AUSTRALIA

UNIVERSITY OF SOUTHERN QUEENSLAND

C?*-ELEMENT RADIAL BASIS FUNCTION
METHODS FOR SOME CONTINUUM MECHANICS
PROBLEMS

A dissertation submitted by

DUC-ANH AN-VO
B.Eng. (Hon.), Ho-Chi-Minh City University of Technology, Vietnam, 2005

M.Sc. (Hon.), Toyohashi University of Technology, Japan, 2007

For the award of the degree of

Doctor of Philosophy

February 2013



Dedication

To my parents

Thanh Vo-Kim and Dung An-Bang
and

The woman in my life

Thach Huynh



Certification of Dissertation

I certify that the ideas, experimental work, results and analyses, software and
conclusions reported in this dissertation are entirely my own effort, except where
otherwise acknowledged. I also certify that the work is original and has not been

previously submitted for any other award.

Duc-Anh An-Vo, Candidate Date
ENDORSEMENT

Prof. Nam Mai-Duy, Principal supervisor Date
Prof. Thanh Tran-Cong, Co-supervisor Date

Dr. Canh-Dung Tran, Co-supervisor Date



Acknowledgments

I would like to acknowledge my supervisors Professor Nam Mai-Duy, Professor
Thanh Tran-Cong and Dr Canh-Dung Tran for their effective guidance, constant
support and encouragement throughout. I deeply appreciate their knowledge
and patience to answer any question I have asked and correct my manuscripts.

They are indeed wonderful supervisors.

In addition, I would like to thank A /Prof. Armando A. Apan, Mrs Juanita Ryan
(Faculty of Engineering and Surveying), Ms Katrina Hall (Office of Research
and Higher Degrees), Mr Martin Geach (P9 operational officer) for their kind
support; Dr Andrew Wandel and Dr Kazem Ghabraie for offering me teaching

assistant positions.

I am grateful to numerous friends and people, whom I have not mentioned by

name, for their invaluable help during the course of my study.

My candidature was at all possible owing to a Postgraduate Scholarship from
the University of Southern Queensland and Scholarship supplements from Fac-
ulty of Engineering and Surveying and Computational Science and Engineering

Research Centre. These financial supports are gratefully acknowledged.

Finally, I am indebted to my parents, my brother and my wife for their uncon-

ditional support, love and encouragement.



Abstract

This work attempts to contribute further knowledge to high-order approxima-
tion and associated advanced techniques/methods for the numerical solution of
differential equations in the discipline of computational science and engineering.
Of particular interest is the numerical simulation of heat conduction, highly
non-linear flows and multiscale problems. The distinguishing feature in this
study is the development of novel local compact 2-node integrated radial basis
function elements (IRBFEs) and their incorporation into the subregion/point
collocation formulations based on Cartesian grids. As a result, a new class
of C?-continuous methods are devised, representing a significant improvement
on the usual C%-continuous methods. Incorporation of the new C?-continuous
methods into the development of a high-order multiscale computational frame-
work provides advantageous features compared to other multiscale frameworks
available in the literature, including (i) high rates of convergence and levels of
accuracy; and (ii) converged C*-continuous solutions of two-dimensional multi-

scale elliptic problems.

Firstly, a new control-volume (CV) discretisation method, based on Cartesian
grid and IRBFEs, for solving PDEs is proposed. Unlike the standard CV
method (Patankar 1980), the flux values at CV faces are presently estimated
with high-order IRBF approximations on 2-node elements and the solution is
C?-continuous across the interface between two adjacent elements. Only two
RBF centres (a smallest RBF set) associated with the two nodes of the ele-
ment are used to construct the approximations locally leading to a very sparse

and banded system matrix. Moreover, a wide range of RBF-widths can be



Abstract v

used to effectively control the solution accuracy. Secondly, the proposed 2-node
IRBFEs are incorporated into the subregion and point collocation frameworks
for the discretisation of the streamfunction-vorticity formulation governing the
fluid flows. Several high-order upwind schemes based on 2-node IRBFEs are de-
veloped for highly non-linear flows. Thirdly, the ADI procedure (Peaceman and
Rachford 1955, Douglas and Gunn 1964) is applied to enhance the efficiency
of the proposed methods. Especially novel C?-continuous compact schemes
based on 2-node IRBFEs are devised and combined with the ADI procedure
to yield optimal tridiagonal system matrices on each and every grid line. Such
tridiagonal matrices can be solved effectively and efficiently with the Thomas
algorithm (Fletcher 1991, Pozrikidis 1997). Finally, the proposed C?-continuous
CV method is employed in a multiscale basis function approach to develop a

high-order multiscale CV method for the solution of multiscale elliptic problems.

Accuracy, stability and efficiency of the proposed methods are verified with

extensive numerical results.
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Chapter 1

Introduction

This chapter starts with the motivation for the present research. Then model
problems are defined, followed by a review and discussion on multiscale meth-
ods. A brief review of radial basis function serve to introduce new ideas and

objectives of the present research. Finally, the outline of the dissertation is

described.

1.1 Motivation

Multiphase materials such as particulate fluids and fibre reinforced composites
have been used in many engineering applications. The inclusion of particles
and fibres into a fluid/elastic medium results in a new material that can have
certain desired properties. The dispersed phase (i.e. particles or fibres) can
be randomly distributed in the resin, giving rise to multiscale fluctuations in
the thermal or electrical conductivity. A numerical prediction of the behaviour
of such problems is thus extremely difficult since a wide range of length scales
(multiscale) is involved, i.e. the scale of the constituents can be of much lower

order than the scale of the resultant material and structure. For many prac-
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tical problems, because of overwhelming costs, a direct representation of the
full fine-scale solution is simply impossible on today’s computer resources. This
research project is concerned with the development of a high-order computa-
tional procedure which is capable of solving multiscale elliptic equations arising
from the modelling of multiphase materials on the present computing facilities.
The proposed procedure makes use of several recent advances in computational
mechanics, including the non-polynomial multiscale space approach (heteroge-
nous media) and spectral universal interpolants based on integrated radial basis

functions (high-order approximations).

1.2 Problem definition

The prediction of deformation or thermal behaviour of composites presents sig-
nificant challenges. One must take into consideration the behaviour of individ-
ual constituents (i.e. reinforcements - particles, fibres, whiskers and platelets -
and resin/matrix), the interaction between these components and the involve-
ment of multiple length scales and also possibly multiphysics. Fortunately,
certain phenomena/problems can be modeled by multiscale elliptic equations.
To capture the solution at a fine scale, the use of traditional direct approaches,
e.g. multigrid methods, domain decomposition methods and adaptive mesh re-
finement techniques, leads to discrete systems that have very large degrees of
freedom from both spatial and temporal discretisations. For a brief illustration,
we consider the following elliptic equation which arises from the modelling of

composite materials and subsurface flows

—V - (a‘(x)Vu) = f(x) in Q, (1.1)

where af(x) is the material property tensor involving a small scale parameter
€, u the field variable, f a given function and €2 the problem domain. It was

pointed out in Hou and Wu (1997) that applying conventional direct methods
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to (1.1) gives an overly pessimistic estimate of error O(h/e) in the H! norm,
where h is the mesh size. Direct methods clearly cannot converge when h > €
and it thus requires a mesh size to be much smaller than the small length scale
(h < €). It can be seen that tremendous amounts of computer memory and
CPU time required by these methods can easily exceed the limit of today’s
computing resources. Consequently, several classes of numerical methods have
been developed to deal with the multiscale nature of the solution. Examples
include homogenisation methods (Kalamkarov et al. 2009), heterogeneous mul-
tiscale methods (E and Engquist 2003b) and multiscale shape function methods
(Hou and Wu 1997). These methods seek to capture the fine scale effect on the
coarse scales via a multi-stage resolution of the fine scale features. As a result,
they make the solution of a multiscale problem possible, from which the coarse
scale/bulk properties of multiphase materials such as the effective conductivity,
elastic moduli and permeability can be predicted. However, dense meshes are

still typically required in commonly employed low order approximations.

1.3 Review of multiscale methods

Consider the model problem (1.1). We assume that (i) the tensor a(y), y = x/e,
is smooth and periodic in the domain of the variable y, namely Y, and (ii)
boundary conditions for u are homogeneous on the whole boundary, i.e. u =0
on 9. We use () = [, Tdy/|Y]| to denote the volume average of the physical
quantity f over Y.

Multiscale methods for solving (1.1) are in contrast with conventional direct
methods, e.g. refined FEMs and multigrid methods (Fish and Belsky 1995a,b).
Examples of these multiscale methods include mathematical homogenisation
method (MHM) (Kalamkarov et al. 2009), heterogeneous multiscale method
(HMM) (E and Engquist 2003b), and multiscale finite element method (MFEM)
(Hou and Wu 1997). They have been designed to overcome the prohibitively
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large system associated with the fine mesh resolution in order to achieve

cost of multiscale method

1. 1.2
cost of direct method < (1.2)

For HMM and MFEM, fine-scale information is derived from the solution of the

following auxiliary fine scale problem

-V - (a‘(x)Vo(x)) =0 in D CQ, (1.3)

where D represents a local domain that is named a unit cell for HMM or an
element for MFEM, and ¢(x)s are local adaptive functions used to calculate

coarse element stiffness matrices for HMM and shape functions for MFEM.

For MHM, fine-scale information is derived from the following cell problem

Vy - (a(y)Vyx; (y)) = %y(i)’), (1.4)

where x;(y)s, which are named influence functions, are chosen to be periodic

with zero mean, i.e. (x;) = 0.

1.3.1 Mathematical homogenisation method

The mathematical homogenisation method (MHM) has been traditionally used
as a primary tool for analysing heterogeneous medium and its details were
explained in, for example, Babuska (1976), Benssousan et al. (1978), Oleinik
et al. (1992), Guedes and Kikuchi (1990), Hassani and Hinton (1998), Takano
et al. (2000), Fish and Yuan (2005). Based on the assumptions of microstructure
periodicity and uniformity of a unit cell domain, the homogenisation theory
decomposes the boundary value problem into a unit cell (fine scale) problem

and a global (coarse scale) problem.

Suppose that a composite structure is globally heterogeneous and its con-
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stituents are linearly elastic. In the following, for brevity, we present MHM
for one component of the displacement vector. The actual displacement com-
ponent, denoted by u¢, may be periodically oscillating due to the fine scale
heterogeneity. The homogenised model can provide the homogenised displace-
ment, denoted by ug. The differences between the actual displacement u¢ and
the homogenised displacement ug are determined as the perturbed displace-
ment, denoted by u;, multiplied by the small parameter ¢, and so on. Then, a

double-scale asymptotic expansion of the actual displacement is
uE(X) = UO(X) + eul(x, Y) + €2u2(X7 y) + ; (15)

where w;(x,y), i« = (1,2,...), are functions of both scales and y-periodic in
Y. The actual displacement u€ is also a function of both scales, whereas the
homogenised displacement uq is only a function of the coarse scale. The latter

is the solution of the homogenised equation

-V - -a*Vuy = f in Q, (1.6)
up = 0 on 090, (1.7)

where a* is the effective material coefficient tensor, given by

i = (aaly) (5~ 52 ). (1.9

It was proved in Benssousan et al. (1978) that a* is symmetric and positive defi-
nite. The leading perturbed displacement w; in equation (1.5) can be expressed

in terms of the homogenised displacement ug as

ou.
ui(x,y) = _Xja—;a (1.9)
J

where the influence functions y; (Fish and Yuan 2005), which are the solution of
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equation (1.4), are also refereed to as the characteristic displacements (Takano
et al. 2000). The proof of the existence and uniqueness of the solution of equa-
tion (1.4) in weak-form sense and the validity of equation (1.9) were detailed in
several works (Babuska 1976, Benssousan et al. 1978, Oleinik et al. 1992, Guedes
and Kikuchi 1990, Hassani and Hinton 1998). Since there is no assumption on
the geometrical configuration of the constituents, the homogenisation theory
can tackle arbitrary complex microstructures. The fine scale stress tensor o;; is
given in Xing et al. (2010). The coarse scale stresses are defined as the volume
average of the fine scale stresses within a unit cell

or = (04). (1.10)

v

A salient feature of MHM is that the fine scale solution is completely described
on the coarse scale, see equations (1.9). Nevertheless, the influence functions
are computed at a material point from equation (1.4) prior to the fine scale

solution.

It is apparent that meshes of a unit cell need to be fine enough for accu-
rately computing derivatives of the influence functions and homogenised dis-
placements. Moreover, the second order perturbation us(x,y) in equation (1.5)
may be required when the constituents have highly contrast properties. The
error source also comes from the boundary condition since in general u; # 0 on
0€). Therefore, the boundary condition u|sg = 0 should be enforced through

the first-order corrector term 6. (Benssousan et al. 1978), which is given by

V- (a‘(x/e)VO.) = 0 in Q, (1.11)
0. = wui(x,x/e) on S (1.12)

Reliability of computations using MHM for a heterogeneous medium depends

strongly on the validity of the periodicity and uniformity, introduced by the
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classical homogenisation theory. Recently, Kalamkarov et al. (2009) reviewed
the state-of-the-art of asymptotic homogenisation techniques in the analysis of

composite materials and thin-walled composite structures.

The implementation of MHM consists of three steps as follows.

e Solving the influence functions from equation (1.4) through FEM and
evaluating the homogenised (effective) material properties from equation

(1.8);

e Solving the homogenised displacement from equations; (1.6)-(1.7) with

the effective material properties through FEM;

e Post-processing on the micro and macro levels.

1.3.2 Heterogeneous multiscale method

The heterogeneous multiscale method (HMM) (E and Engquist 2003b, 2005;
Ming and Yue 2006; Ming and Zhang 2007; E and Engquist 2003a; Abdulle
2007; E et al. 2007) can be viewed as a general method for the computation of
multiscale problems. HMM involves two main calculations. The first one is to
select an overall macroscopic scheme such as FEM for the coarse scale variables
on a coarse mesh, and the second one is employed to estimate the missing coarse
scale data by solving locally the fine scale problem. To solve for the coarse scale
features of the problem (1.1), one can employ the strain energy U of the global

structure, which generally has the following form

U= §/Qa€(x)(Vu0)2dQ. (1.13)
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Assuming that the strain energy is calculated by means of the numerical quadra-

ture rule as

U= %[;{ |D| x;ala*(xl)(vuo(xl))?, (1.14)
where H is the coarse mesh, x; and a; are respectively the quadrature points
and the weights in element D, and a*(x;) is the effective material coefficient
at those quadrature points and calculated by (1.8). Expression (1.14) must
be approximated by solving the problem in the small domain I5(x;) near the

quadrature point x;, which is governed by
V- (a(x)Vu(x))) =0, xe€ Is(x), (1.15)

where I5(x;) is a square of size § centered at x;. Different boundary conditions
on 0Is5(x;) and their effects were discussed in Yue and E (2007). Equation
(1.15) can be typically solved by FEM in just several small domains of a unit
cell rather than solving a whole cell problem. Then equation (1.14) is evaluated

in the following way

Z|D|ZO¢1/6XI

DeH x,ED

(x;))2dl. (1.16)

Finally, the HMM solution uy(x) is obtained by solving

min ) {U —/Df(x)uo(x)dD}, (1.17)

DeH

which can be understood as the weak form of equation (1.1). It is noteworthy
that the cost of HMM depends on the size of §. HMM can take advantages of
the possible scale separation in the problem, but becomes similar to the fine

scale solvers when there is a lack of scale separation.

