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ABSTRACT

Because of widespread public concern about plastic waste treatment and recycling, there is a global trend toward replacing non-
biodegradable polymers with biodegradable polymers. However, the inherent flammability of most biodegradable polymers presents a signifi-
cant barrier to their potential application, necessitating the rapid development of fire-retardant biodegradable polymers. Herein, three major
categories of fire retardants (FRs), including intrinsic FRs, additive FRs, and fire-retardant coatings, especially widely studied additive FRs in
the categories of organic, inorganic, and inorganic–organic, are reviewed, revealing how the physical and chemical structures of FRs affect the
fire-retardant efficiency of biodegradable polymers and concluding the influencing factors of their fire retardance from the perspective of the
physical and chemical structures of FRs. This work provides fundamental data and mechanistic analyses for the fire-retardant parameters of
biodegradable polymers by integrating/adding diverse types of FRs, to provide guidance for fabricating highly efficient fire-retardant biode-
gradable polymer materials and inspiring the development of future research and application of functional biodegradable polymers toward
circular economy and greater sustainability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210839
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I. INTRODUCTION

Polymers are pervasive in modern society because of their versa-
tility and distinct advantages in mechanical properties, wear resistance,
corrosion resistance, and electrical insulation.1,2 However, the wide-
spread use of synthetic polymers in the last several decades has caused
considerable and often irreversible damage to the ecological environ-
ment despite the notable improvements they bring about in lifestyle
and convenience. To address these concerns, sustainably developing
biodegradable polymers can effectively protect our environment and
reduce environmental pollution without compromising quality of
life.3,4

The synthesis and degradation processes of biodegradable poly-
mers create a milder-negative effect on the biosphere compared with
traditional synthetic polymers. On the one hand, most biodegradable
polymer materials demonstrate carbon sequestration and emit a lower
carbon footprint during production, use, and disposal as they are
sourced from natural origins, which are part of the carbon cycle and
hence do not produce additional carbon. On the other hand, biode-
gradable polymers, when landfilled, undergo mineralization and can
be reprocessed as fertilizers, further demonstrating their relative sim-
plicity in processing and recycling.5 This superior degradation poten-
tial of biodegradable polymers has been used in diverse industrial
applications; e.g., chitin and chitosan are used as mulch films in agri-
culture,6,7 cellulose and polylactide (PLA) are processed as packaging
(food containers),8 PLA is used in surgical sutures,9 and starch and
polycaprolactone are used for electronics packaging (Fig. 1).10

Fire retardance is of critical importance in both the design and
use phases of these biodegradable polymer industrial applications and
is mandated either by the function (e.g., electronics) or an industrial
standard [e.g., vertical combustion test (UL-94)]. The interest level
around the development of fire retardance in biodegradable polymer
matrices such as PLA, poly(butylene succinate) (PBS), poly(butylene
succinate) (PBAT), and cellulose continues to be profound.11

Plenty of works have focused on the preparation and modifica-
tion of effective FRs that aims to improve the fire retardance of the
above biodegradable polymers while still maintaining their mechanical
properties and other practical properties. For instance, our group
devoted much work to the fire retardance of PLA in recent years, e.g.,
fabricating a series of additive phosphorus-containing FRs that signifi-
cantly increased the LOI values of PLA over 30% and effectively
reduced the heat release, in addition to endowing PLA with UL-94 V-0
rating. The mechanical properties of PLA could be maintained by pro-
viding a decent interface between the FRs and PLAmatrix.12–16

In addition to PLA, a number of phosphorus or silicon-
containing small molecules or polymers have been fabricated and used
as additive FRs in biodegradable PBS and PBAT. Hu et al. prepared a
series of FRs by chemical modification of isosorbide by sulfur, silicon,
or phosphorus with different oxidation state. The results showed that
sulfur modified FRs endowed no improvement to the flame retardancy
of PBS, but showed slight improvement when blending with intumes-
cent FR. The lower oxidation degree of phosphorus (phosphonate and
phosphinate) led to an action in the gaseous phase while higher oxida-
tion degree (phosphate) led to an action in the condensed phase.17

Zhang et al. fabricated a fire-retardant hybrid microsphere (SiP-M) via
the integration of phosphorous and silicon element. PBAT containing
1.0wt. % SiP-M exhibited a UL-94 V-0 rating and a LOI value of
29.8 vol. %, and some reductions in peak heat release rate, total heat
release, and total smoke production. The interface adhesion between
PBAT and SiP-M could be modified by applying a coupling agent
KH560; thus, the tensile strength and elongation at the break of PBAT
blends were enhanced.18

In addition to additive FRs, the integration of fire-retardant ele-
ment directly along the polymer chain presents an interesting alterna-
tive to the additive way. Mincheva et al. developed a highly efficient
flame-retardant bioplastic PLA by covalently incorporating flame-
retardant DOPO. The resulting phosphorylated PLA showed superior
flame-retardant properties, with a significant reduction of both the
peak of heat release rate (PHRR) and total heat release (THR) by 35%
and 36%, respectively, and a V-0 classification at UL-94 test.19

Fire-retardant coatings are main promising treatment options for
improving the fire retardance of cellulose as the coatings can protect
underlying celluloses from fire damage and meantime enhance their
mechanical properties. For example, a multi-amino phosphoramidite
(BPEI/DPn) was synthesized by using branched polyethyleneimine
(BPEI) and dimethyl phosphite (DP), and then, the coating was fabri-
cated on cotton fabric with the assist of 1,2,3,4-butanetetracarboxylic
acid (BTCA). When the mole ratio of BPEI and DP was 1:4, the BPEI/
DP4-coated cotton fabric presented superior flame retardancy with
self-extinguishing action and 27.9% of LOI value, and the heat and
smoke release of cotton fabric during the combustion were signifi-
cantly inhibited, with PHRR value decreased by 35.0% compared with
the unmodified cotton. In addition, this flame-retardant cotton fabric
could withstand a certain number of standard washing cycles and theFIG. 1. Applications of biodegradable polymers.
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mechanical capability of cotton fabric could be greatly improved via
modified with BTCA.20 In another work, the cellulose fiber coated
with a naturally existing FR agent, phytic acid in amalgamation with
[3–(2-aminoethylamino)-propyl]trimethoxysilane showed stupendous
flame retardancy, with LOI value reaching 31% and the fire-retardant
properties could sustain up to 50 laundering cycles.21

With the ever-increasing rate of fire-retardant biodegradable
materials research, there is a need for a comprehensive report on the
contemporary status and directions. Recent reviews on this topic have
summarized only one type of fire-retardant biodegradable polymer or
focused on one kind of FRs, such as biopolymer-based FRs22 or nano-
sized FRs,23 and no reviews have focused on the physical and chemical
properties of FRs that constitute the fire retardance in biodegradable
polymers.24–28 Overall, a comprehensive and in-depth review on a
wide range of fire-retardant biodegradable polymers that could provide
a thorough understanding of the fire-retardant performance of biode-
gradable polymers is lacking.

