

A low cost vision-guided car for autonomous racing car competitions

Samuel N. Cubero, Donal Tjoe

Department of Mechanical Engineering
Curtin University of Technology

Perth, Western Australia

Abstract

 This paper presents a brief “case study” report
on the design and performance of a low-cost self-
driving, self-learning vision-guided robot car (VIC)
that can drive in a left or right side lane and even
identify and overtake obstacles or vehicles in front
of it. In the future, it is hoped that more of these
types of low-cost robots will be built and used for
fully autonomous robotic racing car competitions.
 Topics that are covered herein include a brief
description of CMU’s NAVlab self-driving car,
which inspired this work, low-cost mechanical and
electronic hardware, image analysis, object
detection, ANN (Artificial Neural Network) training,
the control software, test results and future work to
improve robot performance and capabilities.

1 Introduction

This paper discusses in detail a “case study” report on
the design and development of a “Vision-guided
Intelligent Car” (called VIC), designed and built by Donal
Tjoe and Sam Cubero at Curtin University of Technology,
Australia. The Vision-guided Intelligent Car (VIC)
project started in early 2004. The predecessor of the VIC,
called the “CARbot” [1], built in 2003, relied on a single
1D line-scan camera and it was found that it could not
collect enough information to execute reliable overtaking
manoeuvres. The goal was to build a miniature version of
the NAVlab vision-guided automobile and implement
automatic steering and speed control for a radio-controlled
toy car so that it can serve as a basic platform for image
analysis and vision guidance experiments in the future.

2 CMU “NAVLab” self-driving car

 “Autonomous Land Vehicle in Neural Network”
(ALVINN), Figure 1, was a project developed at Carnegie

Mellon University (CMU), headed by Dean Pomerleau [2]
in 1989. The test vehicle was called “NAVLab”.

NAVLab took advantage of “Artificial Neural
Network” (ANN) learning ability to establish an
intelligent navigator for the vehicle. NAVLab was
equipped with a vision system that was aimed at the road
ahead of the vehicle. The artificial intelligence software
learned the driving methodology by watching all the
actions of a human driver in response to video images
seen during normal driving conditions. As the vehicle was
driven on the road under human guidance, the computer
system recorded the video images and the human steering
movements during a recording phase. The recorded data
was then used for training, ie. adjusting the weights of the
neural network, so that the ANN could learn how to drive.

Figure 1. NAVLab vision-guided car [2]

During on-road tests, ALVINN showed satisfactory

performance and was reported to have been able to
successfully drive a car across the USA “hands free” for
98% of the entire journey. It managed to navigate
autonomously and safely in different types of
environments including single lane dirt roads, suburban
neighbourhood streets and on two-lane highways at speeds
up to 80 km/hour. However, despite the robustness of the
system, there were a few drawbacks to its design. Firstly,
the network training procedure was performed “on-the-
fly”, which means that the training was done at the same
time as the recording, ie. the network was set to learn
instantaneously as the human trainer drives the vehicle.
Thus, the network could not learn how to perform a
recovery manoeuvre unless faced with a real disaster, eg.

Another motorist performs an illegal move which could
lead to a collision or a car in front suddenly stops quickly.

Figure 2. Neural Network [2 Pomerleau]

Effective emergency manoeuvres cannot be controlled

by the driver or trained “on the fly”, and hence, corrective
action must be preprogrammed in order to implement
“defensive driving” techniques, like swerving to avoid
obstacles, other vehicles or pedestrians. The second
drawback of the system comes from the ineffective image
processing applied to the acquired images. Since the
project was done in the late 1980’s, complex image
processing was not feasible because the available
hardware simply was not fast enough to process the vast
amount of video data in real-time and respond at high
speeds. Another common problem of forward facing
video cameras is saturation of the CCD sensors caused by
the reflection of sunlight from the road, especially when
the vehicle is driving towards the sun during early
morning or late afternoon hours. Sensor saturation means
that the data values for most pixels are at their maximum
levels due to excessive, uncontrollable light energy from
the sun, hence, this renders CCD sensor data useless for
image analysis and guidance purposes because there is not
enough contrast between the brightest and darkest pixels
in the image. This last drawback is a common problem
for most forward facing vision systems because it is
impossible to control the position of the sun relative to the
direction of the road in order to avoid direct or intense
reflected sunlight reaching the CCD sensor. Several
automobile manufacturers (including BMW and Mercedes
Benz), have developed prototype cars that can
automatically steer and drive themselves using forward
facing video cameras, however, such vehicles were

probably not put into mass production due to the high risk
of sensor saturation and unavoidable system failure.
Unfortunately, even today, the risks of failure and costs of
implementing such systems in existing cars are very high.
(eg. AssistwareTM in the USA marketed their automatic
steering system for about US$30,000 per vehicle).

3 Artificial Neural Networks (ANN)

Humans possess the ability to learn from experience.

