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Abstract: Background\Objectives: Solving the secrets of the brain is a significant challenge
for researchers. This work aims to contribute to this area by presenting a new explainable
feature engineering (XFE) architecture designed to obtain explainable results related to
stress and mental performance using electroencephalography (EEG) signals. Materials
and Methods: Two EEG datasets were collected to detect mental performance and stress.
To achieve classification and explainable results, a new XFE model was developed, in-
corporating a novel feature extraction function called Cubic Pattern (CubicPat), which
generates a three-dimensional feature vector by coding channels. Classification results
were obtained using the cumulative weighted iterative neighborhood component analysis
(CWINCA) feature selector and the t-algorithm-based k-nearest neighbors (tkNN) classifier.
Additionally, explainable results were generated using the CWINCA selector and Directed
Lobish (DLob). Results: The CubicPat-based model demonstrated both classification and
interpretability. Using 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV,
the introduced CubicPat-driven model achieved over 95% and 75% classification accuracies,
respectively, for both datasets. Conclusions: The interpretable results were obtained by
deploying DLob and statistical analysis.

Keywords: cubic pattern; Directed Lobish; EEG mental performance detection; EEG stress
detection; cortical connectome diagram; explainable feature engineering

1. Introduction
The cortical connectome diagram (CCD) aims to represent the functional and structural

connections of the brain, and it is designed for use in neuroscience [1]. Mapping the
interactions between different brain regions provides valuable insights into the neural basis
of various cognitive and emotional processes [2,3]. This approach allows researchers to
uncover the complex dynamics of brain activity and their effects on mental health and
performance [4,5].

This study constructed CCD using electroencephalography (EEG) signals and a new
symbolic language known as Directed Lobish (DLob) [6]. This method enables the system-
atic encoding of EEG data into symbolic sequences, facilitating the identification of patterns
associated with different neural states [7]. The generated connectome diagrams visualize
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these patterns and quantify their complexity through metrics, such as information entropy,
providing an explanatory framework for understanding brain function [8].

Integrating the cortical connectome with DLob increases its usefulness in distinguish-
ing between mental performance and specific cognitive and emotional states, such as
stress. For example, high mental performance was characterized by dynamic interactions
across multiple brain lobes, particularly in the frontal region, as highlighted by entropy
values [9]. Conversely, stress detection exhibited more predictable patterns with lower
entropy, highlighting distinct neural signatures associated with these states [10]. Using this
innovative methodology, the study bridges the gap between raw EEG data and actionable
neuroscientific insights. CCD serves as a powerful visualization tool that offers not only
high classification accuracy but also the interpretability needed to advance the fields of
cognitive neuroscience and mental health diagnostics [11].

This study utilized EEG datasets to examine two distinct conditions: mental perfor-
mance and stress detection. Mental performance datasets involved tasks resembling IQ
tests, highlighting neural patterns associated with high cognitive functioning. Conversely,
the stress detection dataset captured neural responses to earthquake-related stressors. By
leveraging a new feature engineering framework, termed Cubic Pattern (CubicPat), the
study achieved high classification accuracies and provided interpretable results, bridging
the gap between computational models and neuroscientific insights.

1.1. Literature Review

Many different machine learning techniques have been presented in the literature [12–14].
Some of the studies conducted on stress and mental performance detection in the literature
are given below.

Cambay et al. [7] presented the QuadTPat-based model for stress detection using EEG
signals from 310 earthquake-affected participants. Using innovative feature extraction and
classification methods, their model achieved 92.94% accuracy in 10-fold cross-validation.
The study highlighted the critical role of the frontal and temporal lobes in stress responses
and advanced explainable artificial intelligence in neuroscience. Mane et al. [15] developed
an approach for mental stress detection using EEG signals. Their study employed EEG
datasets from 28 individuals under controlled stress-inducing conditions, including au-
ditory and visual stimuli. Their methodology, integrating wavelet transform for feature
extraction and machine learning algorithms for classification, achieved an average accu-
racy of 93.2%, demonstrating the effectiveness of EEG-based imaging for stress detection.
Marthinsen et al. [16] proposed a cost-effective approach for psychological stress detection
using an optimized 8-channel EEG setup, reducing the standard 32-channel configuration.
Data from 28 subjects, captured during real-life and arithmetic-induced stress scenarios,
were analyzed using machine learning techniques. The study achieved 87.5% accuracy with
wavelet scattering features and an SVM classifier. Patel et al. [17] presented a hybrid deep
learning approach for mental stress detection using EEG signals from the DEAP dataset,
which included recordings of 32 participants exposed to emotion-inducing videos. By com-
bining one-dimensional CNN with a bidirectional long- and short- term memory network,
their study achieved a high classification accuracy of 88.03%, outperforming conventional
machine learning methods. Hafeez and Shakil [18] developed an EEG-based approach to
classify mental stress levels using deep learning. EEG data from 14 students were collected
during mental arithmetic tasks with and without time constraints to induce varying stress
levels. The study achieved classification accuracies of 70.67% using LSTM and 90.64%
with CNN on brainwave images. Saini et al. [19] proposed a one-dimensional CNN for
mental task classification using artifact-free and artifact-contaminated EEG signals from
publicly available and in-house databases. Their study utilized EEG datasets, including the
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Keirn and Aunon database, EEGMAT database, and a newly recorded single-channel EEG
database, to classify both binary and multiclass mental tasks. Their approach achieved
subject-independent classification accuracies of up to 100% for specific task pairs in the
Keirn database and 99% and 98% for the EEGMAT and recorded databases. Zeng et al. [20]
suggested a model to classify driver mental states, specifically alertness and fatigue, based
on EEG data. They used a dataset comprising 28,176 epochs of EEG signals recorded from
10 subjects during a driving simulation experiment, with states labeled as TAV3 (alert)
and DROWS (fatigue). Their results demonstrated that the model outperformed both
traditional models like SVM and LSTM, achieving average intrasubject and intersubject
classification accuracies of 92.68% and 84.38%. Wu et al. [21] presented an approach for
mental fatigue assessment using arbitrary single-channel EEG data combined with mor-
phological features and an LSTM-CNN architecture. Their study involved EEG recordings
from 37 male participants under conditions of rested wakefulness and after 24 h of sleep
deprivation, encompassing both eye-opened and eye-closed states. Their proposed meth-
ods demonstrated superior classification performance, with the LSTM-CNN achieving a
true positive rate of 97.02% and a false positive rate of 3.50%. Ye et al. [22] proposed a
bootstrap-aggregating ensemble CNN for identifying mental fatigue levels based on EEG
features extracted from 14 channels during a language understanding task. Their study
utilized EEG signals from 15 participants, processed to extract temporal statistics, power
spectral density, and entropy indicators. Their approach achieved a participant-specific
classification accuracy of 87.69% when using features from all domains, surpassing classical
and deep classifiers. Lee et al. [23] developed a multi-feature block-based CNN for continu-
ous EEG decoding to classify pilots’ mental states, including fatigue, workload, distraction,
and normal state. Their study utilized EEG data collected from seven pilots with over 100 h
of flight experience, recorded during simulated flight scenarios designed to elicit specific
mental states. Their proposed model achieved an average classification accuracy of 75.00%
in offline analysis and detection accuracies of 72.00% for fatigue, 72.00% for workload, and
61.00% for distraction in pseudo-online analysis. Dairi et al. [24] presented an unsupervised
deep learning approach for classifying five mental tasks from EEG signals using a dataset
from Graz University of Technology. Their method combined artifact removal, quadratic
time-frequency distribution features, and a deep belief network-based isolation forest,
achieving AUC values above 98.00%. Jiang et al. [25] proposed a random forest-CNN
method to detect pilots’ low situation awareness levels using EEG data from 25 pilots under
poor visibility. Their model achieved 84.8% accuracy, surpassing standalone RF 78.10% and
CNN 81.60%.