To serve this purpose, this review focuses on the fire-retardant
aspects of biodegradable polymers and their blends. To facilitate the
reader’s understanding, biodegradable polymers are presented as
classified by their structure and type, with emphasis on the distinct
combustion routes they demonstrate. Then, the state-of-the-art fire-
retardant biodegradable polymers, including FRs’ physical and chemi-
cal aspects (e.g., size, morphology, component, small molecule, linear
polymer, and nonlinear polymer), fire-retardant mechanisms, and crit-
ical factors influencing fire retardance are highlighted and critiqued. In
addition, the effect of FRs on other properties of biodegradable poly-
mers is also briefly summarized. This review elucidates the structure–
fire-retardant property relationships between FRs and biodegradable
polymers, offering unique guidance and insight into rationally design-
ing high-efficiency FRs for biodegradable polymers and beyond.

II. OVERVIEW OF THE STRUCTURES AND TYPES OF
BIODEGRADABLE POLYMERS

Biodegradable polymers can be divided into three types according
to the monomer and synthesis method: (i) micro-organism-derived pol-
ymers, (ii) natural polymers, and (iii) synthetic polymers. These struc-
tures and their detailed characteristics are discussed in this section.

A. Polyhydroxyalkanoate (PHA)

PHA is a fully biodegradable and biocompatible micro-organism-
derived polymer that is obtained from microbial fermentation and has
significant applications in agriculture, industry, packaging, and medi-
cine.29 PHA consists of 100–3000 identical or non-identical hydroxyl
fatty acid monomers, most of which are 3-hydroxyl fatty acids with
chain lengths of 3–14 carbon atoms, and the side chains are highly vari-
able aromatic or aliphatic groups.30 The structure and composition of
PHA can be easily altered by changing the microbial strain, feed, and
fermentation process, enabling the synthesis of over 150 hydroxyalka-
noate monomers. The most common PHAs are poly(3-hydroxybuty-
rate) (PHB),31 poly(hydroxy valerate) (PHV),32 and copolymers of PHB
and PHV (a.k.a. PHBV) (Fig. 2).33 A wide variety of hydroxyalkanoate
monomers yield different chemical properties within PHA polymers.

B. Natural polymers

Natural polymers are synthesized from natural substances,
including cellulose, starch, and chitin. Cellulose and starch are

polysaccharides formed from glucose molecules linked by glucosidic
bonds and are often the most common additives studied within the
domain of FR research. Cellulose is composed of linearly arranged
b-D-glucose units, which results in high thermal stability (Fig. 2).34

Starch molecules consist of two forms of a-D-glucose units, a-starch,
and b-starch (Fig. 2). a-starch chains are spiral, while b-starch chains
are planar, resulting in solubility and gelatinization of starch in water.35

Starch is synthesized in chloroplasts and storage tissues and is used to
store energy, whereas cellulose is present in the cell wall and provides
stability and mechanical strength to plant cell walls. Both starch and
cellulose play vital roles in plant growth and metabolism and are of
great significance to human life.36,37

C. Synthetic polymers

In this study, the only biodegradable synthetic polymers assessed
were PLA, PBS, and PBAT because of their high-volume/low-cost pro-
duction and their capability to secure a significant market share as
large-scale replacements for non-degradable plastics. These polymers
contain aliphatic ester bonds in their structure (Fig. 2),38 thus enabling
decomposition under a microbial environment. PLA is a rigid bio-
derived plastic that exhibits outstanding biocompatibility and trans-
parency, high heat resistance, and high tensile strength but lower
toughness, making it suitable for wide-ranging applications in packag-
ing, agriculture, and electronics.39 In contrast to the bio-derived PLA,
PBS and PBAT are polymerized from a petroleum-based monomer.
PBS exhibits high thermal stability but lower glass transition tempera-
ture and tensile strength, inadequate biocompatibility and storage sta-
bility, necessitating engineering modifications to extend its application
range.33 PBAT has a melting point of 120 �C and low mechanical
strength; however, its elongation is 120 times larger than that of PLA,
enabling PBAT with higher toughness, ductility, heat resistance, and
impact resistance. This unique range of properties allows PBAT to be
effectively used in packaging, agricultural films, pesticides, and slow-
release fertilizers.40

III. FIRE BEHAVIORS OF POLYMERS DURING
COMBUSTION
A. Fire behaviors of the polyester

PHA, PLA, PBS, and PBAT are members of the polyester family.
PHA, PLA, and PBS are aliphatic polyesters, whereas PBAT is an aro-
matic polyester containing benzene rings. These polyesters only consist
of carbon, hydrogen, and oxygen in their chains, thus displaying a
comparable ignition response. The combustion of polyester can be
generally divided into five distinct stages: (i) heating, (ii) degrading,
(iii) cracking, (iv) ignition, and (v) burning.41 In the heating stage,
upon the incidental external heat source, the polymer gradually gains
heat at a rate dictated by the heat flux, incidence area, flame tempera-
ture by the specific heat capacity, and thermal conductivity on the
polymer side. Thermal degradation is the predominant mechanism by
which a polymer degrades upon gaining heat beyond a threshold deg-
radation temperature, which triggers the scission of the weakest bonds
in the polymer. Beyond the decomposition temperature of the poly-
mer, the main chains, including C¼O–O, C–O, C–C, and C–H,
exhibit breakage, including cracking and creation of low-molecular-
weight degradation products, with the rate of scission largely depend-
ing on the bond energy. During this period, a range of volatile gases
(e.g., H2, CH4, C2H6, CH2O, CH3COCH3, and CO) and an
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incombustible gas (CO2) are produced, accompanied by liquid and
solid products such as coke and smoke particulates. When the flamma-
ble gas in the cracking stage reaches a certain concentration and the
temperature reaches the ignition point or flash point of the polymer, a
flame begins to appear, which is called ignition, and combustion
ensues. In the burning and spreading phases, the energy released by
combustion and the chain reaction caused by the active free radicals
(HO� and H�) continuously supply combustible fuel to allow the com-
bustion to spread and expand and the flame to progressively
propagate.42

B. Fire behavior of the carbohydrates

Cellulose and starch are carbohydrates that show a three-stage
response to heating.43 In the first stage, physical dehydration occurs,
and the crystal water completely disappears when heated above

150 �C. At temperatures above 250 �C (the beginning of the second
stage), thermal decomposition and chemical dehydration occur. The
cellulose system shows a twofold reaction, i.e. (i) dehydration and car-
bonization producing water, carbon dioxide, and solid residue, and (ii)
depolymerization producing nonvolatile liquid L-glucose, which is fur-
ther cracked to produce low-molecular-weight cracking products and
secondary coke. These two reactions compete with each other
throughout the cleavage process of cellulose.44 In the starch system,
chemical dehydration arises from the condensation reaction between
the hydroxyl groups to form ether bonds, followed by breakage of
C¼C groups or rings, and with the breakage of molecular chains as
the temperature continues to increase.45 When the temperature is
above 400 �C (the beginning of the third stage), carbonization and aro-
matization occur, during which large aromatic conjugated rings and
cross-linking of carbon are formed. As a result, cellulose and starch
can both act as carbon sources, releasing carbon dioxide and carbon

FIG. 2. Structural formula of typical biode-
gradable polymers.
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monoxide when exposed to a fire. The inclusion of an acid source pro-
motes their dehydration and carbonization, which inhibits the escape
of combustible gases and exchange of hot oxygen.