All demonstrations of HMM assume that a*(x) are smooth, symmetric and

uniformly elliptic (E and Engquist 2003b, 2005; Ming and Zhang 2007). How-
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ever, this assumption cannot be applicable for multiphase materials. If there
are two or more kinds of materials in /5(x;), the accuracy will be deteriorated
when solving equation (1.15) with the homogenised boundary conditions which
cannot model the material jumps on the boundaries of I5(x;). Therefore, the

application of HMM in composite structures needs to be studied in depth.

It is well known that the microstructure information in v is used for the local
stress analysis. This information can be recovered using a simple postprocessing
technique based on uy (E and Engquist 2003a, Oden and Vemaganti 2000).
Assume that we are interested in recovering u¢ and Vu© only in a local domain
or a unit cell D. One of the recovering approaches is the local model refinement

(Oden and Vemaganti 2000), in which the following auxiliary problem,

-V - (a*(x)Vu(x)) = f(x) in D C Q, (1.18)
u(x) = up(x) on 9D,

is solved, and the approximation u¢ with micro information, whose error is finite,
is then obtained (E and Engquist 2005). Another recovering approach is similar
to the asymptotic expansion as in MHM. Define the first order approximation
of uf(x) as

0
u(x) = up(x) + EXJ-%, (1.19)
J

where the influence function x; is the solution of equation (1.4).

HMM generally gives a framework that allows us to maximally take advantage
of the special features of the problem such as scale separation; for problems
without any special features, HMM becomes a fine scale solver. The savings
in HMM, compared with the cost of solving the full fine scale problem, comes
from the fact that [5(x;) can be chosen to be smaller than D, and the small
domain I5(x;) is determined by many factors, including the accuracy and cost

requirement, the degree of scale separation, and the microstructure in a(x).
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HMM has been applied to a large variety of homogenisation problems either
linear or nonlinear, periodic or non-periodic, stationary or dynamic (E and En-
gquist 2006), and can be naturally extended to higher order by using higher
order finite elements as the macroscopic solver. Recently, E et al. (2007) pre-
sented a state-of-the-art review of HMM, including the fundamental philosophy,
and the main process for complex fluids, micro-fluidics, solids, interface prob-
lems, stochastic problems and statistically self-similar problems. Chen (2009)
has incorporated various macroscopic solvers, including finite differences, finite
elements, discontinuous Galerkin, mixed finite elements, control volume finite
elements, and nonconforming finite elements, into HMM and pointed out their

advantages, shortcomings and adaptabilities.

The computational sequence of HMM includes four steps:

e Solving the sub-local problems governed by equation (1.15) around the
quadrature points of a coarse element to capture the effects of microstruc-

ture;
e Evaluating the strain energy through equation (1.16);
e Solving the homogenised displacement g from equation (1.17) using FEM;

e Recovering the micro information in u¢ by solving equation (1.18) or using

equation (1.19).

1.3.3 Multiscale finite element method

The multiscale finite element method (MFEM) (Hou and Wu 1997) was pro-
posed to solve a class of elliptic problems (1.1) with multiple spatial scales
arising from modelling of composite materials. Its main idea is to capture the
coarse scale behaviour of the solution through a multi-stage resolution of the

fine scale features. This can be achieved by constructing the multiscale finite
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element shape functions reflecting the local property of the differential opera-
tor. The MFEM is applicable to general multiscale problems without restrictive
assumptions, and the construction of the shape functions for a coarse scale ele-

ment is independent from each other.

In contrast with some empirical numerical upscaling methods (Sangalli 2003),
MFEM is systematic and self-consistent. The idea of constructing finite element
shape functions based on local differential operator in MFEM is an extension
of the work of Babuska and Osborn (1983), which incorporates the fine scale
information into the basis functions by solving the original fine scale differential

equations on each element with proper boundary conditions.

The over-sampling MFEM reduces the effect of the boundary layers occurring at
the inter-element boundaries by an indirect approach in constructing the base
functions. Instead of directly working on an element D, a domain S larger than
D is used with diam(S) = H > h + e. Any reasonable boundary condition can
be imposed on the boundary of domain S in solving equation (1.3) to obtain
temporary base functions denoted as ¢; with @ = (1,...,d) in which d is the
number of element nodes. One then constructs the actual base functions from

the linear combination of ;s

d
(bi :Zcijwﬁ 1= (17"'7d)7 (120)
j=1

where ¢;; are the constants determined by the condition ¢;(x;) = d;;.

It has been shown that MFEM converges to the homogenised solution as e — 0
(Hou and Wu 1997, Efendiev et al. 2000, Hou et al. 1999). This property is
not shared by the conventional FEM with polynomial bases, since fine scale
information is averaged out incorrectly. Recently, the multiscale finite element
methodology has been modified and successfully applied to two-phase flow sim-
ulations (Efendiev and Hou 2007), and the consolidation analysis of heteroge-

neous saturated porous media (Zhang et al. 2009). The steps of implementing
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the over-sampling MFEM are as follows.

e Solving equation (1.3) on a domain S for the auxiliary shape functions
Vj;

e Evaluating the over-sampling multiscale finite element shape functions ¢;s

over a coarse element using equation (1.20);

e Solving the coarse mesh problem by using FEM.

1.4 Discussion

A brief review on multiscale computational methods (MHM, HMM, MFEM)
for multiphase materials in Section 1.3 provides an understanding of their phi-
losophy and main features. As discussed, MHM is based on the homogenisation
theory and hence its range of applications is usually limited by restrictive as-
sumptions on the media, such as scale separation and periodicity (Benssousan
et al. 1978). It is also expensive to be used for solving problems with many sep-
arate scales since the cost of computation grows exponentially with the number
of scales (Hou and Wu 1997). HMM is more general and can be applied to prob-
lems with random coefficients. However, its effectiveness is strongly dependent
on the material structure assumptions such as scale separation. Without this
assumption, HMM is equivalent to a direct solver. In the last case, MFEM is
applicable to general multiple-scale problems without restrictive assumptions.
In contrast to MHM, the number of scales are irrelevant to the computational
cost in MFEM (Hou and Wu 1997). MFEM is systematic and self-consistent,
which makes it easier to analyse especially large scale problems. Nevertheless,
the accuracy of MFEM is low in the order of O(e/h) (Hou and Wu 1997) and

its convergence for continuous scale problems needs to be further studied.

Another concern in current multiscale computational methods in the literature
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is the error source coming from the cell problem (MHM, HMM) or element
problem (MFEM). It was pointed out by Babuska and Osborn (1983) in the
FEM context and recently by Yuan and Shu (2008) and Wang et al. (2011) in
the context of discontinuous Galerkin method (DGM) that an approximation

space S” should be constructed as
ST ={¢:V-(a*(x)V)|; € P2(I)} for r=1,2,---, (1.21)

where I denotes the cell or element in the spatial discretisation, P"(I) denotes
the space of polynomials of degree less than or equal to r on I and P~!(I) = {0}.
It can be seen that the approximation spaces of current multiscale methods in
the literature correspond to S! except for the DGM case (e.g. Yuan and Shu
2008, Wang et al. 2011), in which high convergence rates are obtained for r > 1.

Generally, conventional numerical methods such as finite element methods (FEMs),
finite difference methods (FDMs) and finite volume methods (FVMs) are utilised
to numerically solve both the fine scale and coarse scale problems in a theoretical
framework (MHM, HMM, MFEM). These methods are typically of low order of
accuracy and provide a C solution. It is noted that there are high-order formu-
lations, those using Hermite interpolation for instance, e.g. (Zienkiewicz 1971,
Watkins 1976, Holdeman 2009) for FEM and e.g. (Qiu and Shu 2003, 2005)
for FVM, that can afford higher continuity. To the best of our knowledge, such
high-order methods currently are not yet applied to multiscale model problems
of interest in this thesis. The field variables and their derivatives are highly
oscillating in multiscale problems, posing a great challenge for conventional

low-order methods.

A 1D example below, having an exact solution, can clearly display this challenge

d du
B — Yr)— | = <xr<I1 1.22
dx (a <x)d:1:) 7 0=zzs ( )
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Figure 1.1: Exact solution of problem (1.22)-(1.24) for ¢ = 0.01: (a) field
variable, (b) its zoomed part, (c) its first-order derivative, (d) its second-order
derivative.

with boundary conditions

w(0) = u(l) =0 (1.23)

1

- 2+ x+sin(2mx/e) (1.24)

a‘(z)

The exact solution is depicted in Figure 1.1 for ¢ = 0.01 where we can see

remarkable oscillations of first and second-order derivatives. One of the most
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important issues in solving problem (1.1) is to recover the details of Vu¢ (first-
order derivative) since they contain information of great practical interest, such
as the stress distribution and heat flux in composite materials or the velocity
field in a porous medium (Ming and Yue 2006). In addition, even in the theoreti-
cal framework such as MHM, accurate approximations of derivatives of influence
functions are necessary for evaluating the homogenised material coefficient in
equation (1.8) and coarse scale displacement v, in equations (1.6)-(1.7). It is
also noteworthy that the first perturbation displacement w; is also estimated
from the first-order derivative of vy in equation (1.9). In the case of MFEM, if
the basis functions ¢s are obtained by a conventional linear FEM, they are only
C° functions, causing significant error in first-order derivative approximation
and, as a result, it is impossible to approximate second-order derivatives. The
discontinuity of derivatives is usually mitigated by using fine meshes, which
can make conventional methods inefficient or even impracticable. Therefore,
it is desirable to develop a method that has a higher order continuity of the
solution across elements and also has a higher level of accuracy and efficiency.
Incorporation of radial basis functions into the discretisation frameworks as trial

functions can be a potential way to achieve these objectives.

1.5 Radial basis functions (RBF's)

Radial basis functions (RBFs) have successfully been used for the approximation
of scattered data over the last several decades. They have also emerged as an
attractive scheme for the numerical solution of ODEs and PDEs (e.g. Fasshauer
(2007) and references therein). Theoretically, some RBF-based methods can
be as competitive as spectral methods; the two types of method can exhibit
spectral accuracy. Unlike pseudo-spectral techniques, RBF-based methods do
not require the use of tensor products in constructing the approximations in two
or more dimensions. The RBF approximations usually rely on a set of distinct

points rather than a set of small elements. When this characteristic is combined
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with the point-collocation formulation, the resultant discretisation methods are
truly meshless (e.g. Kansa (1990)). RBF-based collocation methods can be
applied to differential problems defined on irregular domains without added
difficulties. Apart from point-collocation, RBFs have also been employed as trial
functions in other formulations such as the Galerkin, subregion collocation and
inverse statements, resulting in enhanced rates of convergence (error of O(h®)
with @ > 2) of these approaches. Works in this research trend include Atluri
et al. (2004), Sellountos and Sequeira (2008), Orsini et al. (2008), Mohammadi
(2008).

In a conventional RBF scheme (Kansa 1990), the original function is decom-
posed into RBF's and its derivatives are then obtained through differentiation.
Some RBF schemes such as those based on multiquadric (MQ) function are
known to possess spectral accuracy with error in the O(AX), where 0 < A < 1.
Through numerical experiment, for a certain range of the RBF-width a, Cheng
et al. (2003) established the error estimate as O(AY*/"). In the approximation
of kth derivative, Madych (1992) showed that the convergence rate is reduced
to O(AX%). To avoid such reduction of convergence rate caused by differentia-
tion in a conventional scheme, Mai-Duy and Tran-Cong (2001, 2003) proposed
an indirect approach. RBFs were used to represent highest order derivatives
and such RBF-based approximants are then integrated to yield expressions for
lower-order derivatives and eventually the function itself. This approach is less
sensitive to noise than the usual differential approach and appears to be more
suitable for applications involving derivatives such as the numerical solution
of ODEs and PDEs. Recently, towards the analysis of large-scale problems,
a numerical scheme, based on one-dimensional integrated RBFs (1D-IRBFs),
point collocation and Cartesian grids, was reported in Mai-Duy and Tran-Cong
(2007). In this scheme, the 1D-IRBF approximations at a grid point x only
involve nodal points that lie on grid lines crossing at x rather than the whole
set of nodal points, leading to a considerable saving of computing time and

memory space over the original IRBF schemes (Mai-Duy et al. 2008, Le-Cao
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et al. 2009, Ho-Minh et al. 2009).

Although 1D-IRBF schemes can yield a high level of accuracy using a relatively
coarse grid, their system matrices are not as sparse as those produced by con-
ventional FDMs. In addition, for a stable calculation, these schemes are limited

to small values of the RBF width.

1.6 Objectives of the present research

In this research project, we further localise the 1D-IRBF's to construct a new
type of element for the discretisation of ODEs/PDEs in point/subregion col-
location formulations on Cartesian grids. The proposed element involves two
nodes, called 2-node IRBFE, wherein the 1D-IRBFs are implemented with two
RBF centres only and the approximations are nonoverlapping. It can be seen
that the use of two RBFs (a smallest RBF set) allows a wide range of the
RBF width to be used and leads to very sparse system matrices. Moreover,
the approximate solution is guaranteed to be C*-continuous across the inter-
face of IRBFEs. We then verify the novel formulations through the solution of
benchmark nonlinear flows of an incompressible Newtonian fluid (e.g. flows in
lid-driven cavities and flows past a circular cylinder in a channel). We optimise
the efficiency of the present approaches with the alternating direction implicit
(ADI) procedure (Peaceman and Rachford 1955, Douglas and Gunn 1964) via
different strategies. Finally, we introduce these proposed IRBFEs and subre-
gion collocation into the non-polynomial multiscale space framework for solving

the multiscale elliptic problems.

Accuracy will be enhanced by the following key features.

e High order RBFs rather than low order polynomials are employed to rep-

resent the solution over elements.
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e Integration rather than differentiation is employed to construct the RBF

approximations.

e The computed solution is a C? function rather than the usual C°.

Efficiency will be enhanced by the following key features.

e The IRBFE involves only two RBF centres, leading to a sparse system

matrix.

e Cartesian grids are used to represent the problem domain. It is clear that
generating a Cartesian grid is much simpler and easier than generating
a finite-element mesh. Moreover, ADI procedure (Peaceman and Rach-
ford 1955, Douglas and Gunn 1964) can be straightforwardly applied to

accelerate computational processes.

e Point collocation formulation and control volume formulation employed
with the middle point rule are utilised to discretise the governing equation.

These discretisation approaches are integration free.

e Meaningful solutions can be obtained on a relatively coarse grid as mass
and momentum conservations are preserved over control volumes associ-

ated with the grid nodes.

The central goal of the present research is to obtain multiscale solutions accu-

rately and effectively.

