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Abstract: Urban indicators established in spatial development plans should ensure the
preservation of spatial order when introducing new construction investments. They should
also harmonize with the existing urban structure and even modernize it toward sustainable
development. When determining these indicators, the surrounding space is analyzed.
Conventionally, building indicators in the existing space are determined based on available
documents, which usually comprise 2D spatial data such as large-scale maps or cadastral
maps. This study aims to investigate the method of calculating building indicators using
3D urban building models that will be created from airborne Light Detection and Ranging
(LiDAR) measurements. In the discussion of the results, indicators calculated based on
LiDAR data are compared with the ones calculated from 2D cadastral data. The calculated
3D indicators correlate with the classically calculated indicators. The accuracy of the
computed building area, volume, and other indicators depends on the LiDAR point cloud
density and accuracy. The indicators calculated from the 3D data align with the new trends
in defining Building Morphology Indicators (BMIs).

Keywords: building indicators; 3D buildings; LOD2; LiDAR; spatial planning;
urban growth

1. Introduction
In the era of creating digital twins of the real world, we should more frequently uti-

lize available 3D spatial data in daily tasks to support the development of smart cities
and sustainable urban growth. Three-dimensional (3D) data enable the calculation of
urban [1–3], environmental [4], ecological [5], social, economic, and institutional indica-
tors [6,7], as well as of programming indicators [8]. In urban spaces, recommended trans-
port indicators (ISO) [9], accessibility indicators for various urban services [10], public
green spaces, public utility facilities, and many others [11,12] are assessed. Multiple analy-
ses are also conducted, aimed at identifying specific areas in urban spaces, such as heat
islands [13].

In urban planning and spatial development, to better understand the environment and
built structures, solutions based on 3D city models should be widely implemented [12,14,15].
This is essential when making decisions regarding new investments [16,17] based on
necessary indicators that ensure not only sustainable development but also the preservation
of landscape values, such as those related to shading in urban spaces [9], visibility of the
sky [18], and the perception of buildings by people [19].
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It is recommended that the construction of virtual cities be conducted using the City
Geography Markup Language (CityGML3.0) standard [20,21]. This is recommended by the
Open Geospatial Consortium (OGC), the standard building organization that organizes
data models and forms of their exchange [22,23]. Buildings are the basis of city 3D models.
Vector models of buildings linked to semantic data are required. The CityGML3.0 standard
defines the Levels of Detail (LODs) of building models from LOD0 to LOD 4. In [24], an
extension is proposed that contains a total of 16 subdivided LODs, which are presented in
Figure 1.
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1.1. Cadastral Data in Spatial Planning

Spatial planning uses available spatial data at different levels of detail: 2D and 3D. For
the calculation of urban indicators of built-up areas, 2D cadastral data with the detail of
building models at the LOD0 level are often used [25,26]. Cadastral attribute data, indicat-
ing the number of stories, allow models to be generated at the LOD1 level (Figure 1) [24,26].
The development of 3D technology has created new possibilities for the automatic genera-
tion of urban space development. Despite this, the creation of spatial planning is performed
by traditional methods using 2D data and the calculation of indicators is based on this
data [25,27,28].

1.2. Three-Dimensional (3D) Data in Spatial Planning

The systems created based on the CityGML standard are dedicated to various users,
including architects creating spatial development plans for cities based on 3D data [29].
Available cloud platforms for spatial visualization and analysis, such as Google Earth
Studio, Urban Sim, Unreal Engine, and many others, enable 3D space visualization and
advanced analyses. Both commercial and open GIS systems are rapidly advancing their 3D
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analysis tools. The availability of data and modern tools has driven the development of
local solutions for presenting and analyzing 2D and 3D data. This is achievable, provided
we have 3D vector data and appropriate processing algorithms. Digital data sets, such as
those from LiDAR, offer a new perspective on space by enabling the automatic generation
of 3D object–vector representations and analyses of urban spaces. An example of this is
the capability to create digital models of individual buildings [30–34] and to generate 3D
models of entire cities at the LOD2 level [34–36]. These proposed solutions are becoming
increasingly advanced [37–42] through the integration of LiDAR data with remote sensing
datasets and the use of machine learning and deep learning techniques [43–45].

In the process of automatic model generation and building indicator calculation, there
are problems related to poor point cloud quality [46], the density of the point cloud, classifi-
cation of the point cloud into thematic subsets, segmentation of the point cloud [31], and the
incomplete covering of building roofs and walls [47]. To improve the quality of the LiDAR
point cloud, additional activities are undertaken through a two-step registration method
with trajectory correction [46] by the internal matching of scan blocks in combination with
inertial measurements and Global Navigation Satellite System (GNSS) measurements [48].

1.3. Quality of 3D Models

Despite increasingly better LiDAR datasets and algorithms for modeling buildings,
there are irregularities in the generated contours of buildings and holes in the roof surfaces
of buildings [49]. The presented building models are in 2.5D mesh [50] as shells of triangles,
called triangles of the building envelope and a mash of triangles [35,51]. These models
allow us not only to visualize building models but also to perform analyses related to the
shadow estimation of a building’s thermal load [35]. When modeling buildings, there are
still problems with the precise mapping of roofs due to the complexity of the slope and
the existence of chimneys. The original solution was demonstrated by analyzing elevation
jumps at adjacent points of the LiDAR cloud. From the detected subsets of points without
height jumps, roof slope fragments are generated [52]. Based on the built roof slopes in the
form of 3D planes, a model of the building body is generated at the LOD2 level. They are
pulled down from the roof shells and placed on the ground based on the selected height
point. The emerging models present buildings without eaves. The size of the roof affects
the size of the building mass model. The generated building can be larger than the real one
due to the size of the eaves. As we have cadastral outlines of buildings, we usually create
models at the LOD1 level. These contours are used for automatic modeling at the LOD2
level based on LiDAR data. This time, the size of the building mass model depends on the
outline of the building.