Biodegradable polymers, which are chemical polyesters and car-
bohydrates, can be easily burned to produce harmful substances.
Therefore, throughout the last several decades, extensive research has
been dedicated toward the fabrication of a diverse range of FRs, includ-
ing reactive FRs, additive FRs, and fire-retardant coatings, to address
the combustibility of biodegradable polymers. Section IV describes the
fire retardance strategies and techniques used for biodegradable
polymers.

IV. FIRE RETARDANCE OF BIODEGRADABLE
POLYMERS
A. Reactive FRs

Cellulose and PLA are exclusive biodegradable polymers that
exhibit compatibility with reactive FRs. Cellulose is explicitly present
in cotton fabric, cellulose aerogel, microcrystalline cellulose, cellulose

nanofibrils, and cellulose strands, where cellulose strands include mis-
canthus filaments, flax strands, hemp strands, and lyocell fiber.

Reactive FR agents used to modify cellulosic or PLA-based poly-
mer matrices are divided into Si-,11,46 N-,47 and P-containing19,48–51

compounds or their combinations (Table SI).11,19,46–50,52

Li et al.11 fabricated a nano-SiO2-based Schiff base FR (SiAPH)
and combined it with tannin (TA) for grafting onto cotton, providing
synergistic fire retardance for cotton fabrics [Fig. 3(a)]. The inclusion
of TA was particularly crucial toward the formation of an expanded
char layer during combustion. SiAPH similarly provided high thermal
stability endowed by nano-SiO2 and the cross-linked structure of the
Schiff base, leading to a 41% decrease in the peak of heat release rate
(PHRR) of their modified cotton fabric compared with the unmodified
fabric. Yue et al.47 combined silane and N-containing compounds to
impart fire retardance to cellulose nanofibrils (CNF) by cross-linking
with melamine formaldehyde (MF) and further cross-linking and
surface-decorating with methyltrimethoxysilane [Fig. 3(b)]. The lim-
ited oxygen index (LOI) value of their double cross-linked Si-CNF/MF

FIG. 3. The preparation processes of typical intrinsic fire-retardant polymers. (a) Reproduced with permission from Li et al., J. Colloid Interface Sci. 618, 462–474 (2022).
Copyright 2022 Elsevier.11 (b) Reproduced with permission from Yue et al., J. Nat. Fibers 20(1), 2133053 (2023). Copyright 2023 Informa UK Ltd.47 (c) Reproduced with permis-
sion from Mincheva et al., Materials 13(1), 13 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) License.19 (d) Reproduced with permis-
sion from Matos et al., J. Appl. Polym. Sci. 140(34), e54326 (2023). Copyright 2023 John Wiley & Sons.49
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increased from 19.5% to 37.1%, and the UL-94 reached the V-0 scale,
with the PHRR and total heat release (THR) of Si-CNF/MF decreasing
by 50.6% and 64.3% compared with pure CNF aerogel, respectively.
Hence, the combination of silane and N-containing compounds was
more efficient in fire-retarding cellulose than silane alone.

Phosphate is commonly used to achieve the phosphorylation of
PLA and cellulose. For example, a highly efficient fire-retardant PLA
was developed by covalently incorporating 9,10-dihydro-9-oxa-10-
phosphaphenanthrene-10-oxide (DOPO)-diamine with 4wt. % P con-
tent [Fig. 3(c)]. The PHRR and THR of PLA were reduced by 35% and
36%, respectively, thereby attaining a UL-94 V-0 classification. A com-
parison between simple physical DOPO-diamine/PLA blends and
phosphorylated PLA (DOPO-PLA-PU) yielded a superior fire-
retardant behavior of the latter obtained via a reactive pathway.19

Microcrystalline cellulose was phosphorylated by phytic acid, and the
modified microcrystalline cellulose showed a decrease in PHRR and
THR by 81% and 84%, respectively, at 0.63wt. % P content.48

Regenerated cellulose fibers were modified by phytic acid ammonium
[Fig. 3(d)], and the modified fibers containing 0.606 0.21wt. % P
ignited within the filament and turned to ash after combustion without
dripping or disintegrating.49 FR lyocell fibers (FRLF) phosphorylated
by an ionic liquid–1,3-dimethyl imidazolium methyl phosphite with
< 1.0wt. % P content exhibited excellent fire retardance, with 51%
decrease in the PHRR compared with pure lyocell fibers (LF).50 These
studies strongly indicate a close correlation between the fire retardance
of cellulose and P content, consistent with previous reports.53,54

However, Hajj et al.51 highlighted the importance of the correlation
between the thermal stability of FRs and the fire retardance of fibers by
grafting different P-containing FRs and demonstrated that the resul-
tant fire retardance were a function of phosphorus content as well as
the thermal stability of the FRs.

The fire retardance enhancement of microfibers beyond the degree
achieved by phosphorylation was investigated by Ren et al.,52 who used
Fe3þ or Al3þ as a gel initiator and crosslinker. The microfibers exhibited
a 80% decrease in PHRR, and adequate thermal stability was achieved
because of the abundant phosphate groups in the phosphorylated cellu-
lose nanofibrils as well as cross-linking with metal ions.

Therefore, the chemical modification of PLA and cellulose by Si-,
N-, and P-containing compounds is effective for achieving significant

fire retardance at high concentrations of fire-retardant elements or
thermal-stability modifiers or via cross-linking. In addition, reactive
FRs often show higher and longer-term fire-retardant efficiency than
their additive counterparts, as the additive FRs readily migrate from
the matrix because of their incompatibility with the matrix, thus mod-
erating the fire retardance and even causing a deterioration in other
key properties of the polymer matrix. However, the preparation of
intrinsic FRs is complicated, making them difficult to mass produce.

