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Abstract 

 
 This paper presents a brief “case study” report 
on the design and performance of a low-cost self-
driving, self-learning vision-guided robot car (VIC) 
that can drive in a left or right side lane and even 
identify and overtake obstacles or vehicles in front 
of it.  In the future, it is hoped that more of these 
types of  low-cost robots will be built and used for 
fully autonomous robotic racing car competitions. 
 Topics that are covered herein include a brief 
description of CMU’s NAVlab self-driving car, 
which inspired this work, low-cost mechanical and 
electronic hardware, image analysis, object 
detection, ANN (Artificial Neural Network) training, 
the control software, test results and future work to 
improve robot performance and capabilities. 
 
 
1 Introduction 
 

This paper discusses in detail a “case study” report on 
the design and development of a “Vision-guided 
Intelligent Car” (called VIC), designed and built by Donal 
Tjoe and Sam Cubero at Curtin University of Technology, 
Australia.  The Vision-guided Intelligent Car (VIC) 
project started in early 2004.  The predecessor of the VIC, 
called the “CARbot” [1], built in 2003, relied on a single 
1D line-scan camera and it was found that it could not 
collect enough information to execute reliable overtaking 
manoeuvres.  The goal was to build a miniature version of 
the NAVlab vision-guided automobile and implement 
automatic steering and speed control for a radio-controlled 
toy car so that it can serve as a basic platform for image 
analysis and vision guidance experiments in the future. 
 
2 CMU “NAVLab” self-driving car 
 
     “Autonomous Land Vehicle in Neural Network” 
(ALVINN), Figure 1, was a project developed at Carnegie 

Mellon University (CMU), headed by Dean Pomerleau [2] 
in 1989.  The test vehicle was called “NAVLab”. 

NAVLab took advantage of “Artificial Neural 
Network” (ANN) learning ability to establish an 
intelligent navigator for the vehicle.  NAVLab was 
equipped with a vision system that was aimed at the road 
ahead of the vehicle.  The artificial intelligence software 
learned the driving methodology by watching all the 
actions of a human driver in response to video images 
seen during normal driving conditions.  As the vehicle was 
driven on the road under human guidance, the computer 
system recorded the video images and the human steering 
movements during a recording phase.  The recorded data 
was then used for training, ie. adjusting the weights of the 
neural network, so that the ANN could learn how to drive. 
 

Figure 1.  NAVLab vision-guided car  [2] 
 
During on-road tests, ALVINN showed satisfactory 

performance and was reported to have been able to 
successfully drive a car across the USA “hands free” for 
98% of the entire journey.  It managed to navigate 
autonomously and safely in different types of 
environments including single lane dirt roads, suburban 
neighbourhood streets and on two-lane highways at speeds 
up to 80 km/hour.  However, despite the robustness of the 
system, there were a few drawbacks to its design.  Firstly, 
the network training procedure was performed “on-the-
fly”, which means that the training was done at the same 
time as the recording, ie. the network was set to learn 
instantaneously as the human trainer drives the vehicle.  
Thus, the network could not learn how to perform a 
recovery manoeuvre unless faced with a real disaster, eg. 



Another motorist performs an illegal move which could 
lead to a collision or a car in front suddenly stops quickly. 

 
 

  
 

 
Figure 2.  Neural Network  [2  Pomerleau] 

 
Effective emergency manoeuvres cannot be controlled 

by the driver or trained “on the fly”, and hence, corrective 
action must be preprogrammed in order to implement 
“defensive driving” techniques, like swerving to avoid 
obstacles, other vehicles or pedestrians.  The second 
drawback of the system comes from the ineffective image 
processing applied to the acquired images.  Since the 
project was done in the late 1980’s, complex image 
processing was not feasible because the available 
hardware simply was not fast enough to process the vast 
amount of video data in real-time and respond at high 
speeds.  Another common problem of forward facing 
video cameras is saturation of the CCD sensors caused by 
the reflection of sunlight from the road, especially when 
the vehicle is driving towards the sun during early 
morning or late afternoon hours.  Sensor saturation means 
that the data values for most  pixels are at their maximum 
levels due to excessive, uncontrollable light energy from 
the sun, hence, this renders CCD sensor data useless for 
image analysis and guidance purposes because there is not 
enough contrast between the brightest and darkest pixels 
in the image.  This last drawback is a common problem 
for most forward facing vision systems because it is 
impossible to control the position of the sun relative to the 
direction of the road in order to avoid direct or intense 
reflected sunlight reaching the CCD sensor.  Several 
automobile manufacturers (including BMW and Mercedes 
Benz), have developed prototype cars that can 
automatically steer and drive themselves using forward 
facing video cameras, however, such vehicles were 

probably not put into mass production due to the high risk 
of sensor saturation and unavoidable system failure.  
Unfortunately, even today, the risks of failure and costs of 
implementing such systems in existing cars are very high.  
(eg. AssistwareTM in the USA marketed their automatic 
steering system for about US$30,000 per vehicle). 

