,

2011a), are also included. It is noted that, in Mai-Duy and Tran-Cong (2011a),

CD-CD means that both the convection and diffusion terms were approximated

with a central difference, while UW-CD means that the convection term is
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treated with a first-order upwind.

Time-step convergence: The convergence behaviours of IRBFE-CVM and

IRBFE-CM with respect to time are shown in Figures 3.1, 3.2 and 3.3. Results

without an upwind treatment are also presented. It can be seen that solutions

converge remarkably faster for those with upwind than those without upwind.

Much larger time steps can be used for the former. Consider the case of Re =

1000 and a grid of 81× 81 (Figures 3.1 and 3.2). IRBFE-CVM reaches CM <

10−9 after about 5 × 104 iterations for its no-upwind version and after about

2.5×103 iterations for Scheme 1, while IRBFE-CM requires about 6.9×104 for

its no-upwind version and about 2.5×103 for Scheme 2, 6.8×103 for Scheme 3.

It was reported in Mai-Duy and Tran-Cong (2011a) that the global 1D-IRBF-

CVM takes about 8.5 × 104 and 1.2 × 104 iterations to have CM < 10−8 for

its no-upwind and upwind versions, respectively. It appears that local IRBF

versions help make the convergence faster. In the case of Re = 3200 and a grid

of 91× 91, in contrast to the upwind version, the no-upwind version is not able

to reach CM = 10−9 as shown in Figure 3.3.

Grid-size convergence: The convergence of velocity profiles on the vertical

and horizontal centrelines at Re = (0, 100, 400, 1000, 3200) with respect to grid

refinement is presented in Figures 3.4 and 3.5 and Tables 3.1-3.4. Benchmark

results by Ghia et al. (1982) and Botella and Peyret (1998) are also included for

comparison purposes. It can be seen that (i) errors relative to the benchmark

results are consistency reduced as the grid is refined; and (ii) converged profiles

are obtained with relatively coarse grids (e.g. 21× 21 for Re = 100 and 61× 61

for Re = 1000).
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Table 3.1: Lid-driven cavity flow, IRBFE-CVM, Re = 100: extrema of velocity profiles on the vertical and horizontal centrelines
of the cavity. [⋆] is Ghia et al. (1982) and [⋆⋆] is Botella and Peyret (1998).

Method Grid umin Error % y vmax Error % x vmin Error % x

IRBFE-CVM 11x11 -0.20604 3.74 0.505 0.15971 11.06 0.225 -0.21745 14.32 0.804

21x21 -0.21190 1.00 0.466 0.17609 1.94 0.235 -0.24673 2.79 0.809

31x31 -0.21288 0.55 0.462 0.17798 0.89 0.236 -0.25077 1.20 0.810

41x41 -0.21327 0.36 0.460 0.17857 0.56 0.237 -0.25203 0.70 0.810

FDM (ψ − ω) [⋆] 129x129 -0.21090 1.47 0.453 0.17527 2.40 0.234 -0.24533 3.34 0.805

Benchmark [⋆⋆] -0.21404 0.458 0.17957 0.237 -0.25380 0.810
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Table 3.2: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: extrema of the vertical and horizontal velocity profiles through the
centrelines of the cavity. [⋆] is Ghia et al. (1982) and [⋆⋆] is Botella and Peyret (1998).

Method Grid umin y vmax x vmin x

IRBFE-CVM 31x31 -0.36093 0.195 0.35084 0.167 -0.48074 0.899

41x41 -0.37140 0.182 0.36144 0.162 -0.50172 0.905

51x51 -0.37720 0.177 0.36673 0.160 -0.51083 0.907

61x61 -0.38057 0.176 0.36980 0.160 -0.51588 0.908

71x71 -0.38266 0.174 0.37166 0.159 -0.51897 0.908

81x81 -0.38407 0.174 0.37293 0.159 -0.52097 0.909

91x91 -0.38502 0.173 0.37377 0.159 -0.52233 0.909

101x101 -0.38569 0.173 0.37437 0.158 -0.52330 0.909

111x111 -0.38619 0.173 0.37482 0.158 -0.52402 0.909

121x121 -0.38657 0.172 0.37515 0.158 -0.52454 0.909

FDM (ψ − ω) [⋆] 129x129 -0.38289 0.172 0.37095 0.156 -0.51550 0.906

Benchmark [⋆⋆] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
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Table 3.3: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: percentage errors
relative to the spectral benchmark results for the extreme values of the veloc-
ity profiles on the centrelines. Results of upwind central difference (UW-CD),
central difference (CD-CD) and global 1D-IRBF-CVM are taken from Mai-Duy
and Tran-Cong (2011a).

Error (%)

Grid UW-CD CD-CD 1D-IRBF-CVM IRBFE-CVM

umin
31x31 46.10 29.19 11.86 7.11

41x41 38.17 18.13 6.50 4.42

51x51 32.92 12.11 4.09 2.93

61x61 29.12 8.63 2.80 2.06

71x71 26.21 6.46 2.03 1.52

81x81 23.88 5.02 1.54 1.16

91x91 21.95 4.01 1.19 0.91

101x101 20.33 3.28 0.96 0.74

111x111 18.94 2.73 0.78 0.61

121x121 17.74 2.31 0.65 0.51

vmax
31x31 48.01 29.98 11.91 6.92

41x41 39.71 18.45 6.55 4.11

51x51 34.43 12.32 4.13 2.71

61x61 30.62 8.79 2.83 1.90

71x71 27.68 6.58 2.05 1.40

81x81 25.31 5.12 1.56 1.06

91x91 23.34 4.09 1.21 0.84

101x101 21.67 3.35 0.97 0.68

111x111 20.23 2.79 0.79 0.56

121x121 18.98 2.36 0.66 0.48

vmin
31x31 40.12 29.83 11.53 8.79

41x41 30.42 18.08 6.25 4.81

51x51 24.70 11.90 3.87 3.08

61x61 20.94 8.40 2.58 2.12

71x71 18.24 6.25 1.85 1.54

81x81 16.19 4.83 1.39 1.16

91x91 14.56 3.85 1.07 0.90

101x101 13.24 3.14 0.85 0.72

111x111 12.14 2.61 0.70 0.58

121x121 11.22 2.20 0.58 0.48
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Table 3.4: Lid-driven cavity flow, IRBFE-CM, Re = 1000: effects of β on the solution accuracy. The present results at the
“optimal” value (i.e. about 3) with a grid of 51 × 51 are in better agreement with the benchmark spectral results than those by
1D-IRBF-CM using the same grid and by FDM using a much denser grid. [⋆] is Mai-Duy and Tran-Cong (2009b), [⋆⋆] is Ghia
et al. (1982), and [⋆ ⋆ ⋆] is Botella and Peyret (1998).

Method Grid β umin Error % y vmax Error % x vmin Error % x

IRBFE-CM 51x51 1 -0.36134 7.00 0.188 0.35048 7.02 0.168 -0.48532 7.92 0.898

51x51 3 -0.38803 0.14 0.174 0.37677 0.05 0.161 -0.52184 0.99 0.906

51x51 5 -0.38948 0.23 0.174 0.37832 0.37 0.161 -0.52357 0.67 0.906

1D-IRBF-CM [⋆] 51x51 -0.37985 2.25 0.174 0.36781 2.42 0.160 -0.51469 2.35 0.908

FDM (ψ − ω) [⋆⋆] 129x129 -0.38289 1.46 0.172 0.37095 1.59 0.156 -0.51550 2.20 0.906

Benchmark [⋆ ⋆ ⋆] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
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(b) Re = 100
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(c) Re = 400
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Figure 3.4: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia et al.
(1982) were obtained at a grid of 129× 129. [∗] is Ghia et al. (1982) and [∗∗] is
Botella and Peyret (1998).
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(a) Re = 1000
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(b) Re = 3200
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Figure 3.5: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia et al.
(1982) were obtained at a grid of 129× 129. [∗] is Ghia et al. (1982) and [∗∗] is
Botella and Peyret (1998).
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(a) Re = 0, 61× 61
ψ ω

(b) Re = 100, 61× 61
ψ ω

(c) Re = 400, 71× 71
ψ ω

Figure 3.6: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines
for several Re numbers and grid sizes. The contour values are taken to be the
same as those in Ghia et al. (1982) and Sahin and Owens (2003) respectively.
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(a) Re = 1000, 81× 81
ψ ω

(b) Re = 3200, 91× 91
ψ ω

Figure 3.7: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines
for several Re numbers and grid sizes. The contour values are taken to be the
same as those in Ghia et al. (1982) and Sahin and Owens (2003) respectively.

Solution quality: The solution qualities of IRBFE-CVM and IRBFE-CM

are shown in Tables 3.1-3.4 and Figures 3.6-3.7. Tables 3.1-3.4 reveal that

the present results are closer to the benchmark spectral solutions than the

benchmark finite-difference results and also those of the global 1D-IRBF-CVM.

Errors relative to the benchmark spectral results are less than 1% for Re = 100

using a grid of 41 × 41 (Table 3.1) and for Re = 1000 using a grid of 91 × 91

(Table 3.3). These IRBFE results correspond to β = 15. Table 3.4 indicates

that the solution accuracy can be controlled by means of β. The quality of

the solution can be significantly improved at the optimal value of β. It can
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Figure 3.8: Flow past a circular cylinder in a channel: schematic representation
of the computational domain.

be seen from Figures 3.6-3.7 that smooth contours are obtained for both the

streamfunction and vorticity fields and the corner eddies are clearly captured

at relatively coarse grids.

3.5.2 Flow past a circular cylinder in a channel

We further verify IRFBE-CVM and IRBFE-CM through the simulation of flow

past a circular cylinder in a channel (Figure 3.8). Works involving simulation of

such a flow are reported in, for example, Chen et al. (1995), Sahin and Owens

(2004) and Singha and Sinhamahapatra (2010). Let D be the cylinder diameter

and H the channel height. One important geometric parameter to characterise

the flow is the blockage ratio defined as γ = D/H . Chen et al. (1995) did a nu-

merical linear stability analysis and identified the curve of neutral stability for

Hopf bifurcation at values of γ up to 0.7. Sahin and Owens (2004) extended the

linear stability analysis to a wider range of γ from 0.1 to 0.9 and uncovered the

complex dynamics of the flow at sufficiently high values of the Reynolds number

and the blockage ratio. The paper by Anagnostopoulos and Iliadis (1996) pro-

vided the flow patterns for γ = (0.05, 0.15, 0.25) and Re = 106 using the finite

element technique. Recently, Singha and Sinhamahapatra (2010) reported the

flow patterns for Re = (45, 100, 150) and γ = (0.5, 0.25, 0.333, 0.125) using the
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Figure 3.9: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367×62, solution at Re = 35 used as initial guess: convergence
behaviour. Scheme 1 using a time step of 2×10−4 converges faster than the no-
upwind version using a time step of 10−4. It is noted that the latter diverges for
time steps greater than 10−4. CM denotes the convergence measure as defined
by (3.38).

finite volume technique. The problem domain is multiply-connected as shown

in Figure 3.8. We choose the geometry and boundary conditions here as those

in Chen et al. (1995). The ratio between the upstream and downstream lengths

is taken to be 1/3 and the length of the channel is chosen to be 6H to assure the

fully developed conditions of the flow at upstream and downstream boundaries

(Chen et al. 1995). All lengths are scaled by the channel height H (Figure 3.8).

Parabolic velocity profiles can thus be imposed at the inlet and outlet as

uin = uout = u0

(
1

4
− y2

)
, (3.42)

vin = vout = 0. (3.43)
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Figure 3.10: Flow past a circular cylinder in a channel, IRBFE-CM, γ = 0.5,
Re = 60, grid = 367× 62, solution at Re = 0 used as initial guess: convergence
behaviour. Scheme 3 using a time step of 10−4 converges faster than the no-
upwind version using a time step of 5×10−5. It is noted that the latter diverges
for time steps greater than 5× 10−5. CM denotes the convergence measure as
defined by (3.38).

Using u0 = 1, the flow rate takes the value

Q =

∫ 1/2

−1/2

(
1

4
− y2

)
dy =

1

6
, (3.44)

and we define the Reynolds number as Re = 1/(6ν). Figure 3.8 displays bound-

ary conditions for the streamfunction variable, which are derived from (3.42)-

(3.43) at the inlet and outlet, and non-slip conditions at the remaining bound-

aries. The imposition of boundary conditions for ω on the walls, inlet and outlet

are similar to that used in the lid driven-cavity flow, i.e. (3.41). On the cylinder

surface, analytic formulae for computing the vorticity boundary condition on a



3.5 Numerical examples 90

non-rectangular boundary (Le-Cao et al. 2009) are utilised here

ωb = −
[
1 +

(
tx
ty

)2
]
∂2ψb
∂x2

, (3.45)

for an x-grid line, and

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb
∂y2

, (3.46)

for a y-grid line. In (3.45) and (3.46), tx and ty are the x- and y-components of

the unit vector tangential to the boundary. The approximations in (3.45) and

(3.46) require information about ψ in one direction only and they are conducted

here by means of 2-node IRBFEs, i.e. (3.13).

We implement Scheme 1 of IRBFE-CVM and Scheme 3 of IRBFE-CM with

three different grids, (127 × 22, 247× 42, 367 × 62), to study the flow at Re =

(0, 25, 35, 60) and γ = (0.3, 0.5, 0.7).

The convergence behaviours of IRBFE-CVM and IRBFE-CM with respect to

time in the case of γ = 0.5, Re = 60 and a grid of 367×62 are shown in Figures

3.9 and 3.10. Results without an upwind treatment are also included. It can be

seen that solutions converge faster for those with upwind than those without

upwind. Larger time steps can be used for the former. In the case of IRBFE-

CVM (Figure 3.9), CM = 10−9 is obtained after about 3.3× 103 iterations for

the no-upwind version and after about 1.8 × 103 iterations for Scheme 1. In

Figure 3.10, IRBFE-CM reaches CM = 10−9 after about 1.7 × 104 iterations

for the no-upwind version and after about 8.3× 103 iterations for Scheme 3.

Results concerning the critical Re number and the length of recirculation zones

behind the cylinder are shown in Tables 3.5 and 3.6, respectively. For all three

grids and different values of β used, the obtained values are in satisfactory agree-

ment with those reported in Chen et al. (1995) and Singha and Sinhamahapatra

(2010).
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Table 3.5: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5:
The critical Reynolds number Recrit for the formation of the steady recirculation
zone behind the cylinder.

Method Grid Recrit

IRBFE-CVM 127x22 27.498

247x42 26.133

367x62 25.078

Chen et al. (1995) 24.3

Table 3.6: Flow past a circular cylinder in a channel, γ = 0.5, Re = 60:
minimum velocity umin and its position on the centreline, and the length of
recirculation zones behind the cylinder (Lw). It is noted that the case of Re = 60
and γ = 0.5 here is equivalent to the case of Re = 45 and γ = 0.5 in Singha
and Sinhamahapatra (2010).

Method Grid β umin x Lw

IRBFE-CVM 127x22 15 -0.067 0.141 0.269

247x42 15 -0.074 0.140 0.270

367x62 15 -0.076 0.139 0.270

IRBFE-CM 367x62 1 -0.076 0.141 0.271

367x62 3 -0.076 0.141 0.270

367x62 5 -0.075 0.140 0.269

Singha and Sinhamahapatra (2010) 0.284

(Re = 45)
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Figure 3.11: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0,
grid = 367× 62: streamlines at different values of the blockage ratio.

Contour plots for the streamfunction and vorticity fields are presented in Figures

3.11, 3.12 and 3.13, while the velocity vector field is displayed in Figure 3.14.

Stronger interaction in regions between the cylinder and the walls is observed

at higher values of the blockage ratio (Figures 3.11 and 3.12). At Re = 60

and γ = 0.5, symmetrical recirculation zones appear behind the cylinder in the

streamfunction field (Figure 3.13(a)). The flow features are similar to those

obtained by Singha and Sinhamahapatra (2010) at Re = 45 (i.e. Re = 60

according to the present definition of Re) and γ = 0.5. Figure 3.15 shows

velocity profiles on the centreline behind the cylinder for the case of γ = 0.5. It

can be seen that the incipience of recirculation zones appears around Re = 25.
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Figure 3.12: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0,
grid = 367× 62: iso-vorticity lines at different values of the blockage ratio.

3.6 Concluding remarks

In this chapter, we have extended our 2-node IRBFEs to the solution of the

streamfunction-vorticity formulation governing fluid flows in rectangular and

non-rectangular domains. Several high-order upwind schemes based on 2-node

IRBFEs were also proposed and investigated. Attractive features of the pro-

posed point/subregion collocation methods include (i) a simple preprocessing

(Cartesian grids); (ii) a sparse system matrix (2-node approximations); and a

higher order of continuity across grid nodes (C2-continuous elements). Numer-

ical results show that (i) much larger time steps can be used with the upwind

versions; and (ii) a high level of accuracy is achieved using relatively coarse

grids.
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Figure 3.13: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367× 62: streamlines and iso-vorticity lines.
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Figure 3.14: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367× 62: velocity vector field.
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Figure 3.15: Flow past a circular cylinder in a channel, IRBFE-CVM, γ =
0.5: velocity profiles on the centreline behind the cylinder at different Reynold
numbers.



Chapter 4

ADI method based on

C2-continuous two-node IRBFEs

for viscous flows

In the present chapter, we propose a C2-continuous alternating direction im-

plicit (ADI) method for the solution of the streamfunction-vorticity equations

governing steady 2D incompressible viscous fluid flows. Discretisation is sim-

ply achieved with Cartesian grids. Local two-node IRBFEs are used for the

discretisation of the diffusion terms, and then the convection terms are in-

corporated into system matrices by treating nodal derivatives as unknowns.

ADI procedure is applied for the time integration. Following ADI factorisation,

the two-dimensional problem becomes a sequence of one-dimensional problems.

The solution strategy consists of multiple use of a one-dimensional sparse ma-

trix algorithm that helps save the computational cost. High levels of accuracy

and efficiency of the present method are demonstrated with solutions of several

benchmark problems defined on rectangular and non-rectangular domains.
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4.1 Introduction

The dimensionless Navier-Stokes (N-S) equations for steady incompressible pla-

nar viscous flows, subject to negligible body forces, can be expressed in terms

of the streamfunction ψ and the vorticity ω as in (3.1) and (3.2). The vorticity

and streamfunction variables are defined by (3.3) and (3.4) respectively. In this

study, the method of modified dynamics or false transients (e.g. Mallinson and

Davis 1973, Pozrikidis 1997) is applied to obtain the structure of a steady flow.

The governing equations (3.1) and (3.2) are modified as

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (4.1)

∂ω

∂t
+
∂2ω

∂x2
+
∂2ω

∂y2
= Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
. (4.2)

A steady state solution to (4.1) and (4.2), which is obtained by integrating the

equations from a given initial condition up to the steady state, is also solution

to (3.1) and (3.2).

Cartesian-grid-based methods for solving (3.1) and (3.2) can be very economical

owing to the facts that (i) generating a grid is low-cost; and (ii) ADI procedure

(Peaceman and Rachford 1955, Douglas and Gunn 1964) can be straightfor-

wardly applied to accelerate computational processes. The approximations for

the dependent variables and their spatial derivatives can be constructed globally

on the whole grid or locally on small segments of the grid. A very prominent

local approximation scheme is the finite-difference (FD) which can be based on

two nodes (first-order accuracy) and three nodes. The three-node approxima-

tions can take the second-order central difference (CD) form, e.g. Benjamin

and Denny (1979), or high-order compact (HOC) implicit forms, e.g. Collatz

(1960), Hirsh (1975), Lele (1992), where nodal values of the field variables and

their derivatives are considered as unknowns. The three-node HOC implicit

schemes can achieve higher order numerical accuracy and yield greater compu-

tational efficiency compared with CD schemes for the same level of the accuracy
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(e.g. Hirsh 1975). However, the computational cost of these implicit schemes

was quite high because of time consumption for solving (i) less-than-optimal

banded matrices (block diagonal structure where each block corresponds to a

grid line) (Karaa and Zhang 2004, Karaa 2007, Ma et al. 2012); or (ii) a larger

number of equations per grid point (Hirsh 1975), i.e. 3N equations for N grid

points in 1D problems and 5N equations for N grid points in 2D problems. In

addition, these finite difference schemes (i.e. the two-node and the three-node

schemes) typically produce solutions which are continuous for the fields but

not for their partial derivatives, i.e. C0-continuity. The grid thus needs to be

sufficiently fine to mitigate the effects of discontinuity of partial derivatives.

On the other hand, the well-known alternating direction implicit (ADI) method

proposed by Peaceman and Rachford (PR-ADI) was much more computation-

ally cost-effective than the HOC implicit schemes. In the PR-ADI method,

the solution is obtained by solving sets of equations defined on grid lines in

x- and then y-direction sequentially. Each set includes Nη equations (matrix

dimensions are Nη ×Nη) for Nη grid points on a particular η-grid line where η

represents x and y. These relatively small sets of equation (in tridiagonal ma-

trix form) are solved separately and effectively by the Thomas algorithm that

helps save the computational cost. However, the numerical accuracy of PR-ADI

is only second-order in space (Peaceman and Rachford 1955). The combination

of the ADI approach and the HOC schemes has been proposed by e.g. Hirsh

(1975) and Karaa (2007) for solving fluid mechanics problems, by e.g. Adam

(1976) for parabolic partial differential equations, and by e.g. Karaa and Zhang

(2004) and Ma et al. (2012) for convection-diffusion problems. Hirsh (1975)

applied the ADI procedure to HOC implicit schemes for simulating a model

square cavity flow through solving sets of 3Nη equations for Nη grid points on

η-grid lines. Adam (1976) further reduced the number of equations on each

grid line to sets of 2Nη equations by means of the so-called implicit elimination.

Recently, Karaa and Zhang (2004) and Karaa (2007) solve sets of Nη equations

on η-grid lines through block matrices. However, as shown in You (2006), the



4.1 Introduction 99

solution quality of this ADI method is degraded for convection-diffusion equa-

tions with high Peclet numbers. Ma et al. (2012) proposed to use fourth-order

schemes for convection terms and second-order schemes for diffusion terms for

convection-dominated diffusion problems and achieved very efficient sets of Nη

equations in tridiagonal matrix form on η-grid lines. This ADI method hence

becomes second-order accurate when diffusion terms are dominant.

Radial basis functions (RBFs) have recently emerged as an attractive tool for

the solution of ordinary and partial differential equations (ODEs and PDEs)

(e.g. Fasshauer 2007, Atluri and Shen 2002, Chen et al. 2008). RBF-based

approximants can be constructed through a conventional differentiation process

(e.g. Kansa 1990), or an integration process (e.g. Mai-Duy and Tran-Cong

2001, Mai-Duy and Tanner 2005, Mai-Duy and Tran-Cong 2005). RBF-based

approximants can be global or local. Global RBF-based methods are very ac-

curate (e.g. Cheng et al. 2003, Huang et al. 2007). However, they result in a

system matrix that is dense and usually highly ill-conditioned for large prob-

lems. The use of RBF-approximants in local forms can help circumvent these

difficulties (e.g. Shu et al. 2003, Šarler and Vertnik 2006, Divo and Kassab

2007). Recently, a local high order approximant based on 2-node elements and

integrated RBFs (IRBFs) has been proposed by An-Vo et al. (2011a). It was

shown that such elements lead to a C2-continuous solution rather than the usual

C0-continuous solution.

In this chapter, we develop a high-order ADI method based on C2-continuous

2-node IRBFEs (An-Vo et al. 2011a) for solving the N-S equations in the form

of streamfunction-vorticity formulation, discretised by Cartesian grids. Unlike

finite difference methods, the proposed method can guarantee inter-element

continuity of derivatives of the streamfunction and vorticity of orders up to 2.

2-node IRBFEs are used for the discretisation of the diffusion terms, and then

the convection terms are incorporated into system matrices by treating nodal

first-derivatives as unknowns. By treating the convection terms as unknowns,



4.2 Two-node IRBFEs 100

we obtain matrices on grid lines that are always diagonally dominant. The

matrix of each η-grid line includes 2Nη equations for Nη grid points as in Adam

(1976) without the need of implicit elimination. It is noted that in Adam

(1976), one has 6 nonzero entries for the governing equation and 5 nonzero

entries for the equation of first-derivatives at a grid point. It will be shown later

that the proposed C2-continuous ADI method yields 4 nonzero entries for the

governing equation and 6 nonzero entries for the equation of first-derivatives

(by imposing C2-continuity condition) at a grid point. Several viscous flows

defined on rectangular and non-rectangular domains are considered to verify

the proposed method in terms of computational cost and numerical accuracy

on a wide range of Reynolds number.

The remainder of the chapter is organised as follows. A brief review of integrated

RBF elements is given in Section 4.2. Section 4.3 describes the proposed C2-

continuous ADI method for the streamfunction-vorticity formulation. In Section

4.4, viscous flows in square and triangular cavities are presented to demonstrate

the attractiveness of the present method. Section 4.5 concludes the chapter.

4.2 Two-node IRBFEs

In the present chapter, expressions (3.11)-(3.13) are employed as the interior

element approximations. For convenience, in the case of η ≡ x, we denote

µi =
∂2ϕi(x1)

∂x2
, (4.3)

νi =
∂2ϕi(x2)

∂x2
, (4.4)
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and in the case of η ≡ y,

θi =
∂2ϕi(y1)

∂y2
, (4.5)

ϑi =
∂2ϕi(y2)

∂y2
, (4.6)

where i ∈ {1, 2, 3, 4}.

The semi-interior element IRBFE-D1 via expressions (3.14)-(3.16) is employed

at Dirichlet boundary. For Neumann boundary conditions such as given surface

traction or boundary pressure, other types of semi-interior elements have been

proposed in Chapter 2 to which the reader is referred for details.

PW E

S

N

x

y

Figure 4.1: A grid point P and its neighbouring points on a Cartesian grid.

4.3 Derivation of C2-continuous ADI method

4.3.1 ADI scheme for N-S equations on a Cartesian grid

Consider a grid point P and its east, west, north and south neighbouring nodes

denoted as E, W , N and S, respectively (Figure 4.1). Collocating (4.1) and
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(4.2) at P , one obtains

∂2ψP
∂x2

+
∂2ψP
∂y2

+ ωP = 0, (4.7)

∂ωP
∂t

+
∂2ωP
∂x2

+
∂2ωP
∂y2

= Re

(
∂ψP
∂y

∂ωP
∂x

− ∂ψP
∂x

∂ωP
∂y

)
. (4.8)

We now employ the ADI (Alternating Direction Implicit) procedure (Peaceman

and Rachford 1955, Douglas and Gunn 1964) to relax the time derivative term

in (4.8) in two stages. At a time instant tn, (4.22) and (4.8) become

∂2ψnP
∂x2

+
∂2ψnP
∂y2

+ ωn−1
P = 0, (4.9)

ω
n−1/2
P − ωn−1

P

∆t/2
+
∂2ω

n−1/2
P

∂x2
+
∂2ωn−1

P

∂y2
= Re

(
∂ψnP
∂y

∂ω
n−1/2
P

∂x
− ∂ψnP

∂x

∂ωn−1
P

∂y

)
,

(4.10)

ωnP − ω
n−1/2
P

∆t/2
+
∂2ω

n−1/2
P

∂x2
+
∂2ωnP
∂y2

= Re

(
∂ψnP
∂y

∂ω
n−1/2
P

∂x
− ∂ψnP

∂x

∂ωnP
∂y

)
.

(4.11)

It can be seen that in the first stage, i.e. (4.10), ∂2ω
n−1/2
P /∂x2 and ∂ω

n−1/2
P /∂x

are treated implicitly and ∂2ωnP/∂y
2 and ∂ωnP/∂y are treated implicitly in the

second stage, i.e. (4.11). These derivatives and the second-order derivatives of

streamfunction in (4.9) are typically approximated by a second-order CD scheme

(e.g. Benjamin and Denny 1979), or HOC implicit schemes (e.g. Collatz 1960,

Hirsh 1975, Adam 1976, Tian and Ge 2003). For instance in the x-direction,

one has

∂ω
n−1/2
P

∂x
=
ω
n−1/2
E − ω

n−1/2
W

2h
+O(h2), (4.12)

∂2ω
n−1/2
P

∂x2
=
ω
n−1/2
E − 2ω

n−1/2
P + ω

n−1/2
W

h2
+O(h2), (4.13)

∂2ψnP
∂x2

=
ψnE − 2ψnP + ψnW

h2
+O(h2), (4.14)
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or

1

6

∂ω
n−1/2
W

∂x
+

2

3

∂ω
n−1/2
P

∂x
+

1

6

∂ω
n−1/2
E

∂x
=
ω
n−1/2
E − ω

n−1/2
W

2h
+O(h4),

(4.15)

1

12

∂2ω
n−1/2
W

∂x2
+

10

12

∂2ω
n−1/2
P

∂x2
+

1

12

∂2ω
n−1/2
E

∂x2
=
ω
n−1/2
E − 2ω

n−1/2
P + ω

n−1/2
W

h2
+O(h4),

(4.16)

1

12

∂2ψnW
∂x2

+
10

12

∂2ψnP
∂x2

+
1

12

∂2ψnE
∂x2

=
ψnE − 2ψnP + ψnW

h2
+O(h4).

(4.17)

In (4.12), (4.13) and (4.14) the derivatives are explicitly given in term of nodal

values of the field variable while one has to solve tridiagonal systems to obtain

the derivative values in (4.15), (4.16) and (4.17). If one makes use of (4.12)

or (4.15) to approximate the convection term of (4.10), the obtained system

matrix might not be diagonally dominant at high values of the Re. As a result,

they suffer from the so-called cell Reynolds number limitation (e.g. Khosla

and Rubin 1974). Similar discussions can be made for equation (4.11) in the

y-direction.