B. Additive FRs

1. Inorganic FRs (loading, particle size, component, and
morphology)

Inorganic FRs are single phases or compounds containing intrin-
sic fire-retardant components that physically disperse in polymer
matrices and provide flame retardance in the gas or condensed phase
through resultant chemical or physical changes. However, it is difficult
to balance the fire retardance and mechanical properties of fire-
retardant polymer matrices, especially at high loadings of inorganic
FRs. Furthermore, fire retardance is specific to each FR/matrix combi-
nation. Therefore, it is imperative to gain a thorough understanding of
inorganic FRs to enhance their efficiency. This section discusses the
fire retardance imparted by inorganic FRs as a function of loading, par-
ticle size, component, and morphology, with comparisons of fire-
retardant efficiency presented in Fig. 4 and Table SII.33,44,55–77

a. Loading. The loading of inorganic FRs has a huge influence on
the fire retardance of the matrices. Commonly, an increasing loading
leads to increased fire retardance, realized through an improved LOI,
UL-94 rating, and decreased PHRR and THR values. For example, Tang
et al.69 introduced calcium hypophosphite (CaHP) into PLA to develop
fire-retardant polylactide composites (FR-PLA). An increase in the load-
ing of CaHP from 0 to 30wt. % led to an increase in the LOI value from
19.5% to 26.5%, an increase in the UL-94 rating from NR to V-0, and a
decrease in the PHRR from 549 to 263kWm�2. However, the mechani-
cal properties, i.e., tensile strength and elongation, decreased by 36.1%
and 63.0%, respectively, compared with neat PLA. Therefore, an appro-
priate level of FR loading is crucial for achieving a balance between fire
retardance and mechanical performance.

FIG. 4. �PHRR values of fire-retardant polymers vs the required loading of inorganic FRs for achieving the UL-94 V-0 rating as a function of (a) particle size, (b) component,
and (c) morphology.�PHRR represents the PHRR reduction of fire-retardant polymers relative to the matrices.
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b. Particle size. The size of inorganic particles is critical in dictat-
ing the degree of fire retardance to the matrix, where nanofillers
(<100nm) exhibit a higher fire retardance at relatively low loadings,
whereas microparticle additives (>100 nm) require considerably
higher loading levels to achieve a similar performance [Fig. 4(a)]. This
may be due to the large surface area of nanoscale materials compared
with microscale materials, resulting in a higher surface contact area
with the polymer matrix. The greatest property improvement can be
achieved when the nanoparticles are thoroughly and uniformly dis-
persed and exhibit a strong affinity toward the polymer matrix. For
example, Fan et al.65 fabricated cellulose/graphene composite films
using a coagulation bath and controlled drying, and the films resem-
bled a stacked laminated structure. The flammability of cellulose was
confirmed through reduced PHRR (by 72.7%) and increased LOI val-
ues to 38% at 6.0wt. % of graphene, which contributed to the develop-
ment of a thermal insulation layer on the surface of the burning
substrate during combustion. Other nanoFRs, such as halloysite nano-
tubes (HNT),33 carbon nanotubes,59 Al(OH)3,

61 and ZrO2,
63 also par-

ticipate in the thermal degradation of PHBV, PBS, and PLA. These
nanoFRs realize heat absorption, thermal insulation, and catalytic car-
bonization, which improve the fire resistance of the polymer matrices.
However, microparticles such as ammonium polyphosphate (APP),78

CaHP,69 and aluminum hypophosphite (AlHP)67 are still the most fre-
quently used FRs despite their lower efficiency than nanofillers. This
ongoing trend is attributed to the higher cost and low price and perfor-
mance ratio of nanofillers, which are further limited by current nano-
technology. Overall, nanoscale FRs are more effective than their
microscale counterparts in fire-retardant performance.

c. Component. Polymers with a single inorganic FR often fail to
achieve satisfactory fire retardance due to their limited fire-retardant
efficiency; therefore, two or three inorganic fillers are often combined
to achieve synergistic fire retardance with the substrate. It can be
observed from Fig. 4(b) that overall, FRs comprising two or three com-
ponents are more effective than single-component FR in moderating
PHRR values. For example, Wang et al.66 reported the nucleation and
growth of 2D a-ZrP within reduced graphene oxide (RGO) interlayers
for synthesizing multilayer a-ZrP-RGO nanoplates and incorporating
them into cellulose nanofibers to fabricate hierarchical nanocellulose
composites. Compared with cellulose nanofibers with only a-ZrP or
RGO, the PHRR, peak smoke release rate (PSRR), and peak CO produc-
tion rate of nanocellulose composites decreased because of the synergetic

fire-retardant efficiency of a-ZrP-RGO in both the gas and condensed
phases. The fire retardance of the resulting polymer matrices is hence a
delicate balance of combination between the inorganic compounds,
such as in situ synthesis, doping, coating, and intercalation.

d. Morphology. The morphology of inorganic FRs can be divided
into 0-dimensional particles [APP, aluminum hypophosphite (AHP),
zinc borate (ZB), and ZrO2], 1-dimensional tubes [halloysite nanotube
(HNT), carbon nanotube (CNT), and ammonium molybdate (AM)]
and 2-dimensional lamellae [expanded graphite (EG), graphene, C3N4,
and MoS2]. From Fig. 4(c), 2D lamellas show relatively higher fire
retardance (decreasing PHRR) than 0-dimensional particles and 1-
dimensional tubes. It is obvious that lamellae with multiple layers act
as physical barriers that inhibit the transmittance and exchange of heat
and oxygen. For example, multilayer a-ZrP-RGO nanoplates
obstructed the permeation of heat radiation and oxygen molecules and
inhibited the release of flammable pyrolysis products as well as toxic
CO, which caused 75.1%, 71.4%, and 54.6% reductions in the PHRR,
PSRR, and peak CO production rate of cellulose nanofibers,
respectively.66

2. Organic FRs (small molecules, linear polymers, and
nonlinear polymers)

In recent years, researchers have focused on developing fire-
retardant additives that contain phosphorus, nitrogen, and/or silicon.
In terms of chemical structure, organic FRs can be divided into synthe-
sized (i) small molecules, (ii) linear polymers, and (iii) nonlinear poly-
mers. A comparison of the performance, specific structures, and
detailed information of organic FRs are listed in Figs. 5, 6, and Table
SIII.13,14,18,39,79–121

a. Small molecules. Small molecules, such as phosphoric acid,
phosphate, DOPO derivative, and phosphoramide, are synthesized
using a diverse range of methods and are used as effective FRs for PBS,
cellulose, and PLA. It can be observed from Fig. 5(a) that the range of
LOI values for polymers fire retarded by small molecules is broad, with
the LOI value increased by 21%–240% at loading of 0.7–40wt. % FRs.
Among these small molecules, the fire-retardant efficiency of phos-
phoramide is relatively higher (Table SIII), as the V-0 rating can
be achieved when the loading is below 5wt. %, and the LOI values
of the composites are within 28.5%–32.5%.94–96,98–100 In addition,