This ability allows people to make accurate predictions
and judgements while dealing with new situations by
associating the situation faced with previous experiences.
This explains how humans can increase their performance
in sports after going through several training sessions, and
how humans can perform tasks such as recognising a
person from a photograph, or by only hearing the person’s
voice. It is not easy to appreciate that a simple task that
many of us take for granted, like catching a ball, is
actually comprised of several complex procedures. To
catch a ball from the air, the brain has to make judgements
based on the 3D image captured from the stereo eyes and
relate this to the position of the hands in 3D space so that
the hand can move towards the expected future 3D
position of ball in order to grab it at the expected time of
impact. Subsequently, the brain has to send signals to the
motoric nerves to actuate the hands accordingly. Such
complex procedures are almost impossible to describe
using pure logic and mathematical formulae, but
surprisingly, a trained human brain can execute such tasks
relatively quickly and efficiently, and with a high degree
of accuracy because of the way that human brains are
constructed. A biological brain consists of billions of
information-processing units called neurons. These
neurons are interconnected by junctions called synapses.
A neuron receives information from other neurons or
senses through synapses. The information is then
processed to generate an output, which is later sent to
other neurons or response units, also through a synapse.
The strength of each synapse connection is constantly
adjusted in the learning process. This is how memories
are stored in a human brain. Memories in the brain are
chemical residues created and built up by frequent
repetition of connective actions between brain cells,
although, the entire process of how brain cells behave and
operate is still largely a mystery to scientists even today.

Artificial Neural Network (ANN) technology is a
branch of artificial intelligence that models the
construction of a biological brain with the aim of attaining
human-like abilities in performing cognitive tasks.
Kohonen (1988) [3] defined ANN as massively parallel
interconnected networks of simple (usually adaptive)
elements and their hierarchical organisations, which are

Sharp Left Straight Ahead Sharp Right

intended to interact with the objects of the real world in
the same way as biological nervous systems.

ANN is prominent in performing tasks such as pattern
recognition and object classification. A neural network
can be trained using a set of sample input patterns and
expected output patterns. When faced with other input
patterns, the network can predict the output patterns based
on its training.

Neural networks are widely used in technologies such
as character recognition, pattern matching and speech
recognition. The main advantages of ANN include the
capacity to be trained to classify poorly structured inputs,
robustness against noise in data (fault tolerance),
flexibility (the ability to generalise) and the ability to
“learn from experience or training”. However, ANN is
not without its disadvantages, as listed below. Neural
networks have poor knowledge representation and
explaining capability, thus making it difficult to learn or
follow its logic of making or predicting future decisions.

3.1 Neural Network Architecture

An artificial neural network consists of a number of
very simple and highly interconnected processors, also
called neurons, which are analogous to the biological
neurons in the brain. The neurons are the main
component of an ANN. An individual neuron can collect
a number of inputs from the system inputs or other
neurons and then generate a single output, all through
links that are analogous to synapses in biological brains.
The output signal from the neuron, in turn, splits into a
number of branches that transmit the same signal.

Figure 3. Typical Neural Network Architecture

Each of the links that connect the neurons has a
numerical weight associated with it. Weights are the basic
means of long-term memory in neural networks. They

express the importance of each neuron input, and similar
to the biological brain, a neural network learns through
repeated adjustments of these weights.

A typical ANN is made up of a hierarchy of layers
(Figure 3) and the neurons in the networks are arranged
along these layers. The neurons connected to the external
environment form input and output layers. The weights
are modified to bring the network input/output behaviour
into line with that of the environment.

Figure 4. Neuron Connections

Figure 5. Internal Neuron Computation Process

Figure 6. Sigmoid activation function

There are four types of activation functions commonly

used in the neural networks field, namely the step, sign,
linear and sigmoid activation functions. The form of
activation currently utilized in this project is the sigmoid
function. Hence, it is appropriate to further discuss this

method, while the various other methods of activation will
not be described in this “case study” report.

The equation of a sigmoid activation function is
expressed as follows:

Ysigmoid =
Xe−+1

1 (1)

X = ∑

=

−
n

i
xiwi

1
θ (2)

Where xi and wi is the value of input i and weight i
respectively, θ is the local threshold and n is the number
of inputs fed to the neuron. The sigmoid function is
shown in Figure 6.