As can be seen from the literature above, most of the research used deep learning
models to attain high classification performance [26,27], and these studies did not employ
explainable methods. For automatic EEG classification models, explainable results are
very important for obtaining artificial intelligence-based insights into the brain [28–30]. To
achieve this, we have presented a new explainable feature engineering (XFE) model. In this
XFE model, we introduced a new feature extraction function called the Cubic Pattern. By
deploying the Cubic Pattern and Directed Lobish (DLob), we developed an XFE model,
which has been tested on the EEG mental performance detection and EEG stress detection
datasets. In this context, the XFE model was evaluated on two EEG datasets to demonstrate
the general classification ability of the proposed model. By presenting this XFE model, we
have introduced a lightweight, highly accurate, generalizable, and explainable EEG signal
classification model.
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1.2. Literature Gaps

• Although this study uses two binary classification datasets to address this limitation,
it does not fully establish the generalizability of the proposed method to multiclass or
more complex datasets. Further validation on diverse datasets, including those with
multiclass labels and varying complexities, is needed to conclusively demonstrate its
robustness [31].

• Deep learning (DL) models are at the forefront of machine learning [32–35]. However,
they often suffer from high computational complexity [36], which can be a bottleneck
in practical applications [37]. Moreover, extracting explainable, feature-based results
from large DL models remains challenging [38,39].

• While many EEG signal classification studies initially focused only on classification
results [40], there is now a growing emphasis on uncovering biological mechanisms
underlying these classifications [41,42].

1.3. Motivation and Our Model

The essential motivation of the presented model is to fill the identified gaps in the
literature.

To address the first gap, two newly collected EEG datasets have been used in this
research as a testbed: (i) EEG mental performance detection and (ii) EEG stress detec-
tion datasets.

To fill the second gap, a feature engineering model has been presented. The model has a
simple structure, making the analysis of classification results straightforward. Additionally,
the recommended feature engineering model has linear time complexity.

To address the third gap, the Directed Lobish (DLob) symbolic language was integrated
into the presented model, enabling the creation of interpretable results.

To fill these three gaps, we present a new channel coding-based feature extraction
function. A good machine learning model extracts features with high classification ability.
To achieve this, the Cubic Pattern (CubicPat) is introduced. Each feature generated by
CubicPat contains information from three channels. In this way, both classification and
interpretable results are extracted using CubicPat, which is a critical method for creating
the recommended explainable feature engineering (XFE) model.

The presented XFE model uses CubicPat to extract features. The most discriminative of
the generated features have been selected by cumulative weighted iterative neighborhood
component analysis (CWINCA) [43], and these features have been utilized as input for
the t-algorithm-based k-nearest neighbors (tkNN) [11] classifier. In this research, both
10-fold and leave-one-subject-out (LOSO) cross-validation (CV) techniques have been used
to validate the results of the tkNN classifier. To obtain explainable results, the indices of the
chosen features selected by the CWINCA selector and the DLob symbolic language have
been utilized. At this point, the recommended CubicPat-based XFE model generates both
classification and explainable results.

1.4. Novelties and Contributions

Novelties:

• Two newly collected EEG signal datasets have been utilized as testbed.
• In this work, a new feature extraction function, which is CubicPat has been presented.
• To obtain both classification and explainable results from the CubicPat, a new CubicPat-

based XFE model has been presented by integrating the CWINCA selector, tkNN
classifier and DLob symbolic language.
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Contributions:

• This research presents a lightweight feature engineering model for EEG signal clas-
sification. The proposed CubicPat feature extractor has been developed to generate
informative features. The most discriminative of these features has been chosen using
the CWINCA selector and these features have been classified with the tkNN classifier.
To showcase robustness and reliability, both 10-fold cross-validation (CV) and leave-
one-subject-out (LOSO) CV have been employed. The introduced CubicPat-related
XFE model yielded over 95% classification accuracy with 10-fold CV and over 75%
with LOSO CV for both EEG datasets. These results and findings openly demonstrated
that the introduced CubicPat-driven XFE model contributes to feature engineering.

• The integration of the DLob symbolic language enables the generation of explainable
results from the selected features. The DLob strings provide findings into cortical
lobe activity. Statistical analysis of the DLob strings facilitated the creation of cortical
connectome diagrams, and the created cortical connectome diagrams provide visual
neural interaction. This contributes to the understanding of the biological mechanisms
of the tested situations. Therefore, this research contributes to neuroscience since we
have presented feature engineering-based findings in this research.

2. Materials and Methods
2.1. Material

To create a testbed for this research, two new EEG signal datasets were used, and
both EEG datasets were collected using two different brain caps. The EEG stress dataset
was collected with a 14-channel brain cap, and the EEG mental performance dataset was
collected with a 32-channel brain cap. The details of these datasets are given below.

2.1.1. EEG Mental Performance Detection Dataset

In this dataset, the researchers used a mental test with 60 questions, which is similar to
an IQ test. The main objective of this dataset is to detect good and poor mental performance
using EEG signals. Therefore, the EEG signals of the participants were collected while they
were solving the mental capacity test. In this test, each question carries equal weight, with
each question worth 2 points. Thus, the maximum possible score for the test is 120 points.
For labeling, a threshold score of 90 was used. EEG signals corresponding to scores below
90 were labeled as low, while those with scores of 90 or higher were labeled as high.

The researchers used the Emotiv Flex 2 Saline—32 Channel EEG Head Cap System.
The brain cap followed the 10/20 EEG placement system, and the sampling frequency of
the collected EEG signals was 256 Hz. The channels used in this brain cap are: (1) Cz, (2) Fz,
(3) Fp1, (4) F7, (5) F3, (6) FC1, (7) C3, (8) FC5, (9) FT9, (10) T7, (11) CP5, (12) CP1, (13) P3,
(14) P7, (15) PO9, (16) O1, (17) Pz, (18) Oz, (19) O2, (20) PO10, (21) P8, (22) P4, (23) CP2,
(24) CP6, (25) T8, (26) FT10, (27) FC6, (28) C4, (29) FC2, (30) F4, (31) F8, and (32) Fp2.

In this dataset, there are 3949 EEG samples (low: 2748 and high: 1201), and the length
of each EEG sample is 15 s. Moreover, this dataset was collected from 55 participants,
of whom 37 (32 males, 5 females) were labeled as low and 18 (15 males, 3 females) were
labeled as high in mental performance.

2.1.2. EEG Stress Detection Dataset

In this dataset, the primary objective is to detect stress caused by the earthquake,
and the participants in this dataset were affected by the Great Turkey Earthquake Series
on 6 February 2023. To induce earthquake-related stress, the researchers showed real
earthquake videos to 150 participants. Additionally, meditation videos were shown to
160 participants. In total, EEG signals were collected from 310 participants, of whom 42
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were women and the remaining 268 were men. While watching the videos, EEG signals
were collected using the Emotiv Epoch X brain cap. This brain cap has 14 channels, and
these channels are: (1) AF3, (2) F7, (3) F3, (4) FC5, (5) T7, (6) P7, (7) O1, (8) O2, (9) P8, (10) T8,
(11) FC6, (12) F4, (13) F8, and (14) AF4. The sampling frequency of this brain cap is 128 Hz,
and the length of each EEG segment is 15 s. In the EEG stress detection dataset, 1757 EEG
segments are labeled as stress, and 1882 are labeled as control. In total, there are 3667 EEG
signals in this dataset.