 
3  Artificial Neural Networks (ANN) 

 
Humans possess the ability to learn from experience. 

This ability allows people to make accurate predictions 
and judgements while dealing with new situations by 
associating the situation faced with previous experiences. 
This explains how humans can increase their performance 
in sports after going through several training sessions, and 
how humans can perform tasks such as recognising a 
person from a photograph, or by only hearing the person’s 
voice.  It is not easy to appreciate that a simple task that 
many of us take for granted, like catching a ball, is 
actually comprised of several complex procedures.  To 
catch a ball from the air, the brain has to make judgements 
based on the 3D image captured from the stereo eyes and 
relate this to the position of the hands in 3D space so that 
the hand can move towards the expected future 3D 
position of ball in order to grab it at the expected time of 
impact.  Subsequently, the brain has to send signals to the 
motoric nerves to actuate the hands accordingly.  Such 
complex procedures are almost impossible to describe 
using pure logic and mathematical formulae, but 
surprisingly, a trained human brain can execute such tasks 
relatively quickly and efficiently, and with a high degree 
of accuracy because of the way that human brains are 
constructed.  A biological brain consists of billions of 
information-processing units called neurons.  These 
neurons are interconnected by junctions called synapses.  
A neuron receives information from other neurons or 
senses through synapses.  The information is then 
processed to generate an output, which is later sent to 
other neurons or response units, also through a synapse.  
The strength of each synapse connection is constantly 
adjusted in the learning process.  This is how memories 
are stored in a human brain.  Memories in the brain are 
chemical residues created and built up by frequent 
repetition of connective actions between brain cells, 
although, the entire process of how brain cells behave and 
operate is still largely a mystery to scientists even today. 

Artificial Neural Network (ANN) technology is a 
branch of artificial intelligence that models the 
construction of a biological brain with the aim of attaining 
human-like abilities in performing cognitive tasks.  
Kohonen (1988)  [3] defined ANN as massively parallel 
interconnected networks of simple (usually adaptive) 
elements and their hierarchical organisations, which are 
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intended to interact with the objects of the real world in 
the same way as biological nervous systems. 

ANN is prominent in performing tasks such as pattern 
recognition and object classification.  A neural network 
can be trained using a set of sample input patterns and 
expected output patterns.  When faced with other input 
patterns, the network can predict the output patterns based 
on its training. 

Neural networks are widely used in technologies such 
as character recognition, pattern matching and speech 
recognition.  The main advantages of ANN include the 
capacity to be trained to classify poorly structured inputs, 
robustness against noise in data (fault tolerance), 
flexibility (the ability to generalise) and the ability to 
“learn from experience or training”.  However, ANN is 
not without its disadvantages, as listed below.  Neural 
networks have poor knowledge representation and 
explaining capability, thus making it difficult to learn or 
follow its logic of making or predicting future decisions. 

 
3.1 Neural Network Architecture 
 

An artificial neural network consists of a number of 
very simple and highly interconnected processors, also 
called neurons, which are analogous to the biological 
neurons in the brain.  The neurons are the main 
component of an ANN.  An individual neuron can collect 
a number of inputs from the system inputs or other 
neurons and then generate a single output, all through 
links that are analogous to synapses in biological brains.  
The output signal from the neuron, in turn, splits into a 
number of branches that transmit the same signal. 

 

 
Figure 3.  Typical Neural Network Architecture 
 

Each of the links that connect the neurons has a 
numerical weight associated with it.  Weights are the basic 
means of long-term memory in neural networks.  They 

express the importance of each neuron input, and similar 
to the biological brain, a neural network learns through 
repeated adjustments of these weights. 

A typical ANN is made up of a hierarchy of layers 
(Figure 3) and the neurons in the networks are arranged 
along these layers.  The neurons connected to the external 
environment form input and output layers.  The weights 
are modified to bring the network input/output behaviour 
into line with that of the environment. 

 

 
Figure 4.  Neuron Connections 

 

Figure 5.  Internal Neuron Computation Process 
 

 
Figure 6.  Sigmoid activation function 

 
There are four types of activation functions commonly 

used in the neural networks field, namely the step, sign, 
linear and sigmoid activation functions. The form of 
activation currently utilized in this project is the sigmoid 
function.  Hence, it is appropriate to further discuss this 



method, while the various other methods of activation will 
not be described in this “case study” report. 

The equation of a sigmoid activation function is 
expressed as follows: 
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Where xi and wi is the value of input i and weight i 
respectively, θ is the local threshold and n is the number 
of inputs fed to the neuron.  The sigmoid function is 
shown in Figure 6. 