4.3.2 Proposed C2-continuous IRBFE-ADI method

As in Figure 4.1, one can form four two-node IRBFEs associated with P , namely

WP , PE, SP and PN , assumed to be interior elements. To approximate

∂2ψnP/∂x
2 and ∂2ω

n−1/2
P /∂x2, ∂2ψnP/∂y

2 and ∂2ωnP/∂y
2 via (3.13), we propose

to use the elements WP , SP , respectively, with abbreviations (4.4) and (4.6),
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∂2ψnP
∂x2

= ν1ψ
n
W + ν2ψ

n
P + ν3

∂ψnW
∂x

+ ν4
∂ψnP
∂x

, (4.18)

∂2ω
n−1/2
P

∂x2
= ν1ω

n−1/2
W + ν2ω

n−1/2
P + ν3

∂ω
n−1/2
W

∂x
+ ν4

∂ω
n−1/2
P

∂x
, (4.19)

∂2ψnP
∂y2

= ϑ1ψ
n
S + ϑ2ψ

n
P + ϑ3

∂ψnS
∂y

+ ϑ4
∂ψnP
∂y

, (4.20)

∂2ωnP
∂y2

= ϑ1ω
n
S + ϑ2ω

n
P + ϑ3

∂ωnS
∂y

+ ϑ4
∂ωnP
∂y

. (4.21)

It will be shown later that C2-continuous conditions are imposed at P in both

x- and y-directions. As a result, either element WP or PE can be used to

give approximations of ∂2ψnP /∂x
2 and ∂2ω

n−1/2
P /∂x2. Similarly, either element

SP or PN can be used to give approximations of ∂2ψnP/∂y
2 and ∂2ωnP/∂y

2.

Substituting (4.18) and (4.20) into (4.9), (4.19) into (4.10), and (4.21) into

(4.11), we have

ν1ψ
n
W + ϑ1ψ

n
S + (ν2 + ϑ2)ψ

n
P + ν3

∂ψnW
∂x

+ ϑ3
∂ψnS
∂y

+ ν4
∂ψnP
∂x

+ ϑ4
∂ψnP
∂y

=

ωn−1
P , (4.22)

ν1ω
n−1/2
W + (ν2 +

1

∆t/2
)ω

n−1/2
P + ν3

∂ω
n−1/2
W

∂x
+ (ν4 − Re

∂ψnP
∂y

)
∂ω

n−1/2
P

∂x
=

ωn−1
P

∆t/2
− ∂2ωn−1

P

∂y2
− Re

∂ψnP
∂x

∂ωn−1
P

∂y
, (4.23)

ϑ1ω
n
S + (ϑ2 +

1

∆t/2
)ωnP + ϑ3

∂ωnS
∂y

+ (ϑ4 +Re
∂ψnP
∂x

)
∂ωnP
∂y

=

ω
n−1/2
P

∆t/2
− ∂2ω

n−1/2
P

∂x2
+Re

∂ψnP
∂y

∂ω
n−1/2
P

∂x
. (4.24)

Thus, at a nodal point P in (4.22) there are three unknowns, namely ψnP ,

∂ψnP /∂x and ∂ψnP /∂y. To solve (4.22), two additional equations are needed

and devised here by imposing C2-continuous conditions at P in both x- and
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y-directions, i.e.

(
∂2ψnP
∂x2

)

L

=

(
∂2ψnP
∂x2

)

R

, (4.25)

(
∂2ψnP
∂y2

)

B

=

(
∂2ψnP
∂y2

)

T

, (4.26)

where (.)L indicates that the computation of (.) is based on the element to the

left of P , i.e. element WP, and similarly subscript R,B,T denotes the right

(PE ), bottom (SP) and top (PN ) elements. The left of equations (4.25) and

(4.26) are replaced by (4.18) and (4.20) and the right by similar expressions

obtained via (3.13), noting (4.3) and (4.5) respectively, yielding

ν1ψ
n
W + ν2ψ

n
P + ν3

∂ψnW
∂x

+ ν4
∂ψnP
∂x

= µ1ψ
n
P + µ2ψ

n
E + µ3

∂ψnP
∂x

+ µ4
∂ψnE
∂x

,

(4.27)

ϑ1ψ
n
S + ϑ2ψ

n
P + ϑ3

∂ψnS
∂y

+ ϑ4
∂ψnP
∂y

= θ1ψ
n
P + θ2ψ

n
N + θ3

∂ψnP
∂y

+ θ4
∂ψnN
∂y

.

(4.28)

At the nodal point P and for the vorticity field, in the first relaxation stage in the

x-direction, there are two unknowns in (4.23), namely ω
n−1/2
P and ∂ω

n−1/2
P /∂x

and in the second stage of relaxation in the y-direction, two unknowns in (4.24),

namely ωnP and ∂ωnP/∂y. To solve (4.23), one additional equation is needed and

also devised by imposing C2-continuity condition at P in x-direction, i.e.

(
∂2ω

n−1/2
P

∂x2

)

L

=

(
∂2ω

n−1/2
P

∂x2

)

R

. (4.29)

The left of equation (4.29) is replaced by (4.19) and the right by a similar

expression obtained via (3.13), noting (4.3), yielding

ν1ω
n−1/2
W + ν2ω

n−1/2
P + ν3

∂ω
n−1/2
W

∂x
+ ν4

∂ω
n−1/2
P

∂x
=

µ1ω
n−1/2
P + µ2ω

n−1/2
E + µ3

∂ω
n−1/2
P

∂x
+ µ4

∂ω
n−1/2
E

∂x
. (4.30)
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In a similar manner, to solve (4.24), one additional equation is created by im-

posing C2-continuity condition at P in the y-direction, i.e.

(
∂2ωnP
∂y2

)

B

=

(
∂2ωnP
∂y2

)

T

, (4.31)

The left of equation (4.31) is replaced by (4.21) and the right by a similar

expression obtained via (3.13), noting (4.5), yielding

ϑ1ω
n
S + ϑ2ω

n
P + ϑ3

∂ωnS
∂y

+ ϑ4
∂ωnP
∂y

= θ1ω
n
P + θ2ω

n
N + θ3

∂ωnP
∂y

+ θ4
∂ωnN
∂y

. (4.32)

(4.22)-(4.24), (4.27), (4.28), (4.30) and (4.32) will be slightly different at the

domain boundary where (3.16) for semi-interior elements is used instead of

(3.13). To solve for the streamfunction field we collect equations (4.22), (4.27)

and (4.28) at all nodal points which leads to a large system matrix of size

3N × 3N where N is the total number of grid points of the problem domain.

Nonetheless, this system is sparse and banded. As a result, the LU technique

is very efficient for factorisation. It is noted that the factorisation needs to be

done only once.

For the vorticity field, it can be seen from (4.23), (4.24), (4.30) and (4.32) that

there are 4 nonzero entries for the governing equations, i.e. (4.23) and (4.24),

and 6 nonzero entries for the C2-continuity conditions at the grid point P , i.e.

(4.30) and (4.32). At the first relaxation stage, collection of equations (4.23) and

(4.30) at nodal points on each and every x-grid line leads to Ny independent sets

of equations. Each set contains 2Nx equations for 2Nx unknowns associated with

an x-grid line with Nx nodes. At the second stage, collection of equations (4.24)

and (4.32) at nodal points on each and every y-grid line leads to Nx independent

sets of equations. Each set contains 2Ny equations for 2Ny unknowns associated

with a y-grid line with Ny nodes. In contrast to the direct solution approaches

in An-Vo et al. (2011a,b) where a system of 3N equations for 3N unknowns are

required, the current approach results in considerable savings in terms of both

storage and computational time. The latter is significantly reduced further when
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parallelisation is implemented to independently solve these relatively small sets

of 2Nη equations.

At high values of the Re, the fourth terms on the LHS of (4.23) and (4.24) are

dominant, which guarantees diagonally dominant system matrices. Owing to

the fact that two-node IRBFEs are used, the proposed method also leads to

very sparse systems and its solution is a C2 function across IRBFEs.

4.4 Numerical examples

The performance of the proposed C2-continuous IRBFE-ADI method is studied

through the simulation of flows in square and triangular cavities. For all nu-

merical examples presented in this study, the MQ shape parameter a is simply

chosen proportionally to the element length h by a factor β. β = 1 is used

throughout the computations. In the case of non-rectangular domains, there

may be some nodes that are too close to the boundary. If an interior node falls

within a distance of h/4 to the boundary, such a node is removed from the set

of nodal points. A steady solution is obtained with a time marching approach

starting from a computed solution at a lower Reynolds number. For the special

case of Stokes equation, the starting condition is the rest state.

The solution procedure involves the following steps

(1) Guess the initial distributions of the streamfunction and vorticity in the

case of Stokes flow. Otherwise, take the solution of a lower Reynolds number

as an initial guess.

(2) Discretise the streamfunction equation at a time instant tn (4.9) by means

of C2-continuous IRBFEs, i.e. (4.22), (4.27) and (4.28), and then apply the

LU technique to factorise the system matrix into two triangular matrices. It is

noted that the factorisation needs to be done only once.

(3) Solve (4.9) subjects to boundary conditions for the new streamfunction field.
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(4) Derive a computational boundary condition for the vorticity from the up-

dated streamfunction field.

(5) Solve for the new vorticity field in two stages by using (4.23) and (4.30),

(4.24) and (4.32) in the x- and y-direction respectively.

(6) Check to see whether the solution has reached a steady state through a

condition on convergence measure

CM(ψ) =

√
N∑
i=1

(ψi − ψ0
i )

2

√
N∑
i=1

ψ2
i

< 10−9, (4.33)

where N is the total number of grid nodes.

(7) If CM is not satisfactorily small, advance pseudo-time and repeat from step

(3). Otherwise, stop the computation and output the results.

4.4.1 Square cavity

Square cavity flow is one of the most studied cases in the literature of internal

flows. This type of flow is important firstly in its own right as a basic physical

model. Then, owing to its simple geometry and rich flow physics at different

Reynolds numbers, the problem also serves as a useful test for numerical algo-

rithms in CFD. The cavity is taken to be a unit square, with the lid sliding

from left to right at a unit velocity. The boundary conditions can be specified

as

ψ = 0, ∂ψ/∂x = 0 on x = 0, x = 1,

ψ = 0, ∂ψ/∂y = 0 on y = 0,

ψ = 0, ∂ψ/∂y = 1 on y = 1.

We take Dirichlet boundary conditions, ψ = 0, on all walls for solving (4.1).

The Neumann boundary conditions, ∂ψ/∂n (i.e. ∂ψ/∂n = ∇ψ·n̂, where n̂ is the
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outward unit vector normal to the boundary), are used to derive computational

boundary conditions for ω in solving (4.2). Making use of (4.1), the values of

ω on the boundaries are computed by

ωb = −∂
2ψb
∂x2

on x = 0, x = 1, (4.34)

ωb = −∂
2ψb
∂y2

on y = 0, y = 1. (4.35)

In computing (4.34) and (4.35), one needs to incorporate ∂ψb/∂x into ∂2ψb/∂x
2,

and ∂ψb/∂y into ∂2ψb/∂y
2, respectively. A simple technique to derive ωb in the

context of 2-node IRBFEs can be found in An-Vo et al. (2011b). It will be

briefly reproduced here for the sake of completeness. Assuming that node 1

and 2 of an IRBFE are a boundary node and an interior grid node respectively

(i.e. 1 ≡ b and 2 ≡ g). Boundary values of the vorticity are obtained by

applying (3.13) as

ωb = −∂
2ψb
∂η2

=

−
(
∂2ϕ1(ηb)

∂η2
ψb +

∂2ϕ2(ηb)

∂η2
ψg +

∂2ϕ3(ηb)

∂η2
∂ψb
∂η

+
∂2ϕ4(ηb)

∂η2
∂ψg
∂η

)
, (4.36)

where η represents x and y; ψb and ∂ψb/∂η are the Dirichlet and Neumann

boundary conditions for ψ, and ψg and ∂ψg/∂η are known values taken from

the solution of the streamfunction equation (4.1). It is noted that (i) all given

boundary conditions are imposed in an exact manner; and (ii) this technique

only requires the local values of ψ and ∂ψ/∂η at the boundary node and its

adjacent grid node to estimate the Dirichlet boundary conditions for the vor-

ticity equation (4.2). It can be seen that there are two values of u at each top

corner of the cavity making the solution singular. In the well-known paper by

Ghia et al. (1982), the flow was simulated by the finite-difference scheme and a

multigrid method using very fine grids (i.e. 129× 129 and 257× 257). The ob-

tained results are very accurate and they have been considered as a benchmark

of finite-difference methods. In the later work by Botella and Peyret (1998),
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Figure 4.2: Square cavity flow, Re = 1000, 51 × 51: convergence behaviour.
IRBFE-ADI method using a time step of 6 × 10−5 converges faster than the
CD-ADI method using a time step of 3 × 10−5. It is noted that the latter
diverges for time steps greater than 3× 10−5. CM denotes the relative norm of
the difference of the streamfunction fields between two successive time levels.

the regular and singular parts of the solution are handled by a Chebyshev col-

location and an analytic method respectively. Benchmark spectral results for

the flow at Re = 100 and Re = 1000 were reported. In the present study, the

set of 2-node IRBFEs is generated from grid lines that pass through interior

grid nodes. As a result, the set of interpolation points does not include the top

corners of the cavity and hence corner singularities do not explicitly enter the

discrete system. Simulation is carried out for a wide range of Re, namely (100,

400, 1000, 3200, 5000, 7500). Grid convergence is also studied. Results obtained

are compared with the benchmark solutions (Ghia et al. 1982 and Botella and

Peyret 1998), and with the global 1D-IRBF collocation (1D-IRBF-C) results

recently given in Mai-Duy and Tran-Cong (2011a). These comparisons aim to

assess the accuracy of the present method. To assess the efficiency and stability,

an ADI method where streamfunction and vorticity are discretised by a three-
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Figure 4.3: Square cavity flow, Re = 3200, 91 × 91, solution at Re = 1000
used as initial guess: convergence behaviour. IRBFE-ADI method using a time
step of 7 × 10−6 converges faster than the CD-ADI method using a time step
of 2 × 10−6. It is noted that the latter diverges for time steps greater than
2×10−6. CM denotes the relative norm of the difference of the streamfunction
fields between two successive time levels.

node CD is also implemented. We denote this method as CD-ADI. It is noted

that the same method of deriving computational vorticity boundary conditions

is used in both IRBFE-ADI and CD-ADI methods.

Time-stepping convergence: The convergence behaviours of IRBFE-ADI

and CD-ADI with respect to time are shown in Figures 4.2-4.4 and Table 4.1.

It can be seen that solutions converge faster and larger time steps can be used for

the present IRBFE-ADI method. The numbers of iterations are about 2.8×103

and 5.8 × 103 to reach CM < 10−9 for IRBFE-ADI and CD-ADI respectively

in the case of Re = 1000 and a grid of 51 × 51 (Figure 4.2). In the case of

Re = 3200 and a grid of 91×91 (Figure 4.3), IRBFE-ADI takes about 2.1×104

to have CM < 10−9 while CD-ADI requires about 7.4 × 104 to have the same

CM . At Re = 7500, in contrast to the IRBFE-ADI method (∆t = 1 × 10−6),
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the CD-ADI method diverges even with a smaller time step of 5×10−7 as shown

in Figure 4.4. The numbers of iterations in IRBFE-ADI method are generally

lower than in CD-ADI method, yielding shorter computational time (Table 4.1).

It is noted that the Thomas algorithm is used to solve tridiagonal systems in

CD-ADI method and CPU seconds are associated with a computer which has

3.25 GB of RAM and one Intel(R) Core(TM)2 Duo CPU of 3.0 GHz. All codes

are written in MATLABr language.

Grid-size convergence: The convergence of extrema of the vertical and hor-

izontal velocity profiles along the centrelines of the cavity with respect to grid

refinement is presented in Table 4.2. Benchmark results by Ghia et al. (1982)

and Botella and Peyret (1998) are also included for comparison purposes. It can

be seen that errors relative to the benchmark results are consistency reduced

as the grid is refined (Re = 100, 1000); and (ii) extrema values very close to

the benchmark values are obtained with relatively coarse grids (e.g. 21× 21 for

Re = 100, 41× 41 for Re = 400 and 61× 61 for Re = 1000).

Solution quality: The solution qualities of IRBFE-ADI are shown in Table

4.2 and Figures 4.5-4.10. Table 4.2 reveals that the IRBFE-ADI results are the

closest to the benchmark spectral solutions in comparison with the CD-ADI, the

benchmark finite-difference and the global 1D-IRBF-C results. Errors relative

to the benchmark spectral results are less than 1% for Re = 100 using a grid of

21×21 and for Re = 1000 using a grid of 61×61. It can be seen from Figures 4.5-

4.9 that smooth contours are obtained in the present IRBFE-ADI method for

both the streamfunction and vorticity fields at relatively coarse grids. In Figure

4.5, the IRBFE-ADI method captures the primary vortex and the bottom-right

corner eddy better than the CD-ADI method at Re = 100 and a grid of 11×11.

With the same grids, CD-ADI method yields oscillatory contours especially for

the vorticity field as shown in Figures 4.6-4.8. Converged velocity profiles at

Re = 1000 and Re = 3200 are obtained by IRBFE-ADI method with grids of

51× 51 and 91× 91, respectively, as shown in Figure 4.10.
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Table 4.1: Square cavity flow: computational times.

Re Method Grid ∆t Cycle seconds Number of cycles CPU seconds

100 CD-ADI 11x11 4.0E-3 2.7E-4 198 5.3E-2

IRBFE-ADI 11x11 4.0E-3 1.7E-4 110 1.9E-2

CD-ADI 21x21 1.0E-3 9.5E-4 413 0.393

IRBFE-ADI 21x21 1.0E-3 8.9E-4 276 0.246

400 CD-ADI 21x21 2.0E-4 9.3E-4 1144 1.066

IRFBE-ADI 21x21 4.0E-4 9.6E-4 452 0.432

CD-ADI 31x31 2.0E-4 2.1E-3 922 1.945

IRBFE-ADI 31x31 3.0E-4 2.8E-3 588 1.654

CD-ADI 41x41 2.5E-4 4.1E-3 1568 6.378

IRBFE-ADI 41x41 2.5E-4 5.8E-3 693 3.997

1000 CD-ADI 31x31 2.0E-5 2.2E-3 8884 19.853

IRBFE-ADI 31x31 6.0E-5 2.7E-3 2851 7.785

CD-ADI 41x41 2.0E-5 3.9E-3 8681 33.510

IRBFE-ADI 41x41 6.0E-5 5.4E-3 2853 15.451

CD-ADI 51x51 2.0E-5 6.6E-3 8447 55.910

IRBFE-ADI 51x51 6.0E-5 1.2E-2 2807 33.880
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Figure 4.4: Square cavity flow, Re = 7500, 131 × 131, solution at Re = 5000
used as initial guess: convergence behaviour. CD-ADI method uses a time step
of 5× 10−7 and IRBFE-ADI method uses a time step of 1× 10−6. CM denotes
the relative norm of the difference of the streamfunction fields between two
successive time levels.
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Table 4.2: Square cavity flow: extrema of the vertical and horizontal velocity
profiles along the centrelines of the cavity. % denotes percentage errors relative
to the benchmark spectral results (Botella and Peyret 1998). Results of the
global 1D-IRBF-C, FDM and Benchmark are taken from Mai-Duy and Tran-
Cong (2009b), Ghia et al. (1982) and Botella and Peyret (1998) respectively.

Re Method Grid umin % vmax % vmin %

100 CD-ADI 11x11 -0.15242 28.79 0.10823 39.73 -0.14355 43.44

IRBFE-ADI 11x11 -0.19916 6.95 0.14276 20.50 -0.18436 27.36

CD-ADI 21x21 -0.19725 7.84 0.16069 10.51 -0.22401 11.74

IRBFE-ADI 21x21 -0.21537 0.62 0.17932 0.14 -0.24960 0.78

FDM (ψ − ω) 129x129 -0.21090 1.47 0.17527 2.40 -0.24533 3.34

Benchmark -0.21404 0.17957 -0.25380

400 CD-ADI 21x21 -0.20572 0.16693 -0.25885

IRFBE-ADI 21x21 -0.29015 0.24953 -0.36327

CD-ADI 31x31 -0.27258 0.24391 -0.37199

IRBFE-ADI 31x31 -0.32166 0.29581 -0.43622

CD-ADI 41x41 -0.29689 0.26978 -0.40808

IRBFE-ADI 41x41 -0.32780 0.30305 -0.44986

FDM (ψ − ω) 129x129 -0.32726 0.30203 -0.44993

1000 CD-ADI 31x31 -0.26073 32.90 0.24723 34.41 -0.36708 30.36

1D-IRBF-C 31x31 -0.34791 10.46 0.33580 10.91 -0.46765 11.27

IRBFE-ADI 31x31 -0.33775 13.08 0.32592 13.54 -0.44434 15.70

CD-ADI 41x41 -0.30741 20.89 0.29382 22.05 -0.42451 19.46

1D-IRBF-C 41x41 -0.37122 4.47 0.35910 4.73 -0.50168 4.82

IRBFE-ADI 41x41 -0.37334 3.92 0.36193 3.98 -0.49863 5.40

CD-ADI 51x51 -0.33242 14.45 0.31932 15.29 -0.45556 13.57

1D-IRBF-C 51x51 -0.37985 2.25 0.36781 2.42 -0.51469 2.35

IRBFE-ADI 51x51 -0.38482 0.97 0.37336 0.95 -0.51831 1.66

CD-ADI 61x61 -0.34772 10.51 0.33502 11.12 -0.47488 9.90

1D-IRBF-C 61x61 -0.38366 1.26 0.37173 1.38 -0.52029 1.29

IRBFE-ADI 61x61 -0.38886 0.08 0.37719 0.07 -0.52537 0.32

FDM (ψ − ω) 129x129 -0.38289 1.46 0.37095 1.59 -0.51550 2.20

Benchmark -0.38857 0.37694 -0.52708
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CD-ADI IRBFE-ADI

Figure 4.5: Square cavity flow, Re = 100, grid = 11 × 11: streamlines. The
contour values for CD-ADI and IRBFE-ADI plots are the same.

(a) CD-ADI
ψ ω

(b) IRBFE-ADI
ψ ω

Figure 4.6: Square cavity flow, Re = 1000, grid = 51 × 51: stream and iso-
vorticity lines. The contour values are taken to be the same as those in Ghia
et al. (1982) and Sahin and Owens (2003) respectively. Note the oscillatory
behaviour near the top right corner in the case of CD-ADI method.
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(a) CD-ADI
ψ ω

(b) IRBFE-ADI
ψ ω

Figure 4.7: Square cavity flow, Re = 3200, grid = 91 × 91: stream and iso-
vorticity lines. The contour values are taken to be the same as those in Ghia
et al. (1982) and Sahin and Owens (2003) respectively. Note the oscillatory
behaviour near the top right corner in the case of CD-ADI method.
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(a) CD-ADI
ψ ω

(b) IRBFE-ADI
ψ ω

Figure 4.8: Square cavity flow, Re = 5000, grid = 111 × 111: stream and iso-
vorticity lines. The contour values are taken to be the same as those in Ghia
et al. (1982) and Sahin and Owens (2003) respectively. Note the oscillatory
behaviour near the top right corner in the case of CD-ADI method.

ψ ω

Figure 4.9: Square cavity flow, IRBFE-ADI, Re = 7500, grid = 131 × 131:
stream and iso-vorticity lines. The contour values are taken to be the same as
those in Ghia et al. (1982) and Sahin and Owens (2003) respectively.



4.4 Numerical examples 119

(a) Re = 1000, grid= 51× 51
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(b) Re = 3200, grid= 91× 91
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Figure 4.10: Square cavity flow: velocity profiles along the vertical and hori-
zontal centrelines of the cavity. [*] is Botella and Peyret (1998) and [**] is Ghia
et al. (1982).
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4.4.2 Triangular cavity

The proposed method is further verified through the simulation of steady recir-

culating flow in an equilateral triangle cavity. This is an example that presents

a severe test for structured grid-based numerical methods (Ribbens et al. 1994,

Jyotsna and Vanka 1995). Figure 4.11 shows the geometry of the triangular

cavity with the boundary conditions and the coordinate system. As in the

square cavity flow problem, no-slip boundary condition is imposed on the left

and right boundaries, while a unit horizontal velocity is prescribed on the top

boundary. Numerical studies of this problem can be categorised into struc-

tured and unstructured grid/mesh-based methods. The former includes e.g.

Ribbens et al. (1994), Li and Tang (1996), Erturk and Gokcol (2007) where a

finite difference method (FDM) was employed and the equilateral triangle had

to be transformed to a computational domain on an isosceles right triangle. In

the latter, Jyotsna and Vanka (1995) used a multigrid procedure and a control

volume formulation on triangular grids. They numerically verified interesting

features of the flow in the Stokes regime. Kohno and Bathe (2006) presented a

flow-condition-based interpolation finite element scheme on triangular meshes

to achieve solutions for high Reynolds numbers.

The imposition of boundary conditions for ω on the top is similar to that used in

the square cavity flow, i.e. (4.36). On the left and right sides, analytic formulae

for computing the vorticity boundary condition can be obtained from the general

formulae developed in Le-Cao et al. (2009) for general curved boundary. For

the present problem, such general formulae are reduced to

ωb = −
[
1 +

(
tx
ty

)2
]
∂2ψb
∂x2

, (4.37)

for a x-grid line, and

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb
∂y2

, (4.38)
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Figure 4.11: Triangular cavity flow: schematic outline of the computational
domain and boundary conditions. Note that the characteristic length is chosen
to be AD/3 to facilitate comparison with other published results (Ribbens et al.
1994, Kohno and Bathe 2006).

for a y-grid line. In (4.37) and (4.38), tx and ty are the x- and y-components

of the unit vector tangential to the boundary. The approximations in (4.37)

and (4.38) require information about ψ in one direction only and they are

constructed here by means of 2-node IRBFEs, i.e. (3.13). No exterior/fictitious

points as in Ribbens et al. (1994) are involved here.

Four Cartesian grids, namely Grid 1 (1952 interior points), Grid 2 (2680 points),

Grid 3 (3526 points) and Grid 4 (4486 points) as shown in Figure 4.12, are

employed to study the convergence of the solution. Unlike FDMs (Ribbens

et al. 1994, Li and Tang 1996, Erturk and Gokcol 2007), the present method

does not require any coordinate transformation, making modelling simple. The
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Grid 1 Grid 2

Grid 3 Grid 4

Figure 4.12: Triangular cavity flow: the computational domain is discretised by
four Cartesian grids.

flow is simulated at Re = (0, 100, 200, 500) where Re = U(H/3)/ν, U the lid

velocity and H the cavity height (i.e. length AD in Figure 4.11). An alternative

definition of Reynolds number was Res = US/ν where S is the cavity side

length. We have Res = 2
√
3Re. For example, Re = 500 here is equivalent to

Res = 1732.

Figures 4.13 and 4.14 present contour plots of the streamfunction and vorticity

fields, the stream and iso-vorticity lines look comparable to those available in

the literature (e.g. Ribbens et al. 1994, Kohno and Bathe 2006).

Figure 4.15 shows the profiles of u along the vertical centreline x = 0 and v

along the horizontal line y = 2. Results obtained in Kohno and Bathe (2006)
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 4.13: Triangular cavity flow: streamlines which are drawn using 21 equi-
spaced levels between the minimum and zero values, and 11 equi-spaced levels
between the zero and maximum values.

are also included for comparison purposes. It can be seen that the velocity

profiles obtained by Grid 1 and Grid 2 at Re = 100, and by Grid 2 and Grid

3 at Re = 200 are almost identical. The present results are in good agreement

with those by the flow-conditioned-based interpolation FEM for all values of Re.

The profiles of v near the the stagnant corner at different Reynolds numbers

also confirm the Stokes flow assumption of the flow field in this region (Moffat

1963).
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 4.14: Triangular cavity flow: iso-vorticity lines which are drawn at in-
tervals of ∆ω = 0.5 for a range of −5 ≤ ω ≤ 0.5.

4.4.3 Discussion

Comparison with other RBF techniques

To the best of our knowledge, the present two-node RBF scheme yields the

smallest RBF set ever used for constructing approximation. When compared

with other local RBF techniques, the present method results in remarkably

sparse and banded system matrices and C2-continuous solutions rather than

the usual C0-continuous solutions. C2-continuous streamfunction field leads to

smooth and highly accurate velocity field.

Unlike other conventional RBF techniques, the present technique considers both
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the field variables and their partial derivatives in Cartesian directions in the

formulation. As a result, the convection terms are naturally incorporated into

the system matrices as unknowns and diagonally dominant systems are always

guaranteed. Numerical results show that the present technique is very stable for

high Re flows without recourse to up-winding schemes. Although the present

system matrices are much larger, bigger time steps can be used and hence a

smaller number of iterations are required to obtain a steady state solution.

The computational time hence becomes competitive to those required by the

conventional techniques as shown in Table 4.1.

Comparison with other conventional discretisation techniques

In terms of geometric modelling, unlike pseudo-spectral and finite-difference

methods, the present Cartesian-grid technique can handle irregular domains

well. In contrast to finite element and finite volumes, the pre-processing here is

much more economical. Non-boundary grid points are trivially generated and

the intersections between grid lines and the domain boundary can be determined

as in a typical FE mesh generation (Thompson et al. 1999). For example,

the intersections of an x-grid line with the boundary can be found as follows.