In addition to algorithms for modeling entire cities’ buildings, there are also algorithms
available for the automatic creation of urban greenery models, including the generation
of individual tree models, green complexes, and the calculation of biomass in biologically
active areas [53–58] The use of deep learning methods for 3D object recognition and
vectorization of other urban space elements will, in the future, enable the widespread use of
3D, and even 4D, digital data for monitoring urban spaces and for calculating indicators that
better describe spatial structures using existing [20,44,53,54,59] and new parameters [60].

1.4. Three-Dimensional (3D) Urban Space Indicators

Urban areas, both existing and planned, are described in urban planning using indica-
tors that define land use and building parameters [2,61]. These indicators include, among
others, the building height, maximum and minimum number of floors, building coverage,
and floor area ratio. Other indicators relate to the distance between buildings, the number
of parking spaces, recreational areas, and biologically active areas [20]. The methods for
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calculating these indicators are widely known and documented in standards and local
legal documents [62,63] primarily related to spatial planning. Currently, the calculation of
indicator values for existing urban areas is based on data from cadastral and topographic
maps. The set of indicators in local spatial development plans (MPZP) for areas designated
for development are the result of separate analyses of urban spaces based on large-scale 2D
maps and other data sets from thematic portals and remote sensing results, such as LiDAR,
orthophotos, street views [64], and many others.

New solutions [65,66] are being promoted [67] that introduce global Building Morphol-
ogy Indicators (BMIs) [60] (Figure 2). Such indicators should be obtained from Building
Information Modeling (BIM). In the absence of these, algorithms should be created to obtain
them from alternative data.
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The presented independent building indicators are used to calculate the development
indicators for planning areas (parcel). One of them is the building intensity index. The
calculations of this index are based on the sum of the area of all the stories in the building
(Floor area; Figure 2) [25,27,63]. In practice, the cadastral area of buildings is used to
calculate the sum of the area of all the floors in the buildings. We multiply two numbers:
the cadastral area (surface of the model on LOD0) and the number of stories [25,27,63].
Story heights and types of roofing are not included in the 2D cadastral data. Figure 3
shows a 3D visualization of a fragment of a housing estate with different LOD details.
Figure 3b,c do not adequately show 3D building models according to their size. The models
were created using the cadastral database, the height from LiDAR data (Figure 3b), and
the number of stories and the assumed story height (Figure 3c). However, the building
intensity index should take into account 3D buildings in LOD3 models (Figure 3a), which
are becoming increasingly available. They can also be largely calculated based on a cloud
of LiDAR points imaging buildings. This can be expected to be widely adopted when a 3D
cadaster is implemented [68,69].
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story height of 3 m [70].

The data presented in Figure 3 show how different 3D models of buildings can be
depending on the data adopted and the method of their generation. In the absence of 3D
models at the LOD2 level, LiDAR data are a reliable source for detailed research related to
planning indicators.

Figure 3 shows only typical simple buildings in a housing estate. Contemporary
buildings in urban centers cannot be reliably visualized on the basis of cadastral data.
The ground floors of buildings do not coincide with the vertical projection of building
blocks, and, in addition, they have numerous superstructures, overhangs, passages or
decorative elements, which are often not recorded in the 2D cadaster. Mass-market digital
solutions related to Building Information Modeling (BIM) will allow for the creation of
3D models of new buildings in the future. Existing buildings must be modeled on LiDAR
measurement data. Already today, technologies based on LiDAR data allow for the precise
mapping of urban space. The development of techniques of classification of the LiDAR
measurement set, the extraction of subsets describing individual field objects, and their
automatic modeling mean that, in the future, we will be able to achieve better and better
precision in the created 3D models of buildings and cities.

Finally, it is necessary to highlight the relationship between BIM (airborne, mobile
terrestrial, static, and Simultaneous Localization and Mapping (SLAM) laser scanning) and
building indicators. One building can have two BIM models: design BIM, which is provided
by the building designer before constructing the building, and as-built BIM. However, the
basic of any BIM should be a real 3D model outside and inside the building. Old buildings
do not have design BIM, but it is possible to construct as-built BIM where both terrestrial (for
inside building and facades) and airborne (for the building roof) LiDAR data are the main
data sources for this purpose. When the BIM model or updated cadastral maps are available
for all city buildings, the building indicators can be calculated automatically. Unfortunately,
in general, BIM models are not available for most city buildings and cadastral maps may
need updating. Indeed, there is a need to have a new approach that allows building
indicators to be calculated quickly when as-built BIM models are not available (data
acquisition and calculation). This paper represents the required approach for realizing
this task.

1.5. Aim of the Research

This study aims to assess the possibility of using airborne LiDAR measurements to
calculate building indicators without the need for 3D modeling of buildings. For urban
planning purposes, this study suggests a new approach for determining 3D indicators,
namely the multi-story building area, building intensity index, and 3D building intensity
index. This requires calculating the volume and area of the building and then comparing
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them with indicators calculated based on the 2D spatial data from cadastral maps. This
research addresses part of the BIM issue.

At this point, we want to highlight the novelty and the contribution of this paper,
which can be summarized as follows:

• The automatic creation of 2D and 3D building indicators from the LiDAR point cloud.
• Timesaving in smart city management and monitoring.
• Evaluation of the building area and volume calculated using LiDAR data.
• Opening the door to calculating most of a building’s 2D and 3D indicators automati-

cally from LiDAR data.
• Accuracy assessment and formulation of target indicators.
• Advancements in 3D urban indicator calculations using LiDAR data.