 
3.2 Back-propagation Algorithm 
 

“Back-propagation” is a technique used for training 
feed-forward neural networks (networks that have no 
feedback or those with no connections that loop).  During 
the training, the network is presented with a set of sample 
input signals along with the expected output signals and 
through a number of iterations or epochs, the output of the 
network is forced to converge to the expected output 
signals by adjusting the weights of neuron connections.  
The term is an abbreviation for “backwards propagation of 
errors”.  As the algorithm’s name implies, error signals are 
propagated backwards for weight modification purposes.  
For a three layer feed-forward neural network, 
Negnevitsky [4] derived the back-propagation learning 
algorithm into the following steps: 
 
Step 1: Initialisation 
 Set all the weights and threshold levels of the 
 network to random numbers uniformly 
 distributed inside a small range, eg. (-0.5, 0.5) 
 

Step 2: Activation 
 Activate the back-propagation neural network by 
 applying inputs  x1(p), x2(p),… xn(p) and desired 
 outputs yd,1(p) yd,2(p),…..yd,n(p). 
 (a)  Calculate the actual outputs of the neurons in 
 the hidden layer: 
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 where n is the number of inputs of neuron j in the 
 hidden layer, and sigmoid is the sigmoid 
 activation function. 
 (b)  Calculate the actual outputs of the neurons in 
 the output layer: 
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 where m is the number of inputs of neuron k in 
 the output layer. 
 
Step 3:  Weight training 
 Update the weights in the back-propagation 
 network propagating backward the errors 
 associated with output neurons.  Steps (a) & (b): 
 (a)  Calculate the error gradient for the neurons 
 in the output layer: 
 δk(p) = yk(p) [1-yk(p)] ek(p)  (5) 
 where 
 ek(p) = yd,k(p)-yk(p)    (6) 
 Calculate the weight corrections: 
 ∆wjk(p) = α  yj(p) δk(p)   (7) 
 where α is the learning rate parameter.  
 Update the weights at the output neurons: 
 wjk(p+1) = wjk(p) + ∆wjk(p)  (8) 
 
 (Step 3 continued on next page…) 
 

 
Figure 7.  System Hierarchical Chart for the VIC (Vision-guided Intelligent Car) robot 



 
(Step 3) (b)  Calculate the error gradient for the neurons 
 in the hidden layer: 
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 Calculate the weight corrections: 
 ∆wij(p) = α  xi(p) δj(p)   (10) 
 Update the weights at the output neurons: 
 Wij(p+1) = wij(p) + ∆wij(p)  (11) 
 
Step 4:  Iteration 
 Increase iteration p by one, go back to Step 2 and 
 repeat the process until the selected error 
 criterion is satisfied. 
 
     The error criterion in this design is based on the sum of 
the squared error of the output layer neurons.  The sum of 
the squared error acts as an indicator of the network’s 
performance.  When the value of the sum of squared 
errors in an entire pass through all training sets, or epoch, 
is sufficiently small, the network is considered to have 
converged to the desired pattern and the training can be 
stopped. 
     The artificial neural network used in this design was 
coded in software using Microsoft Visual BasicTM 6.0 
Professional for the Windows 9x/ME/2000/XP 32-bit 
operating system (OS), which is capable of accessing 
video streams from many sources.  There were numerous 
free downloadable ANN packages available on the 
internet and using them may have simplified this particular 
part of the design.  However, since the neural network was 
only one part of the control software and it had to work 
together with the other software control components, such 
as the image processing and the navigation algorithm, it 
was easier to build a neural network specially designed to 
match VIC’s software requirements rather than adjust 3rd 
party software which could introduce many developmental 
limitations.  The implementation of the ANN in the 
control software will be discussed later in this paper. 
 
4  Hardware for the VIC robot 
 
     Figure 8 illustrates the flow of data communications 
between the vehicle and the base station (PC, or personal 
computer).  As the vehicle moves around the track, video 
streams are sent from the on-car camera to the base 
station.  The base station would then create a navigation 
decision to keep the vehicle on the track (even staying 
within an intended lane) based on the received road 
images.  This navigation decisions were sent as command 
lines to a microcontroller unit (MCU) on the vehicle 
through a serial communication line.  The microcontroller 
controlled the speed of the drive motor and the steering 
angle of the vehicle based on this command line.  The 

detailed design description of the entire system is clarified 
in following sections.  The base of the VIC vehicle is the 
chassis of a TamiyaTM m-02 (1:10 scale) radio controlled 
car [5] with rear drive and independent front steering. 
 
 

Figure 8.  Communication between VIC and PC 
 
 

Figure 9.  Top view of the VIC robot 
 
 
     The position for the Futaba S3003 servomotor (for 
steering the front wheels) was set by feeding it a PWM 
(Pulse Width Modulated) signal with a pulse width 
ranging between 1ms to 2ms, at a frequency of about 50 to 
60Hz (or a period between 15-20ms).  The relationship 
between the width of the pulses and angular position had 
first to be observed experimentally to achieve accurate 
control because the 1ms to 2ms pulse width dictates the 
stopping position for the servomotor output shaft.  