FIG. 5. (a) �LOI, (b) �PHRR, and (c) �THR values of fire-retardant polymers vs the required loading of organic FRs for achieving the UL-94 V-0 rating. �LOI and �THR
respectively represent the LOI increase and THR reduction of fire-retardant polymers relative to matrices.
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phosphoramides also show good performance in the reduction of heat
release values, e.g., Tawiah et al.98 synthesized a cyclophosphorus-
nitrogen FR-hexaphenyl [nitrilotris(ethane-2,1-diyl)]tris(phosphora-
midate) (HNETP) for PLA. The PHRR, THR, and CO production are
reduced by 51.3%, 43.1%, and 46.5%, respectively, with only 3wt. %
HNETP loading. As shown in Figs. 5(a)–5(c), small molecules have no
advantage in fire-retarding degradable polymers because they endow
efficient fire retardance to the matrices at relatively higher loadings.
In addition, additive FRs of small molecules are inclined to migrate
out from polymer matrices, leading to decreased fire retardance of
materials over time.122

b. Linear polymers. Linear polymers including polyphosphonate
and polyphosphoramide exhibit much higher fire-retardant efficiency
in the biodegradable matrix than the other two types of organic FRs,
where lower loading is required for achieving UL-94 V-0 rating
and higher values of LOI increase, and PHRR/THR decreases [Figs.
5(a)–5(c)]. The performance of linear polymers highly depends on
their phosphorous content and compatibility with the polymer matrix.
Our group has fabricated a series of molecularly tailored polyphos-
phoramides (PPDA-x) with varied chemical structures (e.g., different
lengths of repeating units) and compositions (e.g., phosphorus con-
tents) and investigated their structure–property correlation with PLA.

FIG. 6. Typical synthesized organic FRs. Clockwise from bottom left: Image 1, Reproduced with permission from Niu et al., Polymers 12(10), 2407 (2020). Copyright 2020
Authors, licensed under a Creative Commons Attribution (CC BY) License.120 Image 2, Reproduced with permission from Chen et al., J. Appl. Polym. Sci. 134(13), 8 (2017).
Copyright 2017 John Wiley & Sons.121 Image 3, Reproduced with permission from Xia et al., J. Anal. Appl. Pyrol. 134, 265–273 (2018). Copyright 2018 Elsevier.91 Image 4,
Reproduced with permission from Long et al., Ind. Eng. Chem. Res. 55(40), 10803–10812 (2016). Copyright 2016 American Chemical Society.87 Image 5, Reproduced with per-
mission from Wang et al., J. Therm. Anal. Calorim. 145, 331–343 (2021). Copyright 2021 Springer.88 Image 6, Reproduced with permission from Sun et al., Chem. Eng. J. 369,
150–160 (2019). Copyright 2019 Elsevier.95 Image 7, Reproduced with permission from Wang et al., Polym. Test 78, 105940 (2019). Copyright 2019 Elsevier.90 Image 8,
Reproduced with permission from Liu et al., Composites, Part A 160, 107028 (2022). Copyright 2022 Elsevier.103 Image 9, Reproduced with permission from Feng et al., J.
Mater. Sci. Technol. 160, 86–95 (2023). Copyright 2023 Elsevier.104 Image 10, Reproduced with permission from Feng et al., Chem. Eng. J. 431, 134259 (2022). Copyright
2022 Elsevier.105 Image 11, Reproduced with permission from Xue et al., Composites, Part A 144, 106317 (2021). Copyright 2021 Elsevier.13 Image 12, Reproduced with per-
mission from Xu et al., Int. J. Biol. Macromol. 232, 123345 (2023). Copyright 2023 Elsevier.115 Image 13, Reproduced with permission from Li et al., Polym. Degrad. Stab. 110,
104–112 (2014). Copyright 2014 Elsevier.118
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The results showed that the LOI values of the resultant PLA com-
posites were directly proportional to the phosphorous content but
inversely proportional to the interfacial tension. Because of the bal-
anced interfacial tension and phosphorous content, the addition of
only 1.0 wt. % PPDA-8 led to a UL-94 V-0 rating, and an LOI value
of 26.8%.13

c. Nonlinear polymers. The performance of nonlinear polymers,
which comprise phosphonitriles and branched polymers, is common,
i.e., the higher the loading, the better the fire retardance [Figs. 5(a)–5(c)].
When 6wt. % phosphonitrile was incorporated into PLA, the fire
retardance was improved, with the LOI value reaching 26.7% and the
PHRR and THR values dropping by only 1.9% and 1.3%, respec-
tively.119 When 25wt. % cyclotriphosphazene (HABP-DOPO) was
added to PLA, the LOI value reached 28.5% and UL-94 passed V-0. In
addition, the PHRR and THR values of PLA/HABP-DOPO blends
were reduced considerably by 19.4% and 40.5%, compared with pure
PLA.120

Linear polymers are superior to small molecules and nonlinear
polymers in fire-retardant biodegradable materials. These three types
of FRs have varying effects on the fire retardance of degradable poly-
mers, and in-depth studies are still scarce to comprehend their under-
lying mechanisms that determine the level of fire retardance.

3. Inorganic–organic FRs (physical blending,
encapsulation, grafting, and intercalation)

Inorganic–organic FRs are commonly added to biodegradable
polymers because of the high-efficient fire retardance driven by the
synergy between organic and inorganic compounds. Inorganic–
organic FRs hybrids are produced using physical blending, encapsula-
tion, grafting, or intercalation. These processing methods enable the
creation of improved inorganic filler/matrix compatibility, which can
significantly increase the fire retardance of inorganic FRs. The compar-
isons of fire-retardant efficiency among the above four processing
methods are presented in Fig. 7 and Table SIV,12,17,83,123–237 and typi-
cal examples of inorganic–organic FRs are shown in Fig. 8.

a. Physical blending. Physical blending is a common method for
fabricating inorganic–organic FRs, which is a facile technique possess-
ing a high potential for commercial adoption. The effectiveness of
inorganic–organic FRs produced using physical blending can be highly
divergent and unpredictable. As shown in Fig. 7, the loading required
to achieve an UL-94 V-0 rating ranges from 2.12 to 30wt. %, and the
increased LOI and decreased PHRR values ranges between 18.5% and
148.4% and 2.3%–88.8%, respectively. This significant difference
depends on the compatibility between FRs and the matrices, the syner-
gistic effect of the components, and the inherent fire retardance of the
components. For example, Feng et al.143 added modified highly
ordered mesoporous silica (SiO2) with phosphotungstic acid (PWA)
(PWA-SiO2) into PLA by melt blending in association with an intu-
mescent flame retardant (IFR). The presence of 19.0wt. % IFR and
1.0wt. % PWA-SiO2 increased the LOI of PLA by 184.4% and
decreased the PHRR by 70.7% while obtaining an UL-94 V-0 rating.
PWA-SiO2 exhibited a catalytic effect in conjunction with an IFR in
the condensed phase by promoting the formation of continuous dense
char layer and in the gas phase by releasing non-flammable gases. In
another study,148 a new IFR system was formed by APP and a hyper-
branched charring agent. The PHRR of PLA dramatically decreased by
88.8% when loaded with 20wt. % IFR/AHP, which was attributed to
the formation of an intumescent, compact, and strong char layer dur-
ing the degradation. The formation of this char layer led to increased
fire retardance and controlled dripping than using IFR or AHP alone.
Therefore, the physical blending of IFR is an effective method to
enhance the fire retardance of biodegradable polymers.