3.2 Back-propagation Algorithm

“Back-propagation” is a technique used for training
feed-forward neural networks (networks that have no
feedback or those with no connections that loop). During
the training, the network is presented with a set of sample
input signals along with the expected output signals and
through a number of iterations or epochs, the output of the
network is forced to converge to the expected output
signals by adjusting the weights of neuron connections.
The term is an abbreviation for “backwards propagation of
errors”. As the algorithm’s name implies, error signals are
propagated backwards for weight modification purposes.
For a three layer feed-forward neural network,
Negnevitsky [4] derived the back-propagation learning
algorithm into the following steps:

Step 1: Initialisation
 Set all the weights and threshold levels of the
 network to random numbers uniformly
 distributed inside a small range, eg. (-0.5, 0.5)

Step 2: Activation
 Activate the back-propagation neural network by
 applying inputs x1(p), x2(p),… xn(p) and desired
 outputs yd,1(p) yd,2(p),…..yd,n(p).
 (a) Calculate the actual outputs of the neurons in
 the hidden layer:








 −×= ∑
=

n

i
jijij pwpxsigmoidpy

1
)()()(θ (3)

 where n is the number of inputs of neuron j in the
 hidden layer, and sigmoid is the sigmoid
 activation function.
 (b) Calculate the actual outputs of the neurons in
 the output layer:









−×= ∑

=

m

j
kjkjkk pwpxsigmoidpy

1

)()()(θ (4)

 where m is the number of inputs of neuron k in
 the output layer.

Step 3: Weight training
 Update the weights in the back-propagation
 network propagating backward the errors
 associated with output neurons. Steps (a) & (b):
 (a) Calculate the error gradient for the neurons
 in the output layer:
 δk(p) = yk(p) [1-yk(p)] ek(p) (5)
 where
 ek(p) = yd,k(p)-yk(p) (6)
 Calculate the weight corrections:
 ∆wjk(p) = α yj(p) δk(p) (7)
 where α is the learning rate parameter.
 Update the weights at the output neurons:
 wjk(p+1) = wjk(p) + ∆wjk(p) (8)

 (Step 3 continued on next page…)

Figure 7. System Hierarchical Chart for the VIC (Vision-guided Intelligent Car) robot

(Step 3) (b) Calculate the error gradient for the neurons
 in the hidden layer:
 [] ∑

=

××−×=
l

k
jkkjjj pwppypyp

1
)()()(1)()(δδ (9)

 Calculate the weight corrections:
 ∆wij(p) = α xi(p) δj(p) (10)
 Update the weights at the output neurons:
 Wij(p+1) = wij(p) + ∆wij(p) (11)

Step 4: Iteration
 Increase iteration p by one, go back to Step 2 and
 repeat the process until the selected error
 criterion is satisfied.

 The error criterion in this design is based on the sum of
the squared error of the output layer neurons. The sum of
the squared error acts as an indicator of the network’s
performance. When the value of the sum of squared
errors in an entire pass through all training sets, or epoch,
is sufficiently small, the network is considered to have
converged to the desired pattern and the training can be
stopped.
 The artificial neural network used in this design was
coded in software using Microsoft Visual BasicTM 6.0
Professional for the Windows 9x/ME/2000/XP 32-bit
operating system (OS), which is capable of accessing
video streams from many sources. There were numerous
free downloadable ANN packages available on the
internet and using them may have simplified this particular
part of the design. However, since the neural network was
only one part of the control software and it had to work
together with the other software control components, such
as the image processing and the navigation algorithm, it
was easier to build a neural network specially designed to
match VIC’s software requirements rather than adjust 3rd
party software which could introduce many developmental
limitations. The implementation of the ANN in the
control software will be discussed later in this paper.

4 Hardware for the VIC robot

 Figure 8 illustrates the flow of data communications
between the vehicle and the base station (PC, or personal
computer). As the vehicle moves around the track, video
streams are sent from the on-car camera to the base
station. The base station would then create a navigation
decision to keep the vehicle on the track (even staying
within an intended lane) based on the received road
images. This navigation decisions were sent as command
lines to a microcontroller unit (MCU) on the vehicle
through a serial communication line. The microcontroller
controlled the speed of the drive motor and the steering
angle of the vehicle based on this command line. The

detailed design description of the entire system is clarified
in following sections. The base of the VIC vehicle is the
chassis of a TamiyaTM m-02 (1:10 scale) radio controlled
car [5] with rear drive and independent front steering.

Figure 8. Communication between VIC and PC

Figure 9. Top view of the VIC robot

 The position for the Futaba S3003 servomotor (for
steering the front wheels) was set by feeding it a PWM
(Pulse Width Modulated) signal with a pulse width
ranging between 1ms to 2ms, at a frequency of about 50 to
60Hz (or a period between 15-20ms). The relationship
between the width of the pulses and angular position had
first to be observed experimentally to achieve accurate
control because the 1ms to 2ms pulse width dictates the
stopping position for the servomotor output shaft.

Atmel AVR
8535 MCU

(Wireless)

Front steering
driven by
servomotor
controlled with
PWM from
MCU

Normally, sending a 1ms wide pulse would position the
steering servomotor shaft to 0o, and sending a 2ms wide
pulse would turn the shaft to the maximum position, 180o.
Therefore, to make the servo turn to the neutral position
(90o), the pulse had to be 1.5ms wide. The rear wheels
were driven by a single H-bridge controlled DC motor
(with gearbox) which could be controlled to move the VIC
robot forwards and backwards at variable speeds. The H-
bridge drive circuit is shown in Figure 10, showing the
input signal “a” (PWM signal with a duty value ranging
between 0 and 100%). Both drive and steering motors
were completely controlled by the software in the MCU.
The vehicle was powered by two separate batteries. The
first battery was a 7.2V 1500mAH battery pack, normally
used for radio control cars. With such sizeable capacity,
the battery was able to power the entire vehicle (except
the video camera); this included the rear motor, the
servomotor and the microcontroller. The video camera
was powered using a standard 9Vdc battery.

