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Abstract: Sea level rise (SLR) in small island countries such as Kiribati and Tuvalu have been a
significant issue for decades. There is an urgent need for more accurate and reliable scientific
information regarding SLR and its trend and for more informed decision making. This study uses
the tide gauge (TG) dataset obtained from locations in Betio, Kiribati and Funafuti, Tuvalu with
sea level corrections for vertical land movement (VLM) at these locations from the data obtained
by the Global Navigation Satellite System (GNSS) before the sea level trend and rise predictions.
The oceanic feature inputs of water temperature, barometric pressure, wind speed, wind gust, wind
direction, air temperature, and three significant lags of sea level are considered in this study for data
modeling. A new data decomposition method, namely, successive variational mode decomposition
(SVMD), is employed to extract intrinsic modes of each feature that are processed for selection by
the Boruta random optimizer (BRO). The study develops a deep learning model, namely, stacked
bidirectional long short-term memory (BiLSTM), to make sea level (target variable) predictions that
are benchmarked by three other AI models adaptive boosting regressor (AdaBoost), support vector
regression (SVR), and multilinear regression (MLR). With a comprehensive evaluation of performance
metrics, stacked BiLSTM attains superior results of 0.994207, 0.994079, 0.988219, and 0.899868 for
correlation coefficient, Wilmott’s Index, the Nash–Sutcliffe Index, and the Legates–McCabe Index,
respectively, for Kiribati, and with values of 0.996806, 0.996272, 0.992316, and 0.919732 for correlation
coefficient, Wilmott’s Index, the Nash–Sutcliffe Index, and the Legates–McCabe Index, respectively,
for the case of Tuvalu. It also shows the lowest error metrics in prediction for both study locations.
Finally, trend analysis and linear projection are provided with the GNSS-VLM-corrected sea level
average for the period 2001 to 2040. The analysis shows an average sea level rate rise of 2.1 mm/yr
for Kiribati and 3.9 mm/yr for Tuvalu. It is estimated that Kiribati and Tuvalu will have a rise of
80 mm and 150 mm, respectively, by the year 2040 if estimated from year 2001 with the current trend.

Keywords: sea level rise (SLR); Global Navigation Satellite System (GNSS); vertical land movement
(VLM); successive variational mode decomposition (SVMD); bidirectional long short-term memory
(BiLSTM); Boruta random forest optimizer (BRFO)

MSC: 68T07

1. Introduction

Sea level rise (SLR) is an important global issue and ranks among the top climate
change issues, with international organizations concerned with the devastating impacts of
climate change. The sixth assessment report of the Intergovernmental Panel on Climate
Change (IPCC) [1,2] highlights that risks from SLR for coastal ecosystems and people are
very likely to increase by tenfold if no adaptation and mitigation strategies are implemented
as agreed by parties to the Paris agreement by the year 2100. The report further states that
the global mean sea level (GMSL) has risen by 0.2 m since the year 1901 and is projected
to rise further in the coming years. This also impacts the frequency of extreme sea levels,
which are projected to increase by a median of 20–30 times across tide gauges by the year
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2050 [2]. The global sea level rise (GSLR) rate has significantly increased from 1.7 mm/year
to 3.4 mm/year since 1993 [3]. Sea level is a sensitive climate variable affected by various
oceanic parameters. The rise in sea level has been attributed to the melting of glaciers
and ice sheets, thereby adding water volume to the ocean [4]. The rate of melting has
significantly increased over the past decade, and global warming has been stated as the
major reason for this [3,5]. The impact of SLR could have devastating effects with a loss of
30–80% of coastal wetlands, which include salt marshes and mangroves [6]. A study on
coastal hazard exposure of cultural, natural, and African heritage sites [7] found that by
2050, exposure to these areas will more than triple, reaching almost 200 sites as a result of
climate change.

GSLR provides an estimate of the impact; however, the actual impact and rate of
rise varies according to geographic location and other related climate variables. Miller
and Douglas [8] stated the GSLR rate for the 20th Century to be between 1.5–2 mm/year,
whereas Wadhams and Munk [9] found a lower rate of 1.1 mm/year in the same period of
study. According to the IPCC report [10–12], small island nations are most vulnerable to
SLR. Among these are South Pacific countries such as Kiribati and Tuvalu. Given the nature
of these island states surrounded by oceans, SLR poses a major threat to their infrastructure
and socioeconomic activities [12]. While the main aspect of SLR is highlighted as the
inundation of coastal areas, the most critical and long term threat of impact will be on
freshwater quality and availability [13]. The impacts of climate change on these island
nations have been continuously highlighted in climate reports and media. However, as
stated in [14], scientific knowledge and study in these islands have been relatively slow.