b. Encapsulation. Encapsulation of inorganic particles within
organic chains is often utilized to improve the water resistance of inor-
ganic FRs, and to optimize the compatibility between inorganic FRs
and polymer matrices to enhance the fire retardance of inorganic FRs
such as APP, aluminum hydroxide (ATH), and ZnO. Yue et al.199 fab-
ricated a core–shell structure of microencapsulated APP with cross-
linked b-cyclodextrin as the shell (MFAPP-CD). They reported 77.4%
and 76.9% decreases in PHRR and THR values of PBAT/25MFAPP-
CD compared to neat PBAT, and a 33.2% LOI and UL-94 V-0 rating.

FIG. 7. Inorganic–organic blending effects on fire retardance. (a) �LOI and (b) �PHRR values of fire-retardant polymers vs loading of inorganic–organic FRs for achieving the
UL-94 V-0 rating.

Applied Physics Reviews REVIEW pubs.aip.org/aip/are

Appl. Phys. Rev. 11, 031321 (2024); doi: 10.1063/5.0210839 11, 031321-9

Published under an exclusive license by AIP Publishing

 10 Septem
ber 2024 02:26:25

pubs.aip.org/aip/are


These improvements were realized because of an effective core–shell
structure that enhanced char forming and reduced emission of vola-
tiles during combustion. Ju et al.211 coated nano-attapulgite (ATP)
with fire-retardant resorcinol bis(diphenyl phosphate) (RDP), and the

LOI value of their PLA nanocomposites with 30wt. % RDP-coated
ATP was 24.5%, and a V-0 rating was attained. They attributed the
improvements to the robust compact chars composed of P–O–P, aro-
matic rings, and Si–O–Si. As illustrated in Fig. 7, inorganic–organic

FIG. 8. Selected examples of inorganic–organic FRs prepared by different assembling methods. Clockwise from bottom left: Image 1, Reproduced with permission from
Hajibeygi et al., Polym. Adv. Technol. 30(9), 2233–2249 (2019). Copyright 2019 John Wiley & Sons.219 Image 2, Reproduced with permission from Zhou et al., Polym. Degrad.
Stab. 178, 109194 (2020). Copyright 2020 Elsevier.217 Image 3, Reproduced with permission from Shi et al., J. Colloid Interface Sci. 524, 267–278 (2018). Copyright 2018
Elsevier.225 Image 4, Reproduced with permission from Jia et al., Composites, Part B 197, 108192 (2020). Copyright 2020 Elsevier.165 Image 5, Reproduced with permission
from Guan et al., Polym. Adv. Technol. 28(11), 1409–1417 (2017). Copyright 2017 John Wiley & Sons.155 Image 6, Reproduced with permission from Gong et al., Polym. Adv.
Technol. 32(4), 1548–1559 (2020). Copyright 2020 John Wiley & Sons.153 Image 7, Reproduced with permission from Liu et al., RSC Adv. 8(8), 4483–4493 (2018). Copyright
2018 Royal Society of Chemistry.145 Image 8, Reproduced with permission from Zhang et al., ACS Sustainable Chem. Eng. 8(16), 6402–6412 (2020). Copyright 2020
American Chemical Society.203 Image 9, Reproduced with permission from Jin et al., Composites, Part A 124, 10 (2019). Copyright 2019 Elsevier.205 Image 10, Reproduced
with permission from Ran et al., Composites, Part B 173, 11 (2019). Copyright 2019 Elsevier.200 Image 11, Reproduced with permission from Zhang et al., Composites, Part A
115, 215–227 (2018). Copyright 2018 Elsevier.198 Image 12, Reproduced with permission from Xue et al., Chem. Eng. J. 397, 125336 (2020). Copyright 2020 Elsevier.12 Image
13, Reproduced with permission from Zhang et al., Polym. Degrad. Stab. 147, 142–150 (2018). Copyright 2018 Elsevier.235
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FRs fabricated through encapsulation necessarily do not possess a
competitive advantage in fire retardance because the levels of increased
LOI and decreased PHRR are moderate. However, encapsulation is
nevertheless effective for preparing inorganic–organic FRs to preclude
FR migration and to improve compatibility between inorganic FRs
and matrices, which in turn aid the simultaneous enhancement of fire
retardance and mechanical properties of polymer matrices.

c. Grafting. Grafting is achieved by introducing organic chains
onto the surface of inorganic substances. For example, to create a
matrix/sepiolite (SEP) interphase to improve nanocomposite proper-
ties, SEP was surface-modified by grafting with DOPO via condensa-
tion between amino groups and salicylaldehyde with a grafting ratio of
12.8%. PLA containing 10wt. % SEP-DOPO showed improved disper-
sion compared with a mixture of 10wt. % DOPO/SEP in a PLA
matrix, with an LOI of 31.5% and an UL-94 V-0 rating. Moreover, the
PHRR of PLA was reduced by 40.7% with a loading of 10wt. % SEP-
DOPO.222 Other inorganic fillers such as hydroxyapatite (HA),219

graphene oxide (GO),221 and ATH228 were grafted by fire-retardant
hexadecyl trimethyl ammonium bromide (CTAB), phosphorus-based
organic additive (PDA), 10–(2,5-dihydroxyl phenyl)-9,10-dihydro-9-
oxa-10-phosphaphenanthrene-10-oxide (DOPO-HQ), and benzene
phosphinic acid (BPA), respectively, to address the agglomeration of
inorganic fillers in polymer matrices and the inadequate fire retardance
of single inorganic fillers. Compared to the �LOI and �PHRR in
Figs. 7(a) and 7(b), FRs fabricated via grafting are efficient in reducing
PHRR values, showing higher PHRR values at relatively low loadings.

d. Intercalation. Intercalation is accomplished by introducing
organic chains into the inner layer of inorganic lamellae rather than
on the surface, to increase the interlayer space and to improve the
dispersion of inorganic FRs. Inorganic lamellas are usually layered

two-dimensional materials, e.g., MXene,12 GO,233 MMT,234 and
LDH.235–237 In our previous research, a novel MXene-phenyl phos-
phonic diaminohexane (MXene-PPDA) nanohybrid was fabricated via
the intercalation of PPDA into the MXene interlayer. The MXene nano-
sheet interlayer spacing was enlarged when as-prepared MXene-PPDA
was dispersed homogeneously in the PLA matrix, leading to the UL-94
V-0 rating, and a�22.2% reduction in the PHRR.12

Comparing the �LOI and �PHRR values by intercalation with
the other three methods, FRs fabricated via intercalation are more effi-
cient. At a constant loading, the�LOI and �PHRR values of interca-
lation are higher than those achieved via physical blending,
encapsulation, or grafting, because the 2D inorganic lamellas used as
intercalating matrices can serve as effective physical barriers, and ulti-
mately leading to higher efficiency compared to 0D/1D particles.