Figure 10. H-bridge circuit to drive rear wheels

 The camera used for the vision system was a wireless
CMOS camera manufactured by Shenzhen Lianyida
Science Company [6]. The camera was equipped with a
transmitter device and the video stream was sent to the
receiver through a 2.4GHz RF transmission. The camera
can transmit video images up to a distance of 50m.
 The camera provided a two dimensional image with a
resolution of 384x289 pixels (PAL-B format). The
graphic input capture card in the PC converted this data
into 24-bit RGB format. The wireless video receiver was
made by the same company that manufactured the wireless
camera. The LYD-RC100 is powered by 9V DC source.
It received data with the same frequency of 2.4GHz. The
video receiver outputted analogue video steams in PAL-B
format to the base station PC video capture card. The

graphic input capture card used was a TV tuner card,
namely a PlayTV ProUltraTM, manufactured by
PixelViewTM. The capture card was capable of receiving
a composite video stream from colour CCD camera,
recording the video input and displaying it on the monitor.
The video stream could be accessed from the Microsoft
WindowsTM clipboard in form of RGB arrays (24-bit
colour, 8-bit Red, 8-bit Green, 8-bit Blue) and analysed in
Visual BasicTM 6.0 for Microsoft WindowsTM 98SE/XP.

Figure 11. White race-track for testing VIC robot

 The VIC robot was tested on a white track painted
over black panels. The test track, shown in Figure 11, was
made 55cm wide to provide enough room for the vehicle
to overtake obstacles and other vehicles.

5 Embedded control software for the MCU

 The embedded software was written in C, compiled
using CodeVisionTM, targetting the AtmelTM AVR
AT90S8535 microcontroller [7] (MCU). The software
was designed essentially to receive instructions from the
base station PC and generate the appropriate PWM signals
for both the steering and driving motors. The instructions
sent by the base station were in the form of an 8-bit
command byte which was divided into two 4-bit command
codes or nybbles by the MCU. The first nybble (bits 7, 6,
5 and 4) carried the desired speed level and the second
nybble (ie. bits 3-0) carried the desired steering direction.
 Figure 12 shows the “control byte” sent from the PC to
the MCU via serial communications (RS232 COM1 port
to UART) to control drive and steering motors, allowing a
range of up to 16 control values for each motor.

Figure 12. Control byte sent from PC to MCU

DC motor

+7.2 V dc (can be higher
depending on transistors)

PWM signal from
MCU (signal “a”)

Inverted PWM
signal (not “a”)

GND

 The “control byte” allows the VIC robot to have up to
16 steering angles and 16 speed levels. However, in the
final design, in order to simplify the neural network
architecture, the steering direction was limited to seven.
The 16 speed levels were divided to eight forward speeds
and eight backward speeds, where zero corresponded to
the maximum forward speed and fifteen corresponded to
the maximum reverse speed. Levels 7 and 8 were in the
middle of the range, thus, the DC average voltages of the
PWM signals at these particular levels were very close to
zero and resulting torques generated by the driving motor
were not sufficient to move the vehicle. Consequently,
these two levels were used for braking purposes.
 The seven steering codes carried by the command line
were represented by an integer ranging from zero to six.
The binary code 3 corresponded to the straight steering
direction. Binary codes lower than 3 were for left-turning
with 0 as the sharpest left-turn steering angle. Binary
codes higher than 3 corresponded to right-turn steering
directions with 6 giving the sharpest right-turning steering
angle. The command codes for controlling all steering
and driving movements are shown in Figure 13.

Figure 13. Command codes for the VIC robot

 The Visual Basic “MS-Comm” ActiveX control
component was used to send single-byte commands from
the RS232 COM1 PC serial port to a MAX232 chip and
the RxD (receive) pin of the MCU’s UART hardware.

6 Image analysis for VIC navigation

 The control software was named TRAVIC (Track
Routing Algorithm for VIC). It includes components for
image processing, artificial neural network control and a
navigation algorithm. The relationship between these
three components in TRAVIC is illustrated in Figure 14.