2. Datasets
For this study, fragments of housing estates with single-family buildings are used. The

first dataset comprises buildings built in 1970 in the form of cuboids with flat roofs (Figure 3).
Most of the examined buildings were modernized and expanded in the subsequent years.
Out of the 10 surveyed buildings, only 4 retained their original shape of flat roofs. The
second dataset presents single-story buildings built in 2010 (Figure 4).
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The data in Figures 4 and 5 are presented based on the Polish Spatial Data Infras-
tructure (SDI). LiDAR measurement data were obtained at a density of 12 points per m2

(12 p/m2). The data, in addition to the coordinates of the points, include information on
the class of a given point and the intensity of the signal reflection. The points are assigned
RGB values obtained from aerial images. The visualization of the point cloud (Figure 4c,d)
was performed in the Potree browser [71]. In the Potree app, the desired LiDAR data can
also be selected and downloaded.
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Figure 5. Selected buildings in the second dataset: (a) Cadastral data with building and objects related
to the building (terraces, stairs) (ground truth); (b) Cadastral data of buildings with orthophoto image;
(c) Orthophoto map; (d) LiDAR data.

In Figure 4, however, the cadastral data may not always be the ground truth because
there is already some discrepancy when the orthophoto and cadastral map are compared in
the case of roof overlap. The cadaster takes the intersection of the building with the ground
level, whereas the orthophoto considers the roof. Moreover, in the case of LiDAR data,
which are used in this paper, these depend on the density of the points.

The 2D cadastral data (Figure 6a) were used to present the research object in 2D and
to calculate the building indicators of the parcels. The presentation of the geometry of the
buildings includes blocks of buildings with different uses and different numbers of stories.
The building intensity indexes of the parcels were calculated as the quotients of the sum of
the areas of individual floors of buildings on a parcel to the area of the parcels.
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Figure 6. Cadastral data (ground truth). Buildings are presented as blocks of buildings with different
functions, often with varying numbers of stories. (a) Graphical and attribute data; (b) Data for the
calculation of plot building intensity indicators, where the indicator from the 2D data is the 2D
building intensity index; (c) Visualization of the calculated indicators.

The presented data (Figures 4–6) and Table 1 are taken as the reference data for the
accepted studies. They will allow for verification of the results obtained from the LiDAR
data processing.

Table 1. Cadastral data from the second dataset (ground truth).

Parcel Area m2 Building Area m2 Floor Indicator

10 836 175 1 0.2

11 817 215 1 0.3

12 816 168 1 0.2

13 818 232 1 0.3

3. Suggested Approach
Buildings may be located in urban or rural areas. The density of buildings is incom-

parable between cities and outside city zones. Furthermore, within cities, a complicated
texture of urban typologies is expected, where a great variance of building architectural
and geometrical forms can be noticed, e.g., single, connected, multi-storied, skyscrapers,
houses, and administration, religious, and historical buildings. To calculate the volume
of a building, several kinds of measurements can be carried out for this purpose, such as
direct dimensional measurements using a building plan, a Geographic Information System
(GIS) database, Building Information Modeling (BIM), photogrammetry data acquisition,
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terrestrial laser scanning, or airborne LiDAR data. Each one of these methods has ad-
vantages and disadvantages regarding their applicability, speed of data acquisition and
processing, resultant accuracy, availability of data or data acquisition technologies, and
measurement cost.

To calculate the building volume in urban areas, airborne laser scanning is an efficient
data acquisition tool due to its high speed and accuracy. For this purpose, two kinds of
airborne LiDAR tools can be used depending on the project scale and the domestic civil
aviation safety authority rules [70], i.e., scanning by an Unmanned Aerial Vehicle (UAV)
(drone) and the use of manned aircraft (plane or helicopter). Despite the difference between
the point clouds obtained by manned and unmanned aircraft regarding the point density,
accuracy, speed, flying height, and privacy-respecting, scanning using aerial planes is still
employed more frequently in urban areas. Unfortunately, when an aerial plane is used
to carry out the scanning, the building facades may only be partially covered and have a
lower point density than that of the roofs [65,72].

In this context, once the target area is scanned, the measured point cloud should be
classified to extract the building class. This procedure will not only help to recognize the
building mask, but it is also helpful to detect the individual building point clouds. Once
the single-building LiDAR point cloud is available, calculation of the building volume can
be carried out.

Three assumptions are applied in calculating the building volume using the LiDAR
point cloud. First, one building represents a mass based on a plane base. Of course, it is
impossible to guess the geometric form of the ground located directly under the building
because it is covered by the building itself. Moreover, the area surrounding the building
may be obstructed by objects, such as trees and other attachments. Hence, to simplify
the problem of building volume calculation, the building mass above the ground plane
is considered. The second assumption is that the building ground plane is horizontal,
and the building volume is calculated as the building located on this horizontal plane.
Although this hypothesis may not always reflect the truth, it is accurate enough to represent
the actual building volume for most scenarios. Also, the hardship of determining the
ground-plane equation due to the presence of obstacles of different heights surrounding the
buildings, such as trees, cars, and other miscellaneous objects, represents a great challenge
to estimating the accurate ground plane boundary [49]. The third assumption concerns
the building facades and considers the general case of airborne laser scanning, where
the building facades are not covered completely and regularly by LiDAR points. This
assumption assumes that the building facades are vertical planes.

Considering the above three assumptions, two approaches are suggested. Figure 7 con-
tains three different colored arrows. The blue arrows belong to both approaches, whereas
the orange arrows and green arrows are for the first and second approaches, respectively.