2.2. The Proposed Explainable Feature Engineering Model

To automatically classify the EEG signal datasets, an innovative XFE model has been
presented. The presented XFE model is simple and highly accurate. Moreover, explainable
results have been obtained using our model. The main objective of the recommended XFE
is to demonstrate the classification and explainable results generation capability of the
presented CubicPat feature extractor. Therefore, we have used CWINCA to choose the
most distinctive features, tkNN was utilized to obtain classification results, and DLob was
utilized to create explainable results.

The general block diagram of the recommended CubicPat-related XFE model is shown
in Figure 1.
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The details of the recommended CubicPat-based XFE model are provided below.

2.2.1. The Recommended Feature Extraction Based on CubicPat

The main feature extraction function of the presented model is the recommended
CubicPat feature extractor. This feature extractor is simple and effective, and the steps of
the presented CubicPat are given below.



Diagnostics 2025, 15, 363 7 of 26

Step 1: Read the channels of each point.

Ci = EEG(i, 1 : n), i ∈ {1, 2, . . . , ln} (1)

where C: channel vector, n: the number of the channels, and ln: the length of the EEG
signals.

Step 2: Apply sorting in descending order.

id = argsort
(
−Ci

)
(2)

where id: the sorted indices of the channels.
Step 3: Apply cubic coding to generate feature vectors.

map = (id(j)− 1)× n2 + (id(j + 1)− 1)× n + (id(j + 2)− 1) (3)

j ∈ {1, 2, . . . ,L− 2}

Herein, map: the coded feature map signal value and L: length of the sorted indices of
the channel.

Step 4: Compute the histogram value.

histo(map + 1) = histo(map + 1) + 1 (4)

Herein, histo: the histogram of the generated map value.
In this research, the extracted histogram has been utilized as a feature vector and the

length of the feature vector is n3. For 32 and 14 channeled EEG signals, the lengths of the
feature vectors are 32,768 (=323) and 2744 (=143), respectively.

The pseudocode of the recommended CubicPat-based feature extractor is demon-
strated in Algorithm 1.

Algorithm 1. The routine of the recommended CubicPat.

Input: EEG signal with a length of ln.
Output: Feature vector (histo) with a length of n3.
01: for i = 1 to ln do
02: for k = 1 to n do
03: Ci(k) = EEG(i, k);
04: end for k
05: id = argsort

(
−Ci)

06: for j = 1 to L− 2 do
07: map = (id(j)− 1)× n2 + (id(j + 1)− 1)× n + (id(j + 2)− 1);
08: histo(map + 1) = histo(map + 1) + 1;
09: end for j
10: end for i

2.2.2. Feature Selection

For feature selection, an iterative and effective feature selector is needed. Therefore,
the CWINCA [43] feature selector has been utilized. The CWINCA feature selector is a de-
veloped version of the NCA [44] and INCA [45] feature selectors. By deploying cumulative
weight computation, the range of the loop has been determined. In the iterative feature
selection, the classification accuracy of each selected feature vector has been computed.
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Based on the computed classification accuracy, the best-selected feature vector has been
chosen. The steps of the CWINCA feature selector used are given below.

Step 5: Compute the qualified identities of the generated features.

w = π( f , y) (5)

idx = argsort(−w) (6)

Herein, w: weight of the features ( f ), π(.): NCA feature selection function, y: the real
outcomes/labels, and idx: the qualified indices of the indices.

Step 6: Calculate the range of the loop by deploying cumulative weight. In this step, the
start and stop values of the loop are computed. For this research, 0.75 and 0.99 threshold
values are used. The 0.75 threshold was utilized to compute the start value of the loop, and
0.99 was used to determine the stop index.

sv = CW(w, idx, 0.75) (7)

f v = CW(w, idx, 0.99) (8)

Herein, sv: start value, f v: final value and CW(.): cumulative weight computation
function. In this step, loop range of the iteration is defined.

Step 7: Apply iterative feature selection.

s f a−sv+1(d, r) = f (d, idx(r)), a ∈ {sv, sv + 1, . . . , f v}, (9)

r ∈ {1, 2, . . . , a}, d ∈ {1, 2, . . . , no} (L2)

Here, s f : selected feature vector in the loop and no: number of observations.

Step 8: Compute the classification accuracy of each selected feature vector.

coa−sv+1 = C
(

s f a−sv+1, y
)

(10)

ca(a − sv + 1) = ψ
(

coa−sv+1, y
)

(L2)

Herein, C(.): the used classifier to calculate classification outcome (co) of each se-
lected feature vector, ca: the classification accuracy and ψ(.): the classification accuracy
computation function.

Step 9: Choose the most accurate selected feature vector based on the computed classifica-
tion accuracy. In this step, the greedy algorithm is used to select the best feature vector. In
this regard, this function is a self-organized feature selector.

bs = s f argmax(ca) (11)

where bs: the best of the selected feature vector.

2.2.3. Classification

The tkNN classifier was proposed by Tuncer et al. [11] in 2024. This classifier uses loop-
based parameter-changing, iterative majority voting (IMV) [46], and a greedy algorithm [47].
In this aspect, the tkNN classifier is an iterative and ensemble classifier. The steps of this
classifier are given below.

Step 10: Compute parameter-based classification outcomes by changing parameters iteratively.

pots = κ
(
bs, y, kvi, distj, wk

)
, s ∈ {1, 2, . . . , 30} (12)

kv = {1, 2, . . . , 5}, dist = {CityBlock, Chebyshev, Euclidean},
w = {Inverse, Equal}
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Herein, κ(.): kNN classifier, pot: parameter-based outcome, kv: k value, dist: distance
metric, and w: weight of the kNN. Tenfold CV and LORO CV were utilized as validations
to generate these outcomes. In this step, 30 (=5 × 3 × 2) parameter-based outcomes have
been generated by changing these parameters using nested loops.

Step 11: Deploy IMV to parameter-based outputs and generate 28 (=30 − 3 + 1) voted
outcomes. The mathematical explanation of the IMV has been demonstrated below.

ca(s) = ψ(pots, y) (13)

dx = argsort(−acc) (14)

vq−2 = ϖ
(

paroutdx(1), paroutdx(2), . . . , paroutdx(q)

)
, q ∈ {3, 4, . . . , 30} (15)

where dx: the identities of the sorted outcomes and v: voted outcomes.

Step 12: Choose the final outcome among the generated 58 (=30 parameter-based + 28 voted)
outcomes.

ca(30 + m) = α(vm, y), m ∈ {1, 2, . . . , 28} (16)

indice = argmax(acc) (17)

f o =

{
potindice, indice ≤ 30
vindice−30, indice > 30

(18)

Here, indice: the identity of the maximum accuracy.

2.2.4. Directed Lobish-Related Explainable Results Generation

The final phase of the presented model is the generation of DLob-related explainable
results. Two different EEG signal datasets have been used in this research, collected using
32-channel and 14-channel EEG brain caps. Therefore, each channel has been coded using
the DLob symbols. First, we have defined the DLob symbols below.