Either an xy-plane or an xz-plane passing through the x-grid line is used and

the intersection between this plane and the boundary (a curve or curves) is

determined by analytic geometric methods. The intersection between the grid

line and the curve(s) can then be easily determined.

In terms of solution, the governing equations are collocated at nodal points

without the need for numerical integration. ADI solution strategies are conve-

niently applied to accelerate the computational process. When compared with

low-order techniques, the present technique can produce accurate results on a

relatively coarse mesh, therefore has the ability to reduce computational effort

for a given accuracy. On the other hand, with more information (first derivatives

are also involved in the interpolation) the cost to construct the approximation
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is quite higher than the standard CD scheme. In addition, the system matrix

on each grid line of the present ADI method is not as sparse as and twice the

size of those obtained by the PR-ADI method, requiring more than twice the

memory storage. However, works on optimising the proposed ADI method are

presented in Chapter 5. It is pointed out that we can approach tridiagonal

system matrices with the same size as those in PR-ADI for diffusion-convection

type equations.

4.5 Concluding remarks

We propose a C2-continuous alternating direction implicit solution method for

solving the streamfunction-vorticity formulation governing fluid flows. Nu-

merical experiments are conducted with problems on rectangular and non-

rectangular domains. The method successfully simulates the fluid flows consid-

ered in a wide range of Reynolds numbers. Attractive features of the proposed

methods include (i) simple preprocessing (Cartesian grids); (ii) a sparse system

matrix (2-node approximations); and a higher order of continuity across grid

nodes (C2-continuous elements). Numerical results show that (i) larger time

steps can be used and smaller numbers of iterations are required in comparison

with the classical CD-ADI method; and (ii) smooth solutions and high levels of

accuracy are achieved using relatively coarse grids.
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Figure 4.15: Triangular cavity flow: velocity profiles by the present method and
the flow condition-based interpolation FEM (Kohno and Bathe 2006).



Chapter 5

A C2-continuous compact

implicit method for parabolic

equations

In this chapter, novel C2-continuous compact schemes based on integrated ra-

dial basis function elements (IRBFEs) on uniform and nonuniform grids are

proposed. Integrated radial basis functions are employed to construct approx-

imations on a 2-node element. The approximations comprise nodal values and

associated basis functions of the field variable and its first derivative at the

two element extremes. Unlike previous IRBFE works, the basis functions are

obtained in close forms in the present work which helps clarify the insight of

C2-continuity conditions across two adjacent elements. Such C2-continuity con-

ditions in fact create the novel compact schemes for derivatives, including consis-

tent first and second derivative schemes on uniform grids and transformation-

free schemes on nonuniform grids. The proposed C2-continuous schemes are

applied to the discretisation of second-order parabolic equations in one- (1D)

and two-space dimensions (2D) in an implicit manner. Emphasis is placed on (i)

combinations of the schemes with the implicit elimination approach to yield op-
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timal tridiagonal system matrices on grid lines, especially for problems involving

both first and second derivatives; and (ii) better choices of the RBF-width to

yield better accuracy and rates of convergence. We verify the proposed method

with solutions of several linear problems on rectangular and non-rectangular do-

mains. We demonstrate the method with the solution of the 2D incompressible

Navier-Stokes equation using the streamfunction-vorticity formulation for the

non-linear lid-driven cavity flow problem where the obtained numerical results

are compared with benchmark results available in the literature.

5.1 Introduction

Given the values of a function at nodes generated by a Cartesian grid, the finite

difference approximations to the derivatives of the function can be expressed

as linear combinations of the given function values. For simplicity, consider

uniformly spaced nodes where the nodes are indexed by i. The independent

variable at the node is ηi = h(i − 1) for 1 ≤ i ≤ N , and the function values at

the nodes i, φi, are given. The finite difference approximations to the first and

second derivatives can be in conventional second-order forms (e.g. Pozrikidis

1997, Roache 1998), i.e.

∂φi
∂η

=
φi+1 − φi−1

2h
+O(h2), (5.1)

∂2φi
∂η2

=
φi+1 − 2φi + φi−1

h2
+O(h2), (5.2)

or compact fourth-order forms (e.g. Collatz 1960, Hirsh 1975, Lele 1992), i.e.

1

6

∂φi−1

∂η
+

2

3

∂φi
∂η

+
1

6

∂φi+1

∂η
=
φi+1 − φi−1

2h
+O(h4), (5.3)

1

12

∂2φi−1

∂η2
+

10

12

∂2φi
∂η2

+
1

12

∂2φi+1

∂η2
=
φi+1 − 2φi + φi−1

h2
+O(h4). (5.4)
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It can be seen in (5.1) and (5.2) that the derivatives are explicitly obtained from

the given function values while one has to solve tridiagonal systems to obtain

the derivatives in (5.3) and (5.4). Compared to explicit finite difference schemes,

the compact schemes are implicit and give a higher order of accuracy for the

same number of grid nodes and also provide high resolution characteristics. In

addition, compact schemes are more flexible in terms of application to complex

geometries and boundary conditions when compared to spectral methods.

In terms of solution, compact schemes typically require solving a larger number

of equations per grid node (Hirsh 1975). For problems involving only first or

second derivatives (Type 1 problems), one has to solve 2N equations for N grid

nodes in 1D and 3N equations for N grid nodes in 2D. The number of equations

increases to 3N and 5N respectively for problems involving both first and second

derivatives (Type 2 problems) such as the convection diffusion type equations.

When Type 1 problems are time dependent and solved with a Crank-Nicolson

scheme, one can easily reduce the system of equations to standard N equations

for N grid nodes in 1D by means of the implicit elimination (Adam 1976). The

resultant system matrix is in a tridiagonal form which can be solved effectively

by the Thomas algorithms. In 2D, an operator-splitting technique can be ap-

plied to factorise a 2D problem into 1D problems in Cartesian directions whose

systems are then transformed easily into standard tridiagonal forms. For Type

2 problems, to obtain the standard tridiagonal systems is not a trivial task since

there is an inconsistency where the coefficients of the first and second deriva-

tive schemes are different as shown in the left hand sides of (5.3) and (5.4),

respectively. As a result, one has to solve less-than-optimal banded matrices

(e.g. Karaa and Zhang 2004, Karaa 2007) or use a second-order scheme for

diffusion terms so that the coefficients match those of the fourth-order scheme

for convection terms (Ma et al. 2012).

Recently, there is an emerging use of radial basis functions (RBFs) to con-

struct approximations for the solution of partial differential equations (ODEs
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and PDEs) (e.g. Fasshauer 2007, Kansa 1990, Mai-Duy and Tran-Cong 2001).

Among RBFs, the Gaussian and multiquadric basis functions have potential

for achieving a spectral accuracy (e.g. Madych 1992). RBF-based approxi-

mants can be constructed through differentiation (DRBFs) (Kansa 1990) or

integration (IRBFs) (Mai-Duy and Tran-Cong 2001) using meshless scattered

nodes or Cartesian grid. In the latter context, both classical and compact forms

have been proposed. Given a stencil, compact forms have the ability to pro-

duce a higher order of accuracy than classical forms (Tolstykh and Shirobokov

2003, Wright and Fornberg 2006, Mai-Duy and Tran-Cong 2011b, An-Vo et al.

2011a,b, 2013, Mai-Duy and Tran-Cong 2013).

In An-Vo et al. (2011a), we developed local approximants based on 2-node IRBF

elements (IRBFEs) for solving second-order elliptic PDEs defined on rectangular

and non-rectangular domains in a conservative formulation. On such elements,

IRBF approximations for the field variable and its derivatives involve not only

nodal values of the field but also its first derivative at the two nodes of the

element. In this chapter, we construct new compact schemes by imposing C2-

continuous conditions across the interface between two adjacent IRBFEs on

uniform and nonuniform grids. The new compact schemes on uniform grids have

consistent first and second derivative schemes and hence are very convenient

for solving problems involving both first and second derivatives. We then apply

the schemes to the discretisation of parabolic equations with a Crank-Nicholson

time integration and the implicit elimination approach (Adam 1976) in 1D and

2D. Note that, in 2D, we adopt the ADI method (Peaceman and Rachford

1955, Douglas and Kim 2001) to split a 2D problems into 1D problems in

Cartesian directions. The proposed method yields standard tridiagonal systems

on each and every grid line in x- and then y-direction sequentially. We verify

the proposed method through the solution of some linear problems and the lid-

driven cavity flow in streamfunction-vorticity formulation where both first and

second derivatives appear in the vorticity transport equation. It will be shown

that the solutions are C2-continuous.
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The remainder of the chapter is organised as follows. In Section 5.2, we con-

struct the new compact schemes on uniform and nonuniform grids. We then

apply the schemes to parabolic equations in Section 5.3. Numerical results are

given in Section 5.4 to demonstrate the attractiveness of the present method.

Discussion is given in Section 5.5 and Section 5.6 concludes the chapter.

5.2 Proposed compact 2-node IRBF schemes

Mathematical expressions of the basis functions and their derivatives in physical

space, i.e. {ϕi(η), ∂ϕi(η)/∂η, ∂2ϕi(η)/∂η2}4i=1 in (3.11)-(3.13), can be obtained

in closed form. We present here the analytic forms for {∂2ϕi(η)/∂η2}4i=1 as

follows.

∂2ϕ1(η)

∂η2
=

−
(
Ī
(2)
1 + Ī

(2)
2

)
B2 + Ī

(2)
1 L1 + Ī

(2)
2 L2

Dh2
, (5.5)

∂2ϕ2(η)

∂η2
=

(
Ī
(2)
1 + Ī

(2)
2

)
B2 − Ī

(2)
1 L1 − Ī

(2)
2 L2

Dh2
, (5.6)

∂2ϕ3(η)

∂η2
=

(
Ī
(2)
1 + Ī

(2)
2

)
B1 − Ī

(2)
1 B2 − Ī

(2)
2 R2 − Ī

(2)
1 R1 + Ī

(2)
2 L2

Dh
, (5.7)

∂2ϕ4(η)

∂η2
=

−
(
Ī
(2)
1 + Ī

(2)
2

)
B1 − Ī

(2)
2 B2 + Ī

(2)
2 R2 + Ī

(2)
1 R1 + Ī

(2)
1 L1

Dh
, (5.8)

where

η = η1 + η̄h, 0 ≤ η̄ ≤ 1, (5.9)

Ī
(2)
1 =

I
(2)
1

h
=
√
η̄2 + β2, (5.10)

Ī
(2)
2 =

I
(2)
2

h
=
√

(η̄ − 1)2 + β2, (5.11)

R1 =
1

6

[
(1− 2β2)

√
1 + β2 − 3β2 ln(−1 +

√
1 + β2)

]
, (5.12)
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R2 =
1

6

[
(1− 2β2)

√
1 + β2 + 3β2 ln(1 +

√
1 + β2)

]
, (5.13)

L1 =
1

2

[
−
√

1 + β2 + β2 ln(−1 +
√

1 + β2)
]
, (5.14)

L2 =
1

2

[√
1 + β2 + β2 ln(1 +

√
1 + β2)

]
, (5.15)

B1 = −β
3

3
, (5.16)

B2 =
β2 ln β

2
, (5.17)

D = −B2
2 +B1 (L1 − L2) + L2R1 − L1 (R2 − L2) +B2 (R2 −R1) .

(5.18)

The results for {ϕi(η)}4i=1 and {∂ϕi(η)/∂η}4i=1 can be found in the appendix

B. It can be seen from (5.5)-(5.18) that the values of {∂2ϕi(η)/∂η2}4i=1 depend

only on β, the element length h and η̄. In special cases of η = η1 (η̄ = 0) and

η = η2 (η̄ = 1), we denote

µi =
∂2ϕi
∂η2

(η1) =
∂2ϕi
∂η2

(η̄ = 0), (5.19)

νi =
∂2ϕi
∂η2

(η2) =
∂2ϕi
∂η2

(η̄ = 1), i ∈ {1, 2, 3, 4}. (5.20)

By using (5.5)-(5.8), we can verify that

µ1 = ν2 = −µ2 = −ν1, (5.21)

µ3 = −ν4, (5.22)

µ4 = −ν3. (5.23)

ii− 1 i+ 1

η

Figure 5.1: Schematic outline of a three-point stencil.
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5.2.1 C2-continuous compact schemes on a uniform grid

Consider a three-point stencil as shown in Figure 5.1 where i = 2, 3, . . .Nη − 1,

Nη is the total number of points on an η-grid line of a Cartesian grid. We can

form two 2-node elements, i.e. [ηi−1, ηi] and [ηi, ηi+1] assumed as having the

same element length h, to approximate the second derivatives at ηi−1, ηi, and

ηi+1 via (3.13). Using element [ηi−1, ηi] with abbreviations (5.19) and (5.20) we

obtain

∂2φi−1

∂η2
= µ1φi−1 + µ2φi + µ3

∂φi−1

∂η
+ µ4

∂φi
∂η

, (5.24)

∂2φi
∂η2

= ν1φi−1 + ν2φi + ν3
∂φi−1

∂η
+ ν4

∂φi
∂η

. (5.25)

Similarly using element [ηi, ηi+1] we have

∂2φi
∂η2

= µ1φi + µ2φi+1 + µ3
∂φi
∂η

+ µ4
∂φi+1

∂η
, (5.26)

∂2φi+1

∂η2
= ν1φi + ν2φi+1 + ν3

∂φi
∂η

+ ν4
∂φi+1

∂η
. (5.27)

First derivative scheme

From (5.25) and (5.26), the C2-continuity condition at ηi gives us

ν1φi−1+ ν2φi+ ν3
∂φi−1

∂η
+ ν4

∂φi
∂η

= µ1φi+µ2φi+1+µ3
∂φi
∂η

+µ4
∂φi+1

∂η
. (5.28)

Making use of (5.21)-(5.23), equation (5.28) becomes

∂φi−1

∂η
+ 2

(
µ3

µ4

)
∂φi
∂η

+
∂φi+1

∂η
=
µ1

µ4

(φi+1 − φi−1) (5.29)

or

∂φi−1

∂η
+ 2

(
ν4
ν3

)
∂φi
∂η

+
∂φi+1

∂η
=
ν1
ν3
(φi+1 − φi−1), (5.30)
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In matrix-vector notations, equations (5.29) or (5.30) can be rewritten as

LΦ[η]
η = AΦ[η], (5.31)

where Φ[η] = [φ1, φ2, . . . , φNη ]
T which is the nodal value vector of an η-grid line,

Φ
[η]
η is the first derivative in η-direction. L and A are (Nη − 2)×Nη tridiagonal

matrices determined from equations (5.29) or (5.30). These equations are the

compact implicit forms of first derivative approximation which guarantee that

the approximation is C2-continuous across the elements.

Second derivative scheme

By adding (5.25) and (5.26) we get another form of C2-continuity condition at

ηi, i.e.

2
∂2φi
∂η2

=

(
ν1φi−1 + ν2φi + ν3

∂φi−1

∂η
+ ν4

∂φi
∂η

)
+

(
µ1φi + µ2φi+1 + µ3

∂φi
∂η

+ µ4
∂φi+1

∂η

)
.

(5.32)

Making use of (5.21)-(5.23), equation (5.32) becomes

2
∂2φi
∂η2

= µ2φi−1 + 2µ1φi + µ2φi+1 + µ4

(
∂φi+1

∂η
− ∂φi−1

∂η

)
. (5.33)

In a similar manner, adding (5.24) and (5.27) gives us

∂2φi−1

∂η2
+
∂2φi+1

∂η2
= µ1φi−1+2µ2φi+µ1φi+1+µ3

(
∂φi−1

∂η
− ∂φi+1

∂η

)
. (5.34)

Multiply (5.33) by (µ3/µ4) and add the result to (5.34), one has

∂2φi−1

∂η2
+2

(
µ3

µ4

)
∂2φi
∂η2

+
∂2φi+1

∂η2
= µ1

(
1− µ3

µ4

)
(φi−1 − 2φi+ φi+1) (5.35)
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or

∂2φi−1

∂η2
+ 2

(
ν4
ν3

)
∂2φi
∂η2

+
∂2φi+1

∂η2
= ν2

(
1− ν4

ν3

)
(φi−1 − 2φi + φi+1). (5.36)

It can be seen that equations (5.35) or (5.36) can be written in matrix-vector

notation as

LΦ[η]
ηη = BΦ[η], (5.37)

where Φ
[η]
ηη is the second derivative vector in η direction of an η-grid line. B

is a (Nη − 2) × Nη tridiagonal matrix determined from the right hand sides

of equations (5.35) or (5.36). These equations are the compact implicit forms

of second derivative approximation which ensure the C2-continuity condition

across the elements.

5.2.2 C2-continuous compact schemes on a nonuniform

grid

It is necessary to extend the above C2-continuous compact schemes, i.e. (5.29)/(5.30)

and (5.35)/(5.36), to a nonuniform distribution of grid nodes to adjust the nu-

merical solution to complex boundaries and/or regions of high gradients or

boundary layers. Consider a three-point stencil as shown in Figure 5.1 with a

nonuniform distribution of points assumed as

ηi − ηi−1 = γLh, (5.38)

ηi+1 − ηi = γRh, (5.39)

where γL and γR denote length ratios of the elements to the left and right of ηi

respectively. Applying (3.13) with similar abbreviations to (5.19) and (5.20) to
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the left element, one gets

∂2φi−1

∂η2
= (µ1)Lφi−1 + (µ2)Lφi + (µ3)L

∂φi−1

∂η
+ (µ4)L

∂φi
∂η

, (5.40)

∂2φi
∂η2

= (ν1)Lφi−1 + (ν2)Lφi + (ν3)L
∂φi−1

∂η
+ (ν4)L

∂φi
∂η

, (5.41)

and to the right element, one gets

∂2φi
∂η2

= (µ1)Rφi + (µ2)Rφi+1 + (µ3)R
∂φi
∂η

+ (µ4)R
∂φi+1

∂η
, (5.42)

∂2φi+1

∂η2
= (ν1)Rφi + (ν2)Rφi+1 + (ν3)R

∂φi
∂η

+ (ν4)R
∂φi+1

∂η
, (5.43)

where (.)L and (.)R denotes values of the basis functions associated with the

left and right elements, respectively. From (5.5)-(5.8) we have

(µ1,2)L,R =
µ1,2

γ2L,R
, (µ3,4)L,R =

µ3,4

γL,R
, (5.44)

(ν1,2)L,R =
ν1,2
γ2L,R

, (ν3,4)L,R =
ν3,4
γL,R

. (5.45)

First derivative scheme

Making use of (5.41) and (5.42) with conditions (5.45) and (5.44), respectively,

the C2-continuous condition at ηi gives us

ν1
γ2L
φi−1+

ν2
γ2L
φi+

ν3
γL

∂φi−1

∂η
+
ν4
γL

∂φi
∂η

=
µ1

γ2R
φi+

µ2

γ2R
φi+1+

µ3

γR

∂φi
∂η

+
µ4

γR

∂φi+1

∂η
. (5.46)

By using (5.21)-(5.23) and rearranging (5.46), one obtains

γR
γL

∂φi−1

∂η
+
µ3

µ4

(
1 +

γR
γL

)
∂φi
∂η

+
∂φi+1

∂η
=

1

γL

µ1

µ4

[
−γR
γL
φi−1 +

(
γR
γL

− γL
γR

)
φi +

γL
γR
φi+1

]
. (5.47)

It can be seen that (5.29) is a special case of (5.47) with γL = γR = 1.
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Second derivative scheme

Making use of (5.22) and (5.23), equations (5.40) and (5.43) give us

∂2φi−1

∂η2
+
γR
γL

∂2φi+1

∂η2
=
µ1

γ2L
φi−1 +

(
µ2

γ2L
+

ν1
γLγR

)
φi +

ν2
γLγR

φi+1

+
µ3

γL

(
∂φi−1

∂η
− ∂φi+1

∂η

)
. (5.48)

In a similar manner, (5.41) and (5.42) give us

(
1 +

γR
γL

)
∂2φi
∂η2

=
ν1
γ2L
φi−1+

(
ν2
γ2L

+
µ1

γLγR

)
φi+

µ2

γLγR
φi+1−

µ4

γL

(
∂φi−1

∂η
− ∂φi+1

∂η

)
.

(5.49)

From (5.48) and (5.49) one obtains

1

µ3

(
∂2φi−1

∂η2
+
γR
γL

∂2φi+1

∂η2

)
+

1

µ4

(
1 +

γR
γL

)
∂2φi
∂η2

=

µ1

γ2L

(
1

µ3
− 1

µ4

)[
φi−1 −

(
1 +

γL
γR

)
φi +

γL
γR
φi+1

]
(5.50)

or

∂2φi−1

∂η2
+
µ3

µ4

(
1 +

γR
γL

)
∂2φi
∂η2

+
γR
γL

∂2φi+1

∂η2
=

µ1

γ2L

(
1− µ3

µ4

)[
φi−1 −

(
1 +

γL
γR

)
φi +

γL
γR
φi+1

]
. (5.51)

When γL = γR = 1 (5.51) reduces to (5.35).

(5.47) and (5.51) give us a transformation-free compact scheme on a nonuniform

grid. Moreover, the approximations are C2-continuous.
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PW E

S

N

x

y

Figure 5.2: Schematic outline of a five-point stencil.

5.3 Application to parabolic equations

Consider the following form of parabolic equations

∂φ

∂t
=
∂2φ

∂x2
+
∂2φ

∂y2
+ f, (x, y)T ∈ Ω, (5.52)

where f is some driving function.

The problem domain Ω is embedded in a Cartesian grid. Grid points inside

the problem domain are taken to be interior nodes, while boundary nodes are

defined as the intersection of the grid lines and the boundaries. Let consider

a grid point P and its neighbouring nodes as shown in Figure 5.2. Collocat-

ing equation (5.52) at P at the time instant tn and approximating the time

derivative by a finite difference, leading to

φnP − φn−1
P

∆t
= γ

(
∂2φnP
∂x2

+
∂2φnP
∂y2

)
+(1−γ)

(
∂2φn−1

P

∂x2
+
∂2φn−1

P

∂y2

)
+fn−1+γ

P , (5.53)

where ∆t = tn − tn−1 and 0 ≤ γ ≤ 1. In the extreme cases, i.e. γ = 0 and

γ = 1, the first-order forward (fully explicit) and backward (fully implicit) Euler
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methods are obtained, respectively. We are interested in the case γ = 0.5 which

is equivalent to the Crank-Nicolson method and second-order accurate in time.

Equation (5.53) takes the form

φnP − φn−1
P

∆t
=

1

2

(
∂2φnP
∂x2

+
∂2φnP
∂y2

)
+

1

2

(
∂2φn−1

P

∂x2
+
∂2φn−1

P

∂y2

)
+ f

n−1/2
P . (5.54)

5.3.1 One-dimensional problems

Equation (5.54) reduces to

φnP − φn−1
P

∆t
=

1

2

∂2φnP
∂x2

+
1

2

∂2φn−1
P

∂x2
+ f

n−1/2
P . (5.55)

Apply equation (5.55) at nodes W and E assumed as uniform distributions to

the left and the right of P as shown in Figure 5.2, one has respectively

φnW − φn−1
W

∆t
=

1

2

∂2φnW
∂x2

+
1

2

∂2φn−1
W

∂x2
+ f

n−1/2
W , (5.56)

φnE − φn−1
E

∆t
=

1

2

∂2φnE
∂x2

+
1

2

∂2φn−1
E

∂x2
+ f

n−1/2
E . (5.57)

Multiply equation (5.55) by 2(µ3/µ4) and then add the result, (5.56) and (5.57)

together, we obtain

φnW − φn−1
W

∆t
+ 2

(
µ3

µ4

)
φnP − φn−1

P

∆t
+
φnE − φn−1

E

∆t
=

1

2

[
∂2φnW
∂x2

+ 2

(
µ3

µ4

)
∂2φnP
∂x2

+
1

2

∂2φnE
∂x2

]

+
1

2

[
∂2φn−1

W

∂x2
+ 2

(
µ3

µ4

)
∂2φn−1

P

∂x2
+

1

2

∂2φn−1
E

∂x2

]

+ f
n−1/2
W + 2

(
µ3

µ4

)
f
n−1/2
P + f

n−1/2
E . (5.58)
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Making use of (5.35) at steps n and n− 1, one obtains

φnW − φn−1
W

∆t
+ 2

(
µ3

µ4

)
φnP − φn−1

P

∆t
+
φnE − φn−1

E

∆t
=

1

2
µ1

(
1− µ3

µ4

)
(φnW − 2φnP + φnE) +

1

2
µ1

(
1− µ3

µ4

)(
φn−1
W − 2φn−1

P + φn−1
E

)

+ f
n−1/2
W + 2

(
µ3

µ4

)
f
n−1/2
P + f

n−1/2
E . (5.59)

A compact equation for φnP is obtained by rearranging (5.59) as

[
1

∆t
− 1

2
µ1

(
1− µ3

µ4

)]
φnW +

[
2

∆t

µ3

µ4

+ µ1

(
1− µ3

µ4

)]
φnP+

[
1

∆t
− 1

2
µ1

(
1− µ3

µ4

)]
φnE =

[
1

∆t
+

1

2
µ1

(
1− µ3

µ4

)]
φn−1
W +

[
2

∆t

µ3

µ4
− µ1

(
1− µ3

µ4

)]
φn−1
P +

[
1

∆t
+

1

2
µ1

(
1− µ3

µ4

)]
φn−1
E

+ f
n−1/2
W + 2

(
µ3

µ4

)
f
n−1/2
P + f

n−1/2
E . (5.60)

Equation (5.60) leads to a tridiagonal system of algebraic equations for the

problem, which can be solved efficiently with the Thomas algorithm (Fletcher

1991, Pozrikidis 1997). Equation (5.60) can be slightly different on a nonuniform

grid where (5.51) is used instead of (5.35).

Boundary treatment

It can be seen from (5.60) that Dirichlet boundary conditions are easily treated

by the present solution strategy. The Neumann boundary conditions, however,

require an additional treatment. Assuming that a Neumann condition is im-

posed at the right boundary and P is the adjacent node to the right boundary

node b. The two nodes, P and b, form an element which helps to approximate

∂2φnP/∂x
2 in (5.55). Using (3.13) with abbreviation (5.19), one has

φnP − φn−1
P

∆t
=

1

2

(
µ1φ

n
P + µ2φ

n
b + µ3

∂φnP
∂x

+ µ4
∂φnb
∂x

)
+
1

2

∂2φn−1
P

∂x2
+f

n−1/2
P . (5.61)

In a similar manner, apply equation (5.55) to the the boundary node b and
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using (3.13) with abbreviation (5.20) to approximate ∂2φnb /∂x
2, one obtains

φnb − φn−1
b

∆t
=

1

2

(
ν1φ

n
P + ν2φ

n
b + ν3

∂φnP
∂x

+ ν4
∂φnb
∂x

)
+
1

2

∂2φn−1
b

∂x2
+f

n−1/2
b . (5.62)

Divide (5.61) by µ3 and (5.62) by µ4 then adding the results together and

making use of (5.21)-(5.23), we obtain

[
1

µ3∆t
− 1

2

(
µ1

µ3

− µ1

µ4

)]
φnP +

[
1

µ4∆t
+

1

2

(
µ1

µ3

− µ1

µ4

)]
φnb =

1

µ3∆t
φn−1
P +

1

µ4∆t
φn−1
b +

1

2

(
µ4

µ3
− µ3

µ4

)
∂φnb
∂x

+
1

2µ3

∂2φn−1
P

∂x2
+

1

2µ4

∂2φn−1
b

∂x2
+

1

µ3
f
n−1/2
P

+
1

µ4
f
n−1/2
b . (5.63)

In a similar manner, if Neumann condition is at the left boundary and P is the

adjacent grid node to the left boundary node b, we have

[
1

µ4∆t
+

1

2

(
µ1

µ3
− µ1

µ4

)]
φnb +

[
1

µ3∆t
− 1

2

(
µ1

µ3
− µ1

µ4

)]
φnP =

1

µ4∆t
φn−1
b +

1

µ3∆t
φn−1
P +

1

2

(
µ3

µ4
− µ4

µ3

)
∂φnb
∂x

+
1

2µ4

∂2φn−1
b

∂x2
+

1

2µ3

∂2φn−1
P

∂x2
+

1

µ4
f
n−1/2
b

+
1

µ3

f
n−1/2
P . (5.64)

∂2φn−1
b /∂x2 can be calculated by a global 1D-IRBF approximation (Mai-Duy

and Tanner 2007). Equation (5.63) or (5.64) involves the Neumann boundary

value ∂φnb /∂x in the right hand side and together with N−2 algebraic equations

(5.60) associated with N−2 interior nodes, leads to a tridiagonal system ofN−1

equations for N − 1 unknowns. Note that the solution is C2-continuous.

5.3.2 Two-dimensional problems

We apply the ADI (Alternating-Direction Implicit) procedure (Peaceman and

Rachford 1955, Douglas and Gunn 1964) to solve equation (5.54). This proce-

dure treats the spatial derivatives in each Cartesian direction individually in a
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cyclic fashion with two half steps, i.e.