Atmel AVR 
8535 MCU

(Wireless) 

Front steering 
driven by 
servomotor 
controlled with 
PWM from 
MCU 



Normally, sending a 1ms wide pulse would position the 
steering servomotor shaft to 0o, and sending a 2ms wide 
pulse would turn the shaft to the maximum position, 180o.  
Therefore, to make the servo turn to the neutral position 
(90o), the pulse had to be 1.5ms wide.  The rear wheels 
were driven by a single H-bridge controlled DC motor 
(with gearbox) which could be controlled to move the VIC 
robot forwards and backwards at variable speeds.  The H-
bridge drive circuit is shown in Figure 10, showing the 
input signal “a” (PWM signal with a duty value ranging 
between 0 and 100%).  Both drive and steering motors 
were completely controlled by the software in the MCU.  
The vehicle was powered by two separate batteries.  The 
first battery was a 7.2V 1500mAH battery pack, normally 
used for radio control cars.  With such sizeable capacity, 
the battery was able to power the entire vehicle (except 
the video camera); this included the rear motor, the 
servomotor and the microcontroller.  The video camera 
was powered using a standard 9Vdc battery. 
 

 
Figure 10.  H-bridge circuit to drive rear wheels 
 
     The camera used for the vision system was a wireless 
CMOS camera manufactured by Shenzhen Lianyida 
Science Company  [6].  The camera was equipped with a 
transmitter device and the video stream was sent to the 
receiver through a 2.4GHz RF transmission.  The camera 
can transmit video images up to a distance of 50m. 
     The camera provided a two dimensional image with a 
resolution of 384x289 pixels (PAL-B format).  The 
graphic input capture card in the PC converted this data 
into 24-bit RGB format.  The wireless video receiver was 
made by the same company that manufactured the wireless 
camera.  The LYD-RC100 is powered by 9V DC source.  
It received data with the same frequency of 2.4GHz.  The 
video receiver outputted analogue video steams in PAL-B 
format to the base station PC video capture card.  The 

graphic input capture card used was a TV tuner card, 
namely a PlayTV ProUltraTM, manufactured by 
PixelViewTM.  The capture card was capable of receiving 
a composite video stream from colour CCD camera, 
recording the video input and displaying it on the monitor.  
The video stream could  be accessed from the Microsoft 
WindowsTM clipboard in form of RGB arrays (24-bit 
colour, 8-bit Red, 8-bit Green, 8-bit Blue) and analysed in 
Visual BasicTM 6.0 for Microsoft WindowsTM 98SE/XP. 
 

 
Figure 11.  White race-track for testing VIC robot 
 
       The VIC robot was tested on a white track painted 
over black panels.  The test track, shown in Figure 11, was 
made 55cm wide to provide enough room for the vehicle 
to overtake obstacles and other vehicles. 
 
5  Embedded control software for the MCU 
 
       The embedded software was written in C, compiled 
using CodeVisionTM, targetting the AtmelTM AVR 
AT90S8535 microcontroller [7] (MCU).  The software 
was designed essentially to receive instructions from the 
base station PC and generate the appropriate PWM signals 
for both the steering and driving motors.  The instructions 
sent by the base station were in the form of an 8-bit 
command byte which was divided into two 4-bit command 
codes or nybbles by the MCU.  The first nybble (bits 7, 6, 
5 and 4) carried the desired speed level and the second 
nybble (ie. bits 3-0) carried the desired steering direction. 
     Figure 12 shows the “control byte” sent from the PC to 
the MCU via serial communications (RS232 COM1 port 
to UART) to control drive and steering motors, allowing a 
range of up to 16 control values for each motor. 
 

 
Figure 12.  Control byte sent from PC to MCU 
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     The “control byte” allows the VIC robot to have up to 
16 steering angles and 16 speed levels.  However, in the 
final design, in order to simplify the neural network 
architecture, the steering direction was limited to seven.  
The 16 speed levels were divided to eight forward speeds 
and eight backward speeds, where zero corresponded to 
the maximum forward speed and fifteen corresponded to 
the maximum reverse speed.  Levels 7 and 8 were in the 
middle of the range, thus, the DC average voltages of the 
PWM signals at these particular levels were very close to 
zero and resulting torques generated by the driving motor 
were not sufficient to move the vehicle.  Consequently, 
these two levels were used for braking purposes. 
     The seven steering codes carried by the command line 
were represented by an integer ranging from zero to six.  
The binary code 3 corresponded to the straight steering 
direction.  Binary codes lower than 3 were for left-turning 
with 0 as the sharpest left-turn steering angle.  Binary 
codes higher than 3 corresponded to right-turn steering 
directions with 6 giving the sharpest right-turning steering 
angle.  The command codes for controlling all steering 
and driving movements are shown in Figure 13. 
 

Figure 13.  Command codes for the VIC robot 
 
     The Visual Basic “MS-Comm” ActiveX control 
component was used to send single-byte commands from 
the RS232 COM1 PC serial port to a MAX232 chip and 
the RxD (receive) pin of the MCU’s UART hardware. 
 