At this stage, it is important to note that to determine the ground level Zg, the lowest
point in the building’s neighborhood is detected, and its Z-coordinate is assigned to the
ground level. For this purpose, a double band of pixels directly surrounding the building
DSM are analyzed, and then the lowest point in these two bands is considered as the
ground level. Moreover, it must be emphasized that the suggested approach in Figure 7
does not aim to achieve three-dimensional building modeling; rather, it focuses on the
urban indicator calculation starting from LiDAR point cloud. Hence, all the steps presented
in Figure 7 will be detailed in Sections 3.1–3.5, where all the required details to reinitiate
the algorithm, such as how parameters are defined, what algorithms are used, etc., will
be provided.
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3.1. DSM Resolution Calculation

These approaches start with projecting the building point cloud onto a grid defined in
the horizontal plane OXY. This grid consists of n rows and m columns and, consequently,
of n × m pixels. To calculate the grid resolution (pixel size), the point density should be
calculated. For this purpose, using the Theoretical Point Density (TD) provided by the
scanning company, the Theoretical Mean Distance (TMD) between two neighboring points
is calculated (Equation (1)) [73], where it is assumed that the distribution of points is regular
and that one pixel should include at least one point; thus, the mean point density may be
derived from Equation (1).

TMD =
1√
TD

(1)

Assuming that the pixel size equals TMD, the building Digital Surface Model (DSM)
can be calculated. From this model, the values of empty pixels inside the building body
are calculated using a gradient filter. Thereafter, the number of building LiDAR points is
divided by the building area to calculate the actual point density.

3.2. Calculation of the Building DSM

Once the resolution of the building DSM is calculated, the building point cloud is
superimposed on the constructed grid, and the pixel values are assigned according to
the presence of LiDAR points inside or surrounding the pixel. In this context, the pixel
value is calculated depending on the Z-coordinates of points within the pixel. We take the
maximum Z-coordinate values of the LiDAR points located inside the pixel. This choice
has been adopted to conserve the Z-coordinate from interpolation; then, the LiDAR points
will keep expressing the roof geometry.

At this stage, four kinds of empty pixels can be distinguished: first, the empty pixels
located outside the building boundaries, e.g., the green cell in Figure 8b; second, empty
pixels located inside the building boundaries, e.g., the yellow cell in Figure 8b; third, pixels
belonging to the building body and containing only one LiDAR point; and, finally, pixels
belonging to the building body and containing more than one LiDAR point (Figure 8b).
Indeed, the irregular distribution of LiDAR points on the building roof regarding the
LiDAR point accuracy, the roof texture, and the presence of vertical surfaces such as
building facades and noisy points may produce a variant number of LiDAR points located
inside each pixel.
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Figure 8. Building DSM calculation: (a) Superimposition of the LiDAR point cloud on the 2D grid;
blue circles represent LiDAR points; (b) Black pixels represent the building body, and the numbers
represent the number of LiDAR points inside the pixel; the yellow pixel is an example of an empty
pixel inside the building body, while the green pixel is an empty pixel outside the building body.

Hence, the application of a gradient filter allows the recognition of the last type of
empty pixels. If an empty pixel is located inside the building boundary, the mean Z-
coordinate value of the LiDAR points located in the neighborhood of the pixel boundaries
is assigned to this pixel.

Figure 9 visualizes the DSM of two buildings calculated using two different methods.
In the first method, the empty pixels inside the building body are kept empty (Figure 9a,c).
In contrast, in the second method, the empty pixels inside the building body are filled using
a gradient filter (see the last paragraph and Figure 9b,d). It can be noted in Figure 9a,c
that the empty pixels can reduce the building area, especially when the DSM resolution
used is small. Also, filling the empty pixel inside the building body carries the risk of
filling non-building pixels in the neighborhood of the building boundary (red arrow in
Figure 9d). The last added pixel will increase the building area. Unfortunately, in the last
two cases, the building area will not be correct. Finally, the colors in Figure 9 are calculated
as a function of the pixel values, which were calculated using the Z-coordinate values.
Indeed, the color scale is divided into three intervals represented by RGB colors, where
the red color expresses the highest Z-coordinate values, and the blue color represents the
lowest Z-coordinate values. However, this color scale selection allows us to understand the
building geometry description.
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The calculation of the building DSM permits the elimination of vertical surface points
such as building facades, which may have a low point density and whose role in the
building volume calculation is negligible. Also, it allows us to compensate for the missing
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points on the roof as well as to eliminate extra points regarding the mean point density.
Moreover, the DSM matrixial form not only lightens the data volume, but it helps save the
topological relationships between the neighboring points, which facilitates the modeling
step. On the other hand, during the calculation of the building DSM and when filling in
the missing points inside the building body, extra pixels outside the building body and
adjacent to the building boundaries will be added (see red arrow in Figure 9d). Indeed,
boundary pixels have similar topological values to the empty pixels inside the building’s
body (see red arrow in Figure 9d). These added extra pixels outside a building’s body
will increase the area of the building (Table 2). Also, the DSM resolution value (pixel size)
affects the building area (Table 2). One boundary pixel will be considered to be completely
covered by a building body, but the truth is that it can be partially covered by a building
body. Such boundary errors will increase when the DSM resolution decreases (Table 2).
In addition to the last listed factors that affect the calculated building area, classification
uncertainty may also be considered. When some non-building points connected to the
building body are classified as building points, these misclassified points will increase the
calculated building area.

Table 2. Areas of Buildings 0, 1, 5, and 6 at different DSM resolutions for two cases with and without
filling empty pixels inside the building body.