FL: Associated with logical thinking and analytical processes, key in planning and
decision-making, as well as speech generation.

FR: Engaged in creative thought, spatial awareness, and emotional regulation, espe-
cially for interpreting nonverbal cues.

Fz: Involved in managing executive functions, focusing attention, and monitoring
behavior, particularly during decision-making.

TL: Linked to language comprehension and auditory processing, playing a crucial role
in memory related to verbal information.

TR: Processes nonverbal auditory input and contributes to memory, emotion, and
recognition of complex auditory patterns like music.

PL: Integrates sensory information and handles tasks related to language processing,
problem-solving, and logical reasoning.

PR: Plays a role in spatial awareness and the perception of patterns, crucial for navi-
gating and processing the environment.

Pz: Important for sensory integration, body awareness, and coordination, contributing
to overall attention and consciousness.

OL: Primarily involved in visual processing related to the right side of the visual field,
including recognizing letters and words.

OR: Handles visual information from the left side of the visual field, aiding in spatial
orientation and scene recognition.

Oz: Central to basic visual perception, processing input from both visual fields to
integrate and interpret visual data.
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CL: Manages motor control on the right side of the body and processes sensory input
from that side, aiding fine motor skills.

CR: Controls left-side motor functions and processes sensory input from the left,
coordinating body movements and touch sensations.

Cz: Integrates motor and sensory information from both sides of the body, crucial for
coordinated movement and somatosensory processing.

Using the above DLob symbols, two look-up tables (LUTs) have been created to
represent channels with these symbols. The LUTs are provided below:

LUT32: {Cz, Fz, FL, FL, FL, FL, CL, FL, FL, TL, CL, CL, PL, PL, PL, OL, Pz, Oz, OR, PR,
PR, PR, CR, CR, TR, FR, FR, CR, FR, FR, FR, FR}.

LUT14: {FL, FL, FL, FL, TL, PL, OL, OR, PR, TR, FR, FR, FR, FR}.
Using these LUTs, we have created the DLob string by following the steps below.

Step 13: Generate DLob symbols from the indices of the selected features. Here, digit
separation has been used to obtain the DLob symbols, as the indices of the LUTs must
be generated to acquire the DLob symbols. Moreover, each feature of the recommended
CubicPat includes three channel values. By utilizing the channel values and LUTs, the
DLob symbols have been created.

value = idx(w), w ∈ {1, 2, . . . , NoF} (19)

chj =
value − 1
NoCj−1 (mod NoC) + 1, j ∈ {1, 2, 3} (20)

Seq(c + j) = LUT
(
chj

)
, c ∈ {0, 3, . . . , 3 × NoS f − 3} (21)

Here, value: value of the identity of the selected feature, NoC: number of channels,
Seq: the DLob symbol sequence, LUT: look-up-table, and NoS f : the number of selected
features.

Step 14: Obtain the statistical results of the generated DLob sequence by computing the
transition of the symbols used, the histogram of the utilized symbols, and the information
entropy of the generated DLob sequences.
Step 15: Train a large language model (LLM) using the information from the DLob (we
have used a custom LLM) and our findings. Then, generate the explainable results for
the generated DLob sequence. The custom LLM used is the Lobish EEG Interpreter (URL:
https://chatgpt.com/g/g-E3Gvijurs-lobish-eeg-interpreter accessed on 1 October 2024).

These 15 steps define the presented CubicPat-based XFE model.

3. Experimental Results
The experimental setting and results are provided in this section. The presented

CubicPat-based XFE model was introduced to obtain both classification and explainable
results. Therefore, we used CubicPat, CWINCA, tkNN, DLob, a custom LLM (custom
GPT 4o; https://chatgpt.com/ accessed on 1 October 2024), and statistical analysis. Ex-
cept for the custom GPT, the entire model was programmed using the MATLAB 2024a
programming environment, and a simply configured laptop was used to program the
CubicPat-based model. In MATLAB 2024a, we created .m files for implementing CubicPat,
CWINCA, tkNN, the DLob sequence generator, and statistical analysis. These functions
were called using the main function, and the results were obtained. The presented model is
a parametric XFE model, and the parameters used for this model are tabulated in Table 1.

Using the above parameters (see Table 1), both classification and interpretable/explainable
results were obtained for EEG mental performance detection and EEG stress detection.

https://chatgpt.com/g/g-E3Gvijurs-lobish-eeg-interpreter
https://chatgpt.com/
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Table 1. The parameters of the presented CubicPat-based XFE model for this research.

Phase Method Parameters

Feature
extraction CubicPat

Input: Channels of the EEG signals,
Qualification function: Descending,
Coding: Deploying three channel values,
Feature extraction method: Histogram extraction,
Length of the feature vector:
32,768 for 32 channels (EEG Mental Performance
Detection),
2744 for 14 channels (EEG stress detection).

Feature
selection CWINCA

Input: The extracted feature vector,
Thresholds: 0.75 and 0.99,
Accuracy calculator: kNN with 10-fold CV,
Selection factor: Maximum accuracy,
The length of the selected feature vectors:
791 for 32 channels (EEG Mental Performance Detection),
214 for 14 channels (EEG Stress Detection).

Classification tkNN

Input: The chosen feature vector,
k: from 1 to 5,
Distance: City block, Chebyshev, Euclidean,
Weight: Equal and Inverse,
Majority voting: IMV,
Number of the parameter-based outcomes: 30,
Range of the IMV’s loop: from 3 to 30,
The qualification criteria: Classification accuracy in
descending sorting,
Number of the voted outcome: 28,
Selection factor: Maximum accuracy.

XAI DLob

Input: The indices of the chosen feature vector
Number of the used DLob symbol: 14,
Statistical analysis: Histogram extraction, information
entropy calculation and transition table computation,
Graphical outcome: Cortical connectome diagram,
Results generation: k-shot learning-based LLM decoder.

3.1. Classification Results

In this work, we used two EEG signal datasets: (i) EEG mental performance detection
and (ii) EEG stress detection. The classification results of the presented CubicPat-based
XFE model were computed using the tkNN classifier, which employed two validation
techniques: (1) 10-fold CV and (2) LOSO CV. In this aspect, four classification results were
generated for both datasets. Moreover, classification accuracy, F1-score, and geometric
mean metrics were utilized to measure classification performance. The confusion matrices
were created to compute these performance metrics, and the matrices are showcased in
Figure 2.

Based on the computed confusion matrices, the performance evaluation metrics have
been tabulated in Table 2.

Table 2 showcases that the proposed CubicPat-based XFE model achieved classifica-
tion accuracies of 99.70% and 96.29% with a 10-fold CV on the mental performance and
stress datasets, respectively. Additionally, accuracies of 87.79% and 76.17% were obtained
with LOSO CV on the mental performance and stress datasets, respectively. Furthermore,
for a 10-fold CV, the recommended CubicPat-based XFE model achieved over 95% clas-
sification performance across all three performance evaluation metrics. Classification
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performances exceeding 75% were computed with LOSO CV across all three performance
evaluation metrics.
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Figure 2. The confusion matrices of the recommended CubicPat-based XFE model. (i) EEG mental
performance detection dataset. Herein, 0: Low performance, 1: High performance; (a) 10-fold
CV; (b) LOSO CV (ii) EEG stress detection dataset. Herein, 1: Stress, 2: Control; (a) 10-fold CV;
(b) LOSO CV.