C. Fire-retardant coatings

Fire-retardant coating is an alternative to reactive and additive
FRs for endowing polymers with fire retardance. Fire-retardant coat-
ings work by insulating the substrate from the heat source and pre-
venting or retarding combustion. Throughout all references of fire-
retardant biodegradable polymers in the last decade, only cellulose
materials, in the form of aerogel, fiber, paper, and fabric, were coated
with various fire-retardant coatings and exhibited substantial improve-
ments in fire retardance, with detailed results shown in Table SV and
Fig. 9.20,21,238–243

K€okl€ukaya et al.238 coated a nanofibril (CNF) aerogel with cat-
ionic chitosan (Ch), anionic poly(vinylphosphonic acid) (PVPA), and
anionic montmorillonite clay (MMT) using a rapid layer-by-layer
technique [Fig. 9(a)], where the coating acted as an IFR. The CNF
aerogels treated with quadlayers were able to withstand the penetration
of a butane flame torch, with a 79.2% decrease in the PHRR compared

FIG. 9. The preparation processes of biodegradable polymers with fire-retardant coatings via different methods. (a) Reproduced with permission from K€okl€ukaya et al., ACS
Appl. Mater. Interfaces 9(34), 29082–29092 (2017). Copyright 2017 American Chemical Society.238 (b) Reproduced with permission from Safdar et al., Mater. Chem. Phys. 311,
128568 (2024). Copyright 2024 Elsevier.21 (c) Reproduced with permission from Zhang et al., Ind. Crops Prod. 180, 114738 (2022). Copyright 2022 Elsevier.20
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to untreated CNF aerogel. The impressive fire retardance was attrib-
uted to the combined effect of MMT, PVPA, and Ch, which favored
char formation and reduced the release of flammable volatiles.

Cellulosic papers were coated by various combinations of inor-
ganic–organic and organic–organic FRs,239–241 and a coating consist-
ing of nanoclay and microfibrillated cellulose binders showed the best
fire retardance, with the PHRR and THR decreased by 95.5% and
95.8%, respectively, compared with the uncoated control. The
improved fire retardance was driven by the formation of a protective
char layer during the degradation of the surface coating.239

Cellulosic fabrics were coated with different synthesized
P-containing compounds using electrostatic force or covalent bond-
ing.20,21,242,243 For example, Safdar et al.21 developed a robust fire-
retardant coating for cellulosic fabric using phytic acid in combination
with [3–(2-aminoethylamino)-propyl]trimethoxysilane (AAPTMS),
and application of an electrostatic force. This phosphorous and silica-
rich hybrid system was coated onto the fiber surface to render durable
fire-retardant properties that increased the LOI value by 63.2%
[Fig. 9(b)]. Zhang et al.20 prepared multi-amino phosphoramides
(BPEI/DPn) and coated them on cotton fabric bridging with 1,2,3,4-
butanetetracarboxylic acid (BTCA) [Fig. 9(c)]. They found that BPEI/
DP4 (molar ratio of BPEI:DP¼ 1:4)-coated cotton fabric presented
superior fire retardance with self-extinguishing and LOI value of
27.9%, with PHRR and THR values decreased by 35.0% and 24.6%,
compared with the unmodified cotton.

Therefore, fire-retardant coatings fabricated by various types of
FRs, their combinations, or using most optimal processing and appli-
cation methods can provide effective fire retardance to cellulose sub-
strates. Importantly, physical, or chemical interactions between the
coating and the matrix are beneficial for improving the efficiency and
durability of such fire-retardant coatings.

V. FIRE-RETARDANT MECHANISMS AND THE
INFLUENCING FACTORS OF FIRE RETARDANCE

Fire-retardant mechanisms exhibited by the FRs discussed in
Secs. IVA–IVC of this review are elucidated in this section. For three
types of FRs, i.e., intrinsic FRs, additive FRs, and fire-retardant coat-
ings, their fire-retardant efficiency is influenced by a range of factors,
with detailed information shown in Fig. 10 as follows.

A. Mechanism of reactive FRs

For reactive FRs, individual fire-retarding elements (Si, N, and P)
have a unique impact on the fire retardance in the resulting polymer
form. The fire-retardant mechanism of silicone FRs is realized in the
condensed phase by producing a cracked char layer and improving its
oxidation resistance to protect the polymer matrix. N-containing FRs
react with oxygen to produce oxynitride, which can absorb heat during
combustion and lower the combustion temperature, in addition to
diluting the concentration of combustion gas, and reducing the volume
of smoke. Therefore, Si-containing FRs act mainly in the condensed
phase, whereas N-containing FRs act in the gas phase, and their com-
bination works effectively across condensed and gas phases, which is
preferable than using a Si- or N-containing FR alone.

P-containing FRs are widely recognized because of their high effi-
ciency in the condensed and gas phases. In the condensed phase,
P-containing radicals are derived from the decomposition of
P-containing FRs, which can capture O, H, and OH free radicals that

can interrupt the chain reaction and retard the combustion process. In
the condensed phase, P-containing FRs decompose into phosphates or
polyphosphates to dehydrate the polymer matrix, and P-containing
compounds as cross-linking agents lead to the cyclization, cross-
linking, aromatization, and graphitization of the matrix to form a
dense char layer, which can effectively slow down the rate of heat
transfer and protect the underlying material from combustion. The
efficiency of P-containing compounds highly depends on the total
phosphorous content in the polymer.

B. Mechanism of the additive FRs

The fire-retardant performance of additive FRs is elucidated sepa-
rately from inorganic FRs, organic FRs, and inorganic–organic FRs
because of the distinct physical and chemical properties of FRs.

1. Inorganic FR mechanism

Endothermic and catalytic carbonization effects of inorganic
compounds are the main fire-retardant mechanism during combus-
tion within polymer matrices. However, the fire retardance greatly
depends on the loading, particle size, morphology, and components of
the inorganic FRs. Theoretically speaking, the higher the loading of
FRs, the better the fire retardance of the polymer matrix. However, it
does not translate into a higher efficiency, as aggregation of inorganic
particles may occur at higher loadings, which can also deteriorate the
mechanical properties of the polymer matrix. FRs in nanoscale, two-
dimensional, and multiple components show outstanding fire retard-
ance, which is because of the following reasons. (1) Nanoscaled FRs
with large surface areas can fulfill a more significant function at lower
loadings provided that the FRs are well dispersed within the polymer
matrix. (2) In addition to the heat absorption ability and catalytic car-
bonization of inorganic FRs, two-dimensional FRs with multiple layers
can serve as effective physical barriers to block the delivery of heat and
oxygen. (3) Inorganic FRs with two or three components can exhibit
fire-retardant synergism and enhance the dispersion of inorganic
particles.