Building
ID

Number
of Points

DSM
Pixel Size

(m)

Number of
Building Pixels

Containing
LiDAR Points

Number of
Empty

Building
Pixels

Area Without
Filling

Empty Pixels
(m2)

Area with
Filling

Empty Pixels
(m2)

Reference
Area

(Ground
Truth) (m2)

0 2094

0.10 1977 12102 19.77 140.79

113
0.25 1470 815 91.88 142.81

0.40 861 49 137.76 145.6

0.60 400 15 144 149.4

1 3272

0.10 3055 20,252 30.55 233.07

157
0.25 2320 1431 145 234.44

0.40 1334 150 213.38 237.44

0.60 620 57 223.2 243.72

5 2674

0.10 2573 16171 25.73 187.44

112
0.25 2035 1014 127.19 190.56

0.40 1167 36 186.72 192.48

0.60 543 7.44 195.48 198.00

6 1664

0.10 1600 10,846 16.00 124.46

89
0.25 1257 756 78.56 125.81

0.40 738 58 118.08 127.36

0.60 350 15 126.00 131.40

From Table 2, it can be noted that the area values, in the case of non-filling the empty
pixels inside the building body, greatly increase when the DSM pixel size increases. Also,
when the resolution value is smaller than the resolution calculated from the point density
(0.1 m), the difference will be very large, because the voids will occupy a large area inside
the building body DSM. To clarify this idea, let us compare the number of building pixels
containing LiDAR points to the number of building empty pixels when different pixel sizes
are considered (Table 1). It can be noted in building number 0 that when the pixel size is very
small (0.1 m), the number of empty pixels equals 86% of the total number of building pixels.
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Whereas for the same building, when the pixel size becomes larger (0.6 m), the number
of empty pixels equals 3.6% of the total number of building pixels. This huge difference
in the percentage of empty pixels inside the building body DSM is mainly responsible
for the great building area value difference when the empty pixels are filled or not. Also,
when the DSM pixel size becomes smaller, the missing-point influence will decrease, but,
unfortunately, the boundary error influence will continue to increase. Conversely, in the
case of filling the empty pixels inside a building body, only the boundary-error influence
will continue to be added.

3.3. Building Area Calculation and Accuracy Estimation

At this stage, one question arises: is the building DSM a better choice for calculating
the building area and volume, or is the direct use of the building point cloud preferable? To
calculate the building area, the direct use of the building point cloud will, of course, provide
accurate results because boundary errors and empty-pixel issues will not be present. In this
context, convex-hull and alpha-shape algorithms can be used to calculate the building area,
starting from the LiDAR building point cloud. On the other hand, the missing building
ground part due to the roof and facade presence, in addition to the low point density
or/and missing facade sections in the building point cloud, means that the building point
cloud will not be sufficient to directly calculate the building volume. To conclude, the direct
use of the point cloud will provide an accurate result when calculating the building area
starting from the LiDAR building point cloud. Conversely, to calculate the building volume
starting from the LiDAR building point cloud, the direct use of the point cloud will not
provide an accurate result because of the heterogeneous distribution of LiDAR points; that
is why the use of the building DSM is unavoidable.

First, the point cloud is projected onto the horizontal plane OXY to calculate the
building footprint area, starting from the LiDAR building point cloud. This operation
allows the conversion of the 3D point cloud into a 2D point cloud. Second, the polygon
boundary of the 2D building point cloud is detected using convex-hull or alpha-shape
algorithms. The area of this polygon represents the building’s footprint area. This approach
does not only provide an accurate result, but it also guarantees the stability of the area value.

At this stage, it is important to highlight the different concepts of building areas.
Two kinds of building areas can be distinguished. The first is the building footprint area,
where the underhung and overhung parts are considered simultaneously. Second is the
underhung area, where the overhung parts are not considered. The calculation of the
building intensity index uses the underhung area, whereas the LiDAR building point cloud
allows the calculation of the building footprint area. That is why it is understandable that
if the allowed overhung parts percentage is known, then the LiDAR building point cloud
can provide an accurate value of the intensity index.

To estimate the accuracy of the calculated area of the target building, several kinds
of errors are defined. First, errors due to the point density and errors due to the point
planimetric accuracy can be estimated. On a 2D LiDAR point inside one pixel, even though
it is assumed that this point is situated in the pixel center, it can exist anywhere inside
this pixel boundary. The distance between the pixel center and the extreme location of
the LiDAR point inside the target pixel equals dLd = 0.5 × TMD, where TMD is the mean
distance between two neighboring points. The second error to be considered is the error
related to the LiDAR points’ planimetric accuracy ( dLa). The third source of error in the
building area calculation is the point cloud Classification Error (CE). If we suppose that Ar
is the building footprint area, the building’s footprint geometrical form is square, and that
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this square side length equals L, then Ar = L2. According to the error propagation law, the
total building area error (dAr) can be described by Equation (2).

dAr =
√

4 × Ar ×
(

dL2
d + dL2

a

)
+ (Ar × CE)2 (2)

As an example, for TMD = 0.25 m, dLa = ∓0.15 m, Ar = 150 m2, and CE = 3%, it
can be found that dLd = 0.5 × 0.25 = ±0.125 m; then, dAr = ±6.57 m2.

3.4. Multi-Story Building Area and Building Intensity Index

To calculate the building intensity index, the summation of all the building level areas
is divided by the parcel area. For this purpose, the building’s Multi-Level Area (MLA)
should be calculated. In this context, the building point cloud is segmented according
to the number of levels. As the ground level has already been calculated (see Section 3),
the subtraction of the ground level value from the Z-coordinate of the LiDAR points will
provide the height of the LiDAR point above the ground level. This value can help to
determine the number of building levels related to the LiDAR point concerned. Unfortu-
nately, noise may generate considerable errors when the LiDAR points are processed point
by point. That is why it is advisable to carry out this procedure by considering the roof
facets (see Section 3.5). The average building level height can be made into an input, and
then the number of levels can be calculated for each roof plane, where one building can be
composed of several different masses of levels.