6  Image analysis for VIC navigation 
 
     The control software was named TRAVIC (Track 
Routing Algorithm for VIC).  It includes components for 
image processing, artificial neural network control and a 
navigation algorithm.  The relationship between these 
three components in TRAVIC is illustrated in Figure 14. 

Figure 14.  Components of TRAVIC controller 
 
     The TRAVIC software has only one input from the 
vehicle vision system.  The image processing interprets 
the visual input, acquires the position of the road edge and 
detects the presence of object in front of the vehicle.  If an 
object (in this case another vehicle) is present, the image 
processing software obtains the position of the object. 
     The navigation algorithm determines the steering mode 
based on conditions in front of the vehicle.  The available 
modes are “normal”, “overtaking” and “transition” mode.  
In normal mode, the vehicle cruises in the left hand side of 
the road at its normal speed.  It is assumed that the object 
or vehicle in front is only visible in the left lane of the 
track, hence, when overtaking, VIC must change its 
orientation by performing a translation from the left lane 
to the right lane of the track.  VIC maintains its position 
on the right hand side of the road for a specific time 
before changing back to left hand side.  The transitional 
mode is very short in duration and is activated when the 
vehicle completes the overtaking manoeuvre.  As its name 
suggested, it is a transitional phase from overtaking to 
normal mode.  During this mode, the vehicle switches 
back to the left hand lane and the speed is set at a lower 
level.  The purpose of this is to bring back the vehicle to 
its normal speed quickly prior to lane changing. 
     The acquired road edge position and the steering mode 
are used by the neural network to predict a desirable 
steering response.  The neural network needs to be trained 
twice so that the vehicle can drive on both sides of the 
track.  Thus, there are two sets of weights that must be 
trained, one set for each “lane” of the dual-lane track.  



When the vehicle is in normal mode, the Left Hand Side 
(LHS) weights are set to “active” so that the vehicle can 
maintain its position in the left side or left lane of the road.  
If the overtaking mode is activated, the network must 
switch from the LHS weights to the Right Hand Side 
(RHS) weights.  Once the overtaking is completed and the 
mode is set to transition mode, the neural network 
switches back to the LHS weights and it remains active 
until the next overtaking procedure occurs.  The road edge 
positions are basically the inputs for the neural network.  
The inputs and the active set of weights generate the 
steering direction to maintain the vehicle’s position in its 
corresponding lane. 
     The forward speed level of the car is determined based 
on the steering direction generated by the neural network 
and the active steering mode.  For each mode, the straight 
steering direction corresponds to the highest speed level.  
The sharper the turning direction, the lower the speed 
level.  The speed levels for each steering direction and 
modes are given in Table 1 (Compare Figure 13).  The 
values in Table 1 were obtained from several experiments 
and were chosen to best suit each mode of driving. 
 
Table 1.  Speed Level for different modes of VIC 

SPEED LEVEL 
STEERING 

DIRECTION Normal 
Mode 

Overtaking 
Mode 

Transition 
Mode 

0 5 6 6 
1 5 5 6 
2 5 5 6 
3 4 3 6 
4 5 5 6 
5 5 5 6 
6 5 6 6 

 
 
6.1  Road Edge Detection 
 
     The main goal of the road edge detection was to 
provide the neural network with a set of data that 
indicated the current shape of the track ahead in a simple 
manner rather than feeding all the RGB data of the entire 
screen to the network.  The edge detection only analysed a 
part of the screen that displays the track.  The area of 
interest was divided into 8 rows where in each row the 
software searched for both edges of the road by looking 
for the points where the colour turns from dark to bright 
and vice versa.  Basically, the outcomes of the edge 
detection were a set of sixteen coordinates which were 
divided into two groups of eight.  One group contained the 

left road edge coordinates and the other group contained 
the right road edge coordinates. 
 

Figure 15.  Edge detection in the area of interest 
 
Figure 15 shows a snapshot of the vision system screen 
displaying the road with edge detection applied to the 
image.  The eight left-side dots indicate the pixel positions 
where the software detected transitions from dark to 
bright, and the eight right-side (darker) dots indicate the 
pixel positions where the software detected transitions 
from bright to dark.  Due to the camera’s limited field of 
view, the vision system can only show one edge of the 
road.  In Figure 15, part of the right-side edge is detected.  
A simple “bisection” algorithm is used to scan along each 
of the eight scanned “lines” to find the transition positions 
between “dark to bright” pixels (left side dots) and “bright 
to dark” pixels (right side dots). 
 

Figure 16.  Edge detection for left side of track 
 



Figure 17.  Bisection method for edge detection 
 
The bisection method allows an edge to be detected very 
quickly and efficiently.  To show the effectiveness of 
binary search, consider a line of 20 black and white pixels 
shown in Figure 17.  For each iteration, the light coloured 
central arrow shows the “bisection” point or middle value 
between the two outer dark arrows.  The transition from 
dark to bright occurs at pixel 12 and 13 because the pixels 
are side-by-side and the difference between their 
brightness values exceeds a set threshold value.  If the 
edge detection is done by applying linear search, (ie. 
checking the difference in brightness between every pair 
of neighbouring pixels to see if it exceeds a threshold 
value), it would take 12 iterations or loops until the target 
is achieved (up to 19 for a worst case edge).  A binary 
search needs only 5 iterations for this simple example. 
 