Table 2. The computed results (%).

Metric
Mental Performance Stress

10-Fold CV LOSO CV 10-Fold CV LOSO CV

Accuracy 99.70 87.79 96.29 76.17

F1-score 99.79 91.58 96.22 75.10

Geometric mean 99.62 82 96.30 76.07

3.2. Explainable Results

The second result of the presented CubicPat-based XFE model is the explainable
results. To obtain these explainable results, we used a DLob-based XAI method, and the
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explainable results were extracted for both EEG signal datasets. These results are valuable
for neuroscience.

To verify the order of the generated DLob symbols, it must first be confirmed that the
feature indices used to obtain the DLob symbols are correctly mapped to their correspond-
ing channels via the appropriate LUT (i.e., LUT32 or LUT14, since two datasets were used
in this research, collected using 14- and 32-channel brain caps). The identities of the selected
features and LUTs have been used to extract the DLob symbols. This involves checking
that the step separation correctly identifies the three channels from each feature value and
that these channels generate the correct DLob symbols in the same order when referenced
with respect to the LUT, because the features generated with the principal CubicPat contain
three-channel information. Each of the resulting DLob symbols represents a cortical lobe.
To quantify the activation of these cortical lobes in the specified states, a histogram of the
resulting DLob string is extracted, and then the transition table of the generated DLob
symbols is computed to create the cortical connectome diagram. Moreover, the information
entropy of the generated DLob symbols is computed using the generated DLob symbol
histogram. In addition to these steps, the substrings/patterns obtained from the DLob
sequence are interpreted with the help of the custom LLM created. For example, a pattern
containing FRTROR DLob symbols indicates that cognitive, sensory, and visual activities
occur on the right side of the brain.

In the first steps, DLob sequences were extracted. The generated explainable results
are demonstrated below.

For the EEG mental performance detection dataset, the generated connectome diagram
and the extracted histogram are shown in Figure 3.

Additionally, the computed transition table of the generated DLob symbols is show-
cased in Figure 4. Using this transition table, the displayed cortical connectome diagram
was created.

In Figure 4, the highest transition computed is 93 between PL and OL. Additionally,
the information entropy of the generated DLob sequence for mental performance detection
computed is 3.4974.

In the stress detection dataset, a 14-channel brain cap was utilized, and to represent
these channels, eight DLob symbols—FL, FR, TL, TR, PL, PR, OL, and OR—were used. The
computed explainable results are demonstrated below.

In Figure 5, the explainable results for the generated DLob symbols for stress detection
are demonstrated. The cortical connectome diagram was created using the transitions of
the symbols, and the histogram of the DLob symbols was used to compute the information
entropy of the obtained DLob sequence for stress detection. The information entropy of
the generated DLob string is 2.8331. First, the transitions of the DLob symbols for stress
detection have been tabulated in Table 3.

According to Table 3, the highest transition is between FR and FR, and it was com-
puted as 57. This transition is highlighted in bold font. Moreover, there is no TR symbol.
Additionally, the information entropy of the created DLob sequence for stress detection
was calculated as 2.8331.



Diagnostics 2025, 15, 363 14 of 26Diagnostics 2025, 15, x FOR PEER REVIEW 14 of 30 
 

 

 
(a) 

 
(b) 

 

 
Figure 3. The generated cortical connectome diagram and histogram of the symbols of the mental
performance detection; (a) Cortical connectome diagram; (b) Histogram of the symbols.

Diagnostics 2025, 15, x FOR PEER REVIEW 14 of 27 
 

 

 
(b) 

Figure 3. The generated cortical connectome diagram and histogram of the symbols of the mental 
performance detection; (a) Cortical connectome diagram; (b) Histogram of the symbols 

Additionally, the computed transition table of the generated DLob symbols is show-
cased in Figure 4. Using this transition table, the displayed cortical connectome diagram 
was created. 

 

Figure 4. Transition table generated for mental performance detection. 

In Figure 4, the highest transition computed is 93 between PL and OL. Additionally, 
the information entropy of the generated DLob sequence for mental performance detec-
tion computed is 3.4974. 

In the stress detection dataset, a 14-channel brain cap was utilized, and to represent 
these channels, eight DLob symbols—FL, FR, TL, TR, PL, PR, OL, and OR—were used. 
The computed explainable results are demonstrated below. 

FL FR Fz TL TR PL PR Pz OL OR Oz CL CR Cz

Fr
eq

ue
nc

y

Figure 4. Transition table generated for mental performance detection.



Diagnostics 2025, 15, 363 15 of 26Diagnostics 2025, 15, x FOR PEER REVIEW 17 of 30 
 

 

 
(a) 

 
(b) 

 

 

Figure 5. Cortical connectome diagram and DLob symbols’ histogram of the stress detection. (a) Cor-
tical connectome diagram (b) Histogram of the symbols.

Table 3. Transitions of the symbols for stress detection.

FL FR TL TR PL PR OL OR

FL 90 23 13 4 8 8 13 8

FR 18 72 6 5 10 5 6 2

TL 9 3 30 7 9 5 7 6

TR 9 5 5 9 3 3 2 3

PL 13 5 7 6 27 2 6 3

PR 11 4 5 4 1 18 2 4

OL 7 7 7 2 8 4 25 7

OR 10 5 2 2 3 4 6 18
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4. Discussion
The recommended CubicPat-based XFE model generates both classification and

explainable results. As stated in Section 4, the recommended model attained over
75% classification performance for both datasets. In the first dataset, the EEG signals
were collected using a 32-channel brain cap. For the other dataset (stress detection), EEG
signals were collected using a 14-channel brain cap. To compare the classification perfor-
mance of the introduced CubicPat-based XFE model, the accuracies of these datasets were
compared, and this comparison is showcased in Figure 6.
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According to Figure 6 and Table 2, our presented CubicPat-based XFE model yielded
higher classification performance on the EEG mental performance dataset than on the
stress detection dataset. The reasons for these results are as follows: To collect EEG signals
for the mental performance detection dataset, a 32-channel brain cap was used, while a
14-channel brain cap was used to collect the stress detection data. For the stress detection
dataset, earthquake videos were shown to participants, and the researchers asked, “Are
you stressed?” Based on the participants’ responses, the EEG stress detection dataset was
labeled. In contrast, for the EEG mental performance detection dataset, the researchers
administered a mental test to participants, collected EEG signals while they solved the test,
and labeled the EEG observations based on the participants’ scores. Therefore, our model
achieved high classification performance on the mental performance detection dataset.

The recommended model reached satisfactory classification performance on both
datasets because the presented CubicPat generates features by capturing the relationships
between channels, and two self-organized methods (CWINCA and tkNN) were integrated
to obtain classification results.

To demonstrate the high classification ability of the recommended CubicPat-based
XFE model, a comparative results table is presented. In this table (Table 4), the results of
our model are compared to those of state-of-the-art (SOTA) models.

According to the results of Table 4, the recommended model attained satisfactory
classification performance. Therefore, the recommended model is valuable for EEG signal
classification. Moreover, four different results have been computed. This shows that the
presented model has general EEG signal classification capability.

The presented CubicPat-based model also generates interpretable results. The obtained
interpretable results have been discussed below for both datasets.
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Table 4. The comparisons with SOTA models.