Sea level change is assessed by using three types of measurements, namely, tide gauge
(TG) data, Global Navigation Satellite System (GNSS) time series, and observations of
levelling [15,16]. TG provides a measure of sea level variation relative to a TG attached to a
wharf. A problem associated with TG measurement is its inability to differentiate between
sea level change and movement of the TG. In the case of land subsidence on which the
tide gauge is situated, it records the relative sea level change [17]. In this study, tide gauge
observations are corrected for land subsidence using the GNSS recorded measurements.
GNSS measures the vertical crustal motion of the Earth with respect to the center of the
Earth. Geoscience Australia (GA) operates the GNSS network, which includes the South
Pacific countries, and provides this information under the Australian Aid-funded Pacific
Sea Level and Geodetic Monitoring (PSLGM) Project. This technique has been successfully
used in past studies for accurate sea level estimation. A study [18] using existing GNSS
stations in Taiwan estimated the sea level change by removing vertical land motion (VLM)
from the TG sea level measurement. Another study [19] claims that GNSS is able to provide
VLM monitoring with an accuracy higher than 1 mm/year and hence is an effective tool to
improve the estimation of sea level rise rates. VLM consideration in estimating accurate sea
level rise is extremely important, as it removes a wide range of natural and anthropogenic
influences from the tide gauge-measured sea level [16,20].

Furthermore, this study also addresses another important gap in study by utilizing
new artificial intelligence (AI) methodologies, such as deep learning, to provide SLR trends
and future localized projections for small islands such as Kiribati and Tuvalu in the South
Pacific. The use of AI model predictions has been successfully carried out for various
climate variables in many studies [21–26]. However, its implementation for the prediction
of sea level with the VLM-corrected tide gauge dataset with data decomposition and
feature selection techniques for South Pacific countries has not been considered so far.
Therefore, this study proposes a deep learning architecture-based stacked bidirectional
long short-term memory (BiLSTM) model as the objective model integrated with successive
variational mode decomposition (SVMD) data decomposition and Boruta random forest
optimizer feature selection for prediction of sea level. This is benchmarked by three AI
models (adaptive boosting (AdaBoost) regressor, multilinear regression (MLR), and support
vector regression (SVR). In addition, the corrected sea level average values are computed
for a linear projection with the sea level rate rise for Kiribati and Tuvalu.
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2. Materials and Methods
2.1. Study Area and Dataset

As mentioned previously, the two countries selected for this study are Kiribati and
Tuvalu, located in the South Pacific Ocean. Figure 1 and Table 1 show the study area map
and geographical locations of the two small island nations.

Table 1. Specific geographical location and description of the two data sites.

Country Island/
Atoll

Town/
District

Seaframe
Sensor

Benchmark
(SSBM)

Geographical
Location

Kiribati Tawara Betio 4.6301 01◦21′45′′ N,
172◦55′48′′ E

Tuvalu Funafuti Fongafale 5.2468 08◦30′10′′ S,
179◦12′33′′ E
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by the tide gauges deployed at the study sites mentioned in Table 1. The TG is one com-
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parameters such as wind gusts and speed, air and water temperatures, and barometric 
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2.2. Data Preprocessing and Input Selection 

Figure 1. Study site map showing locations of both countries (Kiribati and Tuvalu) in the South
Pacific Ocean.

The study utilized a 60 min interval-recorded sea level (meters), water temperature
(◦C), air temperature (◦C), barometric pressure (hPa), wind direction (degrees True), wind
gust (m/s), and wind speed (m/s) dataset for the period of 2010–2021 acquired from the
Bureau of Meteorology (BOM), Australia (Pacific Sea Level and Geodetic Monitoring Project
File information and Instructions (bom.gov.au accessed on 10 February 2022)). The Pacific
climate change data portal was developed with BOM under the Pacific Climate Change
Science Program (PCCSP; 2009–2011). The sea level observations were recorded by the tide
gauges deployed at the study sites mentioned in Table 1. The TG is one component of a
water monitoring station and uses fitted sensors to collect measurements. Apart from sea
level heights, the new technology is capable of measuring other oceanic parameters such as
wind gusts and speed, air and water temperatures, and barometric pressure.

2.2. Data Preprocessing and Input Selection

An important aspect of any study based on data analysis is the quality of the data
and scientific correctness of addressing the missing values [27]. This study used the

bom.gov.au


Mathematics 2022, 10, 4533 4 of 23

interpolation method in Python using the Pandas library. The default status of linear
was implemented, given the close relationship with the data points in the dataset. The
effectiveness of machine learning modeling depends on this process, and deletion of rows
is not an ideal option [28]. The next step was to confirm the stationarity of the dataset,
which was done using the Augmented Dickey Fuller (ADF) test. ADF is used for large
datasets and tests the null hypothesis on the presence of the unit root in the data. A larger
negative value than the given critical value indicates that null hypothesis can be rejected.
Hence, if no unit root is present, the dataset satisfies the stationarity criteria [29].