Figure 18.  Object recognition 
 
 
6.2  Object Recognition 
 
     The purpose of object recognition for the VIC robot is 
to detect the presence of a vehicle or object in front of the 
car.  When another vehicle is found present in front of 
VIC, the object recognition algorithm draws a rectangular 
box around the image of that vehicle, measures the area of 

the box and locates the centre of the area. (Figure 18)  
This information is used later in the navigation algorithm 
for driving around or overtaking the object so that a 
collision is avoided and the VIC robot can continue 
driving around the vehicle or obstacle. 
     Figure 18 shows a snapshot of the TRAVIC software 
detecting another vehicle, identified by the black box.  
The software also calculated the position of the object’s 
centre of area, marked with a centroidal black dot.  The 
back part of the vehicle in front was covered by a yellow 
card box so that it would stand out from the black and 
white environment to make it easy to recognize. 
     The object detection was carried out by performing a 
scan over a specific area of interest searching for the 
colour yellow (shown shaded in Figure 19, ie. pixels with 
strong red and green colour data but with weak blue).  The 
area of interest was divided into 16 rows and 36 columns 
of cells.  Each of these cells included 25 pixels (5x5 rows 
and columns).  When the majority of these pixels in one 
cell were filled with the colour yellow then the cell was 
said to be “positive”.  Figure 19 illustrates the colour-
scanning scheme over the area of interest.  It shows how 
the positive or yellow cells are marked with “1” (those 
with a majority of yellow pixels) and the rest are marked 
with “0” (those with a minority of yellow pixels).  A 
rectangular box is drawn surrounding the positive “1” 
cells and the centre of this box is located mathematically. 
 

Figure 19.  Object scanning 
 
 
7  Artificial Neural Network implementation 
 
     The neural network in this design gave the TRAVIC 
control software the ability of learning so that it could 
grasp the concept of navigation and automatically drive 
and steer the VIC robot based on “experience” learned 
from training runs.  The ANN is shown in Figure 20. 



 
Figure 20.  Artificial Neural Network for the TRAVIC controller software 
 
 
7.1  Weight training for automatic steering 
 
     The network was trained with a set of recorded sample 
data so that it could deduce or predict the most suitable 
steering response by observing the left and right road edge 
positions.  The neural network implemented in this design 
was a four layer feed forward network, trained with a back 
propagation algorithm. 
 
 

 
Figure 21.  Training the ANN for self-steering 

     The input layer consists of sixteen input units and the 
output layer consists of three output units.  The inputs to 
the neurons in the input layer came from the output of the 
road edge detection.  The first eight units were sourced by 
the coordinates of the left edges and the other eight units 
were sourced by the coordinates of the right edges.  
Between the input and output layers, there are two hidden 
layers.  The first hidden layer consists of 12 neurons and 
the second hidden layer consists of 10 neurons.  The 
outputs of the three output neurons forms a binary number 
that represents a 3-bit steering direction (value 0 to 6). 
     Figure 21 shows the training method used in the design 
to teach the vehicle how to maintain its position on the 
track.  One of the advantages of having separate steering 
and driving modules was that during the training, the 
driving motor could be kept off, which made the process 
easier.  In the training stage, the vehicle was pushed 
around the track while the steering was controlled 
manually.  The road edge coordinates and the manually 
selected steering angle were recorded into a file.  The 
recorded samples were used later in the ANN weight 
training using back propagation.  The samples provided 
the neural network with a set of possible inputs and the 
expected steering output.  Therefore, the sample road edge 
data and steering data was used by the back propagation 
learning algorithm to force the neural network to adapt to 



the trainer’s steering methodology.  The trained weights 
represented the system’s memory for a particular mode of 
driving.  This set of weights was used in the testing of 
autonomous control for VIC, where the network deduced 
the steering response from the processed data coming 
from live video rather than the recorded training video. 
     In the development, the teaching stage was divided into 
two stages: left lane and right lane training.  The recorded 
samples from both training sessions were saved into two 
separate files.  The neural network was trained twice.  The 
first training session was for generating a set of weights 
that would keep the vehicle centred in the left lane of the 
track and the second one was for producing a set of 
weights that would keep the vehicle centred on the right 
lane of the track.  The control software could change the 
set of weights used in the neural network whenever a lane 
transition or mode change was necessary. 
 
7.2  Software implementation 
 
     Three separate programs were written in Visual Basic 
for the neural network.  The first program was for 
recording the data sample, the second program was for 
training the neural network to adapt to the recorded 
samples, and the third one was for testing the trained 
network.  Figure 22 shows the “Graphical User Interface” 
(GUI) for the data recording software. 
 