FIG. 10. Influencing factors of fire retardance for biodegradable polymers.
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2. Organic FR mechanism

Organic FRs are usually synthesized through reactions between
P- and N-containing compounds, which can lead to fire-retardant
effects across the condensed and gas phases. Therefore, the fire-
retardance mechanism of organic FRs is similar to that of intrinsic
FRs. Among the three types of organic FRs, linear polymers exhibit a
superior fire-retardant effect on degradable polymers than small mole-
cules and nonlinear polymers. As most degradable polymers studied in
this study are linear polymers, which have superior compatibility with
linear polymer FRs, small molecules or nonlinear polymers are more
likely to be used as fillers or plasticizers. The exact, in-depth mecha-
nism of the higher efficiency of linear polymers compared with small
molecules and nonlinear polymers requires further investigation.

3. Inorganic–organic FR mechanism

Inorganic–organic FRs are clearly the high performers of syner-
gism and address the challenge of poor compatibility of inorganic fill-
ers with polymer matrices. Therefore, the fire-retardant mechanism of
inorganic–organic FRs is a combination of the inorganic and organic
FR mechanisms discussed. The processing route of inorganic and
organic FR hybrids, including physical blending, encapsulation, graft-
ing, and intercalation, can directly determine the dispersion condition
of inorganic substances and the fire retardance of inorganic–organic
FRs. Although physical blending of inorganic–organic FRs is the most
convenient method especially for mass production scalability, the reli-
ability of the resultant fire retardance is often questionable.
Encapsulation, grafting, and intercalation of inorganic compounds by
organic chains are all effective methods to improve the hydrophobicity
of inorganic particles and their compatibility with the matrix. Among
these three methods, FRs prepared by intercalation show the most
desirable range of fire-retardant performance, which is largely because
of their 2D-nanosheet-driven mechanistic effectiveness toward retard-
ing fire.

C. Mechanism of fire-retardant coatings

In addition to the type of FRs, the efficacy of fire-retardant coat-
ings depends more on the application methods and interactions
between the coating and the matrix. When the surface of polymer
matrix is coated by a fire-retardant coating via physical or chemical
interaction, the durability of the coating can be maintained along with
the fire retardance.

In short, the fire retardance of fire-retarded biodegradable poly-
mers is influenced by: First, the element type of FR can directly affect
the mode of fire-retardant action in both the condensed and gas
phases. Second, the elemental loading of FR is proportional to the fire-
retardant properties in the matrices. Then, the dispersion and compati-
bility of FR in/with the matrix are two crucial factors that can influence
the fire-retardant efficiency and overall range of matrix properties.
Finally, the combination of multiple FRs leads to a range of synergistic
roles in fire retardance, making up for deficiencies in individual FRs.
Therefore, nanosheets intercalated by organic chains with high phos-
phorous content, if combined with well-chosen FRs, can confer better
fire retardance for the biodegradable polymers. This strategy can also
be applied to other polymer materials.

VI. EFFECT OF FRS ON OTHER PROPERTIES OF
BIODEGRADABLE POLYMERS

Except fire retardance, FRs in various types exert different effects
on other properties of the polymer matrices, such as crystallization,
durability, and mechanical properties.

For example, intrinsic FRs grafting into the main chain of the bio-
degradable polymers have the ability to increase the mechanical prop-
erties (such as strength, modulus, and strain) of the matrices as well as
endowing extra properties, e.g., antibacterial and antioxidant activity,
biocompatibility, and thermal insulation to the synthesized polymer
matrices (Table SI). Fire-retardant coatings acting as protective layers
can bring antibacterial activity, writability and washing durability to
the polymer matrix, which help to expand the practical applications of
fire-retardant degradable polymers (Table SV).

The constant concern of the additive FRs is the contradiction
between the fire retardance and mechanical properties, since the poor
compatibility between the FRs and matrices have negative effect on the
mechanical properties of the resulting fire-retardant composites. As
for inorganic additive FRs, they serve as reinforcing substances in the
polymer matrix, thus leading to increased strength and modulus but
decreased break strain. In addition, due to the specific properties of
inorganic FRs, such as zinc borate, graphene, and carbon nanotube,
they can bring extra properties to the polymer matrix like electromag-
netic shielding and thermal conductivity. Different organic additive
FRs may have totally adverse effect on the mechanical properties of the
matrix, which highly depends on the chemical structure of FRs and the
interfacial interaction between the FRs and matrices. Inorganic–
organic FR is a compensator for inorganic FR since the organic com-
ponent facilitate the dispersion of inorganic fillers in the matrices, thus
avoiding the stress concentration and improving the mechanical prop-
erties of the polymer matrices. Note, the preparation method of inor-
ganic–organic FRs (including physical blending, coating, grafting, and
intercalation) and their applicability to the matrix greatly affect the
final effect (Tables SII–SIV).

According to above brief summary, the effect of FRs on other
properties of biodegradable polymers is diversified and complicated,
which depends highly on the structure of FRs. Since the balance
between the fire retardance and other properties and the exploration
of biodegradable polymers with comprehensive performance is impor-
tant to expand their application fields, the in-depth study on the corre-
lations between the FRs and other properties of biodegradable
polymers is indispensable.

VII. SUMMARY AND PERSPECTIVES

This review introduces the structures of biodegradable polymers
identified with polymers produced from microbial source, natural pol-
ymers, and synthetic polymers, and summarizes the fire behaviors of
biodegradable polyester and carbohydrate during combustion. The fire
retardance of biodegradable polymers with FRs in the category of reac-
tive FRs, additive FRs, and fire-retardant coatings is reviewed. In par-
ticular, the fire-retardant performance of additive FRs from their
respective chemical and physical properties is evaluated. The fire-
retardant mechanisms and factors influencing fire retardance are also
highlighted. It is concluded that the element type, element loading, dis-
persion, and compatibility of FRs in/with the matrix, and the synergis-
tic effect between several FRs are the key factors that can influence the
fire retardance of biodegradable polymers with FRs. Nanosheets,
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intercalated by organic chains with high-content phosphorus, if com-
bined with well-chosen FRs, can provide superior fire retardance to the
biodegradable polymers. This work provides valuable suggestions for
improving the fire retardance of biodegradable polymers or other gen-
eral polymer materials, which can broaden the practical applications of
biodegradable polymers beyond their current strengths, into high-tech
fields, such as electronics and devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for the performance data of bio-
degradable polymers fire-retarded by diverse FRs.
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