1.7 Outline of the Dissertation

The dissertation has seven chapters including this chapter (Introduction); each
chapter is presented in a self-explanatory way. The outline of the remaining

chapters is as follows.
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e Chapter 2 presents a new C?-continuous control volume discretisation
method, based on Cartesian grids and 2-node IRBFEs, for the solution of
second-order elliptic problems in one and two dimensions. The proposed

2-node IRBFEs are then utilised by the following chapters.

e Chapter 3 develops 2-node IRBFEs for the simulation of incompressible
viscous flows in two dimensions. Emphasis is placed on (i) the incorpo-
ration of C%-continuous 2-node IRBFEs into the subregion and point col-
location frameworks for the discretisation of the streamfunction-vorticity
formulation on Cartesian grids; and (ii) the development of high order
upwind schemes based on 2-node IRBFEs for the case of convection-

dominant flows.

e Chapter 4 presents a C”?-continuous alternating direction implicit (ADI)
method based on 2-node IRBFEs for the solution of the streamfunction-
vorticity equations governing steady 2D incompressible viscous fluid flows.
Unlike in Chapters 2 & 3 the solution strategy in this chapter consists
of multiple use of a one-dimensional sparse matrix (associated with grid

lines) algorithm that helps save the computational cost.

e Chapter 5 presents a novel C?-continuous compact scheme based on 2-
node IRBFEs. The proposed C?-continuous compact scheme is applied
to the discretisation of second-order parabolic equations in one- (1D) and
two-space dimensions (2D) in an implicit manner. As in Chapter 4 the
ADI procedure (Peaceman and Rachford 1955, Douglas and Gunn 1964)
is applied for the time integration in 2D. However, the one-dimensional
matrices associated with grid lines are optimised to be in standard tridi-
agonal form which can be solved efficiently by the Thomas algorithm.
Moreover, the typical matrix size is half of that obtained in Chapter 4
and equal to the number of nodal unknowns of the dependent variable

only.

e Chapter 6 presents a high order multiscale conservative method, based on
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multiscale basis function approach and IRBFEs, for the solution of mul-
tiscale elliptic problems with reduced computational cost. Unlike other
methods based on multiscale basis function approach, sets of basis and
correction functions here are obtained through C*-continuous IRBFE-CV

formulation.

e Chapter 7 gives some concluding remarks and suggestion of possible future

research developments.



Chapter 2

Two-node IRBF elements and a
C?-continuous control-volume

technique

This chapter presents a new control-volume discretisation method, based on
Cartesian grids and integrated-radial-basis-function elements (IRBFEs), for the
solution of second-order elliptic problems in one and two dimensions. The gov-
erning equation is discretised by means of the control-volume formulation and
the division of the problem domain into non-overlapping control volumes is
based on a Cartesian grid. Salient features of the present method include (i)
an element is defined by two adjacent nodes on a grid line, (ii) the IRBF ap-
proximations on each element are constructed using only two RBF centres (a
smallest RBF set) associated with the two nodes of the element and (iii) the
IRBFE solution is C%-continuous across the interface between two adjacent el-
ements. The first feature guarantees consistency of the flux at control-volume
faces. The second feature helps represent curved profiles between 2 adjacent
nodes and leads to a sparse and banded system matrix, facilitating the employ-

ment of a large number of nodes. The third feature enhances the smoothness of
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element-based solutions, allowing a better estimate for the physical quantities
involving derivatives. Numerical results indicate that (i) the proposed method
can work with a wide range of the shape-parameter/RBF-width and (ii) the
proposed technique yields more accurate results and faster convergence, espe-
cially for the approximation of derivatives, than the standard control-volume

technique.

2.1 Introduction

Traditional techniques used for solving second-order elliptic differential equa-
tions include overlapping finite difference methods (FDMs), non-overlapping
finite element methods (FEMs), boundary element methods (BEMs) and con-
trol volume methods (CVMs). These methods typically utilise polynomials as
an interpolator. To avoid notorious polynomial snaking phenomena, low-order
polynomials such as linear variations are widely used, usually leading to errors of
order h?, where h is the mesh spacing. For element-based solutions, only the ap-
proximating function (not its partial derivatives) is continuous across elements
(i.e. CY continuity). The overall error can be reduced by using progressively
denser meshes. A mesh needs be sufficiently fine to mitigate the effects of discon-
tinuity of partial derivatives. It is thus desirable to have discretisation methods
that can produce a solution of higher-order continuity across elements. There
are high-order formulations in the literature, for instance those using Hermite
interpolation e.g. (Zienkiewicz 1971, Watkins 1976, Holdeman 2009) for FEM
and e.g. (Qiu and Shu 2003, 2005) for FVM that can provide such high-order
continuity. Here, we develop a high-order continuity method based on IRBF

interpolation and control-volume formulation.

Radial basis functions (RBFs) have successfully been used for the approxima-
tion of scattered data over the last several decades. They have also emerged

as an attractive scheme for the numerical solution of ordinary and partial dif-
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ferential equations (ODEs and PDEs) e.g. (Fasshauer 2007, and references
therein). Theoretically, some RBF-based methods can be as competitive as
spectral methods; the two types of methods can exhibit spectral accuracy. Un-
like pseudo-spectral techniques, RBF-based methods do not require the use
of tensor products in constructing the approximations in two or more dimen-
sions. The RBF approximations usually rely on a set of distinct points rather
than a set of small elements. When this characteristic is combined with the
point-collocation formulation, the resultant discretisation methods are truly
meshless e.g. (Kansa 1990). RBF-based collocation methods can be applied
to differential problems defined on irregular domains without added difficulties.
Apart from point-collocation, RBFs have also been employed as trial functions
in other formulations such as the Galerkin, subregion collocation and inverse
statements, resulting in enhanced rates of convergence (O(h*) with o > 2) of
these approaches. Works in this research trend include Atluri et al. (2004),
Sellountos and Sequeira (2008), Orsini et al. (2008), Mohammadi (2008).

In a pivotal paper on function approximation by Franke (1982), it was pointed
out that the multiquadric (MQ) RBF scheme yields the most accurate results.
The present work employs the MQ whose form is defined by

gi(x) =1/ (x—¢;)? +a?, (2.1)

where c¢; and a; are the centre and the shape parameter of the ith MQ), respec-
tively. A set of interpolation points is taken to be a set of RBF centres. In
Mai-Duy and Tran-Cong (2001, 2003), the value of the shape parameter was
simply chosen as a; = fBh; with § being a given positive number and h; the
distance between c; and its nearest neighbour. When the direct way of com-
puting the interpolants is used, RBF-based methods such as those using MQs
are known to suffer from the so-called uncertainty principle. As the value of
increases, the error reduces while the matrix condition number increases unde-

sirably. In practice, one desires to use large s up to a value at which the system
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matrix is still in good condition. RBF-based methods can be classified into two
categories: global and local. Global methods use every RBF on the whole do-
main to construct the approximations at a point, resulting in a fully populated
system matrix c.f. (Kansa 1990, Sarler 2005, Zerroukat et al. 1998, Mai-Duy
and Tran-Cong 2001). When the number of RBF centres and/or the value of /3
increase, the condition of RBF matrices deteriorates rapidly. Such drawbacks
typically render global methods unsuitable for complex problems, where many
points are required for a proper simulation. In addition, 3 to be used is confined
to small values. For local methods e.g. (Tolstykh and Shirobokov 2003, Shu
et al. 2003, Lee et al. 2003, Sarler and Vertnik 2006, Divo and Kassab 2007,
Sanyasiraju and Chandhini 2008, Mai-Duy and Tran-Cong 2009a), only a few
RBFs are activated for the approximations at a point. The resultant system
matrix is sparse and banded, which is suitable for handling large-scale prob-
lems. However, trade-offs include the loss of spectral accuracy and high-order
continuity of the approximate solution. Various schemes have been proposed
to enhance the performance of local methods. Using large values of § appears
to be an economical and effective way (Cheng et al. 2003). In the case of non-
overlapping domain-decompositions, where a large problem is replaced with a
set of sub-problems of much smaller sizes, the computed solution is only a C*
function across the subdomain interfaces (Li and Hon 2004). It is noted that
errors of RBF solutions are larger near interfaces/boundaries (Fedoseyev et al.
2002) and with Neumann boundary conditions than with Dirichlet boundary
conditions (Libre et al. 2008).

In a conventional RBF scheme (Kansa 1990), the original function is decom-
posed into RBF's and its derivatives are then obtained through differentiation.
Some RBF schemes such as those based on MQs are known to possess spectral
accuracy with errors in the O(AX), where 0 < A < 1. Through numerical experi-
ment, for a certain range of a, Cheng et al. (2003) established the error estimate
as O(AV%/M). In the approximation of kth derivative, Madych (1992) showed

that the convergence rate is reduced to O(AM*). To avoid such reduction of
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convergence rate caused by differentiation in a conventional scheme, Mai-Duy
and Tran-Cong (2001, 2003) proposed an indirect or integral approach. RBF's
were used to represent highest order derivatives and such RBF-based approx-
imants are then integrated to yield expressions for lower-order derivatives and
eventually the function itself. This approach is less sensitive to noise than the
usual differential approach and appears to be more suitable for applications
involving derivatives such as the numerical solution of ODEs and PDEs. Re-
cently, towards the analysis of large-scale problems, a numerical scheme, based
on one-dimensional integrated RBFs (1D-IRBFs), point collocation and Carte-
sian grids, was reported in Mai-Duy and Tran-Cong (2007). In this scheme, the
1D-IRBF approximations at a grid point x only involve nodal points that lie
on grid lines crossing at x rather than the whole set of nodal points, leading
to a considerable saving of computing time and memory space over the original
IRBF schemes (e.g. Mai-Duy et al. 2008, Le-Cao et al. 2009, Ho-Minh et al.
2009, Ngo-Cong et al. 2011).

In the present work, the problem domain, which can be rectangular or non-
rectangular, is represented by a Cartesian grid. Each grid node is associated
with a control volume (CV) of rectangular shape. To estimate the values of
the flux at the middle points on the interfaces, the approximations for the field
variable and its derivatives are constructed using IRBFs over elements defined
by two adjacent grid nodes. Unlike a previous work by Mai-Duy and Tran-
Cong (2010a), 1D-IRBFs are implemented here with two RBF centres only
and the approximations are non-overlapping. Furthermore, the constants of
integration are exploited to impose continuity of second-order derivatives across
two adjacent elements. It can be seen that the use of two RBF's (a smallest RBF
set) allows a wide range of J to be used and leads to sparse system matrices.
To enhance accuracy, one can thus increase the value of § and/or the number
of RBFs. Continuity of the approximate solution, its first and second-order
derivatives across two adjacent IRBF elements (or simply across elements for

brevity in the remaining discussion) is guaranteed in the proposed technique.
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An outline of the chapter is as follows. In Section 2.2, a brief review of IRBF's in-
cluding 1D-IRBFs is given. In Section 2.3, the proposed C2-CV technique based
on 2-node IRBFEs for second-order elliptic differential problems is presented. In
Section 2.4, the proposed technique is verified through function approximation

and solution of ODEs and PDEs. Section 2.5 concludes the chapter.

2.2 Brief review of integrated RBF's

The indirect /integral RBF approach consists in decomposing highest-order deriva-
tives under consideration into RBFs and then integrating these RBFs to yield
expressions for lower-order derivatives and finally the original function itself
(Mai-Duy and Tran-Cong 2003). In the case of second-order PDEs in two di-

mensions, integrated MQ expressions are given by

2
8¢ Zum/x—cZ + —szl'(2 x € (), (2.2)

99

an( x) = D _wil(x) + C1(6), (23)

=1

Z wl®(x) + C1(8)n + Ca(6), (2.4)

where €2 is the domain of interest, ¢ a function, n a component of x, n the
number of RBFs, {w;}" | the set of RBF weights, C;(0) and Cy(#) the constants
of integration which are functions of ¢ («9 # 'r]) I, (2 )( ) conveniently denotes the
MQ, I, (1 =/ ) x)dn, and I, © =/ I x)dn. Explicit forms of I ( )
and Ii (X) can be found in appendlx A.
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When the analysis domain 2 is a line segment, expressions (2.2)-(2.4) reduce to

d2 n n
d—ﬁf(v) =S wn - +a=3 wi®wm), (2.5)
=1 =1

%n) = wili’(n) +Cy, (2:6)
1=1

o(n) = wil{”(n) + Cin+ Cs, (2.7)
1=1

where C and Cy are simply constant values.

Expressions (2.5), (2.6) and (2.7), called 1D-IRBFs, can also be used in con-
junction with Cartesian grids for solving 2D problems. Advantages of 1D-
IRBFs over 2D-IRBFs are that they possess some “local” properties and are
constructed with a much lower cost. However, numerical experiments show
that 1D-IRBFs still cannot work with large values of 5. In the present work,
1D-IRBF-based schemes are further localised.

2.3 Proposed C?-continuous control-volume tech-

nique

The problem domain is embedded in a Cartesian grid. In the case of non-
rectangular domains, we remove grid points outside the problem domain. Grid
points inside the problem domain are taken to be interior nodes, while bound-
ary nodes are defined as the intersection of the grid lines and the boundaries.
Generally, each nodal point is associated with a control volume, over which
the differential equation is directly integrated. For illustrative purposes, the
proposed technique is presented for the following 2D PDE

¢ 0*¢
@ + 8—3;2 - b(ZL‘,y), (28)
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Interior element Interior grid node

Semi-interior element

Boundary node

Figure 2.1: A domain is embedded in a Cartesian grid with interior and semi-
interior elements.

where b(x,y) is some prescribed function. Following the work of Patankar
(1980), (2.8) is transformed into a set of discretised equations. A distinguishing
feature of the proposed technique is that the approximations used for the flux
estimation at the interfaces are based on 1D-IRBFs rather than linear poly-
nomials. In Mai-Duy and Tran-Cong (2010a), 1D-IRBFs were implemented
using every node on a grid line. In contrast, the present 1D-IRBFs are con-
structed locally over straight-line segments between two adjacent nodal points
only, called 2-node IRBF elements (IRBFEs). There are two types of elements,
namely interior and semi-interior IRBFEs. An interior element is formed using
two adjacent interior nodes while a semi-interior element is generated by an
interior node and a boundary node (Figure 2.1). In the remainder of this sec-
tion, 1D-IRBFs are first utilised to represent the variation of the field variable
and its derivatives on interior and semi-interior elements, and IRBFEs are then
incorporated into the CV formulation. It will be shown that the approximate

solution is a C? function across IRBFEs.
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2.3.1 Interior elements

1D-IRBF expressions for interior elements are of similar forms. Consider an
interior element, 1 € [ny,7s], and its two nodes are locally named as 1 and
2. Let ¢(n) be a function and ¢y, 0¢1/0n, ¢o and Ops/In be the values of
¢ and d¢/dn at the two nodes, respectively (Figure 2.2). The 2-node IRBFE

o1 ®2
0¢1 02
o B

Figure 2.2: Schematic outline for 2-node IRBFE.

scheme approximates ¢(n) using two MQs whose centres are located at 7, and

2. Expressions (2.5), (2.6) and (2.7) become

82
(b _wl\/ n—cp) +a1+w2\/ n—c) +a2—w1](2 +w2]§2)(77),

(2.9)
0
£() W I® ) +w I () + O, (2.10)
o(n) = wily” (n) +waly” () + Crm + C, (211)
where I fl( n)dn, I( fI n)dn with ¢ = (1,2), and C; and

(5 are the constants of integration. By collocating (2.11) and (2.10) at n; and
12, the relation between the physical space and the RBF coefficient space is

obtained
é1 1) 1%m) m 1\ [ w
o2 | _ [7(n) () me 1 ws o)
oy 1m) ) 1o ||| |
o 10 ) 10 )\ ¢
~ g .
0 z @
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where ’(z}\ is the nodal-value vector, Z the conversion matrix, and @ the coefficient
vector. It is noted that not only the nodal values of ¢ but also of d¢/dn are
incorporated into the conversion system and this imposition is done in an exact

manner owing to the presence of integration constants. Solving (2.12) yields
W =T . (2.13)

Substitution of (2.13) into (2.11), (2.10) and (2.9) leads to

o(n) = [100n), 1" (n). 01| 7719, (2.14)
) - 1 ~
St = 1), 1 ). 1,0] 775 (215)
¢ (@ 7@ 17-12
a—ng<n> = _[1 (77)7[2 (77)7070_ 7 1/}7 (216)

which allows one to express the values of ¢ and d¢/0n at any point 7 in [1;, 72]
in terms of four nodal unknowns, i.e. the values of the field variable and its

first-order derivatives at the two extremes (also grid points) of the element.