Figure 22.  Data recording software GUI 
 
     In the recording stage, the steering direction was 
controlled manually, the drive motor was turned off and 
the vehicle was pushed slowly around the track.  The GUI 
of the recording software is shown in Figure 21 and shows 
the post-processed video stream where the road edges are 
marked with red (left) and blue (right) edge dots.  The 
normalised values of the dot coordinates are displayed to 
the left of the video window.  The software also allows the 

user to manually control the steering direction while the 
car is being pushed around the track. 
     The record button is for saving the current values of 
the normalised road edge positions and the selected 
steering direction into a text file.  The training samples 
were saved in the form of a two dimensional array of 
numbers and the dimension of the array was 19 x n, where 
n here represents the number of samples recorded during 
the training (typically 80-125) while 19 is allocated for 16 
road edge positions and the 3-bit binary number 
representing the steering direction.  The training samples 
described the way the trainer responded to different road 
conditions and this file was used for training the network 
so that it could imitate the trainer’s responses to visual 
images of the track. 
     The training program adjusted the weight of each 
neuron connection in the network so that it could mimic 
the behaviour represented by the recorded samples.  The 
software was designed for training a four layer neural 
network with up to 150 records of samples using the back 
propagation learning algorithm. 
 

Figure 23.  Data recording software GUI 
 
     Figure 23 shows the GUI of the training program.  The 
user interface is comprised of 6 frames (marked with 
numbers in the figure).  The buttons in the first frame are 
for retrieving recorded samples, starting and stopping the 
training session and saving the adjusted weights.  The 
buttons in the Frame 2 allow the user to change the 
learning rate parameter of each layer during the training.  
In Frame 3, the user can test the performance of the neural 
network against a specific sample.  The actual output 
recorded in the sample and the output generated by the 
neural network are displayed next to each other so the user 
can compare the estimated results to the desired output.  
Frame 4 displays the sum of squared errors that represents 
the network’s overall aptitude.  Frame 5 displays a table of 
blank red boxes.  Each of these boxes represents a sample.  
The box is filled with the colour red when the network had 
managed to memorise the corresponding case, ie. the 
output of the network was close to the recorded output.  



Hence, during the training the user can see how many 
cases had been memorised by the network.  Frame 6 
displays the number of iterations or epochs the network 
had so far completed. 
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Figure 24.  ANN weight-training algorithm 
 
     The flowchart representation of the training algorithm 
is shown in Figure 24.  Initially, the training samples were 
retrieved from the text files and saved into an array.  The 
weights of the network were set to random values within 
the range of [-0.5, 0.5].  One by one, the inputs from the 
samples were executed throughout the network.  The 
outputs were then compared to the recorded outputs and 
the errors were calculated.  As mentioned earlier in 
section 3, the errors are calculated and propagated 
backwards from the output layer to the input layers.  
During the propagation of the errors in each layer, the 
weight corrections were calculated based on the errors or 
error gradients of the corresponding layer.  After all the 
weight corrections had been calculated, the weights were 
updated and the network repeated to execute the next 
sample with the adjusted weights.  The errors of the output 
layer (l) of each sample were accumulated for calculating 
the sum of squared errors.  When the network has gone 

through all the samples, the software is said to have 
finished one iteration or epoch.  
     The sum of squared errors indicates the network’s level 
of understanding of the training samples.  At the end of 
each epoch, this parameter is compared to a specific error 
criterion, usually a very small number.  An error criterion 
of 0.01 was found to be adequate.  The network must 
repeat the entire epoch until the sum of squared errors 
becomes less than this specified tolerance or error value.  
When this occurs, the network is said to have converged 
or adapted to the behaviour recorded in the training 
samples.  The fully tuned weights are saved to another text 
file and the neural network is then ready to be used in the 
complete software (TRAVIC) for automatic steering. 
     The testing program was specifically written for 
examining the performance of the neural network which 
employed the trained weights.  The user could load the 
tuned weights to the network and then observe the 
competency of the control software in automatically 
steering the vehicle around the track.  Therefore, the user 
would be able to tell whether the neural network was 
ready to be implemented in the navigation system or still 
required more training. 
     The navigation algorithm is responsible for the 
manoeuvering decisions.  Each decision is made based on 
the output from the object recognition and the road edge 
detection ANN weight training.  Figure 25 illustrates the 
navigation algorithm in flowchart form. 
     Initially, the navigation was set to the default mode, 
which was the normal forward driving mode (vehicle 
cruising in the left lane at normal speed).  The first two 
procedures to be performed are the road edge detection 
and the object recognition.  The next thing to be done if 
the vehicle is still in normal mode is to check whether an 
object is present or not.  If no object is detected, the 
vehicle should continue to cruise in normal mode.  Once 
another vehicle or obstacle is detected, the distance 
between the vehicle and the front vehicle is checked.  This 
is done by looking at the y coordinate of the object’s 
centre of area on the screen.  Once the value reaches what 
corresponds to a safe overtaking distance, the overtaking 
mode is adopted and an “overtaking timer interrupt 
procedure” (or interrupt routine) is activated.  The neural 
network decides the steering direction based on the road 
edge detection results and the current steering mode.  The 
speed is determined from the steering direction and the 
navigation mode as shown in Table 1. 
     The flowchart in Figure 25 describes the foreground 
process.  In the background, two timer interrupt routines 
are used to organise the navigation mode of the vehicle.  
Visual BasicTM has a real-time interrupt facility that is able 
to generate a periodical interrupt request and the time 
interval between each request can be set from 1 ms up to 1 
second.  The two timer interrupt routines used were named 