3.5. Building Volume Calculation and 3D Building Intensity Index

At this stage, the building DSM is calculated from the LiDAR point cloud in addition to
the ground level, which was estimated in Section 3. These two elements are the input data
for this operation. At this point, the two approaches for the building volume calculation
shown in Figure 6 will be presented and discussed. The first suggested approach to
calculating the building volume (see green and blue arrows in Figure 6) is based on a
hypothesis that the building roof is composed of a list of planar surfaces. However, this
algorithm will still be efficient despite the obtained roof deformations when no planar
surfaces are present. Indeed, a non-planar surface will be detected as several neighboring
patches, where each one will present a local plane. Therefore, this method can be adopted
for calculating the volumes of generic buildings.

To segment the building roof according to the planar elements, the extended RANdom
SAmple Consensus (RANSAC) paradigm is consecutively applied to the building DSM
points within a loop to detect all roof planar facets. This algorithm selects three points
randomly and fits the plane containing the selected points. Thereafter, it detects all points
behaving at a minimal distance (inferior to the given threshold) to the fitted plane. This
operation is iterative, where in each iteration, the number of points and the standard
deviation of the newly detected plane are compared to the saved plane. If the new plane
is better than the saved one regarding the two criteria used, the new plane will replace
the previously saved plane. The number of iterations is calculated using a chi-square (χ2)
distribution density function, which is a continuous probability distribution. Furthermore,
the extended RANSAC algorithm loop will be stopped when the number of remaining
points becomes smaller than a given threshold (3% of the building point cloud) or when
the algorithm fails to detect any more planes. In each loop iteration, the detected plane will
be assessed if some plane points do not belong to the main detected plane body. Hence,
these points will be eliminated and reassigned to the building point cloud.

Once the roof planes are detected, the building DSM pixel values are recalculated
(adjusted) according to the plane equation to which they belong. In the last step, con-
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sidering the ground level, each pixel in the adjusted building DSM forms a rectangular
parallelepiped, whose height equals the value of the ground level value subtracted from the
pixel value, and the base area equals the square of the pixel length, which was calculated in
Section 3.1. In Figure 9, the pixel of the green boundary illustrates the calculation approach.
Finally, summation of all the rectangular parallelepipeds formed by the building body
pixels will produce the building volume.

In this context, to obtain an accurate building volume, three additional rules will be
applied as follows:

• All building DSM pixels located outside the building boundary polygon, which was
calculated in Section 3.3, will be eliminated.

• For building boundary pixels located on the boundary polygon, only the parts situated
inside that polygon will be considered.

• Pixels belonging to the building body and having values smaller than a given threshold
will be neglected. This threshold is related to the level height, i.e., the threshold will
equal the ground level + level height

2 . Indeed, these kinds of pixels can be in connection
with the building boundary, and they may represent a confusing noise. That is why
they are kept at the classification stage.

One building may consist of several parts, where the number of levels for each part is
different from other parts. In fact, the building roof segmentation allows for the recognition
of the number of levels for different roof patches. If two neighboring patches have the same
number of levels, they can be merged. This operation helps calculate a new matrix, named
a different-level building map.

If we intend to calculate the building volume regardless of the number of levels, the
second approach shown in Figure 7 can be applied. According to Figure 6 (blue and orange
arrows), it is similar to the first approach for the building volume calculation, except that
the building roof planes will not be detected, and the building DSM pixel values will not
be adjusted. To calculate the building volume, the building DSM calculated in Section 3.2
will be used as the input. By considering the ground level, each pixel in the building
DSM forms a rectangular parallelepiped, whose height equals the ground level value
subtracted from the pixel value, and the base area equals the square of the pixel length,
which was calculated in Section 3.1. In Figure 10, the pixel of the red boundary illustrates
the calculation approach. Finally, summation of all the rectangular parallelepipeds formed
by the building body pixels will produce the building volume.

Concerning the accuracy of the building volume calculated from the LiDAR point
cloud, it is assumed that the building’s geometrical form is cubic, and that the cube side
length equals L, such that the building volume V = L3. Similar to the building area
accuracy calculation, three errors are envisaged: the error caused by the point density,
the error due to the accuracy of the LiDAR points, and the error due to the LiDAR data
classification accuracy.

dV =

√
9 × V

4
3 ×

(
dL2

d + dL2
a

)
+ (V × CE)2 (3)

To understand Equation (3) better, let TMD = 0.25 m, dLa = ∓0.15 m, Ar = 500 m3,
and CE = 3%. Then, it can then be found that dLd = 0.5 × 0.25 = ±0.125 m and
dV = ±36.5 m3.
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4. Results and Discussion
In urban indicator calculations using LiDAR data, it is useful to underline the require-

ments for data handling and any required preprocessing steps to make such 3D data usable
for urban indicator calculations. After acquiring the LiDAR point cloud of the scanned
scene, it is necessary to classify the measured point cloud into two main classes: building
and non-building classes; in this case, the building class represents the project focus. For
this purpose, automatic classification tools based on machine learning and rule-based algo-
rithms can be used. Additional automatic or manual enhancement tools should be used
to enhance the classification results. Once a building mask is available, a region-growing
algorithm is applied to detect each building point cloud individually.

Figure 11 shows the visualization of the study site point cloud using Red, Green,
and Blue (RGB) colors in addition to the target building plans representing the ground
truth. Ten target buildings in the study area are enumerated from zero to nine. Also, the
same figure illustrates the results of the building roof point cloud segmentation. These
results will be used to calculate the building volumes using the two proposed approaches
presented in Figure 7.