2.3.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an inte-
rior node and a boundary node. The subscripts 1 and 2 are now replaced with b
(b represents a boundary node) and ¢ (g an interior grid node), respectively. Ex-
perience shows that boundary treatments strongly affect the overall accuracy of
a numerical solution. Thus several semi-interior elements for the Dirichlet-type
and Neumann-type boundary conditions are proposed and investigated. Their
construction processes are similar to that for interior elements, and therefore

only the main differences are presented in the following sections.
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Dirichlet boundary conditions

At n, the value of ¢ is given. We propose three types of semi-interior elements.
The first one can work with problems with irregular geometries while the last
two are limited to the case of 1D problems and 2D problems defined on rectan-
gular domains. For 1D and rectangular domain cases, a boundary node is also
a grid node and one can express the governing equation at that node in terms
of one independent variable only, i.e. either n = x or n = y. The last two types
of semi-interior elements will take into account information on the governing

equation at 7.

Element IRBFE-D1: At n = n, this element uses information on ¢ only. The

conversion system (2.12) reduces to

Wy
Oy 1O 1) m 1
Wy
‘bg = [lEO)(ng) [9(0)(779) Mg 1 C . (2-17)
oy 1 1 1
e ", 1) 1 0 .
2

It can be seen that the interpolation matrix for element IRBFE-D1 is under-
determined and its inverse can be obtained using the SVD technique (pseudo-

inversion).

Element IRBFE-D2: At n = 1, this element uses information on ¢ and the

governing equation, which leads to the conversion system

s 10 1) m 1 wy

¢ L7y 1) my 1

3%y, ](2) 1(2) 0 0 C ’
on2 o () g7 (1) 1

Odg

S 1P, 10, 1 0 C

In (2.18), 8?¢yp/In? is a known value, obtained from the governing equation

(2.8). For example, if 7 represents x, one has 8?¢,/0x? = b(x,y) — 9*¢,/y* in
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which 9%¢y,/0y? is easily calculated from the given boundary condition ¢ on the

vertical line x = xy.

Element IRBFE-D3: At n = n,, this element uses information on ¢ and d¢/dn,

resulting in the following system

op [éo)(ﬁb) Im) m 1 wy

b | _ | B) L) e 1| | w, 2.19)
G 1) 1Pm) 10 || o | '
e 1P, 1P, 1 0 )\ G

which has the same form as the interior element.

Neumann boundary conditions

In the context of Cartesian-grid-based methods, the implementation of a Neu-
mann boundary condition still presents a great challenge. Special treatments,
e.g. a boundary node does lie on a grid point, are required. Here, we restrict
our attention to rectangular domains. At 1, the value of d¢/0n is given. In

the following, we propose two types of semi-interior elements.

Element IRBFE-N1: At n = n,, this element uses information on d¢/dn and

0?¢/0n*. The resultant conversion system is

G 1Vm) I’m) 1 0 w,

o | _ | 17 L7 my 1 w, .
ok 1m) 1Pm) o o || al '
e LYy IV 10 )\ G

Element IRBFE-N2: At ) = n, this element uses information on ¢ and d¢/0n.
The corresponding conversion system is exactly the same as that of IRBFE-D3.

It should be pointed out that all nodal values at n = 7, in IRBFE-D1 and
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IRBFE-D2 are given, while there is one nodal unknown at n = 7, in IRBFE-
D3, IRBFE-N1 and IRBFE-N2. For the latter cases, one extra equation is
needed and how to generate this equation will be discussed later. Table 2.1
provides a list of semi-interior elements and their characteristics. Owing to
the facts that point collocation is used and the RBF conversion matrix is not
over-determined, all boundary values here are imposed in an exact manner in
the sense that the error is due to the numerical inversion only and there is no
intrinsic approximation errors such as those associated with “unconstrained”

boundary conditions imposed by certain finite element methods (Burnett 1987).

Table 2.1: List of semi-interior elements and their characteristics.

Boundary condition Element Nodal values at a boundary point Unknowns

Dirichlet IRBFE-D1 ¢y None
IRBFE-D2 ¢y, and 0*¢,/0n? None
IRBFE-D3 ¢, and 0¢,/0n Oy /0N

Neumann IRBFE-N1  O¢y/0n and 0*¢y/0n? 02y On?
IRBFE-N2 ¢, and 0¢,/0n b

2.3.3 Incorporation of IRBFEs into the control-volume

formulation

Assuming that a Cartesian-grid represents the problem domain 2. In a control-
volume approach, the domain is subdivided into a set of control volumes in such
a way that there is one control volume surrounding each grid point without gaps
or overlapped volumes between adjacent elements. A typical control volume
associated with a grid point P, denoted by (1p, is shown in Figure 2.3, where
E; W, N and S are the neighbouring points of P on the horizontal and vertical

grid lines. The governing equation (2.8) is discretised by means of subregion
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collocation and this process is conducted in a similar fashion for all interior

grid points of the problem domain. By directly integrating (2.8) over (2p, the

—_—_——— — = =2 e e - = 5

Figure 2.3: Schematic outline for a control volume in 2D.

subregion-collocation equation is obtained

Pp 0
Applying the Gauss divergence theorem to (2.21) results in
99 99
—dy — —dx | — b dQp = 2.22
/Fp<axy ayx) /QP (z,y)d2p = 0, (2.22)

where I'p denotes the faces of Qp. It is noted that partial derivatives of ¢
in (2.22) are of first order only and no approximation is made at this stage.

Following the work of Patankar (1980), (2.22) reduces to

().~ () v (), () o

where Ap is the area of 2p and the subscripts e, w,n and s are used to indicate
that the flux is estimated at the intersections of the grid lines with the east,

west, north and south faces of the control volume, respectively (Figure 2.3).



2.8 Proposed C?-continuous control-volume technique 35

In the presently proposed technique, 2-node IRBFEs, which are defined over
line segments between P and its neighbouring grid points (£, W, N and 5), are
incorporated into (2.23) to represent the field variable ¢ and its derivatives.
There are 4 IRBFESs associated with a control volume. Assuming that PE and
WP are interior elements and making use of (2.15), the values of the flux at the

faces * = z, and x = x,, are computed as

op
(a_¢) = [10(e), 10(2),1,0) T = [10(x2), 1§(2),1,0| T o
ox ), agﬁ
o5
oz
with m =zp and 1 = xp, (2.24)
dw
98\ _ T, ) n ) I s
(a_x)w_[ll (2), 180(20),1,0] 710 = [10(2), 17 (), 1,0] T oo
9op
ox
with m =z and 1 = xp, (2.25)

where Il(l)(:c), 12(1)(:5) and Z~! are defined in (2.9)-(2.13). Vector & may change

if PE and WP are semi-interior elements. For example, one has

IZ = (¢w, ¢p,06p/0x)" if WP is a D1 element,
@//)\: (ow, Py 0x? ,¢P,8¢p/8x) if WP is a D2 element,
{/)\: (¢pw, 0Py /O, ¢P,8¢p/6$) if WP is a D3 element,
b = (8w |0z, >y, | 022, p, 0dp/0x)”  if WP is a NI element,
l/b\: (ow, Opw /O, gbp,@(bp/ax) if WP is a N2 element.

Expressions for the flux at the faces y = y,, and y = y, are of similar forms.
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2.3.4 Inter-element C? continuity

It can be seen from IRBFE expressions for computing the flux at the faces (e.g.
(2.24) and (2.25)), there are three unknowns, namely ¢, d¢/0x and d¢ /0y, at a
grid node P. Unlike conventional CVMs, the nodal values of d¢/dx and 0¢ /0y
at P here constitute part of the nodal unknown vector. One thus needs to gen-
erate three independent equations. The first equation is obtained by conducting
subregion-collocation of (2.8) at P, i.e. (2.23). The other two equations can
be formed by enforcing the local continuity of 9%¢/0x? and 9*¢/dy? across the

elements at P

Pop Pop

< o ) , < o ) . (2:26)
Pop Pop

( dy? )B ( dy? >T’ (2.27)

where (.)7, indicates that the computation of (.) is based on the element to the

left of P, i.e. element WP, and similarly subscripts R,B,T denote the right
(PE), bottom (SP) and top (PN) elements.

Substitution of (2.16) into (2.26) and (2.27) yields

([£2 ), 12 (), 0,0 720) = (|12 (), 17 (m0), 0,0 719 . (228)

where 7 represents x and 7y, =1, = xp, and

([£2 o), 12 2). 0,0 720) = ([12 ), 187 (), 0,0] T715) ., (2:20)

T

where 7 represents y and 75 = 11 = yp. The conditions (2.26)-(2.27) or (2.28)-
(2.29) guarantee that the solution ¢ across IRBFEs is a C* function.

As discussed earlier, for IRBFE-D3, IRBFE-N1 and IRBFE-N2 elements, there
is one unknown at a boundary node and one more extra equation needs be

formed. This equation can be generated by integrating (2.8) over a half control
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volume associated with that boundary node (Patankar 1980).

Collection of the discretised equations at the appropriate nodal points and the
continuity equations at the interior grid points leads to a square system of
algebraic equations that is sparse and banded. T'wo-point line elements are well

suited to discretisation methods based on Cartesian grids.

2.4 Numerical results

IRBFEs are now validated through function approximation and solution of
boundary-value problems governed by ODEs and PDEs. For all numerical
examples presented in this study, the MQ width a is simply chosen propor-
tionally to the element length h by a factor 5. The value of 3 is considered in
a wide range from 1 to 85 to study its influence on the accuracy. In the case
of non-rectangular domains, there may be some nodes that are too close to the
boundary. If an interior node falls within a distance of h/2 to the boundary,

such a node is removed from the set of nodal points.

The solution accuracy of an approximation scheme is measured by means of

the discrete relative Lo errors for the field variable and its first-order partial
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derivatives

\/Zz 1 - i>2
( ()) (2.30)
ne

8¢(6) 2
_ 9¢i
a(b ZZ 1 ox ox )
83: 8(;5(8) ’
Ez 1 ox
a¢(€) 2
90i  _ 0¢i
8gb Zz 1 By dy )
8y ’
8¢(€)
\/ZZ 1

where the superscript (e) refers to the exact solution and M is the length of a

(2.31)

(2.32)

test set that is comprised of groups of 500 uniformly distributed points on grid
lines. Another important measure is the convergence rate of the solution with

respect to the refinement of spatial discretisation

N.(h) ~ vh® = O(h%), (2.33)

in which o and v are exponential model’s parameters. Given a set of ob-
servations, these parameters can be found by the general linear least squares
technique. To assess the performance of the proposed technique, the standard

CVM (Patankar 1980) is also implemented here.

2.4.1 Function approximation

The present 2-node IRBFE scheme is first applied to the representation of
functions. Consider four different test functions, namely straight line y = =z,
quadratic curve y = 2, cubic curve y = 2% and trigonometric function y =

sin(2rz). The domain of interest is [0, 1] that is represented by one element
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only. Values of y and dy/dz are given at x = 0 and = = 1. Figure 2.4 shows the
plots of the approximate and exact functions for the first three cases where good
agreement is achieved with only one element. It should be pointed out that, for
the second and third functions, curved lines are reproduced even only two nodes
(i.e. only one element) are employed. The fourth function y = sin(27x) is in-
finitely smooth and it is clear that one can construct several other approximate
functions that would satisfy the four given input data. The present scheme
picks up one of them, probably the simplest one (Figure 2.5(a)). As more el-
ements are used, a closer approximation to the exact function is obtained as
shown in Figure 2.5(b). Numerical results for the last three functions show that
the present two-node IRBFE has the ability to produce curved lines between its
two extremes. This can be seen as a strength of IRBFEs over linear elements

used in conventional techniques.

2.4.2 Solution of ODEs
Problem 1

Consider a 1D problem governed by

d (d¢
— [ = = <xr<1 2.34
dx(dx)+¢+x 0, Osz=sl, (2.34)

and subject to two cases of boundary conditions

Case 1: ¢(0) =0 and ¢(1) = 0 (Dirichlet boundary conditions only)
Case 2: ¢(0) = 0 and d¢(1)/dx = cot(1) — 1 (Dirichlet and Neumann boundary

conditions).

The exact solution of this problem can be verified to be

O (4) — sin(x) .
¢ () (1) " (2.35)
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(a) Straight line & first-order derivative
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(b) Quadratic curve & first-order derivative
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(c) Cubic curve & first-order derivative
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Figure 2.4: Function approximation: Approximation for functions (left) and
their first-order derivative (right) by using one IRBFE only. It can be seen
that the present two-node IRBFE is able to produce non-linear behaviours (i.e.

curved lines) between the two extremes.
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Figure 2.5: Function approximation (continued), trigonometric function: Ap-
proximations for the function (left) and its first-order derivative (right).

The problem domain is discretised by n uniformly-distributed points. Each
node z; is associated with a control volume denoted by €2;. For 2 <i <n —1,
€ is defined as [x;_1/2, Tip1/2) (full CV). For ¢ = 1 and ¢ = n, €; is taken to
be [x1,2141/2] and [x,_1/2, z,] (half CV), respectively. A schematic outline of
a full CV and a half CV is presented in Figure 2.6. Generally speaking, to
form a set of algebraic equations, (2.34) is integrated over full CVs at x; with
i=1(2,3,---,n—1) for Case 1, and over full CVs at x; with i = (2,3,--- ,n—1)
and a half CV at z, for Case 2. The resultant system is thus of dimensions
(n—2) x (n—2) for Case 1 and (n—1) x (n— 1) for Case 2. Hereafter, Di-Dj is

used to denote the boundary treatment strategy in which the boundary region
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—— Half CV Full CV  ——

Y

Figure 2.6: Control volumes associated with interior and boundary nodes in
1D.