Figure 14. Components of TRAVIC controller

 The TRAVIC software has only one input from the
vehicle vision system. The image processing interprets
the visual input, acquires the position of the road edge and
detects the presence of object in front of the vehicle. If an
object (in this case another vehicle) is present, the image
processing software obtains the position of the object.
 The navigation algorithm determines the steering mode
based on conditions in front of the vehicle. The available
modes are “normal”, “overtaking” and “transition” mode.
In normal mode, the vehicle cruises in the left hand side of
the road at its normal speed. It is assumed that the object
or vehicle in front is only visible in the left lane of the
track, hence, when overtaking, VIC must change its
orientation by performing a translation from the left lane
to the right lane of the track. VIC maintains its position
on the right hand side of the road for a specific time
before changing back to left hand side. The transitional
mode is very short in duration and is activated when the
vehicle completes the overtaking manoeuvre. As its name
suggested, it is a transitional phase from overtaking to
normal mode. During this mode, the vehicle switches
back to the left hand lane and the speed is set at a lower
level. The purpose of this is to bring back the vehicle to
its normal speed quickly prior to lane changing.
 The acquired road edge position and the steering mode
are used by the neural network to predict a desirable
steering response. The neural network needs to be trained
twice so that the vehicle can drive on both sides of the
track. Thus, there are two sets of weights that must be
trained, one set for each “lane” of the dual-lane track.

When the vehicle is in normal mode, the Left Hand Side
(LHS) weights are set to “active” so that the vehicle can
maintain its position in the left side or left lane of the road.
If the overtaking mode is activated, the network must
switch from the LHS weights to the Right Hand Side
(RHS) weights. Once the overtaking is completed and the
mode is set to transition mode, the neural network
switches back to the LHS weights and it remains active
until the next overtaking procedure occurs. The road edge
positions are basically the inputs for the neural network.
The inputs and the active set of weights generate the
steering direction to maintain the vehicle’s position in its
corresponding lane.
 The forward speed level of the car is determined based
on the steering direction generated by the neural network
and the active steering mode. For each mode, the straight
steering direction corresponds to the highest speed level.
The sharper the turning direction, the lower the speed
level. The speed levels for each steering direction and
modes are given in Table 1 (Compare Figure 13). The
values in Table 1 were obtained from several experiments
and were chosen to best suit each mode of driving.

Table 1. Speed Level for different modes of VIC

SPEED LEVEL
STEERING

DIRECTION Normal
Mode

Overtaking
Mode

Transition
Mode

0 5 6 6
1 5 5 6
2 5 5 6
3 4 3 6
4 5 5 6
5 5 5 6
6 5 6 6

6.1 Road Edge Detection

 The main goal of the road edge detection was to
provide the neural network with a set of data that
indicated the current shape of the track ahead in a simple
manner rather than feeding all the RGB data of the entire
screen to the network. The edge detection only analysed a
part of the screen that displays the track. The area of
interest was divided into 8 rows where in each row the
software searched for both edges of the road by looking
for the points where the colour turns from dark to bright
and vice versa. Basically, the outcomes of the edge
detection were a set of sixteen coordinates which were
divided into two groups of eight. One group contained the

left road edge coordinates and the other group contained
the right road edge coordinates.

Figure 15. Edge detection in the area of interest

Figure 15 shows a snapshot of the vision system screen
displaying the road with edge detection applied to the
image. The eight left-side dots indicate the pixel positions
where the software detected transitions from dark to
bright, and the eight right-side (darker) dots indicate the
pixel positions where the software detected transitions
from bright to dark. Due to the camera’s limited field of
view, the vision system can only show one edge of the
road. In Figure 15, part of the right-side edge is detected.
A simple “bisection” algorithm is used to scan along each
of the eight scanned “lines” to find the transition positions
between “dark to bright” pixels (left side dots) and “bright
to dark” pixels (right side dots).

Figure 16. Edge detection for left side of track

Figure 17. Bisection method for edge detection

The bisection method allows an edge to be detected very
quickly and efficiently. To show the effectiveness of
binary search, consider a line of 20 black and white pixels
shown in Figure 17. For each iteration, the light coloured
central arrow shows the “bisection” point or middle value
between the two outer dark arrows. The transition from
dark to bright occurs at pixel 12 and 13 because the pixels
are side-by-side and the difference between their
brightness values exceeds a set threshold value. If the
edge detection is done by applying linear search, (ie.
checking the difference in brightness between every pair
of neighbouring pixels to see if it exceeds a threshold
value), it would take 12 iterations or loops until the target
is achieved (up to 19 for a worst case edge). A binary
search needs only 5 iterations for this simple example.