Research Model Dataset Split Ratio Results

Cambay et al. [7]

Feature extraction with
QuadTPat, feature selection
deploying CWNCA,
tkNN-based classification
and DLob-based
interpretable results
generation

Stress detection with EEG
signal (14 channels)

1. 10-fold CV
2. LOSO CV

1. Acc: 92.94%
2. Acc: 73.63%

Mane and
Shinde [15] Fast Fourier transform, CNN Stress detection with EEG

signal (32 channels) 80:20

Acc: 93.20%
Sen: 78.00%
Spe: 81.00%
F1: 76.00%

Marthinsen
et al. [16]

Genetic algorithm,
CNN, SVM

Stress detection with EEG
signal (32 channels) 10-fold CV

Acc: 87.50%
Sen: 81.25%
Spe: 92.05%

Hafeez and
Shakil [18]

Long- and short-term
memory network, CNN

Stress detection with EEG
signal (10 channels) 66.67:33.33 Acc: 90.46%

Saini et al. [19] One-dimensional CNN Mental tasks with EEG signal
(23 channels) 10-fold CV Acc: 99.70%

Zeng et al. [20] Long and short-term
memory network, SVM

Driver mental states
detection with EEG signal 80:20 Acc: 92.68%

Wu et al. [21] Long- and short-term
memory network, CNN

Mental fatigue assessment
with EEG signal (30 channels) 75:25 Acc: 99.20%

Ye et al. [22] Ensemble CNN
Mental fatigue levels
detection with EEG signal
(14 channels)

90:10 Acc: 87.69%

Lee et al. [23] Multifeature block-based
CNN

Pilots’ mental states detection
with EEG signal (30 channels) 2-fold CV Acc: 75.00%

Dairi et al. [24] CNN Mental Tasks Recognition 80:20 AcC: 98.50

Jiang et al. [25] Random forest-CNN Pilots’ at-risk cognitive
competency identification 75:25 Acc: 87.70%

Our model CubicPat-based XFE

Stress detection with EEG
signal (14 channels)

1. 10-fold CV
2. LOSO CV

1. Acc: 96.29%
2. Acc: 76.17%

Mental performance
detection with EEG signal
(32 channels)

1. Acc: 99.70%,
2. Acc: 87.79%

4.1. Interpretable Results Discussions of the Mentalperformance Dataset

For this dataset, the information entropy of the generated DLob string is 3.4974,
and this information entropy is close to the maximum entropy, which is 3.8074 (=log214).
Moreover, the generated DLob string contains all the defined DLob symbols. This entropy
value demonstrates the complexity of the mental performance. Additionally, the dominance
of the frontal lobe highlights the importance of the frontal lobe’s role in mental performance
detection. Using generative AI, our generated DLob symbols have been discussed below
with respect to mental performance detection. Some patterns have been discussed below
to explain mental performance detection clearly. We have showcased some DLob arrays
derived from the mental performance DLob string.

CzFLFRCzOzCLCzPRPLCzCRCRCz: This pattern showcases the brain is managing
attention, logical tasks, and sensory input simultaneously.
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TRFRCzFRPLCzFRPLCzFLTLCzFRFLCzFRCz: This combination indicates the brain is
switching between emotional and logical processes during cognitive challenges. Moreover,
there are transitions from right to left and central areas.

CLCRCzFLPLCzFLCRCzOzCRCzCRFRCzFLPRCz: This pattern defines CL and Cz,
showing continuous attentional focus and hemispheric transitions. The frequent activation
of Oz and CR indicates visual processing coupled with motor planning or decision-making.
The involvement of FL and PR showcases decision-making based on sensory inputs.

TLTRCzTLFRCzCLCRCzOLFRCzCzFRCzFLPRCz: The TL and TR define auditory
processing and memory retrieval. Cz and FL again showcase logical decision-making. The
OL activation highlights visual processing. This pattern is indicative of a brain adapting to
tasks requiring both sensory integration and executive control.

FRPRCzCRFLCzCLFRCzTLFLCzTRFLCz: This sequence showcases cognitive flexibil-
ity and adaptability under mentally demanding conditions.

4.2. Interpretable Results Discussions of the Stress Dataset

By using this dataset, the information entropy of the generated DLob string was com-
puted as 2.8331, and eight DLob symbols (the maximum entropy value is 3 = log28) were
used. Therefore, stress detection is more predictable than mental performance detection.
Moreover, the generated DLob string did not contain the TR symbol. To provide more
explainable results, some patterns/sequences of the generated DLob string have been
discussed below.

TLTROLPLTRPRTLPL: This pattern begins with TL and TL represents emotional
processing, language-based activities, and memory retrieval. These activations are valuable
for an earthquake victim. TL transitions to TR and this showcases the brain’s immediate
response to environmental sounds during an earthquake. By using PL and PR, sensory
inputs such as body coordination are activated.

FLFLFLTRFLFLPRTRFRFRFRFROLORFLFLTLPLFLFL: The alternation between FL,
FR, and OR reflects a heightened state of cognitive, emotional, and visual processing.

FRFLFRFRFLPLFRTLTLOLPLOLFRFRTLOLFRFRPLOROLTL: This pattern indicates
dynamic transitions between logical reasoning, sensory integration, and emotional responses.

FRFROLORFLORPRFLFLFLOROLPLOLORPRTLTRTLTRTL: This sequence reflects
the brain’s constant switching between emotional regulation, visual scanning, and auditory
processing, characteristic of an earthquake scenario.

4.3. Causal Connectome Theory

We have presented a lobe transition table to explain our new causal connectome theory
(CCT) in Table 5.

Table 5. The CCT table.

Transition Explanation Medical Example

Frontal–Frontal Indicates sustained cognitive functions.
Observed during neuropsychological tasks
like the Stroop test, which evaluates executive
functioning in ADHD or frontal lobe damage.

Frontal–Temporal
Reflects the integration of logical
reasoning (frontal) with auditory
processing and memory recall (temporal).

Seen in language tasks for Broca’s aphasia
patients, where frontal regions coordinate
with temporal areas for speech production.

Frontal–Parietal It occurs during problem-solving or
coordinating motor responses.

Critical in tasks requiring motor control in
stroke rehabilitation or in assessing apraxia
where spatial awareness is impaired.
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Table 5. Cont.

Transition Explanation Medical Example

Frontal–Occipital This transition is critical in tasks requiring
visual analysis and decision-making.

Seen during visual problem-solving tasks,
such as interpreting visual puzzles in patients
with traumatic brain injury (TBI).

Temporal–Frontal This is common during emotional
regulation or verbal planning.

Observed in patients with PTSD during
emotional processing or in cases of auditory
hallucinations in schizophrenia.

Temporal–Temporal
This transition occurs in tasks involving
verbal memory or comprehension of
auditory inputs.

Seen in epilepsy patients with temporal lobe
seizures during memory or auditory testing.

Temporal–Parietal It may occur when linking sounds to
spatial environments.

Observed in patients with spatial neglect or
auditory processing disorders during sound
localization tasks.

Temporal–Occipital
This is significant in tasks requiring
multimodal sensory integration (e.g.,
audiovisual).

Seen in cases of audiovisual integration
deficits, such as in autism spectrum disorder
(ASD).

Parietal–Frontal It is critical during goal-directed
behaviors.

Observed in motor planning during
occupational therapy for stroke patients with
hemiparesis.

Parietal–Temporal It is seen in activities requiring spatial
sound perception or object localization.

Seen in patients with vestibular disorders
during balance and spatial orientation
assessments.

Parietal–Parietal This transition is active during movement
planning or proprioception.

