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Abstract
Burgers, Breaking Soliton and Boussinesq equations are applicable in different areas 

of physics. Searching their real solutions are particularly important. In this research the 
modified Kudryashov method is applied for finding exact travelling wave solutions of the 
Burgers, Boussinesq and Breaking soliton equation. To visualize the dynamics, we present 
the solutions in the form of graphs in 2D and 3D plots. The solutions summarize that, 
the Kudryashov modified method is effectual for solving nonlinear evolution differential 
equations in exact form.

Subject Classification: Primary 35Qxx, Secondary 35Cxx.

Keywords: Kudryashov method, Nonlinear partial differential equations.

* E-mail: Rajeevbhanot@yahoo.com (Corresponding Author)
† E-mail: w0102000@umail.usq.edu.au
§ E-mail: Dmitry.Strunin@usq.edu.au

Journal of Interdisciplinary Mathematics
ISSN: 0972-0502 (Print), ISSN: 2169-012X (Online)
DOI : 10.47974/JIM-1566

http://www.tarupublications.com
dx.doi.org/10.47974/JIM-1566


2 R. P. BHANOT, M. G. MOHAMMED AND D. V. STRUNIN

1. Introduction  
Nonlinear partial differential equations and their solutions often simulate 

real world physical problems. Even when not directly applicable such solutions 
can highlight general properties and characteristics of the equations. In the last 
years, a number of new exact methods for solving nonlinear PDEs have been 
developed, like the sine-cosine technique [1, 2], the tanh technique [3], the 
homotopy analysis method [4]. The (G′/G) expansion method discussed by 
Wang et al. [5] is largely utilized to find the real solutions of nonlinear evolution 
equations, as well as the simplest equation method by Kudryashov [6], the 
modified Kudryashov technique [7–9] and the generalized Kudryashov method 
[10, 11]. The He’s Exp-technique [12] was successfully applied to nonlinear 
evolution equations [13, 14]. The modified Kudryashov method [8] can more 
effectually obtain solitary wave solutions for higher-order nonlinear equations 
than further existing techniques. 

In this article, we find exact solutions of the (1+1)-D Burgers equation, 
(2+1)-D Burgers equation, and (1+1)-D and (2+1)-D Boussinesq equation and 
soliton equation by using the modified Kudryashov technique. The Boussinesq 
equation describes, for example, the behavior of the waves in shallow water and 
the sound waves of iron in plasma. The Burgers equation applies to fluid 
mechanics, shock waves, acoustic transmission, traffic flow, and the Breaking 
Soliton equation to the Riemann wave model. The traveling wave solutions are 
of specific focus to us in this paper. Following the introduction in Section 1, we 
discussed the modified Kudryashov method in Section 2 and solved the 
concerned equations using the method in Section 3. The exact solutions are 
illustrated graphically in 2D and 3D. Finally, we present the conclusions in 
Section 4. 

2. Kudryashov Method 
The steps involved in the Kudryashov method for solving partial 

differential equations are discussed in [8, 9]. We have a general PDE (partial 
differential equation), 
    (                 )      (1)  

Where the wave solutions are 
   (   )   ( )          

The PDE L1 is transformed into an ordinary differential equation (ODE) 
   (                       )      (2)  

To find the control terms, we put 
   ( )           
into all monomials of Eq.(2). By using the homogeneous balance method, we 
compare two, or it can be more terms, by choosing the smallest exponents in 
Eq.(2) to find the maximum value of p (denoted by N) termed as a pole of the 
equation. Now, we want the solution in the form 
   ( )                     ,  (3) 
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where a0, a1, a2, ... are constants and  
  ( )    

(    ). (4) Where Q(γ) is the solution of the ODE 

            (5) 
We find the required derivatives               of the function  ( ) by 

using Eq.(3), (4) and (5). By differentiating the function  ( ), we get 

   ∑     
 

   
(   )  

      ∑       
   (   ),(   )   -   (6) 

and so on. 