Tables 3–6 and Figure 12 show the obtained results for building numbers zero to six in
Figure 10, and the second data sample is shown in Figure 5, where the 2D intensity index
(II) is calculated by dividing the Multi-Level Area (MLA) on the parcel area. Moreover,
the 3D building intensity index (3D II) is calculated by dividing the building volume on
the parcel area multiplied by the mean building height. The underhung reference data
(ground truth) are measured directly from architectural building plans (Figure 5). The
footprint reference data (ground truth) are measured by directly digitizing the point clouds.
From Tables 3 and 5 and Figure 12, it can be noted that the obtained building footprint
areas are accurate enough regarding the ground-truth reference values. Also, the great
differences between the footprint and the underhung areas can be explained by the fact
that the LiDAR data was measured from above, and then all the underhung parts were
considered for the area calculation. At this stage, it is important to note that the area errors
are considerable because the point cloud has a sparse point density (12 p/m2) and the point
cloud planimetric accuracy is about ±0.15 m, in addition to the classification uncertainty of
3%. These factors also affect the volume accuracy shown in Tables 4 and 6. Of course, to
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improve the accuracy of the obtained area and volume results, more accurate and dense
LiDAR data should be used.
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Table 3. Calculation of building areas and the 2D intensity index; the building numbering is taken from
Figures 3 and 10. Ref: Reference (ground truth); MLA: Multi-Level Area; II: building intensity index.

Building
ID

Footprint
Area (m2)

Footprint
Ref Area
(Ground

Truth) (m2)

Underhung
Ref Area
(Ground

Truth) (m2)

Footprint
MLA (m2)

Underhung
MLA Ref
(Ground

Truth) (m2)

Area Error
(m2)

Parcel
Area

(Ground
Truth) (m2)

II %
II Ref

(Ground
Truth) %

0 131.35 129.99 113 131.35 113 14.28 553 0.2 0.2

1 205.26 200.53 157 339.52 286 20.31 554 0.6 0.5

2 218.71 221.97 145 218.71 145 20.52 548 0.4 0.3

3 163.08 162.62 124 263.09 223 12.86 541 0.5 0.4

4 196.78 193.67 148 602.31 544 23.32 483 1.2 1.1

5 175.1 171.51 112 175.1 112 19.91 491 0.4 0.2

6 112.6 108.52 89 112.60 89 8.61 584 0.2 0.2
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Table 4. Calculation of building volumes and the 3D building intensity index. Building numbering
is taken from Figure 4; Vol1 is calculated according to the first suggested approach, while Vol 2 is
calculated according to the second suggested approach (see Figure 6); VRA is the Volume Relative
Accuracy; 3D II is the 3D building intensity index.

Building
ID Vol 1 (m3) Vol 2 (m3)

Vol Ref
(m3)

(Ground
Truth)

∆Vol 2 Vol
Error (m3) VRA (%) 3D II 1 3D II 2

0 860.56 860.32 818.29 42.03 58.95 6.9 0.3 0.3

1 1454.25 1454.35 1378.37 75.98 86.93 6.0 0.5 0.5

2 1371.75 1371.25 1283.67 87.58 83.21 6.1 0.5 0.5

3 914.82 914.67 1015.79 −101.12 61.65 6.7 0.3 0.3

4 1621.71 1623.82 1522.85 100.97 94.36 5.8 0.7 0.7

5 1423.81 1429.36 1316.87 112.49 85.56 6.0 0.6 0.6

6 619.46 618.01 618.29 −0.28 46.45 7.5 0.2 0.2

Table 5. Calculation of building areas and the 2D intensity index for the second dataset sample.

Building
ID Vol 1 (m3) Vol 2 (m3) Vol

Error (m3) VRA (%) 3D II 1 3D II 2

10 1332.18 1312.63 86.42 6.5 0.3 0.3

11 862.55 869.44 67.35 7.8 0.2 0.2

12 905.57 896.24 70.42 7.8 0.2 0.2

13 1450.34 1441.80 92.52 6.4 0.4 0.4

Table 6. Calculation of building volumes and the 3D building intensity index for the second dataset
sample (Figure 4); Vol 1 is calculated according to the first suggested approach, while Vol 2 is
calculated according to the second suggested approach (see Figure 6); VRA is the Volume Relative
Accuracy; 3D II is the 3D building intensity index.

Building
ID

Footprint
Area (m2)

Footprint
Ref Area
(Ground

Truth) (m2)

Underhung
Ref Area
(Ground

Truth) (m2)

Footprint
MLA (m2)

Underhung
MLA Ref
(Ground

Truth) (m2)

Area Error
(m2)

Parcel
Area

(Ground
Truth) (m2)

II %
II Ref

(Ground
Truth) %

10 250.65 248.34 175.00 250.65 175.00 30.26 836 0.3 0.2

11 244.42 245.86 215.00 244.42 215.00 22.83 817 0.3 0.3

12 229.56 230.05 168.50 229.56 168.50 23.65 816 0.3 0.2

13 306.19 305.47 233.5 306.19 233.5 32.63 818 0.4 0.3

As underhung building areas cannot be measured from the LiDAR building point
clouds, the building intensity indexes are estimated using the building footprint areas
(Table 3), where the results are rounded to the nearest ten centimeters. It can be noted
that, despite the considerable size differences between the underhung and footprint areas,
some intensity index values match the ground-truth reference values, and others increase
slightly (about 0.1 more than the reference value). However, if the allowed overhung parts
percentage is given as the input, then the LiDAR building point cloud can provide an
accurate value of the intensity index.
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Figure 12. Comparison of building footprint areas with ground-truth values.