[x1, x5] is represented by element IRBFE-Di and [x,,_1,x,] by IRBFE-Dj, while
Di-Nj represents the strategy in which [z1,xs] and [z,,_1,x,] are modelled by
elements IRBFE-Di and IRBFE-Nj, respectively. We employ the values of n
ranging from 7 to 151 for h-adaptivity studies and the values of § from 1 to 85
for f-adaptivity studies.

Case 1: Figure 2.7 shows the plots of ¢ and d¢/dz by the proposed technique
using the D1-D1 strategy and by the standard CVM. It can be seen that the
present solution is smooth for both ¢ and d¢/dx even with only a few interior
nodes used. On the other hand, using linear interpolations, the standard CV
solution for d¢/dx has a stair-case shape. To alleviate this zigzag variation,
much more grid points are needed. Grid convergence studies for the proposed
method employed with various values of 5 and for the standard CVM are de-
picted in Figure 2.8. It can be seen that the former outperforms the latter. At
dense grids, in terms of the error V., the results for d¢/dxr show a remarkable

four orders of magnitude improvement (Figure 2.8(b)).

Figure 2.9 and Table 2.2 compare the performance of the proposed method
among three types of semi-interior element strategies, namely D1-D1, D2-D2
and D3-D3. Results obtained by the standard CVM are also included and
they are taken here as the reference. With more information incorporated into
the IRBFE approximations, the D2-D2 and D3-D3 strategies yield much more
accurate results than D1-D1, and D3-D3 works better than D2-D2 as shown in
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Figure 2.9(a)-(b). Table 2.2 indicates that rates obtained by the three strategies
are generally higher than those by the standard CVM. For example, D1-D1
vields O(h*%) for ¢ and O(h*%') for d¢/dx, while the standard CVM gives
O(h*%) for ¢ and O(h'%) for d¢/dz. An improvement in the approximation
quality for d¢/dx is thus much bigger than that for ¢. It should be noted that
D1-D1 exhibits higher rates of grid convergence but produces less accurate

results than D2-D2 and D3-D3.
(a) Field variable
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(b) First-order derivative
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Figure 2.7: ODE, Problem 1, Dirichlet boundary conditions, n = 9: Comparison
of the exact and approximate solutions for ¢ and d¢/dx by the present D1-D1
strategy (left) and the standard CV method (right).
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(a) Field variable (b) First-order derivative
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Figure 2.8: ODE, Problem 1, Dirichlet boundary conditions: h-adaptivity stud-
ies conducted with several values of 8 for the DI1-D1 strategy. It is noted that
results with 8 = (5, 10, 15) are undistinguishable.

(a) Field variable (b) First-order derivative
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Figure 2.9: ODE, Problem 1, Dirichlet boundary conditions: Effects of types of
semi-interior elements on the solution accuracy for § = 15.

In Figure 2.10, the effects of § on the solution accuracy for coarse (n = 9)
and dense (n = 153) grids are studied. As [ increases, the overall error of the
IRBFE solution is first reduced and then becomes flat/fluctuated. There are
dramatic reductions (i.e. exponential convergence) in N,(¢) and N,(d¢/dzx) for
the D2-D2 and D3-D3 strategies. In the case of large n and using D2-D2 and
D3-D3, it appears that there exists an optimal value for 3, e.g. § = 42 for
D2-D2 and 8 = 32 for D3-D3. Nevertheless, the present method can work with

a wide range of #. This ability is also clearly seen in Figure 2.8.



2.4 Numerical results 45

Table 2.2: ODE, Problem 1, Dirichlet boundary conditions: rates of convergence
O(h*) for ¢ and 0¢/Ox for several large § values and semi-interior element types.

o
5 960

I6] D1-D1  D2-D2 D3-D38 D1-D1  D2-D2 D3-D38

5 2.995  2.057  2.009 2.604 1.719  2.096

10 2.987 2188  2.086 2.606 1.842  2.180

15 2985 2332  2.185 2.606 1.983  2.283

20 2.984 2475  2.332 2.606  2.119  2.391
Standard CVM 2.000 1.034

Table 2.3: ODE, Problem 1, Dirichlet-Neumann boundary conditions: rates of
convergence O(h%) for ¢ and 0¢/dx for two semi-interior element types.

!
5 960
6] D1-N1  DI-N2 D1-N1  DI-N2
1 1.722 1.722 2.183  2.183
15 3.016  3.016 2.529  2.529
Standard CVM 1.971 1.029

Case 2: Results obtained by the DI-N1I and DI-N2 strategies using 5 =
1 and f = 15 and by the standard CVM are depicted in Figure 2.11. The
two strategies have similar performances which are far superior to that by the
standard CVM. At dense grids, an improvement is up to one order of magnitude
for ¢ and four orders of magnitude for d¢/dz. It is also observed that S can be
used as an effective tool to enhance the solution accuracy. Table 2.3 shows that
the present two schemes converge faster than the standard CVM. For example,
the rates are O(h*%?) for ¢ and O(h*®3) for d¢/dz by the present two strategies
(8 =15), and O(h'97) for ¢ and O(h'%3) for d¢/dx by the standard CVM.
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Table 2.4: ODE, Problem 2, Dirichlet boundary conditions: rates of convergence
O(h*) for ¢ and 0¢/0x for several § values and semi-interior element types.

o
5 9601

Boundary treatment f=1 =15 =1 p=15

DI1-D1 2.540  2.582 2.554  2.670

D2-D2 2.679  3.965 2.713  3.932

D3-D3 2971 4.229 2.588  3.801
Standard CVM 2.194 0.971

Table 2.5: ODE, Problem 2, Dirichlet and Neumann boundary conditions, D3-
N2 treatment: rates of convergence O(h®) for ¢ and d¢/0x for several § values.

8}
8 o 99/oa
1 3.240 2.706
15 4.380 3.919

Standard CVM  2.268 0.970

Problem 2

In this example, the ODE involves more terms and its solution is highly oscil-
latory. The equation takes the form

¢ do 5 :

Tt te=—e (9979 sin(100x) + 900 cos(100z)), 0 <z < 1. (2.36)
We consider two cases of boundary conditions: Dirichlet-Dirichlet (Case 1) and
Dirichlet-Neumann (Case 2). The plots of the exact solution ¢(¢) = sin(100z)e=>*
and its first-order derivative are shown in Figure 2.12. Computations are con-
ducted with the values of n varying from 23 to 403 and the values of § from 1
to 80. Results concerning h adaptivity and § adaptivity are presented in Figure

2.13, Figure 2.14 and Table 2.4 for Case 1, and in Figure 2.15 and Table 2.5 for

Case 2. Remarks here are similar to those in Problem 1. It should be pointed
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(a) Field variable
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(b) First-order derivative

Figure 2.10: ODE, Problem 1, Dirichlet boundary conditions: S-adaptivity
studies conducted with n = 9 (left) and n = 153 (right) for three boundary
treatment strategies.

out that
(i)  very high rates of grid convergence, i.e. up to O(h*?*) for ¢ and O(h3%%)

for dp/dx (Case 1), and O(h*3®) for ¢ and O(h*?) for d¢/dx (Case 2),
are achieved here,
(ii))  the IRBFE solution is very stable (i.e. no fluctuation) at large values of 3,
(iii) given a grid size h and a value of [, the overall errors for Case 2 are as low
as those for Case 1,

(iv) the accuracy improvement is more significant for d¢/dx than for ¢.
This problem (Case 1) was also solved in (Mai-Duy and Tran-Cong 2008) us-

ing the multidomain (MD) RBF collocation method. Two versions, namely
differentiated-RBF (MD-DRBF) and integrated-RBF (MD-IRBF') schemes, were
implemented. Using two non-overlapping subdomains, § = 1 and 201 nodes per

subdomain (i.e. 401 nodes for the whole domain), the obtained N, errors for ¢
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were 0.2 for MD-DRBF and 2.72 x 10~* for MD-IRBF. Using the same set of
nodes (i.e. 401 points or 400 IRBFEs), § = 15 and D3-D3, the present method
yields N, = 1.28 x 10~°, which is much lower than those by the MD-RBF collo-
cation method. It is noted that conventional/global RBF methods are able to

work with low values of g such as g = 1.

(a) Field variable
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Figure 2.11: ODE, Problem 1, Dirichlet and Neumann boundary conditions:
Effects of types of semi-interior elements on the solution accuracy for § = 1
(left) and S = 15 (right). It is noted that plots have the same scaling and
results by the two boundary treatment strategies are undistinguishable.

2.4.3 Solution of PDEs

The proposed CV method is further validated through the solution of PDEs
on both rectangular and non-rectangular domains. Elements IRBFE-D1 and

IRBFE-D?2 are employed to deal with Dirichlet boundary conditions, while
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(a)

0 0.2 0.4 0.6 0.8 1

Figure 2.12: ODE, Problem 2: Exact solution (a) and its first-order derivative

(b).

IRBFE-NZ2 is used for Neumann boundary conditions. It is noted that IRBFE-
D1 can be applicable to problems with regular as well as irregular geometries.

All IRBFE calculations here are carried out with two values of 5, namely 1 and

15.

Problem 1: rectangular domain

Consider the following Poisson equation

¢ 0% 2
922 + a7 —2m° cos(mx) cos(my), (2.37)

on a square domain 0 < z,y < 1 with two different cases of boundary conditions

Case 1:

¢ = cos(my) for r=0,0<y<1
¢ = — cos(my) for r=10<y<1
¢ = cos(mz) for y=0,0<2<1

¢ = — cos(mx) for y=1,0<z<1
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(a) Field variable
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Figure 2.13: ODE, Problem 2, Dirichlet boundary conditions: h-adaptivity
studies conducted with =1 (left) and g = 15 (right).

(a) Field variable
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Figure 2.14: ODE, Problem 2: S-adaptivity studies conducted with n = 103
(left) and n = 383 (right) for three different semi-interior element strategies.
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(a) Field variable
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Figure 2.15: ODE, Problem 2, Dirichlet and Neumann boundary conditions:
h-adaptivity (left) and S-adaptivity (right) studies for the D3-N2 strategy.
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Figure 2.16: Half control volume associated with a boundary node in 2D.
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(a) Field variable
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Figure 2.17: PDE, Problem 1, rectangular domain, Dirichlet boundary condi-
tions: h-adaptivity studies for the D1-D1 (left) and D2-D2 (right) strategies.
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(a) Field variable
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Figure 2.18: PDE, Problem 1, rectangular domain, Dirichlet and Neumann
boundary conditions: h-adaptivity studies conducted with § = 1 and § = 15
for the D1-N2 strategy.
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Case 2:

¢ = cos(my) for r=0,0<y<1

¢ = — cos(my) for x=1,0<y<1

%:0 for y:0,0SZ(ISl
dy
0
—¢:0 for y=10<zx<1.
dy

The exact solution to this problem can be verified to be
' (z,y) = cos(mx) cos(my). (2.38)

In Case 1 (i.e. Dirichlet boundary conditions only), the system of algebraic
equations is generated by integrating (6.85) over full CVs associated with the
interior nodes. In Case 2 (i.e. Dirichlet and Neumann boundary conditions),
apart from the interior nodal variable values, there are additional unknown
values of ¢ at the boundary nodes on y = 0 and y = 1. As a result, one needs
to generate not only full-CV equations associated with the interior nodes but
also half-CV equations associated with the boundary nodes on y = 0 and y = 1.
For the latter (Figure 2.16), the IRBFE approximations on y = 0 and y = 1 are
constructed as in the case of a grid line and hence the approximate solution ¢ is
also C?-continuous on these lines. It can be seen that the size of the discretised

system in Case 2 is slightly larger than that in Case 1.

To study the convergent behaviour of the proposed technique, various grids,
namely (5 x 5,9 x9,..., 73 x 73), are employed. Results concerning the relative
Ly error and the rate of convergence with grid refinement by the present and
standard CV methods are shown in Figure 2.17 for Case 1, Figure 2.18 for Case
2, and Table 2.6 for Case 1 and Case 2.

It can be seen from Figure 2.17 and Figure 2.18, the present D1-D1, D2-D2

and D1-N2 strategies employed with a wide range of § produce much more



Table 2.6: PDE, Problem 1 and Problem 2: Rates of grid convergence O (h*) for the field variable and its first-order partial

derivatives, (1): standard CVM.

a
Problem 1 Problem 2
(Rectangular domain) (Circular domain)
Dirichlet Dirichlet & Neumann Dirichlet
D1-D1 D2-D2 D1-N2 D1-D1
(1) B=1 B=15 B=1 B=15 (1) B=1 B=15 B =15
[0) 1.997 2.262 2273 2.089 2.094 1.997 2.141  2.149 2.223
Op/0x 0.997 1.787 2350 1.583  2.101 0.997 1.833  2.200 2.140
Op/oy 0.997 1.787 2.350 1.583 2.101 0.997 1.566 2.171 2.144
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accurate results especially for d¢/0x and 0¢/0y than the standard CV method.
For instance, at a grid of 73 x 73 and [ = 15, the improvement is about one
order of magnitude for the field variable and about three orders of of magnitude
for its first-order partial derivatives. For Case 1 (Figure 2.17), results at coarse
grids by the D2-D2 strategy are a bit more accurate than those by DI1-DI,
probably owing to the fact that the former uses information about (6.85) on

the boundary.

It can be seen from Table 2.6, the present method yields a faster convergence,
especially for 0¢/0x and 0¢ /0y, than the standard CV method for both Case 1
and Case 2. For example, in Case 1, the solutions d¢/0x and d¢/dy converge at
the rate O(h?%) using the D1-D1 strategy, O(h*!°) using D2-D2, and O(h'%)
using the standard CV method.

Like in 1D problems, the use of § = 15 (i.e. large values) here also leads to better
accuracy and faster convergence especially for first-order partial derivatives than
the use of § = 1 (i.e. small values), and the IRBFE solutions for Case 1 and

Case 2 have similar degrees of accuracy.

Problem 2: circular domain

Find ¢ such that

¢ ¢
— +t=—==0 2.39
on a circular domain of radius 7/2 centred at (7 /2, 7/2) with Dirichlet boundary

conditions. The exact solution to this problem is chosen to be

¢ (z,y) = b () sin(x) sinh(y), (2.40)

from which one can easily derive the boundary values of ¢.
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Figure 2.19: PDE, Problem 2: Geometry and discretisation. Boundary nodes
denoted by o are generated by the intersection of the grid lines and the boundary.

The problem domain is discretised by a Cartersian grid as shown in Figure
2.19. Calculations are carried out with grids of (5 x 5, 11 x 11,..., 151 x 151)
and § = 15. We employ semi-interior elements IRBFFE-D1 for the handling
of boundary conditions. Results obtained are presented in Figure 2.20, which
plots the solution accuracy N, against the grid size h. It can be seen that the
error is consistently reduced as a grid is refined. Table 2.6 also compares the
rate of convergence by the proposed technique between Problem 1 (rectangular
domain) and Problem 2 (circular domain). Using the same D1-D1 strategy and
f = 15, the orders of accuracy of the solutions ¢, d¢p/0x and 0¢/0y for the
two types of domains are all greater than 2. It can be seen that the proposed

technique is able to work well not only for rectangular domains but also for
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non-rectangular domains.