3. Applications of the Kudryashov method 
3.1 The (1+1) D Boussinesq equation 

This equation is modeled for long water waves and has applications in 
hydrodynamics and explained in Figure 1. 
          

 
 ( 

 )               (7)  
By using θ(x, t) = θ(γ) and γ = αx+βt, we can reduce Eq.(7) into a nonlinear 

ODE as follows, 
  (     )    

 
  

 (  )                 (8) 
Here, the pole of Eq.(8) is equal to N = 2 so, 

   ( )                 
    ( )   (   )(       )  
     ( )   (   )(                  )   (9)  

The following system of equations is obtained by substituting the results 
from Eq.(9) in Eq. (8). 
  :                       
  :                                        
   :                                                 

                  
   :                                            

                                  =0 
                                                 

                   
                          =0 

 
Solving the above system of equations, we get the following values, 
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The exact solution is,  ( )                
   ( )              

         
(    )        

(    )  

   (   )              
         

(        )        
(        )   

3.2 The (2+1)-D Boussinesq equation 
Consider the Boussinesq-type equation discussed in [15] 

              (  )             (10) 
Looking for the wave solution,  (     )     ( )                  

we reduce Eq. (10) into the nonlinear ODE as explained in Figure 2. 
  (        )      (  )             .  (11) 

By integrating Eq.(11) twice we get 
  (        )                     (12) 

We choose constants       equal to zero, Eq.(12) becomes, 
  (        )                 (13)  

The pole of Eq.(13) is N = 2 so 
 ( )                

    ( )   (   )(       ) 
     ( )   (   )(                  )  (14)   

By substituting Eq. (14) in Eq. (13), we have the system of equations 
(            )     (                   )      

[  (        )                           -   
  ,  (        )              -     ,  (        )  

     -     
Solving the system we find, Set 1:                           

√(         ) Set 2: 
                         √(          ) An exact solution for 
Set 1 is  ( )                
that is 

 (     )          
*   ,   (√          )    -+

     
*   ,   (√          )    -+ 

 

An exact solution for Set 2 is, 
 θ(γ) = a0 + a1Q + a2Q2, 
that is 
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 (     )      
*   ,   (√          )    -+
     

{   ,   (√          )    -}
    

 
The Set 1 is shown in Fig.2. We reviewed all the acquired solutions by re 

put them in the original equation using MAPLE 2017. 

3.3 The (2 + 1) D Breaking soliton equation 
                               (15) 

By using θ(x,y,t) = θ(γ) and γ = αx+βy−ct, we can reduce Eq.(15) into 
nonlinear ODE as follows. Figure 3, explain the graphic solution of equation 15. 
                               (16) 

By integrating Eq.(16) w.r.t γ neglecting the constant generated due to 
integration, we have (16) 
               (  )          (17) 

Here, for Eq. (16) N = 1 so, 
              
                  
                          
                                     (18) 

by putting Eq.(18) in Eq. (17) we have the following system of equations 
(                 )     

  (6βα2a2
1− 12α3βa1)Q3 = 0 

  (−3βα2a2
1 + 7α3βa1− αca1)Q2 = 0 

  (−α3βa1 + αca1)Q = 0  
By solving the system of equations above, we obtain, a1 = 2α, ω = ω, c = 

βα2  
Exact solution is,  ( )           

   ( )        
(    )  

   (     )        
(             )

  (19)  

3.4 The (1+1)-D Burgers equation 
Here, we use the Kudryashov method to get exact solutions of the (1+1)-D 

Burgers equation, 
                     (20)  
where δ and ξ are parameters. The equation describes for example, shock waves 
at large values of Reynolds numbers as explained in Figure 4. Note that 
interesting exact solutions were found relatively recently in [16]. 
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Looking for the travelling wave θ(x,t) = θ(γ) and γ = αx + t, we reduce Eq. 
(20) into a nonlinear ODE, 
                     . (21) 

The pole of Eq.(21) is N = 1 so, 
            , 
                 
                           (22)  