Critical in assessing proprioceptive deficits in
Parkinson’s disease or peripheral neuropathy.

Parietal–Occipital
It is seen during tasks requiring
visual-spatial reasoning or attention to
visual stimuli.

Observed during visual-spatial reasoning
tasks in patients with Balint’s syndrome or in
visual attention assessments.

Occipital–Frontal
This transition is common in tasks
requiring analysis of visual data for
actions.

Seen in patients with visual impairments
during decision-making tasks involving
environmental navigation (e.g., blind
individuals).

Occipital–Temporal
It occurs in scenarios requiring
audiovisual integration, such as
understanding lip movements in speech.

Observed in speechreading tasks for patients
with hearing loss or cochlear implants.

Occipital–Parietal It is significant in navigation or tasks
requiring hand-eye coordination.

Critical in hand-eye coordination tasks for
patients with optic ataxia or during
rehabilitation for strokes affecting these
regions.

Occipital–Occipital
It is important for analyzing complex
visual stimuli or maintaining focus on
visual tasks.

Seen in patients with visual agnosia during
tasks requiring object recognition or shape
discrimination.

By using this table, CCT has been explained using the obtained transitions.

4.4. Highlights

The findings, advantages, limitations, and future works have been explained below.

Findings:
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• The CubicPat-based XFE model achieved over 95% classification accuracy using
10-fold CV and over 75% accuracy using LOSO CV for both EEG mental performance
detection and stress detection datasets.

• For EEG mental performance detection: 99.70% accuracy with 10-fold CV and 87.79%
accuracy with LOSO CV.

• For EEG stress detection: 96.29% accuracy with 10-fold CV and 76.17% accuracy with
LOSO CV.

• CubicPat feature extraction generates a three-dimensional feature vector by coding
EEG channels.

• For both datasets, cortical connectome diagrams were created using DLob symbol
transitions.

• For mental performance detection, the DLob string entropy was 3.4974 (close to the
maximum entropy of 3.8074). By using this entropy value, the complexity rate of the
generated DLob sentence is computed as 91.86% (=3.4974/3.8074) and it is indicated as
a complex and dynamic brain interaction. Moreover, there is a dominant FL activation
in mental performance detection.

• For stress detection, the entropy was computed as 2.8331. For mental performance
detection, eight DLob symbols were used. Therefore, the maximum entropy for it is
computed as 3. Therefore, the complexity ratio of the generated DLob sentence for
stress detection is 94.44% (=2.8331/3).

• For both cases (stress and mental performance detection), the most activated lobe is
the frontal lobe.

• According to our findings, stress detection is a more complex process than mental
performance detection.

• The frequency of PL-OL activation indicates that the brain focuses on environmental
awareness, perception, and logical reasoning, all essential components of mental
performance. Frequent PL-OL transitions reflect the complementary roles of sensory
and visual information processing during mental performance. These activations
enable the effective integration and interpretation of external stimuli, indicating that
the brain is engaging in higher-level cognitive functions, such as reasoning, decision-
making, and problem-solving. PL-OL activation was high in mental performance
detection because EEG signals were collected during test-solving.

• For stress detection, the most frequent transition is FL-FL. It clearly depicts that stress
is an internal process.

• The frontal lobe (FL and FR) plays a critical role in stress-related processes due to
its involvement in decision-making, cognitive flexibility, and emotional regulation.
Increased transitions from FL to itself (90) and from FL to FR (23) indicate heightened
cognitive processing and emotional control attempts during stress, clearly highlighting
that stress is an internal process.

• The temporal lobe (TL and TR), responsible for auditory processing and memory
recall, shows moderate activation with FL and FR. This suggests that stress may
trigger responses to auditory stimuli (e.g., earthquake sounds in this context). In
addition, high TL activation may indicate that stress also affects emotional regulation.

• The parietal lobe (PL and PR), associated with spatial awareness and sensory integra-
tion, shows fewer transitions overall. Transitions in this lobe can be interpreted as
being related to spatial awareness.

• The occipital lobe (OL and OR) shows particularly pronounced transitions from OL to
OL (25). This likely reflects the role of visual processing during stress, influenced by
the visual stimuli used in the experiment (earthquake videos).
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• High self-transitions (e.g., FL to FL, FR to FR) may represent repetitive neural activity
patterns characteristic of stress responses, involving cognitive overload or rumination.

• The higher entropy in DLob sequences for stress perception compared to mental per-
formance perception reflects the complexity and high dynamism of neural interactions
under stress. This finding aligns with the pathophysiological understanding that stress
is a state of hypervigilance in neural networks.

• The DLob transition table captures these dynamics indirectly through higher FL and
FR activity. Interhemispheric imbalances, such as differences in transitions between
OL and OR (OL: 25, OR: 18), may reflect asymmetries in visual processing under stress.

• The EEG graphoelements showcase that this EEG corresponds to a person under stress.
High self-transitions in the frontal lobe (FL to FL: 90, FR to FR: 72) reflect repetitive
neural activity, which is typical of cognitive overload and rumination. Increased
transitions between FL and FR (FL to FR: 23) show heightened communication for
cognitive and emotional regulation. The occipital lobe (OL to OL: 25) exhibits strong
self-transitions. Moderate temporal lobe activity (TL to TL: 30) suggests responses
to auditory stimuli and emotional memory recall. Interhemispheric asymmetry in
the occipital lobe (OL: 25 vs. OR: 18) indicates imbalanced visual processing. Finally,
lower parietal lobe activation (PL to PL: 27, PR to PR: 18) suggests reduced spatial
reasoning, as stress redirects cognitive resources to emotional and vigilance processes.
In summary, high frontal and moderate temporal transitions are key indicators of
stress, as shown by our findings.

• High transitions between FL and FR (FL to FR: 83, FR to FL: 80) indicate strong com-
munication between hemispheres for cognitive functioning for mental performance
detection.

• Self-transitions in the frontal lobe (FL to FL: 46, FR to FR: 64) reflect repetitive neural
activity needed for focus and problem-solving for mental performance detection.

• There is a low (PL to PL: 9, PR to PR: 18) self-transition in the parietal lobe for mental
performance detection.

• Moderate occipital lobe transitions (OL to OL: 24, OR to OR: 24) suggest occasional
visual processing.

• Central lobe transitions (CL to CR: 52, CR to CL: 58) show bilateral coordination.
• The highest transition occurs between PL and OL (93), which depicts the strong sensory

and cognitive interaction during mental performance tasks.
• The EEG graphoelements define that this EEG corresponds to a participant engaged

in mental performance tasks. High transitions between the frontal lobes (FL to FR:
83, FR to FL: 80) highlight strong communication between hemispheres, which is
essential for cognitive functioning. Self-transitions in the frontal lobe (FL to FL: 46,
FR to FR: 64) reflect repetitive neural activity, necessary for focus and problem-solving.
The parietal lobe shows lower self-transitions (PL to PL: 9, PR to PR: 18), suggesting
minimal engagement in sensory integration. Moderate transitions in the occipital
lobe (OL to OL: 24, OR to OR: 24) indicate occasional visual processing. Central lobe
transitions (CL to CR: 52, CR to CL: 58) reveal bilateral coordination. In summary,
high frontal activity and strong sensory-cognitive interactions are key indicators of
mental performance, as shown by the findings.