Figure 18. Object recognition

6.2 Object Recognition

 The purpose of object recognition for the VIC robot is
to detect the presence of a vehicle or object in front of the
car. When another vehicle is found present in front of
VIC, the object recognition algorithm draws a rectangular
box around the image of that vehicle, measures the area of

the box and locates the centre of the area. (Figure 18)
This information is used later in the navigation algorithm
for driving around or overtaking the object so that a
collision is avoided and the VIC robot can continue
driving around the vehicle or obstacle.
 Figure 18 shows a snapshot of the TRAVIC software
detecting another vehicle, identified by the black box.
The software also calculated the position of the object’s
centre of area, marked with a centroidal black dot. The
back part of the vehicle in front was covered by a yellow
card box so that it would stand out from the black and
white environment to make it easy to recognize.
 The object detection was carried out by performing a
scan over a specific area of interest searching for the
colour yellow (shown shaded in Figure 19, ie. pixels with
strong red and green colour data but with weak blue). The
area of interest was divided into 16 rows and 36 columns
of cells. Each of these cells included 25 pixels (5x5 rows
and columns). When the majority of these pixels in one
cell were filled with the colour yellow then the cell was
said to be “positive”. Figure 19 illustrates the colour-
scanning scheme over the area of interest. It shows how
the positive or yellow cells are marked with “1” (those
with a majority of yellow pixels) and the rest are marked
with “0” (those with a minority of yellow pixels). A
rectangular box is drawn surrounding the positive “1”
cells and the centre of this box is located mathematically.

Figure 19. Object scanning

7 Artificial Neural Network implementation

 The neural network in this design gave the TRAVIC
control software the ability of learning so that it could
grasp the concept of navigation and automatically drive
and steer the VIC robot based on “experience” learned
from training runs. The ANN is shown in Figure 20.

Figure 20. Artificial Neural Network for the TRAVIC controller software

7.1 Weight training for automatic steering

 The network was trained with a set of recorded sample
data so that it could deduce or predict the most suitable
steering response by observing the left and right road edge
positions. The neural network implemented in this design
was a four layer feed forward network, trained with a back
propagation algorithm.

Figure 21. Training the ANN for self-steering

 The input layer consists of sixteen input units and the
output layer consists of three output units. The inputs to
the neurons in the input layer came from the output of the
road edge detection. The first eight units were sourced by
the coordinates of the left edges and the other eight units
were sourced by the coordinates of the right edges.
Between the input and output layers, there are two hidden
layers. The first hidden layer consists of 12 neurons and
the second hidden layer consists of 10 neurons. The
outputs of the three output neurons forms a binary number
that represents a 3-bit steering direction (value 0 to 6).
 Figure 21 shows the training method used in the design
to teach the vehicle how to maintain its position on the
track. One of the advantages of having separate steering
and driving modules was that during the training, the
driving motor could be kept off, which made the process
easier. In the training stage, the vehicle was pushed
around the track while the steering was controlled
manually. The road edge coordinates and the manually
selected steering angle were recorded into a file. The
recorded samples were used later in the ANN weight
training using back propagation. The samples provided
the neural network with a set of possible inputs and the
expected steering output. Therefore, the sample road edge
data and steering data was used by the back propagation
learning algorithm to force the neural network to adapt to

the trainer’s steering methodology. The trained weights
represented the system’s memory for a particular mode of
driving. This set of weights was used in the testing of
autonomous control for VIC, where the network deduced
the steering response from the processed data coming
from live video rather than the recorded training video.
 In the development, the teaching stage was divided into
two stages: left lane and right lane training. The recorded
samples from both training sessions were saved into two
separate files. The neural network was trained twice. The
first training session was for generating a set of weights
that would keep the vehicle centred in the left lane of the
track and the second one was for producing a set of
weights that would keep the vehicle centred on the right
lane of the track. The control software could change the
set of weights used in the neural network whenever a lane
transition or mode change was necessary.

7.2 Software implementation

 Three separate programs were written in Visual Basic
for the neural network. The first program was for
recording the data sample, the second program was for
training the neural network to adapt to the recorded
samples, and the third one was for testing the trained
network. Figure 22 shows the “Graphical User Interface”
(GUI) for the data recording software.

Figure 22. Data recording software GUI

 In the recording stage, the steering direction was
controlled manually, the drive motor was turned off and
the vehicle was pushed slowly around the track. The GUI
of the recording software is shown in Figure 21 and shows
the post-processed video stream where the road edges are
marked with red (left) and blue (right) edge dots. The
normalised values of the dot coordinates are displayed to
the left of the video window. The software also allows the

user to manually control the steering direction while the
car is being pushed around the track.
 The record button is for saving the current values of
the normalised road edge positions and the selected
steering direction into a text file. The training samples
were saved in the form of a two dimensional array of
numbers and the dimension of the array was 19 x n, where
n here represents the number of samples recorded during
the training (typically 80-125) while 19 is allocated for 16
road edge positions and the 3-bit binary number
representing the steering direction. The training samples
described the way the trainer responded to different road
conditions and this file was used for training the network
so that it could imitate the trainer’s responses to visual
images of the track.
 The training program adjusted the weight of each
neuron connection in the network so that it could mimic
the behaviour represented by the recorded samples. The
software was designed for training a four layer neural
network with up to 150 records of samples using the back
propagation learning algorithm.