φ
n−1/2
P − φn−1

P

∆t/2
=
∂2φ

n−1/2
P

∂x2
+
∂2φn−1

P

∂y2
+ f

n−1/2
P , (5.65)

φnP − φ
n−1/2
P

∆t/2
=
∂2φ

n−1/2
P

∂x2
+
∂2φnP
∂y2

+ f
n−1/2
P , (5.66)

where the splitting error term is given by

∆t

4

∂2

∂x2
∂2

∂y2
(
φnP − φn−1

P

)
. (5.67)

It is noted that the above ADI procedure (5.65) and (5.66) can be interpreted

as a perturbation of the Crank-Nicolson time difference equation (5.54).

We now write the same form of equation (5.65) at nodes W and E assumed as

uniform distributions to P , i.e.

φ
n−1/2
W − φn−1

W

∆t/2
=
∂2φ

n−1/2
W

∂x2
+
∂2φn−1

W

∂y2
+ f

n−1/2
W , (5.68)

φ
n−1/2
E − φn−1

E

∆t/2
=
∂2φ

n−1/2
E

∂x2
+
∂2φn−1

E

∂y2
+ f

n−1/2
E . (5.69)

Multiply equation (5.65) by 2(µ3/µ4) then add the result, (5.68) and (5.69)

together one has

φ
n−1/2
W − φn−1

W

∆t/2
+ 2

(
µ3

µ4

)
φ
n−1/2
P − φn−1

P

∆t/2
+
φ
n−1/2
E − φn−1

E

∆t/2
=
∂2φ

n−1/2
W

∂x2
+

2

(
µ3

µ4

)
∂2φ

n−1/2
P

∂x2
+
∂2φ

n−1/2
E

∂x2
+
∂2φn−1

W

∂y2
+ 2

(
µ3

µ4

)
∂2φn−1

P

∂y2
+
∂2φn−1

E

∂y2

+ f
n−1/2
W + 2

(
µ3

µ4

)
f
n−1/2
P + f

n−1/2
E . (5.70)
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Making use of (5.35), equation (5.70) becomes

φ
n−1/2
W − φn−1

W

∆t/2
+ 2

(
µ3

µ4

)
φ
n−1/2
P − φn−1

P

∆t/2
+
φ
n−1/2
E − φn−1

E

∆t/2
=

µ1

(
1− µ3

µ4

)
(φ

n−1/2
W −2φ

n−1/2
P +φ

n−1/2
E )+

∂2φn−1
W

∂y2
+2

(
µ3

µ4

)
∂2φn−1

P

∂y2
+
∂2φn−1

E

∂y2

+ f
n−1/2
W + 2

(
µ3

µ4

)
f
n−1/2
P + f

n−1/2
E . (5.71)

Equation (5.71) can be rewritten as

[
1

∆t/2
− µ1

(
1− µ3

µ4

)]
φ
n−1/2
W +2

[(
µ3

µ4

)
1

∆t/2
+ µ1

(
1− µ3

µ4

)]
φ
n−1/2
P +

[
1

∆t/2
− µ1

(
1− µ3

µ4

)]
φ
n−1/2
E =

1

∆t/2
φn−1
W +2

(
µ3

µ4

)
1

∆t/2
φn−1
P +

1

∆t/2
φn−1
E

+
∂2φn−1

W

∂y2
+2

(
µ3

µ4

)
∂2φn−1

P

∂y2
+
∂2φn−1

E

∂y2
+f

n−1/2
W +2

(
µ3

µ4

)
f
n−1/2
P +f

n−1/2
E .

(5.72)

Equation (5.72) is an equation for φ
n−1/2
P in the x-direction. In a similar manner,

assume that S and N are uniformly distributed to the south and north of P ,

one can transform (5.66) into an equation for φnP in the y-direction, i.e.

[
1

∆t/2
− µ1

(
1− µ3

µ4

)]
φnS + 2

[(
µ3

µ4

)
1

∆t/2
+ µ1

(
1− µ3

µ4

)]
φnP+

[
1

∆t/2
− µ1

(
1− µ3

µ4

)]
φnN =

1

∆t/2
φ
n−1/2
S +2

(
µ3

µ4

)
1

∆t/2
φ
n−1/2
P +

1

∆t/2
φ
n−1/2
E

+
∂2φ

n−1/2
S

∂x2
+2

(
µ3

µ4

)
∂2φ

n−1/2
P

∂x2
+
∂2φ

n−1/2
N

∂x2
+f

n−1/2
S +2

(
µ3

µ4

)
f
n−1/2
P +f

n−1/2
N .

(5.73)

Equations (5.72) and (5.73) will be slightly different with nonuniform distribu-

tions of grid points where (5.51) is used instead of (5.35). Collection of equations

(5.72) or (5.73) for all nodal points on an x- or a y-grid line, respectively, leads

to a tridiagonal system which can be efficiently solved by the Thomas algorithm.

Boundary treatment
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From (5.72) and (5.73) we can see that the Dirichlet boundary conditions are

easily imposed on the system of algebraic equations on each and every grid line.

The imposition of Neumann conditions, however, need an additional treatment

similar to those in the one-dimensional case. Since the treatment is similar

between an x- and a y-grid line we present here the treatment for an x-grid line

only. If the Neumann condition is on the left boundary we have

[
1

µ4∆t/2
+

(
µ1

µ3
− µ1

µ4

)]
φ
n−1/2
b +

[
1

µ3∆t/2
−
(
µ1

µ3
− µ1

µ4

)]
φ
n−1/2
P =

1

µ4∆t/2
φn−1
b +

1

µ3∆t/2
φn−1
P +

(
µ3

µ4
− µ4

µ3

)
∂φ

n−1/2
b

∂x
+

1

µ4

∂2φn−1
b

∂y2
+

1

µ3

∂2φn−1
P

∂y2

+
1

µ4
f
n−1/2
b +

1

µ3
f
n−1/2
P , (5.74)

where b is the Neumann boundary node and P is its adjacent grid node. For

the Neumann condition on the right boundary we have

[
1

µ3∆t/2
−
(
µ1

µ3
− µ1

µ4

)]
φ
n−1/2
P +

[
1

µ4∆t/2
+

(
µ1

µ3
− µ1

µ4

)]
φ
n−1/2
b =

1

µ3∆t/2
φn−1
P +

1

µ4∆t/2
φn−1
b +

(
µ4

µ3
− µ3

µ4

)
∂φ

n−1/2
b

∂x
+

1

µ3

∂2φn−1
P

∂y2
+

1

µ4

∂2φn−1
b

∂y2

+
1

µ3
f
n−1/2
P +

1

µ4
f
n−1/2
b , (5.75)

Equations (5.74) and/or (5.75) and Nx − 2 equations (5.72) associated with

Nx − 2 interior grid nodes of an x-grid line form a system of Nx or Nx − 1

algebraic equations for Nx or Nx−1 unknowns. Similarly, we can form a system

of Ny or Ny − 1 equations on a y-grid line with Neumann boundary conditions.

5.4 Numerical examples

The proposed method is verified through the solution of linear and non-linear

problems. For all numerical examples presented in this study, the MQ shape pa-

rameter a is simply chosen proportionally to the element length h by a factor β.
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The effects of the shape parameter on the solution accuracy is thus investigated

through the parameter β.

5.4.1 Example 1: one-dimensional problem

Consider the following one-dimensional problem

∂φ

∂t
=
∂2φ

∂x2
+ sin(2πx)(cos t+ 4π2 sin t)), 0 ≤ x ≤ 1, (5.76)

with two possible sets of boundary conditions:

φ = 0 at x = 0 and x = 1 or (5.77)

φ = 0 at x = 0 and
∂φ

∂x
= 2π sin t at x = 1. (5.78)

The exact solution can be verified as φ(e)(x, t) = sin(2πx) sin t.

Calculations are conducted using several uniform grids, from 21 to 63 nodes

with an increment of 2, to study the effects of the grid size h. The time step

∆t is chosen to be 0.001.

Dirichlet boundary conditions only (5.77): Results concerning the solution ac-

curacy at t = 1, the convergence rate and the matrix condition by the classical

3-point finite difference implicit method (FDM) and the present C2-continuous

compact 2-node IRBF implicit method (C2NIRBFM) are presented in Table

5.1. For the latter, the factor β is chosen to be 231. The condition numbers

of the system matrix, denoted by cond(A), indicate that the present method is

better conditioned than the FDM. In terms of accuracy, the proposed method

converges faster. The point (grid)-wise order of accuracy is about 2 for the

FDM but can be up to 148.75 for the present method. In an average sense, the

3-point FD and the C2NIRBF solutions converge apparently as O(h2.00) and
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O(h4.90), respectively. For the 63 point grid, the error Ne(u) is 8.42× 10−4 for

FDM and 4.38 × 10−7 for the C2NIRBFM. Note that the system matrices are

tridiagonal in the two methods and hence the CPU times are fairly comparable

for a given grid size. The proposed method is therefore much more efficient

than the 3-point FD method for a given accuracy.

Figure 5.3 shows the error distributions in a wide range of β for three different

grids at a fixed time t = 1. It can be seen that there are good ranges of β values

where the solution accuracy is improved significantly and an optimal β for each

grid. Figures 5.4 and 5.5 present the accuracy of the proposed method at each

time level for the field variable and its first derivative respectively associated

with the grid N = 63. FD results are also included for comparison purpose. It

can be seen that the present method using good values of β yields much more

accurate results than the classical FD ones. With β = 231 (optimal β), about

3 orders of magnitude improvements are obtained for both the field variable

and its first derivative. The proposed C2-continuous method thus results in

high levels of accuracy for not only the field variable but also its first deriva-

tive. Moreover, the accuracy can be controlled effectively by means of the MQ

width (β). Note that the first derivative values on boundaries are estimated by

a global 1D-IRBF approximation (Mai-Duy and Tanner 2007) in the present

calculation and involved in the first derivative approximation in the interior

domain via (5.29)/(5.30). In previous IRBFE works, i.e. An-Vo et al. (2011b,

2013), semi-interior elements are employed at the boundaries and we ignore the

boundary derivative values which leads to a lower accuracy at the boundaries

compared with the interior domain. Figure 5.6 presents the first derivative error

distribution on the problem domain of the direct IRBFE method (An-Vo et al.

2011b, 2013) and the present method using a grid of N = 11 at t = 1. It can be

seen that the errors are equivalent at the boundaries and the interior domain

for the latter while the errors are high at boundary for the former. The relative

L2 errors are 3.27× 10−2 and 8.51× 10−2 for the present method and the direct

IRBFE method respectively.
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Table 5.1: One-dimensional problem, Dirichlet boundary conditions only, N =
(21, 23, . . . , 63), ∆t = 0.001: condition numbers of the system matrix and rel-
ative L2 errors of the approximate solution φ at t = 1 for various values of
h by the 3-point FD method and the present compact 2-point IRBF method
(β = 231). LCR stands for local convergence rate.

3-point FD Present compact 2-point IRBF

h cond(A) Ne(φ) LCR cond(A) Ne(φ) LCR

5.00e− 2 1.80 8.12e− 3 1.13 7.21e− 3

4.55e− 2 1.97 6.71e− 3 2.01 1.30 5.82e− 3 2.25

4.17e− 2 2.15 5.63e− 3 2.01 1.48 4.76e− 3 2.31

3.85e− 2 2.35 4.80e− 3 2.01 1.68 3.93e− 3 2.38

3.57e− 2 2.57 4.14e− 3 2.01 1.90 3.28e− 3 2.46

3.33e− 2 2.80 3.60e− 3 2.00 2.13 2.75e− 3 2.56

3.13e− 2 3.05 3.16e− 3 2.00 2.38 2.31e− 3 2.66

2.94e− 2 3.31 2.80e− 3 2.00 2.64 1.95e− 3 2.79

2.78e− 2 3.59 2.50e− 3 2.00 2.92 1.65e− 3 2.93

2.63e− 2 3.89 2.24e− 3 2.00 3.22 1.40e− 3 3.10

2.50e− 2 4.20 2.02e− 3 2.00 3.53 1.18e− 3 3.31

2.38e− 2 4.53 1.84e− 3 2.00 3.86 9.92e− 4 3.55

2.27e− 2 4.87 1.67e− 3 2.00 4.20 8.29e− 4 3.85

2.17e− 2 5.23 1.53e− 3 2.00 4.56 6.87e− 4 4.22

2.08e− 2 5.61 1.41e− 3 2.00 4.94 5.63e− 4 4.70

2.00e− 2 6.00 1.29e− 3 2.00 5.33 4.53e− 4 5.33

1.92e− 2 6.41 1.20e− 3 2.00 5.74 3.55e− 4 6.19

1.85e− 2 6.83 1.11e− 3 2.00 6.16 2.68e− 4 7.44

1.79e− 2 7.27 1.03e− 3 2.00 6.60 1.90e− 4 9.42

1.72e− 2 7.73 9.62e− 4 2.00 7.06 1.20e− 4 13.04

1.67e− 2 8.20 8.99e− 4 2.00 7.53 5.75e− 5 21.84

1.61e− 2 8.69 8.42e− 4 2.00 8.01 4.38e− 7 148.75

O(h2.00) O(h4.90)
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Figure 5.3: One-dimensional problem, Dirichlet boundary conditions only, ∆t =
0.001: Relative L2 errors of the approximation solution φ at t = 1 against the
RBF width (β) for three different grids.
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Figure 5.4: One-dimensional problem, Dirichlet boundary conditions only,
N = 63, ∆t = 0.001: Comparison of the accuracy of the field variable at
each time level between the classical Crank-Nicolson method and the present
Crank-Nicolson method. For the latter, three values of β, i.e. 210, 231 and 243,
are employed.
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Figure 5.5: One-dimensional problem, Dirichlet boundary conditions only, N =
63, ∆t = 0.001: Comparison of the accuracy of the first derivative at each
time level between the classical Crank-Nicolson method and the present Crank-
Nicolson method. For the latter, three values of β, i.e. 210, 231 and 243, are
employed.
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Figure 5.6: One-dimensional problem, Dirichlet boundary conditions only, N =
11, β = 15, ∆t = 0.001: Error distribution on the problem domain of the
present method and the direct IRBFE method (An-Vo et al. 2011b, 2013) for
the first derivative at t = 1.
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Table 5.2: One-dimensional problem, Dirichlet and Neumann boundary con-
ditions, N = (21, 23, . . . , 63), ∆t = 0.001: condition numbers of the system
matrix and relative L2 errors of the approximate solution φ at t = 1 for various
values of h by the 3-point FD method and the present compact 2-point IRBF
method (β = 231). LCR stands for local convergence rate.

3-point FD Present compact 2-point IRBF

h cond(A) Ne(φ) LCR cond(A) Ne(φ) LCR

5.00e− 2 2.22 2.85e− 2 3.51e+ 2 2.90e− 2

4.55e− 2 2.47 2.35e− 2 2.05 4.29e+ 2 2.34e− 2 2.24

4.17e− 2 2.75 1.97e− 2 2.05 5.18e+ 2 1.91e− 2 2.34

3.85e− 2 3.06 1.67e− 2 2.04 6.20e+ 2 1.57e− 2 2.40

3.57e− 2 3.39 1.44e− 2 2.04 7.34e+ 2 1.31e− 2 2.46

3.33e− 2 3.74 1.25e− 2 2.04 8.61e+ 2 1.10e− 2 2.58

3.13e− 2 4.11 1.09e− 2 2.03 1.00e+ 3 9.26e− 3 2.63

2.94e− 2 4.51 9.67e− 3 2.03 1.16e+ 3 7.81e− 3 2.82

2.78e− 2 4.93 8.61e− 3 2.03 1.33e+ 3 6.60e− 3 2.95

2.63e− 2 5.37 7.72e− 3 2.03 1.52e+ 3 5.58e− 3 3.09

2.50e− 2 5.84 6.95e− 3 2.03 1.73e+ 3 4.71e− 3 3.33

2.38e− 2 6.33 6.30e− 3 2.03 1.95e+ 3 3.95e− 3 3.57

2.27e− 2 6.84 5.73e− 3 2.02 2.20e+ 3 3.30e− 3 3.88

2.17e− 2 7.37 5.24e− 3 2.02 2.46e+ 3 2.74e− 3 4.19

2.08e− 2 7.92 4.81e− 3 2.02 2.75e+ 3 2.24e− 3 4.69

2.00e− 2 8.49 4.43e− 3 2.02 3.05e+ 3 1.80e− 3 5.34

1.92e− 2 9.09 4.09e− 3 2.02 3.38e+ 3 1.41e− 3 6.20

1.85e− 2 9.71 3.79e− 3 2.02 3.73e+ 3 1.07e− 3 7.40

1.79e− 2 10.35 3.52e− 3 2.02 4.10e+ 3 7.61e− 4 9.37

1.72e− 2 11.00 3.28e− 3 2.02 4.50e+ 3 4.82e− 4 12.99

1.67e− 2 11.68 3.06e− 3 2.02 4.93e+ 3 2.32e− 4 21.55

1.61e− 2 12.39 2.87e− 3 2.02 5.37e+ 3 5.98e− 6 111.62

O(h2.03) O(h4.67)
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Figure 5.7: One-dimensional problem, Dirichlet and Neumann boundary condi-
tions, N = 63, ∆t = 0.001: Comparison of the accuracy of the field variable at
each time level between the classical Crank-Nicolson method and the present
Crank-Nicolson method. For the latter, three values of β, i.e. 210, 231 and 243,
are employed.

Dirichlet and Neumann boundary conditions (5.78): Table 5.2 presents results

regarding the solution accuracy at t = 1, the convergence rate and the matrix

condition of the FDM and the present method (using β = 231). It can be seen

that the matrix condition numbers of the present method are quite higher than

those of the classical FD method. In terms of accuracy, faster convergence is

obtained. The point-wise order of accuracy can be up to 111.62 in the proposed

method. The average order of accuracy is O(h4.67) which is much higher than

O(h2.03) for the FDM. For the 63 point grid, the L2 error is 2.87×10−3 for FDM

and 5.98× 10−6 for the C2NIRBFM. Note that a ghost node has to be used to

impose the Neumann boundary condition in the FDM.

Figures 5.7 and 5.8 present a comparison of the accuracy between the present

method and the classical FD one for the field variable and its first derivative at

each time level, respectively. Similar to the Dirichlet boundary conditions only

case, much more accurate results (up to 3 orders of magnitude) are obtained
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Figure 5.8: One-dimensional problem, Dirichlet and Neumann boundary condi-
tions, N = 63, ∆t = 0.001: Comparison of the accuracy of the first derivative
at each time level between the classical Crank-Nicolson method and the present
Crank-Nicolson method. For the latter, three values of β, i.e. 210, 231 and 243,
are employed.

with the present implicit method by using good values of β.

5.4.2 Example 2: rectangular domain problem

Consider equation (5.52) with 0 ≤ x, y ≤ 1 and f = sin x sin y(cos t − 2 sin t),

the exact solution to (5.52) is

φ(e)(x, y, t) = sin x sin y sin t, (5.79)

with two possible sets of boundary conditions: Dirichlet boundary conditions

only and Dirichlet and Neumann boundary conditions as discussed below.

At each half time level one needs to compute the nodal values of derivatives

at the previous half level appeared in equations (5.72) and (5.73). Boundary

values of derivatives are required for this computation. It is straightforward to
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obtain tangential and normal derivatives of φ on the boundaries by means of

the global 1D-IRBF approximation (Mai-Duy and Tanner 2007).

Dirichlet boundary conditions only: The boundary values of φ are

φ = 0 on x = 0 and y = 0,

φ = sin 1 sin y sin t on x = 1,

φ = sin x sin 1 sin t on y = 1.

Calculations are conducted using a series of grids, namely (21 × 21, 23 ×
23,. . . , 63 × 63), to study the effects of the grid size h. Table 5.3 presents

the results of convergence rates and grid-line matrix condition at t = 1 using a

time step of 0.001 by the classical ADI and the present ADI method (β = 124).

It can be seen that very low matrix condition numbers and higher convergence

rates are obtained by the latter. The point-wise order of accuracy can be up to

45.70 and the average rate of convergence is 4.10 in the present method. For

the grid of 63 × 63, the present method gives an error Ne(u) of 2.70 × 10−8

which is about 2 orders of magnitudes better compared with the error of the

classical ADI.

Figure 5.9 shows the error distribution in a wide range of β for a grid of 22×22

at a fixed time t = 0.6. It can be seen that there is a good range of β values

and an optimal β. The accuracy at each time level using the grid of 22× 22 is

presented in Figures 5.10 and 5.11 for the field variable and its first derivatives

respectively. It can be seen that the present method yields much more accurate

results than the classical one in most of the time levels by using good values of β.

At β = 180 (optimal β), more than 2 and 3 orders of magnitude improvements

are obtained for the field variable and its first derivatives respectively at t = 1.

The proposed C2-continuous ADI method thus results in high levels of accuracy

especially for the first derivatives in x- (Figure 5.11(a)) and y- (Figure 5.11(b))

directions. We can effectively control the accuracy by means of β.
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Table 5.3: Rectangular domain problem, Dirichlet boundary conditions only,
Nx×Ny = (21×21, 23×23, . . . , 63×63), ∆t = 0.001: condition numbers of the
system matrix on a grid line and relative L2 errors of the approximate solution
φ at t = 1 for various values of h by the 3-point FD method and the present
compact 2-point IRBF method (β = 124). LCR stands for local convergence
rate.

Classical ADI Present ADI

h cond(A) Ne(φ) LCR cond(A) Ne(φ) LCR

5.00e− 2 1.80 1.29e− 5 1.13 1.16e− 5

4.55e− 2 1.97 1.08e− 5 1.94 1.30 9.43e− 6 2.19

4.17e− 2 2.15 9.08e− 6 1.95 1.49 7.75e− 6 2.25

3.85e− 2 2.35 7.77e− 6 1.95 1.69 6.43e− 6 2.33

3.57e− 2 2.57 6.72e− 6 1.96 1.90 5.38e− 6 2.41

3.33e− 2 2.80 5.87e− 6 1.96 2.13 4.53e− 6 2.50

3.13e− 2 3.05 5.17e− 6 1.96 2.38 3.83e− 6 2.61

2.94e− 2 3.31 4.59e− 6 1.97 2.65 3.24e− 6 2.73

2.78e− 2 3.59 4.10e− 6 1.97 2.93 2.75e− 6 2.87

2.63e− 2 3.89 3.69e− 6 1.97 3.22 2.33e− 6 3.04

2.50e− 2 4.20 3.33e− 6 1.97 3.53 1.98e− 6 3.24

2.38e− 2 4.53 3.02e− 6 1.98 3.86 1.67e− 6 3.47

2.27e− 2 4.87 2.76e− 6 1.98 4.21 1.40e− 6 3.76

2.17e− 2 5.23 2.53e− 6 1.98 4.57 1.17e− 6 4.12

2.08e− 2 5.61 2.32e− 6 1.98 4.94 9.61e− 7 4.57

2.00e− 2 6.00 2.14e− 6 1.99 5.33 7.78e− 7 5.15

1.92e− 2 6.41 1.98e− 6 1.99 5.74 6.16e− 7 5.95

1.85e− 2 6.83 1.84e− 6 1.99 6.17 4.72e− 7 7.08

1.79e− 2 7.27 1.71e− 6 1.99 6.61 3.42e− 7 8.82

1.72e− 2 7.73 1.59e− 6 1.99 7.06 2.26e− 7 11.85

1.67e− 2 8.20 1.49e− 6 2.00 7.53 1.21e− 7 18.46

1.61e− 2 8.69 1.39e− 6 2.00 8.02 2.70e− 8 45.70

O(h1.97) O(h4.10)
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Figure 5.9: Rectangular domain problem, Dirichlet boundary conditions only,
Nx×Ny = 22× 22, ∆t = 0.001: Relative L2 errors of the approximate solution
φ at t = 0.6 against the RBF width (β).
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Figure 5.10: Rectangular domain problem, Dirichlet boundary conditions only,
Nx × Ny = 22 × 22, ∆t = 0.001: Comparison of the accuracy of the field
variable at each time level between the classical ADI method and the present
ADI method. For the latter, three values of β, i.e. 170, 180 and 190, are
employed.
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Figure 5.11: Rectangular domain problem, Dirichlet boundary conditions only,
Nx × Ny = 22 × 22, ∆t = 0.001: Comparison of the accuracy of the first
derivatives at each time level between the classical ADI method and the present
ADI method. For the latter, three values of β, i.e. 170, 180 and 190, are
employed.
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Figure 5.12: Rectangular domain problem, Dirichlet and Neumann boundary
conditions, Nx × Ny = 22 × 22, ∆t = 0.001: Comparison of the accuracy of
the field variable at each time level between the classical ADI method and the
present ADI method. For the latter, three values of β, i.e. 170, 180 and 190,
are employed.
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Figure 5.13: Rectangular domain problem, Dirichlet and Neumann boundary
conditions, Nx ×Ny = 22× 22, ∆t = 0.001: Comparison of the accuracy of the
first derivatives at each time level between the classical ADI method and the
present ADI method. For the latter, three values of β, i.e. 170, 180 and 190,
are employed.

Dirichlet and Neumann boundary conditions: We choose to impose the Dirichlet

conditions φ = 0 and φ = sin x sin 1 sin t at y = 0 and y = 1, respectively, and

the Neumann conditions ∂φ/∂x = sin y sin t and ∂φ/∂x = cos 1 sin y sin t at

x = 0 and x = 1, respectively. Figures 5.12 and 5.13 present a comparison of

the accuracy between the present method and the classical ADI for the field

variable and its first derivatives at different time levels using a grid of 22× 22.

Much more accurate results are obtained at all time levels using good β values.

At β = 180 and t = 1, about 3 orders of magnitude improvements are obtained

for both the field variable and its first derivatives.

5.4.3 Example 3: circular domain problem

Consider equation (5.52) with

f = sin(2πx) sinh(2y)
[
cos t+ 4 sin t(π2 − 1)

]
+

cosh(4x) cos(4πy)
[
cos t+ 16 sin t(π2 − 1)

]
,
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Figure 5.14: Circular domain problem: Geometry and discretisation. Boundary
nodes denoted by ◦ are generated by the intersection of the grid lines and the
boundary.

on a circular domain of radius 1/2. The domain centre is located at the origin

as shown in Figure 5.14. The exact solution is

φ(e)(x, y, t) = [sin(2πx) sinh(2y) + cosh(4x) cos(4y)] sin t, (5.80)

from which the boundary conditions for φ are easily derived. Figure 5.15 shows

the exact solution at a time instant t = π/8 over an extended domain −1/2 ≤
x, y ≤ 1/2.

In estimation of the right hand sides of (5.72) and (5.73), the boundary deriva-

tive values of φ in grid-line directions are obtained by 1D-IRBF approximation

(Mai-Duy and Tanner 2007). The boundary values of normal derivative to the
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Figure 5.15: Circular domain problem: Exact solution over an extended domain.

grid-line directions are obtained by 1D-IRBF extrapolation. We employ the

nonuniform grid scheme, i.e. (5.51), for the stencils at the boundaries while the

uniform grid scheme, i.e. (5.35), is employed at interior stencils.

Calculation are carried out with grids of (21×21, 23×23, . . . , 51×51) to study

the grid size convergence. Table 5.4 presents the results of convergence rates and

the maximum grid-line matrix condition at t = 0.05 using a time step of 0.001

and β = 330 by the present ADI method. It can be seen that very low matrix

condition numbers and high average convergence rate of 4.23 are obtained. The

accuracies at each time level of the last three grids, i.e. (47 × 47, 49× 49, and

51× 51), are present in Figure 5.16. It can be seen that the solutions converge

well as the grids are refined.

Figure 5.17 displays a contour plot of the present ADI method solution using a

grid of 141× 141 and β = 25 at t = 1 where smooth contours are obtained.
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Table 5.4: Circular domain problem, Nx×Ny = (21× 21, 23× 23, . . . , 51× 51),
∆t = 0.001: maximum condition numbers of the system matrix on a grid line
and relative L2 errors of the approximate solution φ at t = 0.05 for various
values of h by the present compact 2-point IRBF method (β = 330). LCR
stands for local convergence rate.

h cond(A)max Ne(φ) LCR

5.00e− 2 1.41e+ 1 2.01e− 2

4.55e− 2 8.01e+ 0 1.57e− 2 2.56

4.17e− 2 5.34e+ 0 1.29e− 2 2.29

3.85e− 2 8.72e+ 0 1.05e− 2 2.58

3.57e− 2 7.62e+ 1 8.19e− 3 3.31

3.33e− 2 2.82e+ 1 6.80e− 3 2.68

3.13e− 2 1.78e+ 1 5.51e− 3 3.26

2.94e− 2 3.55e+ 2 2.85e− 2 -27.11

2.78e− 2 5.02e+ 1 3.56e− 3 36.41

2.63e− 2 1.18e+ 2 4.13e− 3 2.77

2.50e− 2 1.43e+ 2 2.19e− 3 12.41

2.38e− 2 6.72e+ 1 1.64e− 3 5.86

2.27e− 2 3.74e+ 2 1.12e− 3 8.26

2.17e− 2 4.77e+ 1 7.65e− 4 8.56

2.08e− 2 4.75e+ 1 4.55e− 4 12.21

2.00e− 2 3.73e+ 1 2.95e− 4 10.60

O(h4.23)



5.4 Numerical examples 162

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−4

10
−3

10
−2

10
−1

 

 

47x47

49x49

51x51

t

N
e(
φ
)

Figure 5.16: Circular domain problem, ∆t = 0.001, β = 330: The accuracy at
each time level by the present ADI method using three grids.