• The proposed CubicPat feature extractor is presented to analyze EEG signals by extract-
ing channel relationships. It employs a ranking-based transformer to identify changes
corresponding to standard graphoelements observed in clinical neurophysiology, such
as sharp waves, slow waves, and rhythmic oscillatory activity within standard EEG
frequency bands (e.g., alpha [8–12 Hz], beta [13–30 Hz], theta [4–7 Hz], and delta
[0.5–4 Hz]). Sharp waves may represent transient cortical activation, often associated
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with epileptic form activity, while theta rhythms are typically linked to cognitive tasks
or drowsiness, depending on their regional prominence.

• By integrating the DLob symbolic language, the extracted features are mapped to
specific cortical regions, enabling interpretations relevant to neurophysiology and
clinical practice. For example, frontal lobe activations (FL and FR) are associated with
decision-making and executive functions. High activity in the frontal lobe is often
linked to cognitive engagement, such as problem-solving or working memory tasks.
Temporal lobe activations (TL and TR), which are involved in auditory processing and
memory encoding, indicate heightened activity during auditory tasks or emotional
recall. Occipital lobe activations (OL and OR), responsible for visual processing, reflect
increased attention during visually demanding tasks.

• Clinically, this approach helps physicians interpret EEG results in various conditions.
For instance, sharp waves and spikes detected in the temporal lobe (e.g., TL and TR)
may indicate focal temporal lobe epilepsy. Increased beta activity in the frontal lobe
(FL and FR) can suggest heightened arousal or stress, as seen in anxiety disorders,
while decreased alpha rhythms in the occipital region (OL and OR) may point to early
neurodegenerative changes, such as those observed in Alzheimer’s disease.
By combining the CubicPat feature extraction method with the DLob symbolic frame-
work, the proposed XFE model not only detects neutral features but also provides
regionally and functionally explainable findings. This allows physicians to correlate
specific EEG findings with clinical presentations, offering a more comprehensive
understanding of brain activity in conditions such as stress, cognitive effort, or patho-
logical states. Moreover, this approach reduces the potential for errors that physicians
may encounter when interpreting EEG data manually.

• We have generated the cortical connectome diagrams of mental performance detection
and stress detection by deploying DLob sentences and transition tables. In this aspect,
the cortical connectome diagrams generated illustrate transitions of dynamic brain
interactions and capture dynamic shifts in brain activity. The cortical connectome dia-
grams showcase shifts between cortical regions, for instance, FL to TL. Each transition
has a meaning according to neuroscience; for instance, FL to TL highlights a transition
from cognitive or internal activity to auditory activity. To explain all transitions, we
plan to present causal connectome theory (CCT) with transition triggers. However,
in this research, we only demonstrated transitions for mental performance detection
and stress detection. By using the interpretable results generated by DLob, we demon-
strate the brain’s ability to shift focus and reveal functional connectivity between
regions. Additionally, high transitions highlight robust inter-regional communication.
Transition graphoelements capture shifts between regions.

Advantages:

• The recommended CubicPat-based XFE model is a highly accurate feature engineering
model.

• The results of our model are obtained by deploying a 10-fold CV and LOSO CV. It
demonstrates the robustness and reliability of the recommended model.

• Our model is flexible and works with both 14-channel and 32-channel EEG systems.
It showcases that the CubicPat-based model is adaptable to different experimental
setups and data collection tools.

• By integrating the DLob symbolic language into this feature engineering, an XFE
model is presented.

• The cortical connectome diagrams for both mental performance detection and stress
detection have been extracted to provide insights about neuroscience.
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• This model bridges computational models with brain mechanisms. Our main idea is
that we can compute feelings using the CubicPat-centric XFE model.

Limitations:

• The two used datasets have two classes. More diverse and bigger datasets can be used
to detect mental performance and stress.

• Others, for instance, emotion detection and epilepsy detection, can be used to test the
efficiency of the presented CubicPat-based XFE model.

Future works:

• We are planning to collect more diverse and bigger EEG signal datasets.
• The presented CubicPat-based model can be tested using more EEG signal datasets.
• By using the FNIRS device, a new generation symbolic of language and more explain-

able results will be presented.
• For the real-world applications in education and psychiatry, intelligent applications

will be developed by using the CubicPat-based XFE model.
• The introduced CubicPat-based XFE could be applied in longitudinal studies to track

mental performance or stress over time, providing insights into how brain activity
patterns evolve, especially in clinical settings for the monitoring of diseases such as
dementia or chronic stress.

• New generation XFE models will be presented. Based on these XFE models, a new
generation of explainable deep learning models will be presented.

• By using CubicPat, like a feature extractor, a new explainable deep learning model
will be presented.

5. Conclusions
The EEG signals related to mental performance and stress detection are classified

using the presented CubicPat-based XFE model, which achieves both high classification
performance and explainable results. By introducing the CubicPat feature extractor, the
EEG channels are encoded by converting them into a three-dimensional feature vector, as
the presented CubicPat generates the feature vector using a three-pass transition table. The
most meaningful features are selected using a self-organized feature selector, the CWINCA
feature selector, and these features are classified using a self-organized classifier, tkNN.

Due to the self-organized structure of the classification, high classification performance
is achieved. The presented CubicPat-based XFE model achieves 99.70% accuracy with
10-fold CV and 87.79% with LOSO CV on the mental performance dataset, while the
accuracies are 96.29% with 10-fold CV and 76.17% with LOSO CV for the stress detection
dataset. Simultaneously, explainable results are extracted using the selected features.

With the integration of the DLob symbolic language, which provides valuable insights
into brain activity, cortical connectome diagrams are generated, contributing to connectome
theory. According to these results, the presented CubicPat-based model clearly demon-
strates the functionality of innovative feature engineering models in the field of EEG signal
classification by achieving high classification performance and explainable results on two
EEG signal datasets. In the interpretable results, activations and transitions have been
defined. Activation and transition in the resulting DLob strings serve as the basic concepts
in the CubicPat-based XFE model and allow us to obtain a detailed and interpretable
analysis of EEG signals. While activation indicates important neural interactions, transition,
as shown via the cortical connectome diagram, indicates the dynamic changes between
cortical regions and thus contributes to the connectome theory by showcasing transition
patterns for mental performance and stress detection. Together, these concepts facilitate a
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comprehensive understanding of brain activity patterns and combine the computational
capability of the XFE model with the complex pathophysiological mechanisms of the brain.

Additionally, AI-driven findings for neuroscience have been obtained with this model.
In the future, it is planned to further develop these models to create systems capable of
reading EEG signals more clearly with the CubicPat-based XFE model, enabling smart
assistants in physical environments to generate EEG-explainable reports from these signals.

The key findings of this research include the introduction of the CubicPat feature
extractor, and this feature extraction function (CubicPat) encodes EEG signals into three-
dimensional feature vectors to provide highly informative representations. The CubicPat-
based XFE model demonstrated high classification accuracies on the tested mental per-
formance and stress detection datasets. Additionally, explainable results were achieved
through the integration of the DLob symbolic language.

Improvements for future work include testing the presented CubicPat-driven XFE
model on more diverse EEG signal datasets to further establish its generalizability. Future
versions of the introduced CubicPat-driven model aim to increase biological interpretability
by utilizing improved versions of the DLob and extending its application to other modali-
ties, such as fNIRS. Real-time EEG report generation capabilities can also be developed to
assist professionals in practical scenarios. Finally, longitudinal studies using the CubicPat-
related XFE model could provide valuable insights into temporal changes, particularly in
areas like mental performance tracking and stress monitoring.
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