Figure 23. Data recording software GUI

 Figure 23 shows the GUI of the training program. The
user interface is comprised of 6 frames (marked with
numbers in the figure). The buttons in the first frame are
for retrieving recorded samples, starting and stopping the
training session and saving the adjusted weights. The
buttons in the Frame 2 allow the user to change the
learning rate parameter of each layer during the training.
In Frame 3, the user can test the performance of the neural
network against a specific sample. The actual output
recorded in the sample and the output generated by the
neural network are displayed next to each other so the user
can compare the estimated results to the desired output.
Frame 4 displays the sum of squared errors that represents
the network’s overall aptitude. Frame 5 displays a table of
blank red boxes. Each of these boxes represents a sample.
The box is filled with the colour red when the network had
managed to memorise the corresponding case, ie. the
output of the network was close to the recorded output.

Hence, during the training the user can see how many
cases had been memorised by the network. Frame 6
displays the number of iterations or epochs the network
had so far completed.

START

Retrieve Recorded Samples

i = 1

Set weights as random numbers [-0.5,0.5]

i>noOfSamples ?

Activate the ith Sample
N

Y

Calculate the errors of layer (l)

Calculate the weight corrections for wkl

Calculate error gradient in layer(k)

Calculate weight correction for wjk

Calculate error gradient in layer(j)

Calculate weight corrections for wij

Update weights

Update sum of squarred errors

Increment i by one

Sum of squared errors < 0.01?
N

Save weights

Done

Y

Figure 24. ANN weight-training algorithm

 The flowchart representation of the training algorithm
is shown in Figure 24. Initially, the training samples were
retrieved from the text files and saved into an array. The
weights of the network were set to random values within
the range of [-0.5, 0.5]. One by one, the inputs from the
samples were executed throughout the network. The
outputs were then compared to the recorded outputs and
the errors were calculated. As mentioned earlier in
section 3, the errors are calculated and propagated
backwards from the output layer to the input layers.
During the propagation of the errors in each layer, the
weight corrections were calculated based on the errors or
error gradients of the corresponding layer. After all the
weight corrections had been calculated, the weights were
updated and the network repeated to execute the next
sample with the adjusted weights. The errors of the output
layer (l) of each sample were accumulated for calculating
the sum of squared errors. When the network has gone

through all the samples, the software is said to have
finished one iteration or epoch.
 The sum of squared errors indicates the network’s level
of understanding of the training samples. At the end of
each epoch, this parameter is compared to a specific error
criterion, usually a very small number. An error criterion
of 0.01 was found to be adequate. The network must
repeat the entire epoch until the sum of squared errors
becomes less than this specified tolerance or error value.
When this occurs, the network is said to have converged
or adapted to the behaviour recorded in the training
samples. The fully tuned weights are saved to another text
file and the neural network is then ready to be used in the
complete software (TRAVIC) for automatic steering.
 The testing program was specifically written for
examining the performance of the neural network which
employed the trained weights. The user could load the
tuned weights to the network and then observe the
competency of the control software in automatically
steering the vehicle around the track. Therefore, the user
would be able to tell whether the neural network was
ready to be implemented in the navigation system or still
required more training.
 The navigation algorithm is responsible for the
manoeuvering decisions. Each decision is made based on
the output from the object recognition and the road edge
detection ANN weight training. Figure 25 illustrates the
navigation algorithm in flowchart form.
 Initially, the navigation was set to the default mode,
which was the normal forward driving mode (vehicle
cruising in the left lane at normal speed). The first two
procedures to be performed are the road edge detection
and the object recognition. The next thing to be done if
the vehicle is still in normal mode is to check whether an
object is present or not. If no object is detected, the
vehicle should continue to cruise in normal mode. Once
another vehicle or obstacle is detected, the distance
between the vehicle and the front vehicle is checked. This
is done by looking at the y coordinate of the object’s
centre of area on the screen. Once the value reaches what
corresponds to a safe overtaking distance, the overtaking
mode is adopted and an “overtaking timer interrupt
procedure” (or interrupt routine) is activated. The neural
network decides the steering direction based on the road
edge detection results and the current steering mode. The
speed is determined from the steering direction and the
navigation mode as shown in Table 1.
 The flowchart in Figure 25 describes the foreground
process. In the background, two timer interrupt routines
are used to organise the navigation mode of the vehicle.
Visual BasicTM has a real-time interrupt facility that is able
to generate a periodical interrupt request and the time
interval between each request can be set from 1 ms up to 1
second. The two timer interrupt routines used were named

“Overtake Timer” and “Trans Timer” and each had a time
variable (“overtake time” and “trans {transition} time”) to
set the duration of each routine. Time variables were set
manually, but driving mode can be changed automatically
based on changes in the image or available track space.