2.5 Concluding remarks

In this chapter, a new Cartesian-grid-based control volume technique is pro-
posed for the solution of second-order elliptic problems in one and two dimen-
sions. Integrated RBF's are utilised to construct the approximations for the
field variable and its derivatives, which are based on two-node elements and
expressed in terms of nodal values of the field variable and its first-order partial
derivatives. Various strategies for the imposition of boundary conditions are
presented. The proposed control volume method leads to a system matrix that
is sparse and produces a solution that is C*-continuous on the grid lines. Its so-
lution accuracy can be effectively controlled by means of the shape parameter (3
up to 85) and/or grid size. A series of test problems including those defined on
non-rectangular domains are employed to verify the present method. Numerical
results show that the method is much more accurate and faster convergent, es-
pecially for the approximation of derivatives, than the standard control volume

method.

—v— Ne(9)
—=— Ne(d@/dx)
2| | —©— Ne(dgdy)

10

Figure 2.20: PDE, Problem 2, circular domain, Dirichlet boundary conditions:
the solution accuracy using the D1-D1 strategy and § = 15.



Chapter 3

High-order upwind methods
based on C?-continuous two-node

IRBFESs for viscous flows

In this chapter, the proposed 2-node IRBFEs in Chapter 2 are further de-
veloped for the simulation of incompressible viscous flows in two dimensions.
Emphasis is placed on (i) the incorporation of C%-continuous 2-node IRBFEs
into the subregion and point collocation frameworks for the discretisation of the
streamfunction-vorticity formulation on Cartesian grids; and (ii) the develop-
ment of high order upwind schemes based on 2-node IRBFEs for the case of
convection-dominant flows. High levels of accuracy and efficiency of the present
methods are demonstrated by solutions of several benchmark problems defined

on rectangular and non-rectangular domains.
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3.1 Introduction

Cartesian-grid-based subregion/point collocation methods can be very econom-
ical owing to the facts that (i) generating a grid and integrating the governing
equations in these methods are low-cost; and (ii) FFT can be applied to ac-
celerate computational processes (e.g. Huang and Greengard 2000). The ap-
proximations for the dependent variables and their spatial derivatives can be
constructed globally on the whole grid or locally on small segments of the grid.
Examples of local approximation schemes include standard control-volume (CV)
methods and finite-difference methods. For the former, the fluxes are estimated
by a linear variation between two grid points (e.g. Patankar 1980, Huilgol
and Phan-Thien 1997). The use of two grid points allows for the consistency
of the fluxes at CV faces - one of the four basic rules to guarantee a physi-
cally realistic solution (Patankar 1980). For the latter, local approximations
can be constructed in each direction independently using two nodes (first-order
accuracy) and three nodes (second-order accuracy). With two-node-based lo-
cal approximations, Cartesian grid based methods typically produce solutions
which are continuous for the fields but not for their partial derivatives, i.e. C°
continuity. The grid thus needs to be sufficiently fine to mitigate the effects of

discontinuity of partial derivatives.

The Navier-Stokes (N-S) equations involve two main terms, namely convection
and diffusion. At high values of the Reynolds number, the convection term
is dominant and the numerical simulation of the N-S equations becomes chal-
lenging. Various treatments for the convection term have been proposed in the
literature. Those which take the influence of the upstream information of the
flow into account, e.g. the upwind differencing (Courant et al. 1952, Gentry
et al. 1966), hybrid (Spalding 1972), power-law (Patankar 1981) and QUICK
(Leonard 1979) schemes are known to provide a very stable solution. To main-
tain a high level of accuracy, an effective way is to employ high-order upwind

schemes with the deferred-correction strategy (e.g. Khosla and Rubin 1974,
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Ghia et al. 1982).

Radial basis functions (RBFs) have been successfully used for the approxima-
tion of scattered data. They have recently emerged as an attractive tool for
the solution of ordinary and partial differential equations (ODEs and PDEs),
e.g. Fasshauer (2007), Atluri and Shen (2002), Chen et al. (2008). RBF-based
approximants are able to produce fast convergence especially for regular node
arrangements such as those based on Cartesian grids. They can be constructed
through a conventional differentiation process (e.g. Kansa 1990), or an integra-
tion process (e.g. Mai-Duy and Tran-Cong 2001, Mai-Duy and Tanner 2005,
Mai-Duy and Tran-Cong 2005). The latter helps avoid the reduction of con-
vergence rate caused by differentiation and provide effective ways of imposing
the derivative boundary values. RBF-based approximants can be constructed
globally or locally. Global RBF-based methods are very accurate (e.g. Cheng
et al. 2003, Huang et al. 2007). However, they result in a system matrix that
is dense and usually highly ill-conditioned. The use of RBF-approximants in
local forms has the ability to circumvent these difficulties (e.g. Shu et al. 2003,
Sarler and Vertnik 2006, Divo and Kassab 2007). Recently, a local high order
approximant based on 2-node elements and integrated RBFs (IRBF's) for solv-
ing second-order elliptic problems in the CV framework has been proposed by
An-Vo et al. (2011a). In such 2-node elements (IRBFEs), the integration con-
stants are exploited to include the first derivatives at the element extremes in
the approximations. It was shown that such elements lead to a C?-continuous

solution rather than the usual C%-continuous solution.

In this study, C?-continuous 2-node IRBFEs are incorporated into the sub-
region and point collocation frameworks for solving the N-S equations in the
streamfunction-vorticity formulation on Cartesian grids. Unlike conventional
finite-element-based methods, the proposed methods can guarantee inter-element
continuity of derivatives of the streamfunction and vorticity of orders up to 2. At

high values of the Reynolds number, to achieve both good accuracy and stabil-
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ity properties, several high-order upwind schemes are proposed. The resultant
system of algebraic equations is sparse and banded; the solution accuracy can
be controlled by means of the number of RBFs and/or the shape parameter.
Several viscous flows defined on rectangular and non-rectangular domains are

considered to verify the proposed methods.

The remainder of the chapter is organised as follows. Brief reviews of the gov-
erning equations and integrated RBF elements are given in Section 3.2 and 3.3,
respectively. Section 3.4 describes the proposed C*-continuous subregion/point
collocation techniques for the streamfunction-vorticity formulation. In Section
3.5, two benchmark problems, namely the lid-driven cavity flow and the flow
past a circular cylinder in a channel, are presented to demonstrate the attrac-

tiveness of the present techniques. Section 3.6 concludes the chapter.

3.2 (Governing equations

The dimensionless N-S equations for steady incompressible planar viscous flows,
subject to negligible body forces, can be expressed in terms of the streamfunc-

tion v and the vorticity w as follows

oy O
@+8—g/2+w_0’ (3.1)
Pw  Pw M Ow O Ow .

where Re = UL/v is the Reynolds number, in which L is the characteristic
length, U the characteristic speed of the flow and v the kinematic viscosity.

The vorticity and streamfunction variables are defined by

ov  Ou
0 _ o _ —v, (3.4)

ay " or
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where v and v are the x and y components of the velocity vector. In this study,
the method of modified dynamics or false transients (e.g. Mallinson and Davis
1973, Pozrikidis 1997) is applied to obtain the structure of a steady flow. The

governing equations (3.1) and (3.2) are modified as

@+6—y2+wza’ (35)
Pw  w o Ow O Ow Ow

Solutions to (3.5) and (3.6), which are obtained from integrating the equations
from a given initial condition up to the steady state, are also solutions to (3.1)

and (3.2) respectively.

In the case of subregion collocation, one needs to define control volumes for grid
nodes. Integrating (3.5) and (3.6) over a CV of a grid point P, {2p, leads to the

following equations

2 2
/ (a—w+a—w) dQP+/ wde: 8—1/}de,
Qp Qp

oxz Oy op Ot
(3.7)

Pw  *w o Ow O Ow Ow
[, (5 )aee [ ne(Gy5e ~ 5 ) 0w = [ Groow
(3.8)

which ensure that the flow field is conservative for a finite CV.

Applying the Green theorem to (3.7) and (3.8), one has

o o N
Ty — 22 Qp = ——dQ )
ﬁp <6xdy 8ydx)+/ﬁpwd P o 8td P, (3.9)

Ow oY Ow oY B Ow
ﬁp [(&'E —Reway)dy— <8y +Rewax)dx} = o 8tdQP’

(3.10)

where I'p is the CV boundary. The governing differential equations (3.5) and
(3.6) are thus transformed into a CV form (3.7)-(3.8) or (3.9)-(3.10). It is noted
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that no approximation is made at this stage.

3.3 Two-node IRBFESs

These elements are applicable to problems defined on rectangular and non-
rectangular domains. The problem domain is simply discretised by using a
Cartesian grid. In the case of non-rectangular domain, grid points outside the
problem domain are removed while grid points inside the problem domain are
taken to be interior nodes. Boundary nodes are defined as the intersection of
the grid lines and the boundaries. Over straight-line segments between two
adjacent nodal points, 1D-IRBF's are utilised to represent the variation of the
field variable and its derivatives, which are called 2-node IRBFEs. It can be
seen that there are two types of elements, namely interior and semi-interior
elements. An interior element is formed using two adjacent interior nodes while
a semi-interior element is generated by an interior node and a boundary node

(Figure 2.1).

3.3.1 Interior elements

Consider an interior element, n € [ny,7s], and its two nodes are locally named
as 1 and 2. Let ¢(n) be a function and ¢, d¢p1/9n, P2 and dps/In be the values
of ¢ and 0¢/0n at the two nodes, respectively (Figure 2.2). Expressions (2.14),
(2.15) and (2.16) can be rewritten in the form

B o
61) = 1(mr + o) + ) o+ ouln) (3.11)
o, . dpi(n) dea(n) des(n) Op1  dpa(n) Ok
Po,  d*oi(n) d?ps(n) d%p3(n) Op1  d%pa(n) 0o
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where {cpi(n)}j‘zl is the set of basis functions in the physical space. These
expressions allow one to compute the values of ¢, d¢/dn, and 9*¢/In* at any
point 7 in [y, 77] in terms of four nodal unknowns, i.e. the values of the field
variable and its first-order derivatives at the two extremes (also grid points) of

the element.

3.3.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an interior
node and a boundary node. The subscripts 1 and 2 are now replaced with b
(b represents a boundary node) and ¢ (g an interior grid node), respectively.
Assume that the value of ¢ is given at 7,. The element IRBFFE-D1 is employed

here. The conversion system (2.17) leads to

0
601) = orlmn + ea(n)dy + al) (3.14)
oo . dpi(n) dga(n) ds(n) 99
8_77( )= o by + 0 by + 0 ang’ (3.15)
¢ N d2<P1(77) d2<P2(77) d2903(77) g
(9—772(77)_ dn? bb + dn? b + dn? 877g' (3.16)

For other types of semi-interior elements, the reader is referred to Chapter 2 for

details.

3.4 Proposed C*-continuous subregion /point col-

location methods

In this study, 2-node IRBFEs are extended to the solution of the streamfunction-
vorticity formulation. In addition, several high-order upwind schemes are in-
corporated into the 2-node IRBFE methods to enhance their performance for

the case of convection-dominant flows. The proposed methods lead to a sparse
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system and their solution is a C? function across IRBFEs.

3.4.1 Discretisation of governing equations

Two formulations, namely subregion collocation and point collocation, are em-
ployed to discretise the governing differential equations. As mentioned earlier,
the structure of a steady flow is found through the method of false transients.
Time derivative terms in (3.5) and (3.6) are simply approximated here with a

first-order backward difference.

Subregion collocation

Consider a grid point P surrounded by a rectangular control volume Qp (Figure
2.3). There are no gaps and overlapping regions between control volumes. For
integrals involving the rate of change and generation, the value of the quantity
at P is assumed to prevail over Q0p. Using the middle-point rule to evaluate

the integrals of the convection and diffusion terms over Qp, equations (3.9) and

(). (3) -

(3.10) become

Ap O O
vt |(a) 2 (5r) o0

Ap Oow Oow Oow Ow
- — — | Ay— | — ] A — ) Ax—[— ) A
st [(5) 20 () 2 (5), 2= () &
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where the superscript 0 represents the value obtained from the previous time
level; the subscripts e, w,n and s denote the values of the property at the
intersections of grid lines and the east, west, north and south faces of a CV;
and Ap the volume of Qp. It can be seen that equations (3.17) and (3.18) require
the estimation of first derivative values of 1) and w at the interface points e, w, n

and s.

Point collocation

Consider a grid point P. Collocating (3.5) and (3.6) at P, one obtains

Yp | e Op _ 0o, U
AT a2 T o T \UP T A ) (3.19)
wp 62(,013 62(,0]:1 8@/)1: &up 81/)13 &up CU?_—;

_wp _ _ __Yr 2
At T o T o Re( oy or  0r Oy A 820

It can be seen that equations (3.19) and (3.20) require the estimation of both

first and second derivative values of ¢ and w at the collocation point P.

3.4.2 Approximations of diffusion term

The diffusion term is treated implicitly. Its role is important at regions where
the strength of the convection term is small. 2-node IRBFEs are employed
here for the approximation of the second terms on the LHSs of (3.17) and
(3.18) in the subregion collocation framework and (3.19) and (3.20) in the point
collocation framework. Let E,W, N and S denote the east, west, north and
south neighbouring nodes of P, respectively. One can form 4 two-node IRBFEs,

namely WP, PE,SP and PN.
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Subregion collocation

In the case that WP and PFE are interior elements, the values of the flux at

x =z, and x = z,, are computed by using (3.12)

des(r.) dpp . dpy(r.) Opp

09 - dyy (z.) dps(z.)
(%)e - de ot dx o5+ dez  Ox de Oz’
(3.21)
8¢ o d@l (xw) d@Z(xw) d¢3(xw) 8¢W d(p4(l‘w) ang
(%)w  de w + dx opt dz 8z | dz 9z’
(3.22)

where ¢ represents 1) and w.

In the case that W P is a semi-interior element, the value of the flux at x = x,,

is computed by using (3.15)

deps () %

F (3.23)

I _ dgr () da (Tw)
(%)w - de w + dz opt

Expressions for the flux at y = y,, and y = y, are of similar forms.

Point collocation

The values of 9%y /0x? and 9?w/0x? at P can be derived from 2-node IRBFEs in
the z direction, i.e. WP and PE. It will be shown later that these two elements
give the same results, and one can thus choose one of them for calculation, e.g.
W P. Through (3.13) if WP is an interior element and (3.16) if WP is a semi-
interior element, the required values are, respectively, estimated as

Pop  d*pi(zp)
or2  da2

d?ps(zp)
dz?

d*ps3(zp) Dpw N d*p4(zp) Dpp

Ow + da? ox da? ox

op+ (3.24)
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and

Pop  dPpi(zp)
or2  da2

d*ps(zp) 0P
dz? ox’

d?py(zp)
dax?

dw + bp + (3.25)

where ¢ represents 1) and w.