Figure 5.17: Circular domain problem, Nx × Ny = 141 × 141, ∆t = 0.001,
β = 25: Contour plot of the present ADI method solution at t = 1.
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5.4.4 Example 4: a non-linear problem

An example of a non-linear parabolic problem here is the vorticity transport

equation in the Navier-Stokes equations of the form

−ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (5.81)

∂ω

∂t
=
∂2ω

∂x2
+
∂2ω

∂y2
−Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
, (5.82)

where ψ is the streamfunction, ω the vorticity, Re the Reynolds number. The

velocity components u and v in x- and y-directions, respectively, are defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5.83)

We will solve (5.81) and (5.82) to obtain the structure of the steady flow in a

lid-driven cavity which is a very useful benchmark problem for the validation of

new numerical methods in CFD. The cavity is taken to be a unit square, with

the lid sliding from left to right at a unit velocity. The boundary conditions

can be specified as

ψ = 0, ∂ψ/∂x = 0, x = 0, x = 1,

ψ = 0, ∂ψ/∂y = 0, y = 0,

ψ = 0, ∂ψ/∂y = 1, y = 1.

It can be seen that the velocity field is singular at the two top corners of the

cavity. In an early paper by Ghia et al. (1982), the flow was simulated by a

multigrid finite-difference method using very fine grids (i.e. 129×129 and 257×
257). The obtained results are very accurate and widely cited in the literature

for comparison purposes. In a later work by Botella and Peyret (1998), the

regular and sigular parts of the solution are handled by a Chebyshev collocation

and an analytic method respectively. Benchmark spectral results were reported

for the flow at Re = 100 and Re = 1000.
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In this study, we propose two separate procedures to discretise equations (5.81)

and (5.82). Consider a grid point P and its neighboring nodes as shown in

Figure 5.2. Collocating equations (5.81) and (5.82) at P we get

−ωP =
∂2ψP
∂x2

+
∂2ψP
∂y2

, (5.84)

∂ωP
∂t

=
∂2ωP
∂x2

+
∂2ωP
∂y2

− Re

(
∂ψP
∂y

∂ωP
∂x

− ∂ψP
∂x

∂ωP
∂y

)
. (5.85)

Streamfunction equation procedure: At a time step n, (5.84) becomes

−ωn−1
P =

∂2ψnP
∂x2

+
∂2ψnP
∂y2

. (5.86)

As in Figure 5.2, ∂2ψnP /∂x
2 can be approximated by either element WP or PE

and similarly either element SP or PN can be used to give the approximation for

∂2ψnP/∂y
2 via (3.13). It will be shown later that these options will give the same

approximation for ∂2ψnP /∂x
2 and ∂2ψnP/∂y

2 since C2-continuous conditions are

imposed at P in both x- and y-directions. Assume that the elements WP and

SP are used with the abbreviation (5.20), we have

∂2ψnP
∂x2

= ν1ψ
n
W + ν2ψ

n
P + ν3

∂ψnW
∂x

+ ν4
∂ψnP
∂x

, (5.87)

∂2ψnP
∂y2

= ν1ψ
n
S + ν2ψ

n
P + ν3

∂ψnS
∂y

+ ν4
∂ψnP
∂y

. (5.88)

Substituting (5.87) and (5.88) into (5.86) results in

ν1 (ψ
n
W + ψnS)+2ν2ψ

n
P +ν3

(
∂ψnW
∂x

+
∂ψnS
∂y

)
+ν4

(
∂ψnP
∂x

+
∂ψnP
∂y

)
+ωn−1

P = 0.

(5.89)

It can be seen in (5.89) that there are three unknowns at a grid point P , namely

ψnP , ∂ψ
n
P /∂x and ∂ψnP /∂y. To solve (5.89) two more equations have to be created

at a grid point P and they are devised here by applying (5.29) (C2-continuity
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conditions) at P with η ≡ x and η ≡ y, respectively

∂ψnW
∂x

+ 2

(
µ3

µ4

)
∂ψnP
∂x

+
∂ψnE
∂x

=
µ1

µ4
(ψnE − ψnW ), (5.90)

∂ψnS
∂y

+ 2

(
µ3

µ4

)
∂ψnP
∂y

+
∂ψnN
∂y

=
µ1

µ4

(ψnN − ψnS). (5.91)

Collection of equations (5.89), (5.90) and (5.91) at (Nx − 2)× (Ny − 2) interior

grid points leads to a system of 3(Nx − 2) × (Ny − 2) algebraic equations for

3(Nx − 2)× (Ny − 2) unknowns. Unlike conventional discretisation procedures,

nodal values of first derivatives of the streamfunction in Cartesian directions

(nodal velocities) constitute a part of the solution. As a result the velocity

field is explicitly given without the need of a reconstruction step for use in the

vorticity equation (5.82). Unlike in previous IRBFE works (An-Vo et al. 2011b,

2013), the present procedure can involve not only the streamfunction values but

also its normal derivative values at the boundary.

Vorticity equation procedure: We employ the ADI procedure in (5.65) and

(5.66) to relax the time derivative in (5.85), i.e.

ω
n−1/2
P − ωn−1

P

∆t/2
=
∂2ω

n−1/2
P

∂x2
+
∂2ωn−1

P

∂y2
− Re

(
∂ψnP
∂y

∂ω
n−1/2
P

∂x
− ∂ψnP

∂x

∂ωn−1
P

∂y

)
,

(5.92)

ωnP − ω
n−1/2
P

∆t/2
=
∂2ω

n−1/2
P

∂x2
+
∂2ωnP
∂y2

− Re

(
∂ψnP
∂y

∂ω
n−1/2
P

∂x
− ∂ψnP

∂x

∂ωnP
∂y

)
.

(5.93)

Applying (5.92) at W and E give us

ω
n−1/2
W − ωn−1

W

∆t/2
=
∂2ω

n−1/2
W

∂x2
+
∂2ωn−1

W

∂y2
− Re

(
∂ψnW
∂y

∂ω
n−1/2
W

∂x
− ∂ψnW

∂x

∂ωn−1
W

∂y

)
,

(5.94)

ω
n−1/2
E − ωn−1

E

∆t/2
=
∂2ω

n−1/2
E

∂x2
+
∂2ωn−1

E

∂y2
− Re

(
∂ψnE
∂y

∂ω
n−1/2
E

∂x
− ∂ψnE

∂x

∂ωn−1
E

∂y

)
.

(5.95)
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Multiply (5.92) by 2(µ3/µ4) and then add the result, (5.94) and (5.95) together

we obtain

ω
n−1/2
W − ωn−1

W

∆t/2
+ 2

(
µ3

µ4

)
ω
n−1/2
P − ωn−1

P

∆t/2
+
ω
n−1/2
E − ωn−1

E

∆t/2
=
∂2ω

n−1/2
W

∂x2
+

2

(
µ3

µ4

)
∂2ω

n−1/2
P

∂x2
+
∂2ω

n−1/2
E

∂x2
+
∂2ωn−1

W

∂y2
+ 2

(
µ3

µ4

)
∂2ωn−1

P

∂y2
+
∂2ωn−1

E

∂y2

−Re
(
∂ψnW
∂y

∂ω
n−1/2
W

∂x
+ 2

(
µ3

µ4

)
∂ψnP
∂y

∂ω
n−1/2
P

∂x
+
∂ψnE
∂y

∂ω
n−1/2
E

∂x

)

+ Re

(
∂ψnW
∂x

∂ωn−1
W

∂y
+ 2

(
µ3

µ4

)
∂ψnP
∂x

∂ωn−1
P

∂y
+
∂ψnE
∂x

∂ωn−1
E

∂y

)
. (5.96)

Collecting equation (5.96) at all interior grid nodes of an x-grid line and using

notations in (5.31) and (5.37) we obtain

1

∆t/2
L
(
Ω[x]n−1/2 − Ω[x]n−1

)
= LΩ[x]

xx

n−1/2
+ LΩ[x]

yy

n−1−

Re
(
U[x]n ⊗ L

)
Ω[x]
x

n−1/2 − Re
(
V[x]n ⊗ L

)
Ω[x]
y

n−1
, (5.97)

where ⊗ denotes the Hadamard product (entrywise product); Ω[x], Ω
[x]
x , Ω

[x]
y ,

Ω
[x]
xx, and Ω

[x]
yy are the nodal value vector of the vorticity and its derivatives on

an x-grid line; U[x] and V[x] are (Nx − 2)×Nx tridiagonal velocity matrices on

an x-grid line constructed as follows.

U[x] =




u1 u2 u3

u2 u3 u4

. . .

. . .

. . .

uNx−2 uNx−1 uNx




, (5.98)
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V[x] =




v1 v2 v3

v2 v3 v4

. . .

. . .

. . .

vNx−2 vNx−1 vNx




. (5.99)

Making use of (5.31) and (5.37) equation (5.97) is rearranged to be

(
1

∆t/2
L−B +ReU[x]n ⊗ A

)
Ω[x]n−1/2

=
1

∆t/2
LΩ[x]n−1

+ LΩ[x]
yy

n−1−

Re
(
V[x]n ⊗ L

)
Ω[x]
y

n−1
. (5.100)

In a similar manner for (5.93) on a y-grid line we have

(
1

∆t/2
L−B +ReV[y]n ⊗A

)
Ω[y]n =

1

∆t/2
LΩ[y]n−1/2

+ LΩ[y]
xx

n−1/2−

Re
(
U[y]n ⊗ L

)
Ω[y]
x

n−1/2
. (5.101)

It can be seen that the left hand side systems in (5.100) and (5.101) are tridi-

agonal which can be efficiently solved with the Thomas algorithm. Moreover,

the convective terms are treated in an implicit manner allowing simulation of

highly non-linear flows. The values of ω on the boundaries are computed by

using (5.81)

ωb = −∂
2ψb
∂x2

, x = 0 and x = 1, (5.102)

ωb = −∂
2ψb
∂y2

, y = 0 and y = 1. (5.103)

In computing (5.102) and (5.103), one needs to incorporate ∂ψb/∂x into ∂
2ψb/∂x

2

and ∂ψb/∂y into ∂2ψb/∂y
2, respectively. A simple technique based on 2-node

IRBF scheme to derive boundary values for ω is presented here. It can be seen

that node 1 and 2 of the 2-node element can be a boundary node b or an interior

grid node g. Boundary values of the vorticity are obtained by applying (3.13),
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noting (5.19) and (5.20) as follows.

ωb = −∂
2ψb
∂η2

= −
(
µ1ψb + µ2ψg + µ3

∂ψb
∂η

+ µ4
∂ψg
∂η

)
,

x = 0 and y = 0, 1 ≡ b and 2 ≡ g; (5.104)

ωb = −∂
2ψb
∂η2

= −
(
ν1ψg + ν2ψb + ν3

∂ψg
∂η

+ ν4
∂ψb
∂η

)
,

x = 1 and y = 1, 1 ≡ g and 2 ≡ b. (5.105)

where η represents x and y; ψb and ∂ψb/∂η are the Dirichlet and Neumann

boundary conditions of ψ, and ψg and ∂ψg/∂η are the known values taken

from the solution of the streamfunction equation. It is noted that (i) all given

boundary conditions are imposed in an exact manner; and (ii) this technique

only requires the local values of ψ and ∂ψ/∂η at the boundary node and its ad-

jacent grid node to estimate the Dirichlet boundary conditions for the vorticity

equation.

We employ the proposed procedures, i.e. (5.89)-(5.91) to solve (5.81) and

(5.100)-(5.101) to solve (5.82) for a wide range of Re. The solution procedure

involves the following steps

(1) Guess the initial distributions of the streamfunction and vorticity in the

case of Stokes flow. Otherwise, take the solution of a lower Reynolds number

as an initial guess.

(2) Discretise the streamfunction equation by (5.89)-(5.91) for all interior grid

nodes and then apply the LU technique to factorise the system matrix into two

triangular matrices. It is noted that the factorisation needs to be done only

once.

(3) Solve (5.86) subjects to boundary conditions for the new streamfunction

field. Note that both the Dirichlet and Neumann conditions of the streamfunc-

tion at boundary are imposed in this step.
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(4) Estimate boundary conditions for the vorticity equation via (5.104) and

(5.105) and construct the system matrices for vorticity equation in (5.100) and

(5.101).

(5) Compute the first- and second-order derivatives of vorticity on the bound-

aries by applying the global 1D-IRBF approximations. For interior grid nodes,

the derivatives are computed by using (5.31) and (5.37). The results are used

to compute the right hand sides in (5.100) and (5.101).

(5) Solve (5.100) and (5.101) for the new vorticity field.

(6) Check to see whether the solution has reached a steady state through

CM(ψ) =

√
N∑
i=1

(ψi − ψ0
i )

2

√
N∑
i=1

ψ2
i

< 10−9, (5.106)

where N is the total number of grid nodes.

(7) If CM is not satisfactorily small, advance pseudo-time and repeat from step

(3). Otherwise, stop the computation and output the results.

Simulation is carried out for a wide range of Re, namely (100, 400, 1000, 3200,

5000, 7500) with β chosen to be 1. Grid convergence is also studied and the

numerical results are compared with those of the benchmark FD (Ghia et al.

1982) and spectral (Botella and Peyret 1998) solutions to assess the accuracy of

the present method. The performance of the present high-order ADI method is

also monitored via comparisons with a conventional ADI method where stream-

function and vorticity are discretised by a three-node central difference (CD)

scheme. We denote this method as CD-ADI. It is noted that the method of

deriving computational vorticity boundary conditions, i.e. (5.104) and (5.105),

is also used in CD-ADI method.
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Figure 5.18: Lid-driven cavity flow, Re = 1000, grid = 61 × 61, solution at
Re = 400 used as initial guess: Convergence behaviour. Present method using
a time step of 1 × 10−4 converges faster than the IRBFE-ADI method using a
time step of 5×10−5 and the explicit treatment of convection method (ETCM)
using a time step of 1× 10−5. It is noted that the IRBFE-ADI and the ETCM
diverge for the time steps greater than 5× 10−5 and 1× 10−5 respectively.

Time-stepping convergence: To show the benefits of (i) the implicit treat-

ment of convection and (ii) the involvement of boundary derivative values in

the present method, we compare the convergence behaviours with those of (i)

a method similar to the present method with an explicit treatment of convec-

tion and (ii) the IRBFE-ADI method (An-Vo et al. 2013) where semi-interior

elements are employed at the boundaries, respectively. Figure 5.18 displays the

convergence behaviours of the three methods for the case of Re = 1000 using

a grid of 61 × 61. It can be seen that solution converge faster and larger time

steps can be used for the present method. The number of iterations are about

1750, 3500 and 14200 to reach CM < 10−9 for the present method, IRBFE-ADI
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Figure 5.19: Lid-driven cavity flow, Re = 3200, grid = 91 × 91, solution at
Re = 1000 used as initial guess: Convergence behaviour. Present method
using a time step of 1 × 10−5 converges faster than the explicit treatment of
convection method (ETCM) using a time step of 1× 10−6. It is noted that the
ETCM diverges for the time steps greater than 1× 10−6.

method and the explicit treatment of convection method (ETCM), respectively.

In the case of Re = 3200 and a grid of 91×91 (Figure 5.19), the present method

using a time step of 1× 10−5 takes about 10500 to reach CM < 10−8 while the

ETCM using a time step of 1 × 10−6 requires about 69320 to reach the same

CM . The implicit treatment of convection thus allows much larger time steps

can be used and hence is much more efficient especially for highly non-linear

flows. The involvement of first derivative boundary values also help improve

the stability where larger time steps compared to those of IRBFE-ADI method

can be used.
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Table 5.5: Lid-driven cavity flow: extrema of the vertical and horizontal velocity
profiles along the centrelines of the cavity. % denotes percentage errors relative
to the benchmark spectral results (Botella and Peyret 1998). Results of the
FDM are taken from Ghia et al. (1982).

Re Method Grid umin % vmax % vmin %

100 CD-ADI 11x11 -0.15242 28.79 0.10823 39.73 -0.14355 43.44

Present 11x11 -0.21755 1.64 0.19104 6.39 -0.28096 10.70

CD-ADI 21x21 -0.19725 7.84 0.16069 10.51 -0.22401 11.74

Present 21x21 -0.21488 0.39 0.18056 0.55 -0.25323 0.22

FDM (ψ − ω) 129x129 -0.21090 1.47 0.17527 2.40 -0.24533 3.34

Benchmark -0.21404 0.17957 -0.25380

1000 CD-ADI 31x31 -0.26073 32.90 0.24723 34.41 -0.36708 30.36

Present 31x31 -0.42144 8.46 0.40478 7.39 -0.57783 9.63

CD-ADI 41x41 -0.30741 20.89 0.29382 22.05 -0.42451 19.46

Present 41x41 -0.40862 5.16 0.39505 4.80 -0.55927 6.11

CD-ADI 51x51 -0.33242 14.45 0.31932 15.29 -0.45556 13.57

Present 51x51 -0.40172 3.38 0.38888 3.17 -0.54761 3.90

CD-ADI 61x61 -0.34772 10.51 0.33502 11.12 -0.47488 9.90

Present 61x61 -0.39735 2.26 0.38491 2.11 -0.54060 2.57

CD-ADI 71x71 -0.35770 7.94 0.34528 8.40 -0.48760 7.49

Present 71x71 -0.39446 1.52 0.38219 1.39 -0.53620 1.73

CD-ADI 81x81 -0.36452 6.19 0.35228 6.54 -0.49633 5.83

Present 81x81 -0.39254 1.02 0.38035 0.90 -0.53331 1.18

CD-ADI 91x91 -0.36981 4.83 0.35772 5.10 -0.50308 4.55

Present 91x91 -0.39120 0.68 0.37905 0.56 -0.53134 0.81

CD-ADI 101x101 -0.37333 3.92 0.36134 4.14 -0.50760 3.70

Present 101x101 -0.39022 0.42 0.37808 0.30 -0.52994 0.54

CD-ADI 111x111 -0.37597 3.24 0.36405 3.42 -0.51099 3.05

Present 111x111 -0.38947 0.23 0.37738 0.12 -0.52892 0.35

CD-ADI 121x121 -0.37800 2.72 0.36613 2.87 -0.51359 2.56

Present 121x121 -0.38890 0.08 0.37684 0.03 -0.52816 0.20

FDM (ψ − ω) 129x129 -0.38289 1.46 0.37095 1.59 -0.51550 2.20

Benchmark -0.38857 0.37694 -0.52708
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Figure 5.20: Lid-driven cavity flow, Re = 1000, grid = 71×71: velocity profiles
along the vertical and horizontal centrelines. [*] is Botella and Peyret (1998).

Grid-size convergence: The convergence of extrema of the vertical and hor-

izontal velocity profiles along the centrelines of the cavity with respect to grid

refinement is presented in Table 5.5. It can be seen that (i) errors relative to

the benchmark spectral results are consistency reduced as the grid is refined;

and (ii) the present results, even at relatively coarse grids, are closer to the

benchmark spectral results than the FD ones. The errors are less than 1% for

Re = 100 using a grid of 21× 21 and for Re = 1000 using a grid of 91× 91.

Solution quality: Figure 5.20 displays velocity profiles on the vertical and hor-

izontal centrelines by benchmark spectral method (Botella and Peyret 1998),

CD-ADI and the present method. It can be seen that the profiles of the

present method are in good agreement with those of the benchmark spec-

tral method. The profiles of CD-ADI method, however, have clear deviations

from the benchmark profiles. Contour plots are presented in Figures 5.21-5.24

which look feasible when compared with those by the pseudospectral technique

(Botella and Peyret 1998) and the FDM (Ghia et al. 1982). Figure 5.21 shows

that smooth contours are obtained for both the streamfunction and vorticity

fields and the corner eddies are clearly captured with relatively coarse grids for

Re = (0, 100, 400, 1000).
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Re = 0, grid = 41× 41

Re = 100, grid = 51× 51

Re = 400, grid = 61× 61

Re = 1000, grid = 71× 71

Figure 5.21: Lid-driven cavity flow: contour plots of streamfunction (left) and
vorticity (right) for several values of Re. The iso-vorticity lines are taken as
0,±0.5,±1,±2,±3,±4,±5.
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(a) CD-ADI (b) Present

Figure 5.22: Lid-driven cavity flow, Re = 3200, grid= 91 × 91: overall stream
lines (upper figures) and a magnified view of those in the upper right corner.
The contour values for CD-ADI method and the present method plots are the
same.

At Re = 3200, there are oscillations in streamfunction (Figure 5.22) and vortic-

ity (Figure 5.23) fields obtained by the CD-ADI method with a grid of 91× 91.

Much finer grids are required in the CD-ADI method to capture properly the

flow physics at high Re. Figure 5.24 presents the contour plots of the present

method at Re = 5000 and Re = 7500 where smooth contours are obtained with

grids of 111× 111 and 131× 131, respectively.
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(a) CD-ADI (b) Present

Figure 5.23: Lid-driven cavity flow, Re = 3200, grid= 91 × 91: overall iso-
vorticity lines (upper figures) and a magnified view of those in the upper right
corner. The contour values are taken as 0,±0.5,±1,±2,±3,±4,±5.
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(a) Re = 5000, grid = 111× 111

ψ ω

(b) Re = 7500, grid = 131× 131

ψ ω

Figure 5.24: Lid-driven cavity flow: stream and iso-vorticity lines by the present
method for Re = 5000 and Re = 7500. The iso-vorticity lines are taken as
0,±0.5,±1,±2,±3,±4,±5.
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5.5 Discussion

To the best of our knowledge, the proposed compact schemes are the first closed

form MQ-based compact schemes. Their coefficients depend on the factor β and

can be considered as generalised compact finite difference schemes (at the limit

of β MQs become polynomials). The schemes on a nonuniform grid are obtained

conveniently without the need of coordinate transformation. Distinguishing

features of the proposed compact schemes on uniform grids compared to the

three-point compact FD scheme (Lele 1992) are (i) C2-continuous solutions are

guaranteed; and (ii) the consistence of the first and second derivative schemes,

i.e. (5.29)/(5.30) and (5.35)/(5.36), respectively, wherein the coefficients on

the left-hand sides are the same. The latter is very useful for solving problems

involving both first- and second-order derivatives such as the vorticity transport

equation in example 4. In such problems, the present schemes can treat the

convection terms implicitly leading to stable solutions at high Re while maintain

the efficiency of the present proposed ADI method as those in the conventional

ADI method (Peaceman and Rachford 1955), i.e. tridiagonal system matrices

are achieved on each and every grid line. In this scenario, a desirable solution

method with accuracy, stability, and efficiency is possible. It is noted that

consistent first and second derivative compact FD schemes have been proposed

recently by Ma et al. (2012). However, the accuracy of the second derivative

scheme is only second order.

5.6 Concluding remarks

Novel C2-continuous compact schemes using 2-node integrated radial basis func-

tion elements (IRBFEs) are presented and successfully applied to the linear

parabolic equations on rectangular and non-rectangular domains and the in-

compressible Navier-Stokes equation. The accuracy and stability of the pro-
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posed method are verified via the numerical examples. Attractive features of

the proposed compact implicit methods include (i) efficient tridiagonal system

matrices; and (ii) a higher order of continuity across grid nodes.



Chapter 6

RBF-based multiscale control

volume method for second order

elliptic problems with oscillatory

coefficients

Many important engineering problems have multiple-scale solutions. Thermal

conductivity of composite materials, flow in porous media, and turbulent trans-

port in high Reynolds number flows are examples of this type. Direct numeri-

cal simulations for these problems typically require extremely large amounts of

CPU time and computer memory, which may be too expensive or impossible

on the present supercomputers. In this chapter, we develop a high order com-

putational method, based on multiscale basis function approach and integrated

radial-basis-function (IRBF) approximant, for the solution of multiscale ellip-

tic problems with reduced computational cost. Unlike other methods based

on multiscale basis function approach, sets of basis and correction functions

here are obtained through C2-continuous IRBF element formulations. High

accuracy and efficiency of this method are demonstrated by several one- and
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two-dimensional examples.

6.1 Introduction

In composite materials, the presence of particles/fibres in the resin gives rise to

the multiscale fluctuations in the thermal or electrical conductivity. In porous

media, formation properties, e.g. permeability, have a very high degree of spa-

tial variability. These effects are typically captured at scales that are too fine for

direct numerical simulation. To enable the solution of these problems, a number

of advanced numerical methods have been developed. Examples include those

based on the homogenisation theory (e.g. Dykaar and Kitanidis 1992), upscal-

ing methods (e.g. McCarthy 1995) and multiscale methods (e.g. Hou and Wu

1997). The homogenisation-theory-based methods have been successfully ap-

plied for the prediction of effective properties and statistical correlation lengths

for multicomponent random media. However, restrictive assumptions on the

media, such as scale separation and periodicity, limit their range of application.

Furthermore, when dealing with problems having many separate scales, they be-

come very expensive because their computational cost increases exponentially

with the number of scales. For upscaling methods, their design principle is based

on simple physical and/or mathematical motivations. A heterogeneous medium

is replaced by a homogeneous medium characterised by equivalent properties,

and coarse scale equations are prescribed in explicit form. Although upscaling

techniques are effective, most of their applications have been reported for the

case of periodic structures. As opposed to upscaling, multiscale methods con-

sider the full problem with the original resolution. The coarse scale equations

are formed and solved numerically, where one constructs the basis functions

from the leading order homogeneous elliptic equation in coarse scale elements.

The idea of using the non-polynomial multiscale approximation space rather

than the standard piecewise polynomial space was first introduced by Babuška

et al. (1994) for one-dimensional problems and by Hou and Wu (1997), Hou
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et al. (1999) for two-dimensional elliptic problems. These methods have the

ability to capture accurately the effects of fine scale variations without the need

for using global fine meshes. Multiscale methods can be categorised into multi-

scale finite-element methods (MFEM) (e.g. Allaire and Brizzi 2005, Hou 2005),

mixed MFEM (e.g. Aarnes et al. 2005, Arbogast 2002) and multiscale finite-

volume methods (MFVM) (e.g. Chu et al. 2008, Jenny et al. 2003). Typically,

there are two different meshes used: a fine mesh for computing locally the basis

function space, and a coarse mesh for computing globally the solution of an

elliptic partial differential equation (PDE). The multiscale bases are indepen-

dent of each other and their constructions can thus be conducted in parallel. In

solving the elliptic PDE, one may only need to employ a mesh that today’s com-

puting resources can efficiently and effectively handle. For two-scale periodic

structures, Hou et al. (1999) have proved that the MFEM indeed converges to

the correct solution independent of the small scale in the homogenisation limit.

Multiscale techniques require the solutions of elliptic PDEs which are achieved

by means of discretisation schemes.

Radial-basis-function networks (RBFNs) are known as a powerful tool for the

approximation of scattered data. Their application to the solution of PDEs has

received a great deal of attention over the last 20 years (e.g. Fasshauer (2007)

and references therein). It is easy to implement RBF collocation methods and

such methods can give a high order convergence solution. RBF-based approx-

imants can be constructed through a conventional differentiation process (e.g.

Kansa 1990), or an integration process (IRBF) (e.g. Mai-Duy and Tran-Cong

2001, 2003). The latter (a smoothing operator) has several advantages over

the former, including (i) to avoid the reduction in convergence rate caused by

differentiation and (ii) to improve the numerical stability of a discrete solution.

A number of IRBF approaches, based on local approximations (Mai-Duy and

Tran-Cong 2009a), domain decompositions (Mai-Duy and Tran-Cong 2008) and

preconditioning schemes (Mai-Duy and Tran-Cong 2010b), have been presented

towards the solution of large-scale problems. Recently, a local high order ap-
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proximant based on 2-node IRBF elements (a smallest IRBF set ever used for

constructing approximants) has been proposed by An-Vo et al. (2010, 2011a).

It was shown that such IRBF elements (IRBFEs) lead to a C2-continuous so-

lution rather than the usual C0-continuous solution. IRBFEs have been suc-

cessfully incorporated into the subregion-collocation (An-Vo et al. 2011b) and

point-collocation (An-Vo et al. 2011b, 2013) formulation for simulating highly

nonlinear flows accurately and effectively. We also use IRBFEs to model strain

localisation in (An-Vo et al. 2012).

This chapter is concerned with the incorporation of IRBFEs and subregion

collocation (i.e. control volume (CV) formulation) into the non-polynomial ap-

proximation space approach for solving one- and two-dimensional multiscale

elliptic problems. Unlike other multiscale CV methods in the literature, sets of

basis and correction functions in the present RBF-based multiscale CV method

are obtained through highly accurate C2-continuous IRBFE-CV formulations.

As a result, not only the field variable but also its first derivatives are recon-

structed directly with high accuracy. This is an important issue since the first

derivatives contain information of great practical interest, such as the stress

distribution and heat flux in composite materials or the flow velocity field in

porous media.

The remainder of this chapter is organised as follows. Section 6.2 defines the

problem. Section 6.3 and 6.4 briefly review the multiscale finite element and

finite volume methods, respectively, for the problem. The proposed method

is described in Section 6.5 and numerical results are discussed in Section 6.6.

Section 6.7 concludes the chapter.
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6.2 Problem definition

We consider the following multiscale elliptic problem

−∇ · (λ∇u) = f in Ω, (6.1)

with appropriate boundary conditions. λ is a complex multiscale coefficient

tensor; f a given function. Assume that the finest scale in λ is represented by

ε.

6.3 Multiscale finite-element methods (MFEM)

Conventional discretisation techniques using piecewise polynomial approxima-

tion spaces can be applied to solve (6.1). However, it would require the mesh size

h be much smaller than the finest scale, i.e. h ≪ ε. In contrast, the multiscale

computational framework which was firstly proposed by Hou and Wu (1997),

Hou et al. (1999) uses a coarse grid of size h > ε and basis functions which

aim to adapt to the small-scale features of the oscillatory coefficient tensor λ.