“Overtake Timer” and “Trans Timer” and each had a time 
variable (“overtake time” and “trans {transition} time”) to 
set the duration of each routine.  Time variables were set 
manually, but driving mode can be changed automatically 
based on changes in the image or available track space. 
 

Figure 25.  TRAVIC navigation algorithm 

     Both timers are set to generate an interrupt request 
every second when activated.  As shown in Figure 25, the 
overtaking mode and the overtake timer interrupt are 
activated when the front vehicle is close enough to 
overtake.  After a few seconds in the “overtaking mode”, 
the navigation mode switches to “transitional mode” and 
the transitional timer interrupt routine is activated for a 
few seconds, during which the driving speed is lowered to 
adjust from the overtaking speed back to the normal speed 
in “normal mode”.  After this time elapses, TRAVIC is 
automatically set back to “normal mode” driving mode. 
     These changes in driving modes could have been based 
entirely on vision information, such as road edge obstacle 
position or vision road edges, however, this would require 
some manual control programming whereby TRAVIC 
would have to pass control from the ANN-directed 
navigation algorithm in Figure 25 to different procedural 
routines which handle the “overtaking” and “transitional” 
driving modes without using rigid or manually set time 
limits for each of these two modes.  ie.  mode changing is 
done automatically and each mode is given as much time 
as it needs to execute, based on relative velocity between 
VIC and the object, object proximity and available visible 
lateral width of the track ahead.  After these modes are 
completed, control can then be passed back to the ANN to 
control the “normal driving” mode.  Unfortunately, this 
highly flexible automatic method of mode changing was 
not implemented due to time constraints, however, it will 
be implemented in future to make the VIC more adaptable 
to its environment. 
 

 
Figure 26.  Control software GUI 
 
 
     Figure 26 shows the GUI of TRAVIC.  The interface 
was designed so that the user can view the video image 
and choose between using autopilot navigation or manual 
control of the vehicle’s movements.  The user interface 
also displays the “centre of area” coordinates for an object 
in front, when detected, and the steering mode of the 
vehicle (ie. normal, overtake and transition modes). 



8  Results 
 
     The “Vision-guided Intelligent Car” (VIC) robot 
described in this paper was able to successfully perform 
automatic steering and speed control and able to learn 
how to drive consistently in the left hand (outer) or right 
hand (inner) lane of the closed loop test track, like 
NAVLab on a small scale.  When presented with an 
obstacle (such as a yellow box), VIC was able to identify 
it and perform obstacle avoidance or an “overtaking” 
procedure, in order to drive around it automatically. 
 
9  Future work 
 
     The VIC robot, at present, is only suitable for driving 
on tracks, like that shown in Figure 11, and its TRAVIC 
control software is unable to navigate on outdoor, off-road 
terrain or on track surfaces that lack clearly defined road 
edges.  It is hoped that the VIC robot will be programmed 
for driving in these types of unstructured environments in 
the future.  It could be used for applications such as search 
and rescue or automatic mine detection and clearing. 
     As mentioned in Section 7.2, the control software can 
be improved to implement automatic mode changing 
without having to use inflexible, preprogrammed timers 
which do not take into consideration the relative speed 
between the obstacle ahead and the VIC robot. 
     A minor problem that was encountered in this project 
was unreliable wireless serial communications between 
the PC and the MCU (AVR microcontroller), hence a wire 
tether was used.  Long range and high speed TCP/IP 
communications transmitted using “WiFi” hardware 
(based on the IEEE 802.11 “b” or “g” standard) will also 
be attempted to give a communications range of up to 400 
metres from the remote human operator at the base station. 
     Additional cameras could be used around the vehicle 
(eg. Pointing left, right and behind) to acquire more vision 
information for the control software to analyse.  Extra 
analysis would greatly improve the ability of the control 
software to avoid collisions and perhaps even implement 
“defensive driving” manoeuvres in the event that other 
cars on the road perform dangerous movements which 
could lead to a crash.  These types of control systems may 
even assist drivers of motor vehicles, helping them to 
escape from imminent danger or to avoid collisions. 
 
10  Conclusion 
 
     An operational vision guided robot car that can “learn 
how to drive” was described in detail in this “case study” 
report.  It is hoped that this work will inspire others to 
develop similar types of intelligent vehicles for practical 
applications, entertainment, education and even future 
competitions between mechatronic engineering students. 
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