The values of 9?1 /dy? and 9*w/dy* at P can be computed in a similar fashion.

3.4.3 Approximations of convection term

At high values of the Re number, the third term (i.e. convection term) on
the LHS of (3.18) or (3.20) is dominant and strongly affects the stability of a
numerical solution. From a physical point of view, convection is directed by the
velocity field from the upstream to the downstream of the flow. Three high-
order upwind schemes, namely Scheme 1, Scheme 2 and Scheme 3, are proposed

here for the discretisation of the convection term.

Scheme 1 for subregion collocation

This scheme is concerned with an upwind treatment with the deferred correction
strategy. Let f be the intersection of the CV face and the grid line. The value

of w at point f is computed as

wr = wy + Awy, (3.26)

where wy is the upstream value and Aw; the correction term that is a known
value. It is noted that f represents w, e, s and n. Awy is presently derived from

the 2-node IRBFE approximation, i.e. (3.11) and (3.14). As an example, when



3.4 Proposed C?-continuous subregion/point collocation methods 70

f =w and u, > 0, one has

Wy = Ww, (327)

0 0 Owyy Owp
Awy = (p1(70) — Dwyy + p2(Tw)wp + <P3($w)a—x + 804(%)8—96, (3.28)

where the superscript 0 is used to denote the values obtained from the previous
time level. For a special case, where W is a boundary point, expression (3.28)

reduces to

Ow?
Awy = (¢1(Tw) — Dy + ooz )w + wg(xw)a—;. (3.29)

When the solution reaches a steady state, wys are purely predicted by 2-node
IRBFEs and their accuracy is thus recovered. Velocity values in the convection

term are simply estimated by a linear profile

(g_;j)e _ % (% N %) (3.30)
() (5 &)
(g_f) _ % (8% asz) (3.32)
(a_@:z;) ! (fws ewp) 533)

Scheme 2 for point collocation

Without loss of generality, assuming that up > 0. W thus becomes an upstream
node. A special approximation is constructed over W P for the purpose of

computing Owp /dz; not only wy and dwyy /dz but also O*wyy /Ox? are employed
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in the conversion process

wp [1(0)<,§L’p) [2(0)<.§L’p) Tp 1 w1
ww | _ | B w) B w) aw 1| (3.34)
Qo IMaw) aw) 1 0 Cy
T 1P @w) IP@w) 0 0 )\ G
This leads to
) d d d 13, d 0?
wp @1(37P)WP+ @2(37P)WW+ p3(p) dww + Pap) dll (3.35)

ox dx dz dz ox dz oxr?

Scheme 3 for point collocation

Assuming that up > 0. W becomes an upstream point. The value of dw/dx at

P is estimated over W P with the deferred correction strategy

Owp wp — Wy Owp

— = — Al — 3.36

oz ( h i ox )’ (3:36)
where h is the length of W P, the first term on the RHS is simply a standard

linear estimation; and the second term is a correction amount defined as

Owp wdh — Wl dwp\"
A S e ilinen 14 — 37
( oz ) ( h "\ ) (3:37)
The value (dwp/dz)" in (3.37) is obtained using (3.12) if WP is an interior
element and using (3.15) if WP is a semi-interior element. When the flow is

steady, the first term on the RHS of (3.36) and the first term on the RHS of
(3.37) will cancel out each other.
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3.4.4 (? continuity solution

It can be seen from IRBFE expressions for computing the flux (0¢/0x or ¢ /0y)
at the CV faces (e.g. (3.21), (3.22)) and 9°¢/dz* and 9%¢/0dy?* at a nodal point
P, e.g. (3.24), there are three unknowns, namely ¢, d¢/0x and 0¢/0dy, at
a nodal point P. It is noted that ¢ represents v and w. Unlike conventional
subregion /point collocation methods, the nodal values of d¢/0x and d¢/dy at P
here constitute part of the nodal unknown vector. One thus needs to generate
three independent equations. The first equation is obtained by conducting
subregion/point collocation at P, i.e. (3.17)-(3.18) or (3.19)-(3.20), respectively.
The other two equations can be formed by enforcing the local continuity of
0?¢/0z* and §?¢/dy? across the elements at P similar to (2.26)-(2.27) or (2.28)-
(2.29).

Collection of the governing equations and the continuity equations at the in-
terior grid points leads to a square system of algebraic equations. Since local
approximations are presently based on two RBFs only, the resultant system
matrix is sparse and a wide range of 8 can be used. One can thus control the
solution accuracy by means of the number of RBFs and/or the shape parame-
ter. It can be seen that two-point line elements are well suited to discretisation

methods based on Cartesian grids.

3.5 Numerical examples

The performance of the proposed C? discretisation methods with three upwind
schemes, i.e. Scheme 1, Scheme 2 and Scheme 3, is studied through the simu-
lation of lid-driven cavity flows and flows past a circular cylinder in a channel.
The subregion collocation version is from now on denoted by IRBFE-CVM while
IRBFE-CM is used to represent the point collocation version. For all numerical

examples presented in this study, the MQ shape parameter a is simply chosen
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proportionally to the element length h by a factor 5. The effects of the shape
parameter on the solution accuracy is thus investigated through the parameter
[. In the case of non-rectangular domains, there may be some nodes that are
too close to the boundary. If an interior node falls within a distance of h/2 to
the boundary, such a node is removed from the set of nodal points. A steady
solution is obtained with a time marching approach starting from a computed
solution at a lower Reynolds number. For the special case of Stokes equation,

the starting condition is the rest state.

The solution procedure involves the following steps

(1) Guess the initial distributions of the streamfunction and vorticity in the
case of Stokes flow. Otherwise, take the solution of a lower Reynolds number
as an initial guess.

(2) Solve the streamfunction equation (3.17)/(3.19) subject to Dirichlet bound-
ary conditions, and calculate the nonlinear terms in the vorticity equation
(3.18)/(3.20) by the upwind schemes.

(3) Estimate Dirichlet boundary conditions for the vorticity equation (3.18)/(3.20)
from the Neumann boundary conditions of the streamfunction.

(4) Solve the vorticity equation (3.18)/(3.20).

(5) Check to see whether the solution has reached a steady state through a

condition on convergence measure

(i — 7)?
CM(yp) = - <1077, (3.38)

N
> vz

where N is the total number of grid nodes.

N
=1

(6) If C'M is not satisfactorily small, advance pseudo-time and repeat from step

(2). Otherwise, stop the computation and output the results.
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Figure 3.1: Lid-driven cavity flow, IRBFE-CVM, Re = 1000, grid = 81 x 81,
solution at Re = 400 used as initial guess: convergence behaviour. Scheme 1
using a time step of 3 x 10~* converges remarkably faster than the no-upwind
version using a time step of 7 x 107, It is noted that the latter diverges for time
steps greater than 7 x 107%. O'M denotes the convergence measure as defined

by (3.38).

3.5.1 Lid-driven cavity flow

Lid-driven cavity flow is a very useful benchmark problem for the validation of
new numerical methods in CFD because of its simple geometry and rich flow
physics at different Reynolds numbers. The cavity is taken to be a unit square,
with the lid sliding from left to right at a unit velocity. The boundary conditions

for v and v become
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Figure 3.2: Lid-driven cavity flow, IRBFE-CM, Re = 1000, grid = 81 x 81,
solution at Re = 400 used as initial guess: convergence behaviour. Scheme 2
and Scheme 3, using a time step of 3 x 107 and 10~%, respectively, converge
remarkably faster than the no-upwind version using a time step of 8 x 1075,
It is noted that the latter diverges for time steps greater than 8 x 1075, C'M
denotes the convergence measure as defined by (3.38).

, OY/0xr =0, r=0, z=1,
Doy =1, y=1

ASEES S
I
o o o

Both IRBFE-CVM and IRBFE-CM are considered here. We take Dirichlet
boundary conditions, ¢ = 0, on all walls for solving (3.17) and (3.19). The
Neumann boundary conditions, di)/0n (i.e. 0v/On = Vi) - n, where 7 is the
outward unit normal vector at a point on the boundary), are used to derive

computational boundary conditions for w in solving (3.18) and (3.20). Making
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Figure 3.3: Lid-driven cavity flow, IRBFE-CVM, Re = 3200, grid = 91 x 91,
solution at Re = 2000 used as initial guess: convergence behaviour. Scheme
1 using a time step of 10™* converges remarkably faster than the no-upwind
version using a time step of 8 x 107", It is noted that the latter diverges for
time steps greater than 8 x 1077. C'M denotes the convergence measure as

defined by (3.38).

use of (3.1), the values of w on the boundaries are computed by

01

Wy = —W, r=0and x = 17 (339)
82

wb:—a;/;b, y=0andy=1. (3.40)

In computing (3.39) and (3.40), one needs to incorporate 9, /dz into &%, /D2,
and Oy, /dy into 8?1, /Dy?, respectively. We present a simple technique to derive
boundary values for w in the context of 2-node IRBFEs. Assuming that node 1

and 2 of an IRBFE are a boundary node and an interior grid node respectively
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(ie. 1 = b and 2 = g). Boundary values of the vorticity are obtained by
applying (3.13) as

d2
o Codo,

Py <d2901(?7b)

&1 () d%ps(my) Oy, d%pa(my) Oty )
on? dn? |

dn?  On dn?  On
(3.41)

Wy =

where 7 represents = and y; 1, and 0,/0n are the Dirichlet and Neumann
boundary conditions for ¢, and 1, and 0y,/0n are known values taken from
the solution of the streamfunction equation (3.17)/(3.19). It is noted that (i)
all given boundary conditions are imposed in an exact manner; and (ii) this
technique only requires the local values of 1) and 0v/0n at the boundary node
and its adjacent grid node to estimate the Dirichlet boundary conditions for the

vorticity equation (3.18)/(3.20).

It can be seen that the set of 2-node IRBFEs is generated here from grid lines
that pass through interior grid nodes. As a result, the set of interpolation points
does not include the four corners of the cavity and hence corner singularities do

not explicitly enter the discrete system.

Simulation is carried out for a wide range of Re, namely (100, 400, 1000, 3200).
Grid convergence is studied using 12 uniform grids, i.e. (11 x 11, 21 x 21, ...,
121 x 121). Results obtained are compared with the benchmark solutions taken
from Ghia et al. (1982) and Botella and Peyret (1998) to assess the performance
of the present methods. The former was obtained using a multi-grid based finite-
difference method with fine grids. For the latter, spectral scheme and analytical
method were employed to calculate the regular and singular parts of the solution
and the benchmark results were given for Re = 100 and Re = 1000. In addition,
global 1D-IRBF subregion/point collocation (1D-IRBF-CVM/CM) results and
also standard CV results, recently given in Mai-Duy and Tran-Cong (2009b,
2011a), are also included. It is noted that, in Mai-Duy and Tran-Cong (2011a),
CD-CD means that both the convection and diffusion terms were approximated

with a central difference, while UW-CD means that the convection term is
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treated with a first-order upwind.

Time-step convergence: The convergence behaviours of IRBFE-CVM and
IRBFE-CM with respect to time are shown in Figures 3.1, 3.2 and 3.3. Results
without an upwind treatment are also presented. It can be seen that solutions
converge remarkably faster for those with upwind than those without upwind.
Much larger time steps can be used for the former. Consider the case of Re =
1000 and a grid of 81 x 81 (Figures 3.1 and 3.2). IRBFE-CVM reaches CM <
1072 after about 5 x 10* iterations for its no-upwind version and after about
2.5 x 10% iterations for Scheme 1, while IRBFE-CM requires about 6.9 x 10* for
its no-upwind version and about 2.5 x 10% for Scheme 2, 6.8 x 10? for Scheme 3.
It was reported in Mai-Duy and Tran-Cong (2011a) that the global 1D-IRBF-
CVM takes about 8.5 x 10* and 1.2 x 10* iterations to have CM < 10~% for
its no-upwind and upwind versions, respectively. It appears that local IRBF
versions help make the convergence faster. In the case of Re = 3200 and a grid
of 91 x 91, in contrast to the upwind version, the no-upwind version is not able

to reach CM = 1079 as shown in Figure 3.3.

Grid-size convergence: The convergence of velocity profiles on the vertical
and horizontal centrelines at Re = (0, 100,400, 1000, 3200) with respect to grid
refinement is presented in Figures 3.4 and 3.5 and Tables 3.1-3.4. Benchmark
results by Ghia et al. (1982) and Botella and Peyret (1998) are also included for
comparison purposes. It can be seen that (i) errors relative to the benchmark
results are consistency reduced as the grid is refined; and (ii) converged profiles
are obtained with relatively coarse grids (e.g. 21 x 21 for Re = 100 and 61 x 61
for Re = 1000).



Table 3.1: Lid-driven cavity flow, IRBFE-CVM, Re = 100: extrema of velocity profiles on the vertical and horizontal centrelines
of the cavity. [] is Ghia et al. (1982) and [x«] is Botella and Peyret (1998).

Method Grid

Error %

Error %

Upnin Y Urnaa x Upnin Error % x
IRBFE-CVM 11x11 -0.20604 3.74 0.505 0.15971  11.06  0.225 -0.21745 1432 0.804
21x21 -0.21190 1.00 0.466 0.17609 1.94 0.235 -0.24673 2.79 0.809
31x31 -0.21288 0.55 0.462 0.17798 0.89 0.236 -0.25077 1.20 0.810
41x41 -0.21327 0.36 0.460 0.17857 0.56 0.237 -0.25203 0.70 0.810
FDM (¢ —w) [x]  120x120  -0.21090 147 0453  0.17527 240 0234  -0.24533  3.34  0.805
Benchmark [xx] -0.21404 0.458 0.17957 0.237 -0.25380 0.810

sagdwvxa [DIULLIWNN] G &

6L



Table 3.2: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: extrema of the vertical and horizontal velocity profiles through the
centrelines of the cavity. [x] is Ghia et al. (1982) and [x*] is Botella and Peyret (1998).

Method Grid Upnyin Y Umnaa x Umin T
IRBFE-CVM 31x31 -0.36093 0.195 0.35084 0.167 -0.48074 0.899
41x41 -0.37140 0.182 0.36144 0.162 -0.50172  0.905
51x51 -0.37720 0.177 0.36673 0.160 -0.51083 0.907
61x61 -0.38057 0.176 0.36980 0.160 -0.51588 0.908
71x71 -0.38266 0.174 0.37166 0.159 -0.51897 0.908
81x81 -0.38407 0.174 0.37293 0.159 -0.52097 0.909
91x91 -0.38502 0.173 0.37377 0.159 -0.52233  0.909

101x101 -0.38569 0.173 0.37437 0.158 -0.52330  0.909
111x111 -0.38619 0.173 0.37482 0.158 -0.52402  0.909
121x121 -0.38657 0.172 0.37515 0.158 -0.52454  0.909

FDM (¢ —w) [#] 129x129 -0.38289 0.172 0.37095 0.156 -0.51550  0.906
Benchmark [xx] -0.38857 0.172 0.37694 0.158 -0.52708 0.909

sagdw,ma [DIULLIWNN] G &

08
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Table 3.3: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: percentage errors
relative to the spectral benchmark results for the extreme values of the veloc-
ity profiles on the centrelines. Results of upwind central difference (UW-CD),
central difference (CD-CD) and global 1D-IRBF-CVM are taken from Mai-Duy
and Tran-Cong (2011a).