The formulation of Hou and Wu (1997), Hou et al. (1999), namely the multi-

scale finite element method (MFEM), is based on a finite element framework

where both the local and global problems are solved by a linear finite element

method (LFEM). The MFEM is highly efficient and capable of capturing the

large scale solution without resolving all the small scale details. For the case of

two-scale periodic structures, it has been proved in Hou et al. (1999) that the

MFEM indeed converges to the correct solution independent of the small scale

in the homogenisation limit. However, for general cases e.g. non-periodic and

random-scale media, the convergence of MFEM is not always guaranteed. In

addition, there is an error gap between the MFEM solution and a corresponding

fine scale reference solution. This error gap typically comes from two sources:

(i) reduced problem boundary conditions for solving basis functions which is
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empirical even though an over-sampling technique has been proposed (Hou and

Wu 1997); and (ii) local homogeneous elliptic problems for basis functions. Due

to the latter the basis functions do not involve effects of the right hand side field

f . The right hand side, in a manner similar to that in the MFVM (discussed

next), is only considered in the global coarse mesh system.

6.4 Multiscale finite volume method (MFVM)

Based on the multiscale basis function approach (Hou and Wu 1997, Hou et al.

1999), Jenny et al. (2003) and Chu et al. (2008) proposed the MFVM for elliptic

problems in subsurface flow simulation. Equation (6.1) governs the pressure

field p as

−∇ · (λ∇p) = f in Ω, (6.2)

with the boundary conditions ∇p ·n = q and p(x) = g on ∂Ω1 and ∂Ω2, respec-

tively. Note that ∂Ω = ∂Ω1 ∪ ∂Ω2 is the whole boundary of the domain Ω and

n is the outward unit vector normal to ∂Ω. The mobility tensor λ (permeabil-

ity, K, divided by the fluid viscosity, µ) is positive definite and the right-hand

side f , q, and g are specified fields. The permeability heterogeneity is a dom-

inant factor in dictating the flow behavior in natural porous formations. The

heterogeneity of K is usually represented as a complex multiscale function of

space. Resolving the spatial correlation structures and capturing the variability

of permeability requires highly detailed description.

The MFVM aims to efficiently compute the approximate solution of problem

(6.2) for highly heterogeneous coefficient λ and source term f . The method

can be explained as a cell-centered finite-volume method (Jenny et al. 2003)

or a vertex-centered finite-volume method (Chu et al. 2008). We present the

latter here. A Cartesian grid of N × N is employed to represent the problem
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domain Ω (solid lines in Figure 6.1), from which I (I = (N − 2) × (N − 2))

non-overlapping control volumes Ωk associated with I interior grid points xk

(k ∈ [1, I]) are formed. This set of control volumes constitutes a grid which is

referred to as the coarse grid (dashed black lines in Figure 6.1). In addition,

let Ω̃ be a collection of J cells Ω̃l (l ∈ [1, J ], J = (N − 1) × (N − 1)) defined

by the original N × N Cartesian grid (solid lines in Figure 6.1). This set of J

cells is referred to as the dual coarse grid. Note that these two grids can be

much coarser than the underlying fine grid (dashed green lines in Figure 6.1

wherein each dual cell Ω̃l is discretised by a local fine grid of n × n) on which

the mobility field is represented. On each dual cell Ω̃l, we seek the approximate

solution p̃ of p in the form

pl ≈ p̃l =

4∑

i=1

pliφ
l
i, (6.3)

where pli and φ
l
i are the pressure value at and the basis function associated with

the node xli, respectively, of the dual coarse cell Ω̃l.

Unlike conventional discretisation methods, these basis functions {φli}4i=1 are

generated from solving the following leading order homogeneous elliptic equa-

tions on the dual coarse cell Ω̃l,

∇ · (λ∇φli) = 0 in Ω̃l. (6.4)

Boundary conditions for (6.4) are derived from the requirement that φli(x
l
j) = δij

(i, j ∈ [1, 4]) and (6.4) be well-posed problems. Jenny et al. (2003) employed

the proposition in (Hou et al. 1999) by solving reduced local one-dimensional

problems to specify the boundary conditions for (6.4). The elliptic problems

(6.4) in Ω̃l with such boundary conditions can be solved by any appropriate

numerical method. In order to obtain a solution that depends linearly on the

nodal pressures pli as in (6.3), we solve four elliptic problems, one for each nodal

pressure.
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Ω

Ωk

Ω̃l

xk

Ωk

Figure 6.1: A computational domain Ω with the coarse grid (black dashed lines)
and dual coarse grid (black solid lines); dashed and solid red lines indicate

a selected control volume Ωk and a selected dual coarse cell Ω̃l, respectively.
Shown underneath is an enlarged control volume, on which is imposed a n×n =
11 × 11 local fine grid. It can be seen that the size of global fine grid (dashed
green lines) is 41× 41.

To derive a linear system for the nodal pressure values pk, we substitute expres-

sions (6.3) for p̃ in the four dual cells associated with xk into equation (6.2) and

integrate over Ωk, which leads to

−
∫

Ωk

∇· (λ∇p̃)dΩ = −
∫

Ωk

∇·
(
λ∇
(

4∑

l=1

9∑

i=1

φlipi

))
dΩ =

∫

Ωk

fdΩ, (6.5)

where the indices l and i refer to local dual cells and local nodal points, re-

spectively, associated with xk and xk ≡ x1 as shown in Figure 6.2. Note that in

the summation
∑9

i=1 φ
l
ipi the index i of the basis functions φ

l
i only takes on the

four values relevant to Ω̃l (i.e. φli = 0 otherwise). Applying the Gauss theorem
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to equation (6.5), one obtains

−
∫

∂Ωk

(
λ∇
(

4∑

l=1

9∑

i=1

φlipi

))
·nkdΓ =

9∑

i=1

pi

4∑

l=1

∫

∂Ωk

(
−λ∇φli

)
·nkdΓ =

∫

Ωk

fdΩ,

(6.6)

where nk is the outward unit vector normal to ∂Ωk. Equations (6.6) at a nodal

point xk (k ∈ [1, I]) can be written in matrix form as

Akipi = bk (6.7)

for the nodal pressure values pk with

Aki =
4∑

l=1

∫

∂Ωk

(
−λ∇φli

)
· nkdΓ (6.8)

and

bk =

∫

Ωk

fdΩ. (6.9)

We can reconstruct the fine scale pressure p̃l in each dual coarse cell Ω̃l with

pk and the approximation (6.3). Implementing the reconstruction on the whole

problem domain Ω one obtains the fine scale pressure p̃, which is an approxi-

mation of the pressure field p. Although the MFV approach strongly resembles

the multiscale finite element method by Hou et al. (1999), i.e. the construction

of the basis functions is almost identical, the MFV is a finite-volume method

and hence conservative. In some applications such as single and multiphase

flows through porous media one is also interested in accurately representing

the small-scale velocity field. Chen and Hou (2002) provide clear evidences

that a locally conservative fine scale velocity field is a necessary requirement for

accurate modeling of fluid transport. To construct the fine scale flow field, a

straightforward way would be to use the basis functions in (6.3), but then the

reconstructed fine scale velocity field is in general discontinuous at the interfaces
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Figure 6.2: Local indices of dual cells and nodal points associated with a coarse
grid node xk and xk ≡ x1.

of the dual cells. Therefore, large errors can occur in the divergence field, and

local mass balance is violated. Jenny et al. (2003) describe how to reconstruct a

conservative fine scale velocity field through the obtained pressure field p̃. The

reader is referred to this work for more details.

The efficiency of the MFV method for large scale problems comes from the

fact that fine scale details are captured through solving local problems (6.4) on

small dual cells for basis functions. This step is a preprocessing step and has to

be done once only. Furthermore, the construction of the fine scale basis func-

tions is independent from cell to cell and therefore perfectly suited for parallel

computation.

The MFV method was firstly used for solving single-phase flow in homogeneous

and heterogenous permeability fields in Jenny et al. (2003). Jenny et al. (2004)

and Jenny et al. (2006) extended the method to time dependent problems in
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incompressible two-phase flows where the explicit and implicit time integrations

were presented respectively. Lunati and Jenny relaxed the incompressible con-

straint in Lunati and Jenny (2006a) and compressible multiphase flow models

were solved. It is important to note that until this stage of development the

MFV method basically was not designed to solve elliptic problems with complex

source terms and not appropriate to account for gravity and capillary pressure

effects. The reason is that the basis functions and their linear combinations are

solutions of local homogenous elliptic problems (6.4). The right hand side of

the governing equation (6.2) is only taken into account in the coarse grid linear

system (6.7). This led to the idea of introducing correction functions in Lunati

and Jenny (2006b, 2008). Unlike basis functions φli, correction functions plc are

the solutions of local elliptic problems on the dual cells with the right hand side

f , i.e.

∇ · (λ∇plc) = f in Ω̃l. (6.10)

At the grid nodes xk which belong to Ω̃l, we impose plc(xk) = 0. The boundary

conditions of (6.10) on the edge segments of the dual cell can be obtained in a

manner similar to those in (6.4), i.e. by solving reduced local one-dimensional

problems. It has been shown for a wide range of challenging test cases that these

reduced problem boundary conditions provide a good localisation assumption.

There exist scenarios, however, which demonstrate some limitations of these

boundary conditions. Specifically, the MFV solution with correction functions

and global fine scale reference solution pf (pf is an approximation of p on the

global fine grid) are identical only if the basis and correction functions happen

to capture the exact fine scale pressure solution on the interfaces of the dual

coarse cells , i.e.

plf =

4∑

i=1

pliφ
l
i + plc on ∂Ω̃l. (6.11)

It is desirable to approach boundary conditions for local elliptic problems via
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(6.11) instead of the reduced problem boundary conditions. Hajibeygi et al.

(2008) made it possible through an iterative framework based on a two-grid

algorithm. At a step n with an initial pressure field p̃(n), they perform several

smoothing steps on the global fine grid to obtain a temporary reference solution

p̃
(n)
s . This smoothed pressure field yields the boundary values of correction

functions on each dual cell through (6.11) with plf replaced by p̃
(n)
s , i.e.

plc = p̃l
(n)

s −
4∑

i=1

pliφ
l
i on ∂Ω̃l, (6.12)

where the boundary values of the basis functions φli on the dual cells are still

obtained from the reduced problem boundary conditions. The boundary con-

ditions (6.12) serve to solve the local problems (6.10) on the dual cells for the

correction functions at step n. Then the nodal pressures pk are obtained through

the solution of a coarse grid system (Hajibeygi et al. 2008) and a new pressure

field p̃(n+1) is constructed via

p̃l
(n+1)

=
4∑

i=1

pliφ
l
i + plc in Ω̃l. (6.13)

Again, we smooth p̃(n+1) to yield a new smoothed field p̃
(n+1)
s and repeat the

iteration until convergence. It was shown by a series of examples in Hajibeygi

et al. (2008) that this iterative MFV (iMFV) method converges to the fine scale

reference solution pf .

The iMFV method relatively maintains the efficiency of MFV method and has

the possibility to approach the accuracy of corresponding fine scale solver. This

method has been successfully applied to incompressible (Hajibeygi et al. 2008)

and compressible (Hajibeygi and Jenny 2009) multiphase flow in porous media.

Recently, it is used adaptively (Hajibeygi and Jenny 2011) and extended to

simulate multiphase flow in fractured porous media (Hajibeygi et al. 2011).
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6.5 Proposed RBF-based multiscale control vol-

ume method

In this work we are interested in a one-parameter (ε) form of the multiscale

elliptic problem (6.1), i.e.

−∇ · (aε(x)∇u(x)) = f(x) in Ω (6.14)

with the boundary conditions ∇u · n = b and u(x) = g on ∂Ω1 and ∂Ω2,

respectively. Note that ∂Ω = ∂Ω1 ∪ ∂Ω2 and n is the outward unit vector

normal to ∂Ω. aε is the coefficient tensor which is positive-definite with upper

and lower bounds and involving a small scale ε, and f, b and g are specified

fields. This elliptic problem usually arises in modeling composite materials and

porous media flows. In the case of heat conduction in composite materials, u

and a represent the temperature and thermal conductivity, respectively. In the

case of flows in porous media, u is the pressure and a is the mobility field.

For the reasons mentioned above, the MFEM is an efficient method to capture

the large scale solution but cannot produce the fine scale reference solution. In

addition, the method used in MFEM to determine the basis functions and solve

the global coarse mesh problem is a linear finite element formulation. Note that

there is an attempt to use a high-order method, e.g. the Chebyshev spectral

method, to determine the basis functions in (Hou andWu 1997, Hou et al. 1999).

They found that the accuracy of the final results is relatively insensitive to the

accuracy of the basis functions. On the other hand, as described above, though

possessing conservative property the MFVM strongly resemble the MFEM and

hence also cannot produce the fine scale reference solution. In contrast to the

MFEM and the MFVM, the iMFV method (Hajibeygi et al. 2008) can produce

the reference solution efficiently. However, a low order smoother has been used

which results in a low-order accuracy relative to the exact solution. Moreover,

like the MFVM the iMFV method requires a further reconstruction step to
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obtain a continuous velocity field for the solution of transport equations. It is

pointed out in (Chen and Hou 2002) that this is a compulsory step to accurately

solve the flow-transport-related applications, e.g. the single and multiphase

flows through porous media.

It is desirable to develop a multiscale computational framework which can pro-

duce the fine scale reference solution of elliptic problem (6.14) with high ef-

ficiency and accuracy. In the following, we propose a high-order conservative

multiscale computational framework based on 2-node IRBFEs for solving (6.14).

Unlike other multiscale computational frameworks, the proposed method can

produce fine scale reference solutions efficiently with high accuracy. Further-

more, iterative solutions which converge to C2-continuous reference solutions

are obtained in 2D problems. As a result, intrinsically continuous velocity

fields are guaranteed automatically in flow-transport-related applications with-

out the need for a reconstruction step. Because of fundamental differences, the

proposed method for 1D and 2D problems is presented independently, following

a brief review of the two-node integrated-RBF elements in our discretisation

scheme based on Cartesian grids.

6.5.1 Two-node IRBFEs

Expressions (3.11)-(3.13) are employed as interior element approximations. For

convenience, in the case of η ≡ x, we denote

µi =
∂ϕi
∂x

(
x1 + x2

2

)
, (6.15)

νi =
∂2ϕi
∂x2

(x1) , (6.16)

ζi =
∂2ϕi
∂x2

(x2) , (6.17)
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and in the case of η ≡ y,

θi =
∂ϕi
∂y

(
y1 + y2

2

)
, (6.18)

ϑi =
∂2ϕi
∂y2

(y1) , (6.19)

ξi =
∂2ϕi
∂y2

(y2) , (6.20)

where i ∈ {1, 2, 3, 4}.

The element IRBFE-D1 via expressions (3.14)-(3.16) is employed at Dirichlet

boundary. For Neumann boundary conditions such as given surface traction or

boundary pressure, other types of semi-interior elements have been proposed in

Chapter 2 to which the reader is referred for details.

ii− 1 i+ 1

i− 1/2 i+ 1/2

Ωi

Figure 6.3: A CV discretisation scheme in 1D: node i and its associated control
volume. The circles represent the nodes, and the vertical dash lines represent
the faces of the control volume.

6.5.2 Proposed method for 1D problems

In a 1D domain, problem (6.14) reduces to

− d

dx

(
aε(x)

du(x)

dx

)
= f(x), x ∈ Ω, (6.21)
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where aε(x) is a single variable function involving a small scale parameter ε.

The problem domain is represented using a set of N nodal points, called a global

coarse scale grid. This grid is used to obtain the coarse scale solution of problem

(6.21). On each interval or coarse cell Ω̃l, Ω̃l = [xi−1, xi] with i ∈ [2, N ] and

l ∈ [1, N − 1], an approximation to the field variable u is sought in the form

ul(x) = φli−1(x)ui−1 + φli(x)ui + ulc(x), (6.22)

where x ∈ Ω̃l, ui−1 = u(xi−1), ui = u(xi), φ
l
i−1(x) and φli(x) are the basis

functions associated with the nodes xi−1 and xi respectively on the coarse cell

Ω̃l, and ulc(x) is the correction function associated with the coarse cell Ω̃l.

We employ subregion collocation to discretise (6.21). Each node xi with i ∈
[2, N − 1] is surrounded by a control volume Ωi, Ωi = [xi−1/2, xi+1/2] as shown

in Figure 6.3. Integrating (6.21) over a control volume Ωi, one has

aε(xi+1/2)
du

dx
(xi+1/2)− aε(xi−1/2)

du

dx
(xi−1/2) +

∫ xi+1/2

xi−1/2

fdx = 0. (6.23)

Taking (6.22) into account, one can express first derivatives in (6.23) in terms

of nodal values of u. Unlike traditional discretisation methods, the basis func-

tions φli−1(x) and φ
l
i(x) on a coarse cell Ω̃l are not analytic functions (e.g. not

polynomials), but local numerical solutions to the following differential equation

d

dx

(
aε
dφlk
dx

)
= 0 (6.24)

with k ∈ {i − 1, i} and x ∈ Ω̃l. Boundary conditions for (6.24) are specified

using the condition φlk(xj) = δkj with j ∈ {i − 1, i}. Likewise, the correction

function ulc(x) is a numerical solution to the following differential equation

− d

dx

(
aε
dulc
dx

)
= f (6.25)

with homogeneous boundary conditions ulc(xj) = 0, j ∈ {i−1, i}. Unlike (6.24)
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the right hand side f of the governing equation (6.21) is involved in (6.25).

Equation (6.24) needs to be solved twice while equation (6.25) needs to be

solved once for the determination of the two basis functions and the correction

function respectively on each coarse cell. A coarse cell Ω̃l is discretised by a

set of n points, called local fine scale grid. Such a grid is used to capture the

fine scale structure information of the solution. Let {η1 = xi−1, η2, . . . , ηn = xi}
be a set of nodes of the local fine scale grid. Similar to a coarse scale node,

each fine scale node ηm with m ∈ [2, n − 1] is surrounded by a local control

volume Ωm, Ωm = [ηm−1/2, ηm+1/2]. Integrating (6.24) and (6.25) over Ωm, one

has respectively

aε(ηm+1/2)
dφlk
dx

(ηm+1/2)− aε(ηm−1/2)
dφlk
dx

(ηm−1/2) = 0,

(6.26)

aε(ηm+1/2)
dulc
dx

(ηm+1/2)− aε(ηm−1/2)
dulc
dx

(ηm−1/2) +

∫ ηm+1/2

ηm−1/2

fdη = 0.

(6.27)

We propose to approximate the first-order derivatives in (6.26) and (6.27) by a

2-node IRBFE scheme, i.e. equation (3.12). Assuming that ηm−1 and ηm+1 are

interior fine scale nodes, we can form two interior 2-node IRBFEs at ηm, i.e.

elements [ηm−1, ηm] and [ηm, ηm+1], to the left and right side of ηm respectively.

Applying (3.12) with notation (6.15) to the element [ηm−1, ηm], one has

dφlk
dx

(ηm−1/2) = µ1φ
l
k(ηm−1) + µ2φ

l
k(ηm) + µ3

dφlk
dη

(ηm−1) + µ4
dφlk
dη

(ηm),

(6.28)

dulc
dx

(ηm−1/2) = µ1u
l
c(ηm−1) + µ2u

l
c(ηm) + µ3

dulc
dη

(ηm−1) + µ4
dulc
dη

(ηm).

(6.29)
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Similarly, to the element [ηm, ηm+1], one has

dφlk
dx

(ηm+1/2) = µ1φ
l
k(ηm) + µ2φ

l
k(ηm+1) + µ3

dφlk
dη

(ηm) + µ4
dφlk
dη

(ηm+1),

(6.30)

dulc
dx

(ηm+1/2) = µ1u
l
c(ηm) + µ2u

l
c(ηm+1) + µ3

dulc
dη

(ηm) + µ4
dulc
dη

(ηm+1).

(6.31)

Note that (6.28)-(6.31) will be slightly different at the coarse cell boundaries

(also the coarse scale nodes) where (3.15) for semi-interior elements is used

instead of (3.12). Substituting (6.28) and (6.30) into (6.26) yields

aε(ηm+1/2)µ2φ
l
k(ηm+1) +

[
aε(ηm+1/2)µ1 − aε(ηm−1/2)µ2

]
φlk(ηm)

− aε(ηm−1/2)µ1φ
l
k(ηm−1) + aε(ηm+1/2)µ4

dφlk
dη

(ηm+1)

+
[
aε(ηm+1/2)µ3 − aε(ηm−1/2)µ4

] dφlk
dη

(ηm)− aε(ηm−1/2)µ3
dφlk
dη

(ηm−1) = 0.

(6.32)

It can be seen from (6.32) that there are two unknowns, namely φlk(ηm) and

dφlk/dη(ηm), associated with each nodal points ηm (m ∈ [2, n− 1]). Collection

of (6.32) at all nodal points leads to a system of n− 2 equations for 2× (n− 2)

unknowns. For the algebraic system to be solvable one more equation needs to

be added at each and every nodal points ηm, which is here achieved by imposing

C2-continuous condition at ηm, i.e.

[
d2φlk
dη2

(ηm)

]

L

=

[
d2φlk
dη2

(ηm)

]

R

, (6.33)

where (.)L indicates that the computation of (.) is based on the element to the

left of ηm, i.e. element [ηm−1, ηm], and similarly subscript R denotes the right

element [ηm, ηm+1]. The left and the right of equation (6.33) are obtained via
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expression (3.13), noting (6.17) and (6.16) respectively, yielding

ζ1φ
l
k(ηm−1) + ζ2φ

l
k(ηm) + ζ3

dφlk
dη

(ηm−1) + ζ4
dφlk
dη

(ηm) =

ν1φ
l
k(ηm) + ν2φ

l
k(ηm+1) + ν3

dφlk
dη

(ηm) + ν4
dφlk
dη

(ηm+1). (6.34)

Collection of equations (6.32) and (6.34) at each and every fine scale nodes ηm

(m ∈ [2, n− 1]) with the associated boundary conditions leads to two systems

of 2 × (n − 2) equations for 2 × (n − 2) unknowns. These two systems are

solved for the two basis functions on Ω̃l. Unlike other conventional discretisa-

tion techniques, both the field variable and its first-derivative are considered in

the present proposed technique, resulting C2-continuous solutions for the basis

functions.

Similarly, at each fine scale node ηm, substituting (6.29) and (6.31) into (6.27)

and imposing C2-continuous condition at ηm lead to two equations for two

unknowns associated with ηm. Collection of these equations at all fine scale

nodes with the homogeneous boundary conditions results in a system of 2 ×
(n − 1) equations for 2 × (n − 1) unknowns. This system is solved for the

correction function ulc associated with the coarse cell Ω̃l.

The set of basis and correction functions of the whole domain Ω is used to

represent the first derivatives in (6.23) in terms of coarse scale nodal values ui

(i ∈ [2, N − 1]). Collection of equation (6.23) at all coarse scale nodes with the

associated boundary conditions lead to a coarse scale system of N−2 equations

for N − 2 coarse scale nodal values of u. Consequently, the complete solution

of problem (6.21) is constructed on each and every coarse cell Ω̃l via (6.22). It

can be seen that the presently proposed multiscale method is conservative for

both local and global problems.
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6.5.3 Proposed method for 2D problems

We consider the coefficient tensor aε in the following form

aε =


 aε(x) 0

0 bε(y)


 , (6.35)

where aε(x) and bε(y) are oscillatory functions involving a small scale ε. It is

noted that the periodicity and scale separation assumptions of aε(x) and bε(y)

are not necessary here. The two-dimensional equation (6.14) becomes

− ∂

∂x

(
aε(x)

∂u

∂x

)
− ∂

∂y

(
bε(y)

∂u

∂y

)
= f(x, y). (6.36)

Here we are considering a particular class (6.36) of the general problem (6.14)

for the convenience of presenting the main features of the proposed method.

Extension of the proposed method to the general problem where aε is a full

tensor requires consideration of a mixed derivative term and will be reported

in an up-coming work. Nevertheless, the multiscale problem (6.36) does have

important application in, e.g. two-dimensional semi-conductor quantum devices

wherein there is a specific direction oscillation of the coefficients at each location

in space and time. The readers are referred to (Wang and Shu 2009) for the

application of such device models in one-dimension.

A Cartesian grid system is employed to represent the problem domain Ω in a

manner similar to that in the MFV method (e.g. Figure 6.1). Integrating (6.36)

over a control volume Ωk and then applying the Green’s theorem in plane, one

has

−
∫

Ωk

[
∂

∂x

(
aε(x)

∂u

∂x

)
+

∂

∂y

(
bε(y)

∂u

∂y

)]
dΩ =

−
∫

∂Ωk

aε(x)
∂u

∂x
dy +

∫

∂Ωk

bε(y)
∂u

∂y
dx = Akfk, (6.37)
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where Ak is the area of Ωk and

fk =
1

Ak

∫

Ωk

fdΩ. (6.38)

Approximating the line integrals in (6.37) by the midpoint rule, one obtains

−
[(
aε(x)

∂u

∂x

)

e

−
(
aε(x)

∂u

∂x

)

w

]
∆y −

[(
bε(y)

∂u

∂y

)

n

−
(
bε(y)

∂u

∂y

)

s

]
∆x =

Akfk, (6.39)

where ∆x and ∆y are the coarse grid spacing in x and y direction respectively;

and the subscripts e, w, n and s are used to indicate that the flux is estimated

at the intersections of the dual grid lines with the east, west, north and south

faces of the control volume Ωk, respectively (Figure 6.2).

To estimate the first-order derivatives of u in (6.39) we consider the dual coarse

cells Ω̃l in a 2D computational domain as shown in Figure 6.1. We seek the

approximation for the field variable u on each Ω̃l in the form

ul(x) =
4∑

i=1

φli(x)ui + ulc(x), (6.40)

where φli(x) is the basis function associated with a coarse scale node xi and

i ∈ [1, 4] is the local index of the four nodes of a coarse cell Ω̃l, ui = u(xi), and

ulc(x) is the correction function associated with a coarse cell Ω̃l. As explained

earlier via (6.4) and (6.10), these basis functions and correction function are

similarly local numerical solutions of problem (6.36) on Ω̃l without and with

right-hand side, respectively, i.e.

− ∂

∂x

(
aε(x)

∂φli
∂x

)
− ∂

∂y

(
bε(y)

∂φli
∂y

)
= 0, (6.41)

− ∂

∂x

(
aε(x)

∂ulc
∂x

)
− ∂

∂y

(
bε(y)

∂ulc
∂y

)
= f(x, y). (6.42)
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Boundary conditions for (6.41) are

∂

∂x

(
aε(x)

∂φli
∂x

)
= 0 on ∂Ω̃lx, (6.43)

∂

∂y

(
bε(y)

∂φli
∂y

)
= 0 on ∂Ω̃ly , (6.44)

and for (6.42) are

∂

∂x

(
aε(x)

∂ulc
∂x

)
=

∂

∂x

(
aε(x)

∂uf
∂x

)
on ∂Ω̃lx, (6.45)

∂

∂y

(
bε(y)

∂ulc
∂y

)
=

∂

∂y

(
bε(y)

∂uf
∂y

)
on ∂Ω̃ly , (6.46)

where ∂Ω̃lx and ∂Ω̃
l
y denote the x- and y-segments, respectively, of the boundary

of a dual cell Ω̃l and uf is a reference solution on the global fine scale grid. A

method to create a fine scale reference solution uf will be presented in the

following section. At the dual-grid nodes xi which belong to Ω̃l, φlj(xi) = δji

(j ∈ [1, 4]) and ulc(xi) = 0. Note that outside Ω̃l the φlj and ulc are set to

zero. In the present approach, a C2-continuous IRBFE based control volume

method (An-Vo et al. 2011a) is used to solve the local problems (6.41) and (6.42)

with the associated boundary conditions for the basis functions and correction

functions respectively.

The first-order derivatives of u in (6.39) can now be estimated by using expres-

sions (6.40) for ul in the four dual coarse cells associated with a grid node xk

(Figure 6.2). Specifically, we use local indices of l (l ∈ [1, 4]) and i (i ∈ [1, 9])

for local dual coarse cells and local coarse nodes, respectively, associated with

xk and xk ≡ x1 (Figure 6.2) to obtain

(
∂u

∂x

)

e

=
∂φ2

1

∂x
(xe)u1 +

∂φ2
5

∂x
(xe) u5 +

∂u2c
∂x

(xe) =

∂φ3
1

∂x
(xe)u1 +

∂φ3
5

∂x
(xe) u5 +

∂u3c
∂x

(xe) , (6.47)
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(
∂u

∂x

)

w

=
∂φ1

9

∂x
(xw) u9 +

∂φ1
1

∂x
(xw) u1 +

∂u1c
∂x

(xw) =

∂φ4
9

∂x
(xw) u9 +

∂φ4
1

∂x
(xw)u1 +

∂u4c
∂x

(xw) , (6.48)

(
∂u

∂y

)

n

=
∂φ3

1

∂y
(yn) u1 +

∂φ3
7

∂y
(yn)u7 +

∂u3c
∂y

(yn) =

∂φ4
1

∂y
(yn) u1 +

∂φ4
7

∂y
(yn) u7 +

∂u4c
∂y

(yn) , (6.49)

(
∂u

∂y

)

s

=
∂φ1

3

∂y
(ys)u3 +

∂φ1
1

∂y
(ys) u1 +

∂u1c
∂y

(ys) =

∂φ2
3

∂y
(ys) u3 +

∂φ2
1

∂y
(ys) u1 +

∂u2c
∂y

(ys) . (6.50)

We substitute (6.47)-(6.50) into (6.39) to obtain the discretised equation at

a coarse node xk. Collection of the discretised equations at all coarse nodes

leads to a linear system to be solved for the coarse scale nodal values uk, k ∈
[1, N − 2 × N − 2]. Consequently, the solution for u in each dual coarse cell

Ω̃l is reconstructed via uk and the approximation (6.40). By implementing the

reconstruction on the whole problem domain Ω, the global solution for u is

obtained.