Inserting (22) into Eq.(21) we get, 
 (δαa2

1− 2a1ξα2)Q3 + (a1 + a0a1δα − a2
1δα + 3a1ξα2)Q2  

  + (−a1− a0a1δα − a1ξα2)Q = 0. (23) 
By equating the coefficients to 0, we get the equation’s system, 

  δαa2
1− 2a1ξα2 = 0, 

  a1+a0a1δα−a2
1δα+3a1ξα2 = 0,  

  − a1− a0a1δα − a1ξα2 = 0. (24) 
We solve the system usingMaple to get  

            
       

   
  

By putting the values of z, a0, a1 into 
  ( )         

 
(    ),  (25) 

we get 

   (   )        
      

 
 

(       )  (26) 

3.5 The (2+1)-D Burgers equation 
Here, we obtain exact travelling wave solutions of 2-D Burgers equation. 

We consider (2+1)- D Burgers equation as, 
                       (27) 

By using θ(x,y,t) = θ(γ) and γ = αx + y − ct, we can reduce Eq. (27) into a 
nonlinear ODE as follows. Figure 5, explain the 3D graphic solution of equation 
27. 
           (    )       (28)  

Here, the pole of Eq. (28) is N = 1, after substituting v and its derivatives in 
Eq. (28) we have the following system of equations 
  αa2

1 + 2a1(α2 + 1) = 0  
  ca1 + αa0a1− αa2

1− 3(α2 +1)a1 = 0 
  -ca1 +(α2 +1)a1 −αa0a1= 0 

     
      

           
  

By putting the values of γ, a0, a1 into 
   ( )       

 
(    )   (30) 
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We get 

  (     )        
       

 
 

(          ) (31)  

 
  

 

                                      (a)                                                     (b) 
Figure 1 

(a) 3D Graphical solution of Eq.(7), represents (1 + 1) D Boussinesq equation for α = 
2,β = 1,q = 1 − 4 ≤ x ≤ 4 and −4 ≤ t ≤ 4, (b) 2D plot of θ versus x at different times, 

solitons are moving from right to left. 
 
 

 

Figure 2 
Bell shaped soliton of Boussinesq equation, (a)3D Graphical solution of Eq.(10), 

represents (2+1)-D Boussinesq equation for α = 2,β = 1 − 4 ≤ x ≤ 4 and −4 ≤ y ≤ 4, (b) 
2D plot of u versus x at time t = 0 and (c) Moving solitons from right to left direction 

at different times when y=0. 
 

   

(a)

(b)

(c)
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                                            (a)                                                     (b) 

Figure 3 
(a) 3D Graphical solution of Eq.(15), represents (2 + 1) D Breaking Soliton equation 
for ω = 1,k = 1,−8 ≤ x ≤ 4 and 0 ≤ y ≤ 2, (b) 2D plot of u versus x at different times, 

solitons are moving from right to left. 

 
                                      (a)                                                     (b) 

Figure 4 
Kinked shaped soliton of Burgers equation,(a) 3D Graphical solution of Eq.(20), 

represents (1+1)-D Burgers equation for α = 1,β 0.01,k= 2,−4 ≤ x ≤ 4 and −4 ≤ t ≤ 4, 
(b) 2D plot of u versus x at time t = 1, t = 5 and t = 9, this plot shows the travelling 

wave motion from right direction to the left with time. 

 
                                      (a)                                                     (b) 

Figure 5 
Kinked shaped soliton of Burgers equation (a) 3D Graphical solution of Eq.(27), 

represents (2+1)-D Burgers equation for k = 1,c = 1,−8 ≤ x ≤ 8 and −4 ≤ y ≤ 4 at t = 
0. (b) 2D plot of u versus x at time t = 0. 
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4. Conclusions 
We proved adequacy of the modified Kudryashov method for getting exact 

solutions of some nonlinear evolution PDEs. We obtained solitary wave 
solutions for the Burgers equation, Boussinesq equation and Breaking soliton 
equation. In future work we plan to use other versions of the Kudryshov method 
to solve more complicated nonlinear differential equations. 
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