Error (%)
Grid UW-CD CD-CD 1D-IRBF-CVM IRBFE-CVM

Umin

31x31 46.10 29.19 11.86 7.11
41x41 38.17 18.13 6.50 4.42
51x51 32.92 12.11 4.09 2.93
61x61 29.12 8.63 2.80 2.06
T1x71 26.21 6.46 2.03 1.52
81x81 23.88 5.02 1.54 1.16
91x91 21.95 4.01 1.19 0.91
101x101 20.33 3.28 0.96 0.74
111x111 18.94 2.73 0.78 0.61
121x121 17.74 2.31 0.65 0.51
Umazx
31x31 48.01 29.98 11.91 6.92
41x41 39.71 18.45 6.55 4.11
51x51 34.43 12.32 4.13 2.71
61x61 30.62 8.79 2.83 1.90
71x71 27.68 6.58 2.05 1.40
81x81 25.31 5.12 1.56 1.06
91x91 23.34 4.09 1.21 0.84
101x101 21.67 3.35 0.97 0.68
111x111 20.23 2.79 0.79 0.56
121x121 18.98 2.36 0.66 0.48
Umnin
31x31 40.12 29.83 11.53 8.79
41x41 30.42 18.08 6.25 4.81
51x51 24.70 11.90 3.87 3.08
61x61 20.94 8.40 2.58 2.12
71x71 18.24 6.25 1.85 1.54
81x81 16.19 4.83 1.39 1.16
91x91 14.56 3.85 1.07 0.90
101x101 13.24 3.14 0.85 0.72
111x111 12.14 2.61 0.70 0.58

121x121 11.22 2.20 0.58 0.48




Table 3.4: Lid-driven cavity flow, IRBFE-CM, Re = 1000: effects of 5 on the solution accuracy. The present results at the
“optimal” value (i.e. about 3) with a grid of 51 x 51 are in better agreement with the benchmark spectral results than those by
1D-IRBF-CM using the same grid and by FDM using a much denser grid. [x| is Mai-Duy and Tran-Cong (2009b), [x] is Ghia
et al. (1982), and [x x %] is Botella and Peyret (1998).

Method Grid Upnin Error % Y Umaz  Error % x Upnin Error % x
IRBFE-CM 51x5H1

—_

-0.36134 7.00 0.188 0.35048 7.02 0.168 -0.48532 7.92 0.898
o1lxd1 3 -0.38803 0.14 0.174 0.37677 0.05 0.161 -0.52184 0.99 0.906
3

51x51 038948 023 0.174 037832 037  0.161  -0.52357  0.67  0.906
1D-IRBF-CM [] 51x51 037985 225 0174 036781 242  0.160  -0.51469  2.35  0.908
FDM (¢ — w) [x%]  129x129 038289 146 0172 037095 159  0.156  -0.51550  2.20  0.906
Benchmark [x * +] -0.38857 0.172  0.37694 0.158  -0.52708 0.909

sagdw,ma [DIULLIWNN] G &

¢8
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Figure 3.4: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia et al.
(1982) were obtained at a grid of 129 x 129. [«] is Ghia et al. (1982) and [*x] is

Botella and Peyret (1998).
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Figure 3.5: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia et al.
(1982) were obtained at a grid of 129 x 129. [«] is Ghia et al. (1982) and [*x] is

Botella and Peyret (1998).
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Figure 3.6: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines
for several Re numbers and grid sizes. The contour values are taken to be the
same as those in Ghia et al. (1982) and Sahin and Owens (2003) respectively.
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Figure 3.7: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines
for several Re numbers and grid sizes. The contour values are taken to be the
same as those in Ghia et al. (1982) and Sahin and Owens (2003) respectively.

Solution quality: The solution qualities of IRBFE-CVM and IRBFE-CM
are shown in Tables 3.1-3.4 and Figures 3.6-3.7. Tables 3.1-3.4 reveal that
the present results are closer to the benchmark spectral solutions than the
benchmark finite-difference results and also those of the global 1D-IRBF-CVM.
Errors relative to the benchmark spectral results are less than 1% for Re = 100
using a grid of 41 x 41 (Table 3.1) and for Re = 1000 using a grid of 91 x 91
(Table 3.3). These IRBFE results correspond to § = 15. Table 3.4 indicates
that the solution accuracy can be controlled by means of 5. The quality of

the solution can be significantly improved at the optimal value of 5. It can
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Figure 3.8: Flow past a circular cylinder in a channel: schematic representation
of the computational domain.

be seen from Figures 3.6-3.7 that smooth contours are obtained for both the
streamfunction and vorticity fields and the corner eddies are clearly captured

at relatively coarse grids.

3.5.2 Flow past a circular cylinder in a channel

We further verify IRFBE-CVM and IRBFE-CM through the simulation of flow
past a circular cylinder in a channel (Figure 3.8). Works involving simulation of
such a flow are reported in, for example, Chen et al. (1995), Sahin and Owens
(2004) and Singha and Sinhamahapatra (2010). Let D be the cylinder diameter
and H the channel height. One important geometric parameter to characterise
the flow is the blockage ratio defined as v = D/H. Chen et al. (1995) did a nu-
merical linear stability analysis and identified the curve of neutral stability for
Hopf bifurcation at values of 7 up to 0.7. Sahin and Owens (2004) extended the
linear stability analysis to a wider range of v from 0.1 to 0.9 and uncovered the
complex dynamics of the flow at sufficiently high values of the Reynolds number
and the blockage ratio. The paper by Anagnostopoulos and Iliadis (1996) pro-
vided the flow patterns for v = (0.05,0.15,0.25) and Re = 106 using the finite
element technique. Recently, Singha and Sinhamahapatra (2010) reported the
flow patterns for Re = (45,100, 150) and v = (0.5,0.25,0.333,0.125) using the
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Figure 3.9: Flow past a circular cylinder in a channel, IRBFE-CVM, v = 0.5,
Re = 60, grid = 367 x 62, solution at Re = 35 used as initial guess: convergence
behaviour. Scheme 1 using a time step of 2 x 10~* converges faster than the no-
upwind version using a time step of 107%. It is noted that the latter diverges for
time steps greater than 10=%. C'M denotes the convergence measure as defined

by (3.38).

finite volume technique. The problem domain is multiply-connected as shown
in Figure 3.8. We choose the geometry and boundary conditions here as those
in Chen et al. (1995). The ratio between the upstream and downstream lengths
is taken to be 1/3 and the length of the channel is chosen to be 6 H to assure the
fully developed conditions of the flow at upstream and downstream boundaries
(Chen et al. 1995). All lengths are scaled by the channel height H (Figure 3.8).

Parabolic velocity profiles can thus be imposed at the inlet and outlet as

1
Uip = Uout = UQ <Z - 92) ) (342)

Vin = Vout = 0. (343)
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Scheme 3
— — - Without upwinding
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Figure 3.10: Flow past a circular cylinder in a channel, IRBFE-CM, v = 0.5,
Re = 60, grid = 367 x 62, solution at Re = 0 used as initial guess: convergence
behaviour. Scheme 3 using a time step of 10™* converges faster than the no-
upwind version using a time step of 5 x 107°. It is noted that the latter diverges
for time steps greater than 5 x 107°. C'M denotes the convergence measure as

defined by (3.38).

Using uy = 1, the flow rate takes the value

Q= i l_yQ dyzl (3.44)
4 6’

—-1/2

and we define the Reynolds number as Re = 1/(6v). Figure 3.8 displays bound-
ary conditions for the streamfunction variable, which are derived from (3.42)-
(3.43) at the inlet and outlet, and non-slip conditions at the remaining bound-
aries. The imposition of boundary conditions for w on the walls, inlet and outlet
are similar to that used in the lid driven-cavity flow, i.e. (3.41). On the cylinder

surface, analytic formulae for computing the vorticity boundary condition on a
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non-rectangular boundary (Le-Cao et al. 2009) are utilised here

tm ? aZdjb
=—1 — 45
=1+ (%) ] o (3.45)
for an z-grid line, and
t,\ | 0%y
-1 Y -2 4
wn=— |1+ () ] s (3.46)

for a y-grid line. In (3.45) and (3.46), ¢, and ¢, are the x- and y-components of
the unit vector tangential to the boundary. The approximations in (3.45) and

(3.46) require information about ¢ in one direction only and they are conducted

here by means of 2-node IRBFEs, i.e. (3.13).

We implement Scheme 1 of IRBFE-CVM and Scheme 3 of IRBFE-CM with
three different grids, (127 x 22,247 x 42,367 x 62), to study the flow at Re =
(0,25,35,60) and v = (0.3,0.5,0.7).

The convergence behaviours of IRBFE-CVM and IRBFE-CM with respect to
time in the case of v = 0.5, Re = 60 and a grid of 367 x 62 are shown in Figures
3.9 and 3.10. Results without an upwind treatment are also included. It can be
seen that solutions converge faster for those with upwind than those without
upwind. Larger time steps can be used for the former. In the case of IRBFE-
CVM (Figure 3.9), CM = 1077 is obtained after about 3.3 x 10% iterations for
the no-upwind version and after about 1.8 x 10? iterations for Scheme 1. In
Figure 3.10, IRBFE-CM reaches CM = 1079 after about 1.7 x 10* iterations

for the no-upwind version and after about 8.3 x 10? iterations for Scheme 3.

Results concerning the critical Re number and the length of recirculation zones
behind the cylinder are shown in Tables 3.5 and 3.6, respectively. For all three
grids and different values of 3 used, the obtained values are in satisfactory agree-
ment with those reported in Chen et al. (1995) and Singha and Sinhamahapatra
(2010).
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Table 3.5: Flow past a circular cylinder in a channel, IRBFE-CVM, v = 0.5:
The critical Reynolds number Re,,; for the formation of the steady recirculation

zone behind the cylinder.

Method Grid Reqit
IRBFE-CVM 127x22 27.498
247x42 26.133
367x62 25.078

Chen et al. (1995) 24.3

Table 3.6: Flow past a circular cylinder in a channel, v = 0.5, Re = 60:
minimum velocity w,,;, and its position on the centreline, and the length of
recirculation zones behind the cylinder (L,,). It is noted that the case of Re = 60
and v = 0.5 here is equivalent to the case of Re = 45 and v = 0.5 in Singha

and Sinhamahapatra (2010).

Method Grid 15} Ugnin x L.,

IRBFE-CVM 127x22 15 -0.067 0.141 0.269

247x42 15 -0.074 0.140 0.270

367x62 15 -0.076  0.139 0.270

IRBFE-CM 367x62 1 -0.076  0.141 0.271

367x62 3 -0.076 0.141 0.270

367x62 5 -0.075 0.140 0.269

Singha and Sinhamahapatra (2010) 0.284

(Re = 45)
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Figure 3.11: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0,
grid = 367 x 62: streamlines at different values of the blockage ratio.

Contour plots for the streamfunction and vorticity fields are presented in Figures
3.11, 3.12 and 3.13, while the velocity vector field is displayed in Figure 3.14.
Stronger interaction in regions between the cylinder and the walls is observed
at higher values of the blockage ratio (Figures 3.11 and 3.12). At Re = 60
and v = 0.5, symmetrical recirculation zones appear behind the cylinder in the
streamfunction field (Figure 3.13(a)). The flow features are similar to those
obtained by Singha and Sinhamahapatra (2010) at Re = 45 (i.e. Re = 60
according to the present definition of Re) and v = 0.5. Figure 3.15 shows
velocity profiles on the centreline behind the cylinder for the case of v = 0.5. It

can be seen that the incipience of recirculation zones appears around Re = 25.
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Figure 3.12: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0,
grid = 367 x 62: iso-vorticity lines at different values of the blockage ratio.

3.6 Concluding remarks

In this chapter, we have extended our 2-node IRBFEs to the solution of the
streamfunction-vorticity formulation governing fluid flows in rectangular and
non-rectangular domains. Several high-order upwind schemes based on 2-node
IRBFEs were also proposed and investigated. Attractive features of the pro-
posed point/subregion collocation methods include (i) a simple preprocessing
(Cartesian grids); (ii) a sparse system matrix (2-node approximations); and a
higher order of continuity across grid nodes (C?-continuous elements). Numer-
ical results show that (i) much larger time steps can be used with the upwind
versions; and (ii) a high level of accuracy is achieved using relatively coarse

grids.
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Figure 3.13: Flow past a circular cylinder in a channel, IRBFE-CVM, ~ = 0.5,
Re = 60, grid = 367 x 62: streamlines and iso-vorticity lines.

Figure 3.14: Flow past a circular cylinder in a channel, IRBFE-CVM, ~ = 0.5,
Re = 60, grid = 367 x 62: velocity vector field.
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Figure 3.15: Flow past a circular cylinder in a channel, IRBFE-CVM, v =
0.5: velocity profiles on the centreline behind the cylinder at different Reynold

numbers.



Chapter 4

ADI method based on
C”-continuous two-node IRBFEs

for viscous flows

In the present chapter, we propose a C?-continuous alternating direction im-
plicit (ADI) method for the solution of the streamfunction-vorticity equations
governing steady 2D incompressible viscous fluid flows. Discretisation is sim-
ply achieved with Cartesian grids. Local two-node IRBFEs are used for the
discretisation of the diffusion terms, and then the convection terms are in-
corporated into system matrices by treating nodal derivatives as unknowns.
ADI procedure is applied for the time integration. Following ADI factorisation,
the two-dimensional problem becomes a sequence of one-dimensional problems.
The solution strategy consists of multiple use of a one-dimensional sparse ma-
trix algorithm that helps save the computational cost. High levels of accuracy
and efficiency of the present method are demonstrated with solutions of several

benchmark problems defined on rectangular and non-rectangular domains.
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4.1 Introduction

The dimensionless Navier-Stokes (N-S) equations for steady incompressible pla-
nar viscous flows, subject to negligible body forces, can be expressed in terms
of the streamfunction ¢ and the vorticity w as in (3.1) and (3.2). The vorticity
and streamfunction variables are defined by (3.3) and (3.4) respectively. In this
study, the method of modified dynamics or false transients (e.g. Mallinson and
Davis 1973, Pozrikidis 1997) is applied to obtain the structure of a steady flow.

The governing equations (3.1) and (3.2) are modified as

— + 55 tw=0, (4.1)
Y

ow w Pw (81/18w &bﬁw)
= Re .

o o Yoy TR\ Gyor aray

4.2
Oy Or  Ox Oy (42)

A steady state solution to (4.1) and (4.2), which is obtained by integrating the
equations from a given initial condition up to the steady state, is also solution

to (3.1) and (3.2).

Cartesian-grid-based methods for solving (3.1) and (3.2) can be very economical
owing to the facts that (i) generating a grid is low-cost; and (ii) ADI procedure
(Peaceman and Rachford 1955, Douglas and Gunn 1964) can be straightfor-
wardly applied to accelerate computational processes. The approximations for
the dependent variabl