It should be noted that the current computational framework for u depends

strongly on the boundary conditions of local problems for the determination

of the correction functions, i.e. (6.45) and (6.46), which unfortunately require

a priori knowledge of uf . To obtain the fine scale reference solution uf one

typically has to directly resolve all the small scale features of a multiscale prob-

lem. In the following section, we avoid this costly and even impossible task by

proposing a conservative fine scale solver based on 2-node IRBFEs.

Fine scale C2-continuous conservative solver

Consider problem (6.36) on a global fine scale grid. Each fine scale node, similar

to a coarse scale node, is surrounded by a control volume. Integrating (6.36)
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Figure 6.4: Schematic outline for a 2D control volume on the fine scale grid.

over the control volume ΩP of a fine scale interior grid node P (Figure 6.4) by

a similar procedure in obtaining (6.39), one has

−
[(
aε(x)

∂u

∂x

)

e

−
(
aε(x)

∂u

∂x

)

w

]
δy−

[(
bε(y)

∂u

∂y

)

n

−
(
bε(y)

∂u

∂y

)

s

]
δx = APfP ,

(6.51)

where δx and δy are fine grid spacing in x and y direction respectively; the

subscripts e, w, n and s are now used to indicate that the flux is estimated at

the intersections of the fine grid lines with the east, west, north and south faces

of the control volume ΩP , respectively (Figure 6.4); and AP is the area of ΩP

and fP = 1
AP

∫
ΩP
fdΩ. Unlike (6.47)-(6.50), the fluxes are presently computed

via 2-node IRBFEs defined over line segments between P and its neighbouring

grid nodes (E,W,N and S). There are 4 IRBFEs associated with a control

volume ΩP . Assuming that PE, WP are interior elements and making use of
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(3.12), noting (6.15), one obtains fluxes in the x-direction as

(
∂u

∂x

)

e

= µ1uP + µ2uE + µ3
∂uP
∂x

+ µ4
∂uE
∂x

with x1 ≡ xP and x2 ≡ xE ,

(6.52)
(
∂u

∂x

)

w

= µ1uW + µ2uP + µ3
∂uW
∂x

+ µ4
∂uP
∂x

with x1 ≡ xW and x2 ≡ xP .

(6.53)

Expressions for the flux at the faces y = yn and y = ys are of similar forms

obtained by using PN and SP , assumed as interior elements, and making use

of (3.12), noting (6.18),

(
∂u

∂y

)

n

= θ1uP + θ2uN + θ3
∂uP
∂y

+ θ4
∂uN
∂y

with y1 ≡ yP and y2 ≡ yN ,

(6.54)
(
∂u

∂y

)

s

= θ1uS + θ2uP + θ3
∂uS
∂y

+ θ4
∂uP
∂y

with y1 ≡ yS and y2 ≡ yP .

(6.55)

(6.52)-(6.55) may change if PE, WP , PN , and SP are semi-interior elements

where (3.15) is used instead of (3.12).

Substituting (6.52)-(6.55) into (6.51), one has

G[x]




uW

uP

uE


+G[y]




uS

uP

uN


+D[x]




∂uW
∂x

∂uP
∂x

∂uE
∂x


+D[y]




∂uS
∂y

∂uP
∂y

∂uN
∂y


 = APfP , (6.56)
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where

G[x] = −
[
−aε(xw)µ1 aε(xe)µ1 − aε(xw)µ2 aε(xe)µ2

]
δy, (6.57)

G[y] = −
[
−bε(ys)θ1 bε(yn)θ1 − bε(ys)θ2 bε(yn)θ2

]
δx, (6.58)

D[x] = −
[
−aε(xw)µ3 aε(xe)µ3 − aε(xw)µ4 aε(xe)µ4

]
δy, (6.59)

D[y] = −
[
−bε(ys)θ3 bε(yn)θ3 − bε(ys)θ4 bε(yn)θ4

]
δx. (6.60)

It can be seen from (6.56), there are three unknowns, namely uP , ∂uP /∂x

and ∂uP/∂y, at a grid node P . To solve (6.56), two additional equations are

needed and devised here by enforcing C2-continuity condition at P in x- and

y-directions, i.e.

(
∂2uP
∂x2

)

L

=

(
∂2uP
∂x2

)

R

, (6.61)

(
∂2uP
∂y2

)

B

=

(
∂2uP
∂y2

)

T

, (6.62)

where (.)L indicates that the computation of (.) is based on the element to the

left of P , i.e. element WP , and similarly subscripts R,B, T denote the right

(PE), bottom (SP ) and top (PN) elements. Making use of (3.13) with noting

(6.16) and (6.17) for (6.61) and (6.19) and (6.20) for (6.62), one has

ζ1uW + ζ2uP + ζ3
∂uW
∂x

+ ζ4
∂uP
∂x

= ν1uP + ν2uE + ν3
∂uP
∂x

+ ν4
∂uE
∂x

,

(6.63)

ξ1uS + ξ2uP + ξ3
∂uS
∂y

+ ξ4
∂uP
∂y

= ϑ1uP + ϑ2uN + ϑ3
∂uP
∂y

+ ϑ4
∂uN
∂y

.

(6.64)

In compact forms, (6.63) and (6.64) can be rewritten as

C [x]
[
uW uP uE

∂uW
∂x

∂uP
∂x

∂uE
∂x

]T
= 0, (6.65)

C [y]
[
uS uP uN

∂uS
∂y

∂uP
∂y

∂uN
∂y

]T
= 0, (6.66)
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with

C [x] = [ ζ1 ζ2 − ν1 −ν2 ζ3 ζ4 − ν3 −ν4 ], (6.67)

C [y] = [ ξ1 ξ2 − ϑ1 −ϑ2 ξ3 ξ4 − ϑ3 −ϑ4 ]. (6.68)

Collection of equations (6.56), (6.63) and (6.64) at all interior nodal points of

the global fine grid leads to a global fine scale system,

[
G[x] +G[y] D[x] D[y]

]



u

ux

uy


 = R, (6.69)

C[x]


 u

ux


 = 0, (6.70)

C[y]


 u

uy


 = 0, (6.71)

where G[•],D[•] and C[•] result from the assembly of G[•], D[•] and C [•] respec-

tively; u,ux and uy are global vectors of values of u at all nodal points and its

x- and y-partial derivatives at interior grid nodes; and R collects the right hand

side of (6.56), which results from the application of (6.56) at fine scale interior

grid nodes.

Instead of directly solving the large fine scale system (6.69)-(6.71) for the fine

scale reference solution uf , we propose a line-relaxation (LR) scheme to smooth

a temporarily guessed approximate fine grid solution. Assuming that u(t) and

u
(t)
y are a temporarily guessed solution, an iterative strategy in two stages for
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smoothing is proposed as


 G[x] + diag(G[y]) D[x]

C[x]




 u

ux



γ+1/2

=




R−
[
G[y] − diag(G[y]) D[y]

]

 u

uy



γ

0


 , (6.72)


 G[y] + diag(G[x]) D[y]

C[y]




 u

uy



γ+1

=




R−
[
G[x] − diag(G[x]) D[x]

]

 u

ux



γ+1/2

0


 , (6.73)

where [ u ux uy ]γ is the approximate solution after the γ smoothing step

and [ u uy ]0 = [ u(t) u
(t)
y ], diag(G[x]) is the diagonal of G[x]. Owing to the

fact that 2-node IRBFE flux approximation is used, the linear systems in (6.72)

and (6.73) are very sparse. Moreover, these systems can be further split into

independent linear systems for each grid line, which is an important property for

the implementation of massively parallel computation. Note that the present

C2-continuous IRBFE-LR solver is convergent, but for large problem the rate is

extremely slow. In our framework, however, only a few LR-steps are required to

smooth the temporarily guessed approximate solution. The smoothed fine grid

solution then serve to estimate temporary boundary conditions for correction

functions via (6.45) and (6.46) instead of the fine scale reference solution uf .

To ensure that these temporary boundary conditions approach the conditions

(6.45) and (6.46) an iterative algorithm is used. Such an algorithm is presented

next.
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Iterative algorithm

We present here an iterative algorithm to improve the localised boundary con-

ditions of the correction functions. Such boundary conditions do not depend on

uf . Instead of requirements (6.45) and (6.46), we employ an iterative improve-

ment

∂

∂x

(
aε(x)

∂ulc
(t)

∂x

)
=

∂

∂x

(
aε(x)

∂u
(t)
s

∂x

)
on ∂Ω̃lx, (6.74)

∂

∂y

(
bε(y)

∂ulc
(t)

∂y

)
=

∂

∂y

(
bε(y)

∂u
(t)
s

∂y

)
on ∂Ω̃ly ∀l ∈ [1, J ]. (6.75)

The superscript (t) denotes an iterative step and

[
u
(t)
s

∂u
(t)
s

∂x
∂u

(t)
s

∂y

]
= Sns

([
u(t) ∂u(t)

∂x
∂u(t)

∂y

])
(6.76)

is a smoothed fine scale approximate solution, where S is the proposed C2-

continuous IRBFE-LR smoothing operator, i.e. (6.72) and (6.73), ns the num-

ber of smoothing steps, and

[
u(t) ∂u(t)

∂x
∂u(t)

∂y

]

is the temporary solution which is constructed on each dual coarse cell Ω̃l as

ul
(t)

=

4∑

i=1

φliu
(t)
i + ulc

(t−1)
, (6.77)

∂ul
(t)

∂x
=

4∑

i=1

∂φli
∂x

u
(t)
i +

∂ulc
(t−1)

∂x
, (6.78)

∂ul
(t)

∂y
=

4∑

i=1

∂φli
∂y

u
(t)
i +

∂ulc
(t−1)

∂y
∀l ∈ [1, J ]. (6.79)

Note that the correction functions ulc
(t−1)

are obtained based on local boundary

conditions (6.74) and (6.75) with u
(t)
s replaced by u

(t−1)
s . A pseudocode of the

iterative algorithm is given below.
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(1) Initialise
[
u(t=0) u

(t=0)
x u

(t=0)
y

]

(2) ∀l, ∀i: compute basis functions φli, equations (6.41) with boundary conditions

(6.43), (6.44) by a C2-continuous IRBFE-CV method (An-Vo et al. 2011a)

(3) for t = 1 to number of iterations {
(3i)

[
u
(t−1)
s u

(t−1)
xs u

(t−1)
ys

]
=
[
u(t−1) u

(t−1)
x u

(t−1)
y

]

(3ii) for i = 1 to ns {[
u
(t−1)
s u

(t−1)
xs u

(t−1)
ys

]
= S

([
u
(t−1)
s u

(t−1)
xs u

(t−1)
ys

])
; smooth-

ing step

}
(3iii) ∀l: compute correction functions ulc

(t−1)
; based on u

(t−1)
s , equations

(6.42) with boundary conditions (6.74) and (6.75) by a C2-continuous IRBFE-CV

method (An-Vo et al. 2011a)

(3iv) Calculate right hand side of the coarse grid discretised system

(3v) Solve coarse system

(3vi) Reconstruct
[
u(t) u

(t)
x u

(t)
y

]
, equations (6.77)-(6.79)

(3vii) Calculate convergence measures (CMs) through

CM(u) =
‖ u(t) − uf ‖2

‖ uf ‖2

CM(ux) =
‖ u

(t)
x − uxf ‖2
‖ uxf ‖2

CM(uy) =
‖ u

(t)
y − uyf ‖2
‖ uyf ‖2

}.

First, the fine scale field is initialised to zero. Then, all basis functions are

computed and the right-hand side of equation (6.36) is integrated over each

coarse volume. These steps have to be performed only once and are followed

by the main iteration loop. At the beginning of each iteration, ns smoothing
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steps are applied and the smoothed fine scale field is employed to compute the

correction functions. The right hand side of the coarse linear system for coarse

nodal values also includes induced terms from these correction functions. At

the end of each iteration, the coarse system is solved and a new fine scale field

is reconstructed.

Deferred correction of coarse grid fluxes

In the coarse grid flux expressions, namely (6.47)-(6.50), there are required

first-derivative values of basis functions and correction functions at the control

volume faces. The former needs to be computed only once at the preprocessing

stage and be fixed throughout the iteration loop. The latter, however, need

to be updated at each iteration via the numerical differentiation of correction

functions. This differentiation is usually resulted in a considerable numerical

error. Here we propose a deferred correction strategy to obtain the coarse grid

fluxes accurately without the need of the numerical differentiation of correction

functions. Consider an east control volume face at an iteration level t, instead

of using (6.47) we compute the flux value as

(
∂u

∂x

)(t)

e

=
∂φ2

1

∂x
(xe)u

(t)
1 +

∂φ2
5

∂x
(xe) u

(t)
5 +∆f (t−1)

e

=
∂φ3

1

∂x
(xe)u

(t)
1 +

∂φ3
5

∂x
(xe) u

(t)
5 +∆f (t−1)

e , (6.80)

where ∆f
(t−1)
e is the correction term at e which is a known value derived from

the smoothed fine scale field, i.e.

∆f (t−1)
e =

(
∂u

∂x

)(t−1)

e

−
(
∂φ2

1

∂x
(xe)u

(t−1)
1 +

∂φ2
5

∂x
(xe)u

(t−1)
5

)

=

(
∂u

∂x

)(t−1)

e

−
(
∂φ3

1

∂x
(xe)u

(t−1)
1 +

∂φ3
5

∂x
(xe)u

(t−1)
5

)
. (6.81)

Since the proposed C2-continuous fine scale solver is used the smoothed fine

scale field includes not only the field variable but also its first partial deriva-
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tives. As a result, the value (∂u/∂x)(t−1)
e is explicitly given without the need of

numerical differentiation. The flux values at other control volume faces can be

computed in a similar manner. It can be seen that via this correction strategy

the coarse grid fluxes are matched with the fine scale smoothed field.

6.6 Numerical results

The proposed method is verified by solving several problems in one and two

dimension. We refer to the size of a coarse grid as N in 1D problems and

N ×N in 2D problems and the size of a fine grid on a coarse cell as n and n×n
in 1D and 2D respectively. The fine grid on a coarse cell also referred to as the

local fine grid. The fine grid on the whole problem domain is called the global

fine grid. In 2D problems, the smoothing system is constructed on the global

fine grid. The coarse grid spacing is denoted as H which is also the size of a

coarse cell in this study. The local fine grids on the coarse cells are mapped to

[0, 1] in 1D problems and [0, 1]2 in 2D problems and the grid spacing is denoted

as h.

In each problem, two grid refinement strategies are employed. The first strategy,

Strategy 1, keeps the coarse grid fixed while refining the local fine grids. In

contrast, the second strategy, Strategy 2, keeps the local fine grids fixed while

refining the coarse grid. The numerical results are compared with those obtained

by the MFEM (Hou et al. 1999).

The factor of the MQ-width is chosen as β = 15 throughout the computa-

tion. We assess the numerical performance of the proposed method through

two measures: (i) the relative discrete L2 error defined as

Ne(α) =

√
∑M

i=1

(
αi − α

(e)
i

)2

√
∑M

i=1

(
α
(e)
i

)2 (6.82)



6.6 Numerical results 212

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

φ
1
1

φ
2
1

φ
1 1
&

φ
1 2

η

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

u
1 c

η

(b)

Figure 6.5: One-dimensional example 1, ε = 0.01, N = 11, n = 101: basis
functions (a) and correction function (b) associated with the first coarse cell
(l = 1). It is noted that the coarse cell is mapped to a unit length.
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where M is the number of test points, α denotes the field variable u and its

derivatives and (ii) the convergence rates γ with respect to the two grid refine-

ment strategies defined via the error norm behaviours O(hγ) and O(Hγ) for

the Strategy 1 and 2 respectively. The convergence rates are calculated over

2 successive grids (point-wise rate) and also over the whole set of grids used

(average rate).

6.6.1 One-dimensional examples

Example 1

Consider a model 1D problem (6.21) with

aǫ(x) =
1

2 + x+ sin(2πx/ǫ)
, f = x, Ω = [0, 1], (6.83)

and homogeneous Dirichlet boundary conditions u(0) = u(1) = 0.

The problem domain is discretised using a series of uniform coarse elements and

the shape functions and correction functions that capture the fine scale physics

in the coarse elements are numerically obtained by our C2-continuous IRBFE-

Control Volume (IRBFE-CV) method. Figure 6.5 shows the basis functions

and correction function associated with a typical coarse element. Unlike con-

ventional basis functions, the present basis functions are highly oscillatory since

they adapt to the small scale information within each element (Figure 6.5(a)).

The correction function is also highly oscillatory and its scale is small as shown

in Figure 6.5(b). Figure 6.6 displays the convergence behaviour of a numeri-

cal shape function on a typical coarse element obtained by our IRBFE-CVM

and the linear FEM. IRBFE-CVM and linear FEM give convergence rates of

4.0267 and 2.0253 respectively. It can be seen that the use of high order ap-

proximants in the form of IRBFEs thus helps capture the fine scale physics and

hence produce highly accurate solutions.
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Figure 6.6: One-dimensional example 1: mesh convergence of a basis function.

The coarse scale solution at the coarse grid points is obtained by a conservative

CV method where the fluxes are estimated by the obtained shape and correc-

tion functions. In order to have a good consistent measure of accuracy, error

norms in all cases are computed using the same 10,001 test points where the fine

scale solution is recovered via (6.22). Table 6.1 presents convergence behaviour

associated with Strategy 1 where a fixed coarse scale grid of 10 elements and a

series of 21, 41, . . . , 181 local fine grids are used. The present method converges

monotonically while MFEM does not converge. It was pointed out in (Hou

and Wu 1997, Hou et al. 1999) that the accuracy of the shape functions does

not have much effect on the overall accuracy of MFEM. The present approach

achieves convergence rates of 3.91, 3.16, and 2.09 for the field variable, its first,

and second derivatives respectively. In comparison to multiscale discontinuous
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Galerkin method proposed by Wang et al. (2011), in terms of L2 error, the

present method yields two orders of magnitude improvement for the field vari-

able and one order of magnitude improvement for the first derivative by using

a local fine grid of n = 181. Note that exact shape functions have been used in

Wang et al. (2011). Table 6.2 presents convergence behaviour associated with

Strategy 2 where a fixed local fine grid of 27 nodes and a series of 10, 20, . . . , 100

uniform coarse elements (i.e. 11, 21, . . . , 101 nodes) are used. Both the present

method and the MFEM converge well with refinement of the coarse grids. The

present approach achieves convergence rates of 3.03, 2.51, and 1.47 for the field

variable, its first, and second derivatives respectively while the MFEM achieves

a value of 1.61 for the field variable. These results show superior performance

of the present approach indicated by (i) high rates of convergence not only for

the field variable but also for the first and second derivatives; (ii) working for

both grid refinement strategies. One can thus either keep fine scale or coarse

scale grid fixed and obtain convergence by refining the other scale grid.

Figures 6.7 displays the recovered fine scale results for the field variable u(x)

and its first derivative by the present method, MFEM and exact solution. It can

be seen that the present method has captured the exact solution much better

than MFEM. In addition, the present method can produce approximation of

derivatives up to second order as shown in Figure 6.8.

Example 2

In this example, we consider a model 1D problem with highly oscillatory solution

at both macro- and micro-scales. The multiscale problem (6.21) is specifically

defined with

aǫ(x) =
1

2 + x+ sin(10πx/ǫ)
, f = 300 sin(10πx), Ω = [0, 1], (6.84)

and homogeneous Dirichlet boundary conditions u(0) = u(1) = 0.
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Table 6.1: One-dimensional example 1, ε = 0.01, Strategy 1: L2 errors of the field variable, its first and second derivatives. It is
noted that the set of test nodes contains 10, 001 uniformly distributed points. LCR stands for local convergence rate.

ε = 0.01, N = 11
MFEM Present method

Local fine grid (n) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR
21 1.30E-02 - 4.10E-03 - 1.16E-01 - 5.37E-01 -
41 1.22E-02 0.09 3.60E-04 3.51 2.44E-02 2.25 2.19E-01 1.29
61 1.21E-02 0.02 6.76E-05 4.12 5.80E-03 3.54 8.21E-02 2.42
81 1.21E-02 0.00 2.11E-05 4.05 2.13E-03 3.48 4.14E-02 2.38
101 1.21E-02 0.00 8.63E-06 4.01 9.90E-04 3.43 2.50E-02 2.26
121 1.21E-02 0.00 4.18E-06 3.98 5.34E-04 3.39 1.62E-02 2.38
141 1.21E-02 0.00 2.28E-06 3.93 3.18E-04 3.36 1.16E-02 2.17
161 1.21E-02 0.00 1.35E-06 3.92 2.04E-04 3.32 8.47E-03 2.36
181 1.21E-02 0.00 8.53E-07 3.90 1.39E-04 3.26 6.56E-03 2.17

O(h0.03) O(h3.91) O(h3.16) O(h2.09)
Wang et al. (2011) (S1) 1.03E-03 4.73E-02
Wang et al. (2011) (S2) 1.16E-05 1.01E-03
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Table 6.2: One-dimensional example 1, ε = 0.01, Strategy 2: L2 errors of the field variable, its first and second derivatives. It is
noted that the set of test nodes contains 10, 001 uniformly distributed points. LCR stands for local convergence rate

ε = 0.01, n = 27
MFEM Present method

Coarse grid (N) Ne(u) LCR Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR
11 1.25E-2 - 2.06E-3 - 1.09E-1 - 5.90E-1 -
21 2.63E-3 2.25 8.91E-5 4.53 1.26E-2 3.11 1.49E-1 1.99
31 1.66E-3 1.14 3.52E-4 -3.39 5.97E-3 1.84 1.09E-1 0.77
41 9.63E-4 1.89 1.98E-4 2.00 1.65E-3 4.47 3.64E-2 3.80
51 7.36E-4 1.20 3.93E-6 17.57 7.79E-4 3.37 2.32E-2 2.02
61 3.71E-4 3.76 2.40E-5 -9.92 1.43E-3 -3.33 5.26E-2 -4.49
71 2.74E-4 1.98 1.43E-5 3.36 9.88E-4 2.40 4.38E-2 1.18
81 2.12E-4 1.93 8.44E-6 3.94 8.42E-4 1.20 3.96E-2 0.76
91 1.83E-4 1.22 6.86E-6 1.76 6.13E-4 2.70 3.44E-2 1.19
101 9.12E-4 -15.24 2.53E-7 31.31 1.01E-4 17.12 5.82E-3 16.86

O(H1.61) O(H3.03) O(H2.51) O(H1.47)
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Figure 6.7: One-dimensional example 1, ε = 0.01, N = 11, n = 101: field
variable and its first derivatives obtained by the present method in comparison
with those obtained by MFEM and the exact solution.
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Figure 6.8: One-dimensional example 1, ε = 0.01, N = 11, n = 101: second
derivatives obtained by the present method in comparison with that obtained
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Similar to example 1, two strategies of grid refinement are implemented here.

Table 6.3 presents the convergence behaviour associated with Strategy 1 where a

fixed coarse scale grid of 50 elements and a series of 21, 41, . . . , 281 local fine grids

are used. Present method converges monotonically as in the case of example

1. The convergence rates are 3.91, 3.24, and 2.13 for the field variable, its first,

and second derivatives respectively. Table 6.4 presents convergence behaviour

associated with Strategy 2 where fixed local fine grids of 101 nodes and a series

of 10, 20, . . . , 100 uniform coarse elements (i.e. 11, 21, . . . , 101 nodes) are used.

The present method converges well with refinement of the coarse grids. The

convergence rates are 3.71, 2.55, and 1.49 for the field variable, its first, and

second derivatives respectively.

Figure 6.9 displays the recovered fine scale solution for the field variable u(x),

its first, and second derivatives by the present method and the exact solution.

The solutions by the present method are in excellent agreement with the exact

solution.

6.6.2 Two-dimensional examples

We demonstrate that the proposed iterative algorithm for 2D problems con-

verges to the fine scale reference solution. In the following discussion, by

“smoother” we mean one iteration of the fine scale solver. By “the present

method” we mean a two-grid method where the smoother is invoked for only

a few cycles within the iterative algorithm. Computational efficiency of the

present method is assessed via a convergence acceleration in comparison with

the fine scale solver. The acceleration is estimated by comparing the computa-

tional time to achieve a certain convergence measure (CM).
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Table 6.3: One-dimensional example 2, ε = 0.01, Strategy 1: L2 errors of the field variable, its first and second derivatives by
the present method. It is noted that the set of test nodes contains 100, 001 uniformly distributed points. LCR stands for local
convergence rate.

ε = 0.01, N = 51

Local fine grid (n) Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR

21 2.59E-2 - 1.18E-1 - 5.33E-1 -

41 2.19E-3 3.56 2.45E-2 2.27 2.16E-1 1.30

61 4.02E-4 4.18 5.77E-3 3.57 8.07E-2 2.43

81 1.25E-4 4.06 2.10E-3 3.51 4.07E-2 2.38

101 5.11E-5 4.01 9.69E-4 3.47 2.42E-2 2.33

121 2.49E-5 3.94 5.19E-4 3.42 1.59E-2 2.30

141 1.36E-5 3.92 3.07E-4 3.41 1.12E-2 2.27

161 8.09E-6 3.89 1.96E-4 3.36 8.32E-3 2.23

181 5.14E-6 3.85 1.32E-4 3.36 6.44E-3 2.17

201 3.43E-6 3.84 9.30E-5 3.32 5.23E-3 1.98

241 1.72E-6 3.79 5.11E-5 3.28 3.46E-3 2.27

281 9.62E-7 3.77 3.11E-5 3.22 2.50E-3 2.11

O(h3.91) O(h3.24) O(h2.13)
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Table 6.4: One-dimensional example 2, ε = 0.01, Strategy 2: L2 errors of the field variable, its first and second derivatives by
the present method. It is noted that the set of test nodes contains 100, 001 uniformly distributed points. LCR stands for local
convergence rate.

ε = 0.01, n = 101

Coarse grid (N) Ne(u) LCR Ne(du/dx) LCR Ne(d2u/dx2) LCR

11 3.66E-2 - 7.81E-2 - 3.53E-1 -

21 1.35E-3 4.76 1.83E-2 2.09 1.66E-1 1.09

31 5.86E-3 -3.62 6.85E-3 2.42 7.72E-2 1.89

41 1.18E-3 5.57 2.58E-3 3.39 3.82E-2 2.45

51 5.11E-5 14.07 9.69E-4 4.39 2.42E-2 2.05

61 1.72E-4 -6.66 1.29E-3 -1.57 3.60E-2 -2.18

71 1.13E-4 2.73 9.39E-4 2.06 3.06E-2 1.05

81 5.82E-5 4.97 7.20E-4 1.99 2.66E-2 1.05

91 2.71E-5 6.49 4.08E-4 4.82 1.74E-2 3.60

101 7.86E-7 33.60 1.20E-4 11.62 6.16E-3 9.86

O(H3.71) O(H2.55) O(H1.49)
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Figure 6.9: One-dimensional example 2, ε = 0.01, N = 51, n = 101: field
variable, its first and second derivatives obtained by the present method in
comparison with the exact solution.
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Example 1

We consider a special case of equation (6.36) with aε(x) = bε(y) = 1 as follows.

∂2u

∂x2
+
∂2u

∂y2
= −2π2 cos(πx) cos(πy), (6.85)

on a square domain 0 ≤ x, y ≤ 1 with boundary conditions:

u = cos(πy) for x = 0, 0 ≤ y ≤ 1;

u = − cos(πy) for x = 1, 0 ≤ y ≤ 1;

u = cos(πx) for y = 0, 0 ≤ x ≤ 1;

u = − cos(πx) for y = 1, 0 ≤ x ≤ 1.

The exact solution to this problem can be verified to be

u(e)(x, y) = cos(πx) cos(πy). (6.86)

It can be seen that the basis functions on each coarse cell are simply those of a

linear 2D rectangular element in FEM and the MFEM is identical to the conven-

tional FEM. We also utilise these exact basis functions in the present method.

The correction functions are numerically obtained via our C2-continuous CVM

(An-Vo et al. 2011a) with the iteratively improved boundary conditions. Fig-

ure 6.10 shows a typical set of converged correction functions on the problem

domain.

Iterative convergence: Figure 6.11 displays the convergence to the reference

solution as a function of iterations and smoothing steps (per iteration), ns, for

two grid systems. The first grid system includes a coarse grid of N ×N = 5×5

and local fine grids on each coarse cells of n×n = 81×81. The other grid system

includes a coarse grid of N×N = 33×33 and local fine grids of n×n = 11×11.

Note that these two grid systems have the same size in terms of the global fine

grid of 321×321. It can be seen that for both grid systems the smoothing steps
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Figure 6.10: Two-dimensional example 1: collection of all correction functions
on the problem domain obtained with a grid system of N ×N = 5× 5, n×n =
21× 21.

have a significant effect on the convergence behaviours. Increasing ns helps

reduce the iterations. In addition, the present method converges well even with

only one smoothing step. This robustness is very useful for large scale problems

where one smoothing step could require a significant computational load. The

convergence behaviours of the first derivatives are similar to those of the field

variable. Comparing between the two grid systems (with the same smoothing

operation), the use of a larger coarse grid helps reduce the iterations remarkably.