Regarding the building volume results in Tables 4 and 6 and Figure 13, negligible
differences can be noted between the volume values obtained by the two suggested ap-
proaches. Indeed, fitting the mean plane equation will not be able to reduce the influence
of LiDAR point errors. Nevertheless, applying the extended RANSAC algorithm to seg-
ment the building roofs will be essential to calculate one building MLA. The number of
building levels can be determined accurately for each roof patch, and the noisy points
will be adjusted. Also, the comparison between the building Volume 2 values and the
reference volume values (ground truth) (∆Vol 2 = volume 2 − Vol Ref) (Table 4) confirms
the accuracy of the suggested approach. Indeed, the volume deviation values are very
close to the volume accuracy values presented in the same table. Moreover, to calculate
the Volume Relative Accuracy (VRA), Volume 2 of the buildings is used. The high value
of the VRA may be explained by the low point density and accuracy value. To improve
the volume accuracy, the LiDAR point density and accuracy should be improved, as well
as the classification accuracy. Finally, the 3D building intensity index (3D II) is calculated
two times using both building volume values: Volume 1 and Volume 2. It can be noted that
both results are practically identical because the building volume values obtained by the
two proposed approaches are very similar.
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At this stage, it is important to examine the three assumptions applied in this paper
(see Section 3). They concern the planar geometric form of the building ground and the
building facade planar form, and how these might influence the accuracy of the indicators.
Indeed, a discussion on the limitations of these assumptions in practical urban planning
scenarios could provide a more balanced view. Regardless of the presence of indoor
construction elements such as walls, ceilings, and floors, the building volume and height
measured from indoors may not be equal to the volume measured from outdoors, especially
in the case of the presence of underground parts or basements. Moreover, building facades
may contain 3D elements such as decorations and terraces. The assumption of a building
having vertical planar facades will not help to accurately calculate the building volume.
However, the availability of extra information about buildings such as the presence of
underground elements or terraces, will make LiDAR data more efficient in providing
accurate building indicators.

At this stage, it is necessary to discuss the required input data accuracy for calculating
the building indicators. The input data for the automatic calculation of building indicators,
as mentioned in Section 1.4, are the design BIM, as-built BIM, and LiDAR data. First, the
accuracy tolerance between design BIM and as-built BIM is empirically about 10 cm if high
accuracy scanning is used for as-built BIM. This tolerance value is produced from four
main sources: scanning accuracy, registration accuracy, georeferencing accuracy, and the
anomaly of construction elements, such as walls, floors, and ceilings, from their geometrical
definition used in design BIM. Also, the accuracy of airborne LiDAR data is very close to
the tolerance value. In Tables 3–6, the values of the last two columns are rounded to one
decimal place, which confirms the sufficient accuracy of LiDAR data as well as as-built
BIM for calculating the building indicators.

In summary, the calculated 3D indicators correlate with the classically calculated
indicators and with the point-based indicators using the two methods. The buildings with
classic solutions presented for the research do not take into account modern buildings
created with new technologies or of various shapes and different story heights. Traditional
calculations of indicators consider the sum of the areas of each story of the buildings, but
they do not consider the height. This can be confusing. In contrast, the two proposed
solutions for calculating the development intensity in the examined cases are consistent.

5. Conclusions
The presented research shows that in the absence of reference data, e.g., BIM data,

cadastral data, and data from remote measurements, we can still calculate development
intensity indicators. The simplicity of the calculations, based on remote sensing measure-
ments, can replace cumbersome classic measurements.

Regardless of the LiDAR data acquisition cost in urban areas, which can be interpreted
as being due to the high speed of measurement in addition to the high automation level
of data processing, the calculated 3D building intensity indexes show a high correlation
with classical indexes calculated from 2D data. This result indicates the possibility of
using 3D indicators, as they more accurately reflect the built-up space. The 3D approach
should be used when calculating other suggested indicators related to, e.g., the insolation
of buildings and sky visibility. However, the question that still arises for discussion is
this: Is it common to be able to cover a building with thousands of points from LiDAR to
calculate the building indexes? Definitely, yes, and the high density of points ensures the
result accuracy, which can be considered a great gain in addition to the high speed of data
updating for making decisions.

Of course, if the cadastral map is available and it is faithful to the as-built city data,
the cadastral map will be used for calculating the intensity indexes. Unfortunately, when
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the as-built city data do not match with the cadastral map, then the cadastral map needs a
fast update. However, when the LiDAR data are used to calculate the intensity indicators,
calculation of the building area directly from the LiDAR point cloud provides more accurate
results than by using the building DSM. On the other hand, using the DSM matrixial
representation of the building point cloud is essential to calculating the building volume
because of the irregular distribution of LiDAR points covering the facades. However, the
accuracy of the computed building area, volume, and other indicators depends on the
LiDAR point cloud density and accuracy. Also, the accuracy of the building class extraction
from the scanned scene plays a major role in the calculation. The adopted research activities
are aimed at enabling the construction of a spatial planning portal in the future, in which
it will be possible, based on the available data and tools, to visualize the planning space
and to perform the necessary planning analyses. We believe that this is the future in urban
planning. Airborne LiDAR data will be of vital importance in these activities.

In future research, other building indicators, such as the footprint perimeter, ratio
of building height to footprint area, wall areas, envelope area, and orientation, will be
investigated. Furthermore, new data from different urban typologies, in addition to
other laser scanning data acquisition techniques such as UAV scanning and terrestrial
mobile scanning, will also be tested with the suggested algorithm to assess its performance
on various urban typologies and point cloud resolutions. Finally, future research could
examine automatic updates of urban datasets using AI-based LiDAR processing.
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47. Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from LiDAR data based on differential mor-phological profiles
and locally fitted surfaces. ISPRS J. Photogramm. Remote Sens. 2014, 93, 145–156. [CrossRef]

48. Yang, B.; Li, J. A hierarchical approach for refining point cloud quality of a low cost UAV LiDAR system in the urban environment.
ISPRS J. Photogramm. Remote Sens. 2022, 183, 403–421. [CrossRef]

49. Gilani, S.A.N.; Awrangjeb, M.; Lu, G. An Automatic Building Extraction and Regularisation Technique Using LiDAR Point Cloud
Data and Orthoimage. Remote Sens. 2016, 8, 258. [CrossRef]
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63. Rozporządzenie Ministra Rozwoju I Technologii z dnia 15 lipca 2024 r. w Sprawie Sposobu Ustalania Wymagań Dotyczących
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