Figure 25. TRAVIC navigation algorithm

 Both timers are set to generate an interrupt request
every second when activated. As shown in Figure 25, the
overtaking mode and the overtake timer interrupt are
activated when the front vehicle is close enough to
overtake. After a few seconds in the “overtaking mode”,
the navigation mode switches to “transitional mode” and
the transitional timer interrupt routine is activated for a
few seconds, during which the driving speed is lowered to
adjust from the overtaking speed back to the normal speed
in “normal mode”. After this time elapses, TRAVIC is
automatically set back to “normal mode” driving mode.
 These changes in driving modes could have been based
entirely on vision information, such as road edge obstacle
position or vision road edges, however, this would require
some manual control programming whereby TRAVIC
would have to pass control from the ANN-directed
navigation algorithm in Figure 25 to different procedural
routines which handle the “overtaking” and “transitional”
driving modes without using rigid or manually set time
limits for each of these two modes. ie. mode changing is
done automatically and each mode is given as much time
as it needs to execute, based on relative velocity between
VIC and the object, object proximity and available visible
lateral width of the track ahead. After these modes are
completed, control can then be passed back to the ANN to
control the “normal driving” mode. Unfortunately, this
highly flexible automatic method of mode changing was
not implemented due to time constraints, however, it will
be implemented in future to make the VIC more adaptable
to its environment.

Figure 26. Control software GUI

 Figure 26 shows the GUI of TRAVIC. The interface
was designed so that the user can view the video image
and choose between using autopilot navigation or manual
control of the vehicle’s movements. The user interface
also displays the “centre of area” coordinates for an object
in front, when detected, and the steering mode of the
vehicle (ie. normal, overtake and transition modes).

8 Results

 The “Vision-guided Intelligent Car” (VIC) robot
described in this paper was able to successfully perform
automatic steering and speed control and able to learn
how to drive consistently in the left hand (outer) or right
hand (inner) lane of the closed loop test track, like
NAVLab on a small scale. When presented with an
obstacle (such as a yellow box), VIC was able to identify
it and perform obstacle avoidance or an “overtaking”
procedure, in order to drive around it automatically.

9 Future work

 The VIC robot, at present, is only suitable for driving
on tracks, like that shown in Figure 11, and its TRAVIC
control software is unable to navigate on outdoor, off-road
terrain or on track surfaces that lack clearly defined road
edges. It is hoped that the VIC robot will be programmed
for driving in these types of unstructured environments in
the future. It could be used for applications such as search
and rescue or automatic mine detection and clearing.
 As mentioned in Section 7.2, the control software can
be improved to implement automatic mode changing
without having to use inflexible, preprogrammed timers
which do not take into consideration the relative speed
between the obstacle ahead and the VIC robot.
 A minor problem that was encountered in this project
was unreliable wireless serial communications between
the PC and the MCU (AVR microcontroller), hence a wire
tether was used. Long range and high speed TCP/IP
communications transmitted using “WiFi” hardware
(based on the IEEE 802.11 “b” or “g” standard) will also
be attempted to give a communications range of up to 400
metres from the remote human operator at the base station.
 Additional cameras could be used around the vehicle
(eg. Pointing left, right and behind) to acquire more vision
information for the control software to analyse. Extra
analysis would greatly improve the ability of the control
software to avoid collisions and perhaps even implement
“defensive driving” manoeuvres in the event that other
cars on the road perform dangerous movements which
could lead to a crash. These types of control systems may
even assist drivers of motor vehicles, helping them to
escape from imminent danger or to avoid collisions.

10 Conclusion

 An operational vision guided robot car that can “learn
how to drive” was described in detail in this “case study”
report. It is hoped that this work will inspire others to
develop similar types of intelligent vehicles for practical
applications, entertainment, education and even future
competitions between mechatronic engineering students.

References

1. S N Cubero, J Layanto, M Goode: Autonomous
Racing Car Competition for Mechatronics Engineering
Education, Proc 10th MMVIP Perth, Dec 2003, pp 9-16.
Research Studies Press ISBN: 0-86380-290-7
2. D A Pomerleau: ALVINN: an autonomous land
vehicle in a neural network. Technical Report CMU-CS-
89-107, Computer Science Dept. Carnegie Mellon
University, Pittsburgh PA, 1989.
3. T Kohonen : An Introduction to Neural Computing,
Neural Networks, vol. 1, no. 1, pp 3#16, 1988.
4. M Negnevitsky: Artificial Intelligence: A Guide to
Intelligent Systems. 1st edition. Essex, Pearson Education
Ltd, 2002.
5. Tamiya America, Inc. 2004: Tamiya R/C Car Chassis
Lineup : M-Chassis, F1, OFF-Road Car, [Online], URL
www.tamiya.com/english/rc/beginner/chassis2.htm
6. Shenzhen Lianyida Science Co., Ltd. 2004: Wireless
Transmitter and Receiver,[Online], URL: http://
lianyd.en.alibaba.com/product/50021575/50117576/Wireless_Tr
ansmitter
_And_Receiver/Wireless_Transmitter_And_Receiver.html
7. Atmel Co. 2004: AT90S8535 Datasheet. http://www.
atmel.com/dyn/resources/prod_documents/DOC1041.PDF