For instance with ns = 4, the first grid system (smaller coarse grid) requires

about 200 iterations to converge to the reference solution while the other grid

system (larger coarse grid) requires only about 20 iterations.
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Figure 6.11: Two-dimensional example 1, N ×N = 5× 5, n×n = 81× 81 (left)
and N×N = 33×33, n×n = 11×11 (right): effect of the number of smoothing
steps ns on the convergence behaviour.
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Table 6.5: Two-dimensional example 1: L2 errors of the field variable, its first and second derivatives. LCR stands for local
convergence rate.

Strategy 1, N ×N = 5× 5
MFEM Present method

Fine scale grid (n× n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11× 11 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -
21× 21 5.54E-2 0.00 4.76E-6 1.86 1.47E-5 1.90 1.46E-5 1.91
31× 31 5.54E-2 0.00 2.21E-6 1.89 6.68E-6 1.94 6.68E-6 1.94
41× 41 5.54E-2 0.00 1.28E-6 1.91 3.81E-6 1.95 3.81E-6 1.95
51× 51 5.54E-2 0.00 8.30E-7 1.93 2.46E-6 1.96 2.46E-6 1.96
61× 61 5.54E-2 0.00 5.83E-7 1.94 1.72E-6 1.97 1.72E-6 1.97
71× 71 5.54E-2 0.00 4.32E-7 1.94 1.27E-6 1.97 1.27E-6 1.97
81× 81 5.54E-2 0.00 3.33E-7 1.95 9.75E-7 1.97 9.75E-7 1.97
91× 91 5.54E-2 0.00 2.65E-7 1.94 7.75E-7 1.96 7.75E-7 1.96

O(h0.00) O(h1.90) O(h1.94) O(h1.94)

Coarse grid (N ×N) Strategy 2, n× n = 11× 11
5× 5 5.54E-2 - 1.73E-5 - 5.48E-5 - 5.49E-5 -
9× 9 1.40E-2 1.99 1.09E-6 3.99 6.99E-6 2.97 6.99E-6 2.97
13× 13 6.23E-3 2.00 2.09E-7 4.07 2.31E-6 2.73 2.31E-6 2.73
17× 17 3.51E-3 2.00 6.54E-8 4.04 1.33E-6 1.92 1.33E-6 1.92
21× 21 2.25E-3 2.00 2.67E-8 4.01 1.03E-6 1.15 1.03E-6 1.15
25× 25 1.56E-3 2.00 1.29E-8 3.99 8.85E-7 0.83 8.85E-7 0.83
29× 29 1.15E-3 2.00 7.04E-9 3.93 7.86E-7 0.77 7.86E-7 0.77
33× 33 8.78E-4 2.00 4.17E-9 3.92 7.04E-7 0.83 7.04E-7 0.83
37× 37 6.94E-4 2.00 2.63E-9 3.91 6.33E-7 0.90 6.33E-7 0.90

O(H2.00) O(H4.01) O(H1.97) O(H1.97)
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Grid refinement convergence: Two grid refinement strategies are presented

in Table 6.5. In Strategy 1, a fixed coarse grid of N ×N = 5 × 5 is used while

the local fine grids on coarse cells n× n are refined in a series of 11 × 11, 21×
21, . . . , 91 × 91. In contrast, Strategy 2 utilises a series of refined coarse grids

of N × N = 5 × 5, 9 × 9, . . . , 37 × 37 while keeping the size of local fine grids

on coarse cells fixed as n × n = 11 × 11. The present method converges well

with both grid refinement strategies while the MFEM does not converge with

Strategy 1. Note that exact basis functions are employed in both MFEM and

the present method. The convergence rates of the present method are 1.90 and

1.94 for the field variable and its first derivatives respectively in Strategy 1. A

high convergence rate of 4.01 for the field variable is obtained with Strategy 2

where the convergence rate of the MFEM is 2.00.

Solution accuracy: Table 6.5 also presents the L2 error norm of the present

method in comparison with those of MFEM. Very high levels of accuracy are

obtained in the present method. With a small grid system, i.e. N ×N = 5× 5

and n× n = 11 × 11, the error is 1.73× 10−5 and with a relatively larger grid

system, i.e. N × N = 37 × 37 and n × n = 11 × 11, the error is 2.63 × 10−9.

Compared to the errors of the MFEM, with the same grid systems, the present

errors are 3 and 5 orders of magnitude better respectively.

Example 2

Consider a multiscale elliptic problem on a domain Ω = [−1, 1]2 governed by

− ∂

∂x

(
aε(x)

∂u

∂x

)
− ∂

∂y

(
bε(y)

∂u

∂y

)
= xue(y) + yue(x) (6.87)

with homogeneous Dirichlet boundary condition, where

aε(x) =
1

4 + x+ sin
(
x
ε

) , bε(y) =
1

4 + y + sin
(
y
ε

) , (6.88)
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0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η ζ

φ
h 1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

η
ζ

u
h c

Figure 6.12: Two-dimensional example 2: typical basis and correction functions
for the cases of ε = 0.1 using a grid system of N ×N = 5× 5, n× n = 21× 21
and ε = 0.01 using a grid system of N ×N = 11× 11, n× n = 21× 21.

and ue(x) is the exact solution of the 1D problem −d(aε(x)du/dx)/dx = x with

aε(x) as in (6.88) (note that bε(x) = aε(x)). The exact solution of (6.87) has

the form

u(x, y) = ue(x)ue(y). (6.89)

Both the basis and correction functions are numerically obtained by our C2-

continuous CVM (An-Vo et al. 2011a) in the present method. The basis func-

tions in MFEM are obtained by a linear FEM. Figure 6.12 shows typical basis
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and correction functions in the present method for two cases of small scale pa-

rameter, i.e. ε = 0.1 and ε = 0.01. Typical sets of correction functions on the

problem domain for these two values of small scale parameter are displayed by

contour plots in Figure 6.13.
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Figure 6.13: Two-dimensional example 2: contour plots of correction functions
on the problem domain for the cases of ε = 0.1 using a grid system of N ×N =
5×5, n×n = 21×21 and ε = 0.01 using a grid system ofN×N = 11×11, n×n =
21× 21.

Iterative convergence: Figures 6.14 and 6.15 display the convergence to the
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reference solution of the present method in cases of ε = 0.1 and ε = 0.01

respectively. Two grid systems are employed to study the effect of smoothing

steps ns on the convergence behaviours in each case of ε values. As in example

1, the smoothing steps have a significant effect on the convergence behaviours

and we can reduce the number of iterations by increasing ns. With the same

smoothing systems, i.e. 241 × 241 in the case of ε = 0.1 in Figure 6.14 and

701 × 701 in the case of ε = 0.01 in Figure 6.15, the use of larger coarse grids

reduces the iterations remarkably. Computational efficiency is assessed in Figure

6.16 where the convergence behaviours of the present method (ns = 1) and the

fine scale solver (FSS) are presented. It can be seen in Figure 6.16(a) that the

FSS requires about 3.4 × 104 cycles to converge to CM = 10−8 in the case of

grid 1. By using the smoothing system of grid 1 and with a coarse grid of 5× 5

the present method converges to CM = 10−8 after about 330 iterations (Figure

6.16(b)). The number of iterations can reduce to about 42 when a coarse grid

of 25×25 is used as shown in Figure 6.14(b). By using this 25×25 coarse grid,

the computational time of each iteration is measured to be 5.24 s on average

which include the time of a smoothing cycle, for obtaining correction functions,

and for solving the coarse grid system. The computational time of a smoothing

cycle is measured to be 4.31 s. It can be seen that the time of a smoothing

cycle dominates the time of an iteration. The present method hence has the

potential of roughly 1000 times more efficient than the FSS. Furthermore, when

we increase the size of the global fine grid to grid 2 and grid 3, the number

of cycles of the smoother increases very fast compared to that of the present

method (Figure 6.16(a)).

Grid refinement convergence: The two grid refinement strategies for ε = 0.1

and ε = 0.01 are presented in Tables 6.6 and 6.7 respectively. For ε = 0.1,

Strategy 1 uses a fixed coarse grid of 5 × 5 and a series of refined local fine

grids of 11 × 11, 21 × 21, . . . , 91 × 91. Strategy 2 uses fixed local fine grids of

11 × 11 and a series of refined coarse grids of 5 × 5, 9 × 9, . . . , 37 × 37. The

convergence rates of the present method are 3.24 and 3.05 for the field variable
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and its first derivatives respectively in Strategy 1. It can be seen that MFEM

does not converge in Strategy 1. In Strategy 2, the convergence rates of the

present method are 3.38 and 1.40 for the field variable and its first derivative

respectively. MFEM converges at the rate of 1.95 for the field variable.

For ε = 0.01, Strategy 1 uses a fixed coarse grid of 11×11 and a series of refined

local fine grids of 11×11, 21×21, . . . , 71×71. Strategy 2 uses a fixed local fine

grid of 11×11 and a series of refined coarse grids of 11×11, 21×21, . . . , 71×71.

The convergence rates of the present method are 4.17, 3.94 and 3.95 for u, ∂u/∂x

and ∂u/∂y respectively in Strategy 1. These rates are especially high compared

to the rate of 0.13 for the field variable in MFEM. In Strategy 2, the convergence

rates of the present method are 5.12, 3.60 and 3.59 for u, ∂u/∂x and ∂u/∂y

respectively while MFEM gives a rate of 2.10 for the field variable.

Solution accuracy: Tables 6.6 and 6.7 also present the L2 error norm for

ε = 0.1 and ε = 0.01 respectively. For ε = 0.1 and Strategy 1 (Table 6.6),

the present method achieves the errors of 3.90 × 10−8 and 1.67 × 10−7 for the

field variable and its first derivatives respectively by using a grid system of

N × N = 5 × 5 and n × n = 91 × 91. The error for the field variable is 7

orders of magnitude better compared to that of MFEM by using the same grid

system. In Strategy 2, the present method achieves the errors of 2.66 × 10−8

and 3.84 × 10−6 for the field variable and its first derivatives respectively by

using a grid system of N × N = 37 × 37 and n × n = 11 × 11. The error for

the field variable is 5 orders of magnitude better compared to that of MFEM

by using the same grid system.

For ε = 0.01 and Strategy 1 (Table 6.7), the present method achieves the errors

of 5.73 × 10−6 and 1.17 × 10−5 for the field variable and its first derivatives

respectively by using a grid system of N ×N = 11 × 11 and n× n = 71× 71.

The error for the field variable is 4 orders of magnitude better compared to

that of MFEM by using the same grid system. In Strategy 2, the present

method achieves the errors of 9.05 × 10−7, 2.31 × 10−5 and 2.32 × 10−5 for u,
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∂u/∂x and ∂u/∂y respectively by using a grid system of N × N = 71 × 71

and n × n = 11 × 11. The error for the field variable is more than 3 orders of

magnitude better compared to that of MFEM by using the same grid system.

Figure 6.17 displays the contour plots of the solutions obtained by MFEM,

present method and the exact one for ε = 0.1 and ε = 0.01. The present result

is obtained with N × N = 5 × 5, n × n = 31 × 31 while the MFEM result is

obtained with N×N = 11×11, n×n = 31×31. It can be seen that the solutions

of the present method are in excellent agreement with the exact solution.

6.7 Concluding remarks

A high-order RBF-based multiscale control volume method has been success-

fully developed for 1D and 2D multiscale elliptic problems. To assess the per-

formance of the methods, we use two grid refinement strategies, namely (i)

fixed coarse grid and various local fine grids, and (ii) fixed local fine grid and

various coarse grids. Unlike MFEM, the proposed methods work well for both

grid refinement strategies. High rates of convergence and levels of accuracy are

obtained. The method for 2D problems is proposed with an iterative algorithm

which helps overcome the limitation of MFEM where artificial localised bound-

ary conditions are employed. It has been demonstrated numerically that the

proposed iterative algorithm converges to C2-continuous solutions. This feature

is very useful especially in subsurface flow simulations where the velocity field

has to be continuous across the coarse cell interfaces to ensure a conservative

flow field. The scalability and high efficiency of the proposed algorithm has

been confirmed against the performance of the fine scale solver.
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Figure 6.14: Two-dimensional example 2, ε = 0.1, N×N = 5×5, n×n = 61×61
(left) and N × N = 25 × 25, n × n = 11 × 11 (right): effect of the number of
smoothing steps ns on the convergence behaviour.
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Table 6.6: Two-dimensional example 2, ε = 0.1: L2 errors of the field variable, its first and second derivatives. LCR stands for
local convergence rate.

Strategy 1, N ×N = 5× 5
MFEM Present method

Local fine grid (n× n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11× 11 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -
21× 21 4.14E-1 0.00 3.55E-6 3.82 1.14E-5 3.71 1.13E-5 3.72
31× 31 4.15E-1 0.00 8.51E-7 3.52 2.95E-6 3.33 2.95E-6 3.31
41× 41 4.15E-1 0.00 3.37E-7 3.22 1.26E-6 2.96 1.26E-6 2.96
51× 51 4.15E-1 0.00 1.75E-7 2.94 6.86E-7 2.72 6.86E-7 2.72
61× 61 4.15E-1 0.00 1.07E-7 2.70 4.33E-7 2.52 4.33E-7 2.52
71× 71 4.15E-1 0.00 7.15E-8 2.62 2.99E-7 2.40 2.99E-7 2.40
81× 81 4.15E-1 0.00 5.15E-8 2.46 2.19E-7 2.33 2.19E-7 2.33
91× 91 4.15E-1 0.00 3.90E-8 2.36 1.68E-7 2.25 1.68E-7 2.25

O(h0.00) O(h3.24) O(h3.05) O(h3.05)

Coarse grid (N ×N) Strategy 2, n× n = 11× 11
5× 5 4.13E-1 - 5.01E-5 - 1.49E-4 - 1.49E-4 -
9× 9 1.15E-1 1.84 3.99E-6 3.65 1.06E-5 3.81 1.06E-5 3.81
13× 13 5.19E-2 1.96 7.26E-7 4.20 7.30E-6 0.92 7.29E-6 0.92
17× 17 2.94E-2 1.98 2.52E-7 3.68 6.38E-6 0.47 6.38E-6 0.46
21× 21 1.89E-2 1.98 1.21E-7 3.29 5.76E-6 0.46 5.76E-6 0.46
25× 25 1.31E-2 2.01 7.03E-8 2.98 5.22E-6 0.54 5.22E-6 0.54
29× 29 9.64E-3 1.99 6.49E-8 0.52 4.72E-6 0.65 4.71E-6 0.67
33× 33 7.39E-3 1.99 5.00E-8 1.95 4.26E-6 0.77 4.25E-6 0.77
37× 37 5.84E-3 2.00 2.66E-8 5.36 3.84E-6 0.88 3.84E-6 0.86

O(H1.95) O(H3.38) O(H1.40) O(H1.40)
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Table 6.7: Two-dimensional example 2, ε = 0.01: L2 errors of the field variable, its first and second derivatives. LCR stands for
local convergence rate.

Strategy 1, N ×N = 11× 11
MFEM Present method

Local fine grid (n× n) Ne(u) LCR Ne(u) LCR Ne(∂u/∂x) LCR Ne(∂u/∂y) LCR
11× 11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21× 21 8.36E-2 0.30 9.83E-4 4.30 1.29E-3 4.24 1.29E-3 4.24
31× 31 8.02E-2 0.10 1.80E-4 4.19 2.46E-4 4.09 2.45E-4 4.10
41× 41 7.91E-2 0.05 5.49E-5 4.13 8.05E-5 3.88 7.80E-5 3.98
51× 51 7.87E-2 0.02 2.20E-5 4.10 3.56E-5 3.66 3.54E-5 3.54
61× 61 7.84E-2 0.02 1.06E-5 4.00 1.91E-5 3.42 1.90E-5 3.41
71× 71 7.83E-2 0.01 5.73E-6 3.99 1.17E-5 3.18 1.17E-5 3.15

O(h0.13) O(h4.17) O(h3.94) O(h3.95)

Coarse grid (N ×N) Strategy 2, n× n = 11× 11
11× 11 1.03E-1 - 1.93E-2 - 2.44E-2 - 2.44E-2 -
21× 21 2.38E-2 2.11 3.91E-4 5.63 1.24E-3 4.30 1.25E-3 4.29
31× 31 1.39E-2 1.33 1.82E-4 1.89 2.93E-4 3.56 2.92E-4 3.59
41× 41 5.98E-3 2.93 2.08E-5 7.54 1.05E-4 3.57 1.05E-4 3.56
51× 51 3.59E-3 2.29 5.09E-6 6.31 5.19E-5 3.16 5.22E-5 3.13
61× 61 2.39E-3 2.23 1.63E-6 6.25 3.17E-5 2.70 3.19E-5 2.70
71× 71 1.78E-3 1.91 9.05E-7 3.82 2.31E-5 2.05 2.32E-5 2.07

O(H2.10) O(H5.12) O(H3.60) O(H3.59)
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Figure 6.15: Two-dimensional example 2, ε = 0.01, N ×N = 11× 11, n× n =
71× 71 (a) and N ×N = 71× 71, n× n = 11× 11 (b): effect of the number of
smoothing steps ns on the convergence behaviour.
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Figure 6.16: Two-dimensional example 2, ε = 0.1, ns = 1: convergence of the
present method and the fine scale solver with increasing sizes of the global fine
grid; grid 1 = 241× 241 (N ×N = 5× 5, n× n = 61× 61), grid 2 = 281× 281
(N ×N = 5× 5, n× n = 71× 71), grid 3 = 321× 321 (N ×N = 5× 5, n× n =
81× 81).
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Figure 6.17: Two-dimensional example 2: contour plots of solutions for the cases
of ε = 0.1 and ε = 0.01, the former is obtained withN×N = 5×5, n×n = 31×31
while the latter is obtained with N ×N = 11× 11, n× n = 31× 31.



Chapter 7

Conclusions

This chapter concludes the thesis by a summary of research contributions and

some suggestions for future development.

7.1 Research contributions

Novel local approximants based on 2-node elements and IRBF (IRBFEs), a

smallest RBF set ever used for constructing approximation, have been devised

which can produce curve lines between its two extremes. This can be seen as a

strength of IRBFEs over linear elements used in conventional techniques. The

2-node IRBFEs have been incorporated into the subregion/point collocation

formulations on Cartesian grids to create a class of C2-continuous methods.

Distinguishing features of the proposed methods include (i) C2-continuous so-

lution rather than the usual C0-continuous solutions; and (ii) remarkably sparse

and banded system matrices, especially tridiagonal ones, are achieved in Chap-

ter 5. The proposed methods provide many advantages for the simulation of

heat and viscous flows defined on both simply and multiply-connected domains

with rectangular and non-rectangular shapes as follows.
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• High levels and orders of accuracy are achieved for not only the field vari-

ables but also its first derivatives. The first derivatives contain information

of great practical interest such has the heat flux or the flow velocity field.

• Both stability and high levels of accuracy are achieved for highly nonlinear

flows via (i) novel high-order upwind schemes; and (ii) implicit treatments

of convective terms. Larger time steps can be used leading to a faster

convergence to steady state solutions. High levels of accuracy are achieved

using relatively coarse grids.

• Simple preprocessing based on Cartesian grids wherein the ADI procedure

are straightforwardly applied to accelerate computational processes.

• Flexible and effective implementation of derivative boundary conditions,

e.g. without using ghost nodes and a simple computation of vorticity

boundary conditions.

The proposed C2-continuous IRBFE-CV method serves the development of a

novel multiscale conservative computational framework in Chapter 6. The pro-

posed multiscale CV method has been successfully applied for 1D and 2D mul-

tiscale elliptic problems arising from the modeling of composite materials and

porous media flows. To the best of our knowledge, the proposed multiscale

method is the first successful attempt to incorporate an RBF into a multiscale

basis function approach to obtain high rates of convergence and levels of accu-

racy.

The contributions of each chapter can be highlighted below.

Novel 2-node IRBFEs and a C2-continuous control-volume method

This achievement is presented in Chapter 2. As aforementioned, IRBF ap-

proximations are very accurate especially in regular node arrangements such

as Cartesian grids. IRBF approximations are usually constructed globally on

the whole domain grid or on each grid line. The global construction results in
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fully populated system matrices which are highly ill-conditioned in large-scale

problems. Moreover, the RBF-width, an effective mean for controlling the ac-

curacy, is limited to small values. Local construction of RBF approximations

can circumvent these difficulty. However, trade-offs include the loss of spec-

tral accuracy and high-order continuity of the approximate solutions. 2-node

IRBFEs are constructed locally using only two RBF centres (a smallest RBF

set) associated with the two nodes of the elements and able to overcome the

shortcomings of conventional local RBF approximations. Nodal values of both

the field variable and its first derivative are involved in IRBFE approximations

leading to C2-continuous solutions. In addition, a wide range of RBF-widths

can be used to effectively control the solution accuracy.

A novel C2-continuous conservative method based on 2-node IRBFEs and Carte-

sian grids has been successfully developed for the solution of second-order el-

liptic problems in 1D and 2D. The latter can be defined on rectangular or

non-rectangular domains. The use of 2-node elements guarantees consistency

of the flux at CV faces as in the standard (linear) CVM (one of the four ba-

sic rules to guarantee a physically realistic solution) and leads to a sparse and

banded system matrix, facilitating the employment of a large number of nodes.

Unlike the standard CVM, the proposed IRBFE-CVM can give solutions with

curved profiles between the two adjacent nodes. Moreover, the approximate so-

lution is C2-continuous on the grid lines. Its solution accuracy can be effectively

controlled by means of the RBF-width (β up to 85) and/or grid size. Numeri-

cal results show that the method is much more accurate and faster convergent,

especially for the approximation of derivatives, than the standard CVM.

Development of high-order upwind schemes based on 2-node IRBFEs

for highly nonlinear flows

This research work has been presented in Chapter 3. 2-node IRBFEs are further

developed for the simulation of incompressible viscous flows. Advancement in-

cludes (i) the incorporation of C2-continuous 2-node IRBFEs into the subregion
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and point collocation frameworks for the discretisation of the streamfunction-

vorticity formulation on Cartesian grids; and (ii) the development of high-order

upwind schemes based on 2-node IRBFEs for the case of convection-dominant

flows. It should be emphasised that the proposed upwind schemes can achieve

both stability and accuracy. The proposed C2-continuous discretisation meth-

ods with upwind schemes are verified with the simulation of lid-driven cavity

flows and flows past a circular cylinder in a channel. The structures of steady

flows are obtained for a wide range of Reynolds numbers by using the method

of modified dynamics or false transient. Numerical results show that (i) much

larger time steps can be used with the upwind versions; and (ii) a high level of

accuracy is achieved using relatively coarse grids.

Development of a high-order C2-continuous ADI method based on

2-node IRBFEs and Cartesian grids

This research work has been presented in Chapter 4. A novel high-order C2-

continuous ADI method is devised via the combination of the ADI procedure

and the C2-continuous 2-node IRBFE collocation method. The discretisation

of the streamfunction-vorticity formulation governing viscous flows is imple-

mented on Cartesian grids. 2-node IRBFEs are used for the discretisation of

the diffusion terms, and then the convection terms are incorporated into system

matrices by treating nodal derivatives as unknowns - an advantageous feature

of IRBFEs. By treating the convection terms implicitly as unknowns, the ob-

tained matrices based on grid lines are always diagonally dominant. Unlike the

solution strategy in Chapters 2 and 3, the 2D problem becomes a sequence of

1D problems following the ADI factorisation in this work. The present solution

strategy consists of multiple use of a 1D sparse matrix algorithm that helps save

the computational cost. The obtained systems include 2 × Nη equations only

without the need of implicit elimination where Nη is the total number of interior

grid nodes on an η-grid line. Note that the systems in Chapter 2 and 3 includes

3 × N equations where N is the total number of interior grid nodes of the
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problem domain. The proposed method successfully simulates the benchmark

lid-driven square and triangular cavities for a wide range of Reynolds numbers

without recourse to upwind schemes. Numerical results show that larger time

steps can be used and smaller number of iterations are required in comparison

with the classical CD-ADI method. The computational times of the present

ADI method are competitive with those of the CD-ADI where 1D tridiagonal

system matrices on grid lines are solved with the Thomas algorithm.

Novel C2-continuous compact scheme based on 2-node IRBFEs on

uniform and nonuniform grids

This research work has been presented in Chapter 5. In recent years, compact

finite difference schemes are emerging to replace the classical finite difference

schemes in computational science. Similar to the classical schemes, the con-

struction of compact derivative schemes also bases on Taylor series expansion

on uniform grids. However, the derivative approximations are implicitly ex-

pressed in terms of given nodal values of the field variable. Extension of com-

pact schemes to nonuniform grid is in active research which typically requires

coordinate transformation. In present work, compact derivative schemes are

constructed by the 2-node IRBFEs leading to a novel class of C2-continuous

compact schemes. The proposed schemes have been easily extended for nonuni-

form grids without the need of coordinate transformation. Distinguishing fea-

tures of the proposed compact scheme include (i) C2-continuous solutions across

grid nodes are guaranteed; and (ii) the consistence of the first and second deriva-

tive schemes. The latter is very useful for solving problems involving both first-

and second-order derivatives such as the convection diffusion type problems.

The proposed C2-continuous compact schemes have been applied to the dis-

cretisation of linear and non-linear parabolic equations in an implicit manner

(ADI procedure is employed in 2D problems). The latter is the vorticity trans-

port equation in the Navier-Stokes equations. In such problems, the present

schemes can treat the convective terms implicitly leading to stable solutions
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at high Re while maintain the efficiency of the present proposed ADI method

as those in the conventional ADI method, i.e. tridiagonal system matrices are

achieved on each and every grid line. Note that the presently obtained system

matrices involve only Nη equations for Nη interior grid nodes of an η-grid line.

Development of an RBF-based multiscale control-volume method

This achievement is presented in Chapter 6. A novel high-order multiscale com-

putational method, based on multiscale basis function approach and IRBFEs

approximant, has been developed for the solution of multiscale elliptic problems

with reduced computational cost. Unlike other methods based on multiscale ba-

sis function approach, sets of basis and correction functions here are obtained

through C2-continuous IRBFE-CV formulations. The problem domain is dis-

cretised by two grids, a coarse grid to obtain coarse nodal values and a fine grid

to obtain the basis and correction functions on each dual cell. In the proposed

method, C2-continuous IRBFE-CVM developed in Chapter 1 is employed to

solve local problems on dual cells for the basis and correction functions. These

obtained functions help the computation of the coarse grid fluxes at coarse

control-volume faces for the discretisation of the governing equation on coarse

grid. The coarse grid system is solved for the coarse nodal values. The com-

plete solution is then constructed on each dual cell by the associated coarse

nodal values, basis and correction functions. To avoid the artificial localised

boundary conditions in 2D problems typically used by other multiscale basis

function approaches, e.g. MFEM and MFVM, an iterative algorithm based on

two grids and C2-continuous IRBFE-CV line smoother is proposed. It has been

proved numerically that such iterative algorithm converges to a C2-continuous

fine scale reference solution. This feature is very useful especially in subsurface

flow simulations where the velocity field has to be continuous across the coarse

cell interfaces to ensure a conservative flow field. Several 1D and 2D multiscale

elliptic problems are solved to verify the proposed method via two grid refine-

ment strategies. Unlike MFEM, the proposed method can work well for both
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grid refinement strategies. High rate of convergence and levels of accuracy are

obtained. The scalability and high efficiency of the proposed algorithm in 2D

has been confirmed against the performance of the fine scale solver (FSS). The

present algorithm has the potential of roughly 1000 times more efficient than

the FSS.

7.2 Suggested work

The following works are suggested for possible further developments

• Numerical results show that RBF-width (shape parameter) can effectively

control the solution accuracy. Development of strategies to optimise the

RBF-width is very necessary.

• Application of ADI procedure to IRBFE-CV formulation can result in

a very efficient conservative method. It is well known that conservative

methods are more suitable for flow field simulation.

• The IRBFEs subregion/point collocation methods are presently devel-

oped for the simulation of 2D fluid flow governed by the streamfunction-

vorticity (ψ − ω) formulation. Extension of the method to other formu-

lations such as velocity-pressure (u − p) or velocity-vorticity (u − ω) is

possible. Such formulations are known to suit 3D problems. Especially, it

would be very interesting if the IRBFEs are applied to primitive variable

formulations using pressure correction type schemes on collocated (non-

staggered) grids where IRBFEs can be used to interpolate the pressure at

control volume faces to see whether checker boarding pressure fields could

be eliminated.

• The development of the proposed multiscale CV method for full tensor and

3D problems is essential. Further development can involve time depen-

dence, nonlinear effects such as convection, compressibility, multiphase,
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fracture media. More sophisticated applications can include porous me-

dia/subsurface flows, turbulent flows, viscoelastic flows, composite mate-

rials.



Appendix A

Analytic forms of integrated MQ

basis functions

Analytic forms of the integrated MQ basis functions used are given below

I
(1)
i (x) =
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where x = (η, θ)T ; ci = (ηi, θi)
T ; r =‖ x− ci ‖;

Q =
√
r2 + a2i (A.3)

R = ln ((η − ηi) +Q) (A.4)
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2 + a2i . (A.5)

When the analysis domain is a line segment, expressions (A.1) and (A.2) reduce

to
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where r =‖ η − ηi ‖.



Appendix B

Analytic forms of 2-node IRBFE

basis functions in physical space

The analytic forms of {ϕi(η)}4i=1 and {∂ϕi(η)/∂η}4i=1 are given below
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∂ϕ1(η)
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[Ī

(1)
1 (L1 − B2) + Ī
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