A time series dataset as used in this study is a collection of time ordered observations.
Many studies [30–33] use lagged values as model inputs, as they help to reduce redundant
features and improve the model prediction accuracy [34,35]. Figure 2 below shows the
Auto Correlation Function (ACF) and the Partial Autocorrelation Function (PACF) plots
of the sea level time series, which show the antecedent behavior of the lags for Kiribati.
ACF shows the correlation of how any two values of the sea level series change as their
separation changes. The ACF sinusoidal curve shows the seasonality and measures the
association between current and past values, which will be useful in predicting future
values in AI modelling [36]. The PACF analysis helps to show partial correlation of the
series with its own lagged values. As shown in Figure 2, the line graph shows the level of
correlation with each lag. Following the graph analysis for both time series (Kiribati and
Tuvalu), three lags of sea level time series were chosen as inputs for the AI models.
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The lags and all other oceanic parameters were tested for correlation, as shown in
Figure 3. This correlation matrix calculates the correlation between each oceanic parameter
with the sea level. The darker rectangle blocks show higher correlations between the
parameters. Taking sea level as the target variable for prediction, Table 2 shows the input
oceanic parameters and lagged values used for the AI models.
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Table 2. Input features and description.

Input Oceanic Features

Air Temperature

Water Temperature

Wind Direction

Wind Gust

Wind Speed

Barometric Pressure

Sea Level Lags (t-1, t-2, t-3)

2.3. GNSS VLM Correction

The GNSS dataset is collected by Geoscience Australia (GA) using its infrastructure in
Kiribati and Tuvalu. The three-dimensional GNSS position is computed every week with
respect to the center of the Earth [37]. Figures 4 and 5 show the graphs of GNSS and tide
gauge variation from the average height. The tide gauge movement for absolute sea level
analysis for Kiribati is provided as−3.4± 2.8 mm/year and Tuvalu as−1.5± 1.3 mm/year.
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2.4. Data Normalization

All the model input and target data were normalized [38–40] for the values to be
within [0,1] for modelling by Equation (1) below:

xn =
xactual − xmin

xmax − xmin
(1)

After the modeling process, these values are computed to convert back to their original
values. The xactual in Equation (1) is made the subject, as shown in Equation (4).

xactual = xn(xmax − xmin) + xmin (2)

where xn is the input dataset, xmin is the minimum value in the dataset, and xmax is the
maximum value in the dataset.

2.5. Data Decomposition by Successive Variational Mode Decomposition (SVMD)

This study used successive variational mode decomposition (SVMD) proposed in [41],
which successively extracts the modes without the need to know the number of modes. This
new proposed method based on the same concept used in variational mode decomposition
(VMD) decomposes the signal with lower computational complexity [41,42]. Variational
mode extraction (VME) was applied successively on the input signal by adding constraints
to negate convergence on the extracted modes in the previous step. This continued until
all modes were extracted. To find a signal with the maximum compact spectrum Lth, an
optimization problem is solved when this Lth mode reaches the extracted mode sum that
reduces the reconstruction error. Figure 6 below shows the intrinsic mode decomposition
(IMF) of Tuvalu sea level (lag) as an example of 500 data points. All input signals were
decomposed into their IMFs for model inputs after Boruta feature selection, as used in
many studies [43–45] to improve prediction accuracy.
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2.6. Input Feature Selection Using Boruta Random Forest Optimizer (BRFO)

The algorithm of Boruta feature selection is based on the random forest classifier. The
selection of the classifier is based on decision trees. The algorithm randomizes the input
dataset, and duplicates are created as shadow attributes. The random forest classifier is
then trained on the larger set using a feature importance measure to collect the z-scores.
The maximum z-score is calculated within the shadow attributes, which form the critical
values whereby attributes with higher than these values are included in the selected set. A
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statistical two-sided test of equality with attributes that had an undetermined importance
is then performed. All the attributes with lower z-scores were removed from the set. Hence,
all selected features were then ready for AI training and modeling for prediction [33,46,47].

2.7. Data Partition

There is no set rule for data partition; however, following past successful
studies [23,48,49], the oceanic dataset was divided, as shown in Table 3.

Table 3. The study data partition according to the timeline is shown in the table below.

Partition Training
(60%)

Validation
(20%)

Testing
(20%)

Oceanic Dataset January
2000–December 2012

January 2013–June
2017

July 2017–December
2021

2.8. Objective Model Theoretical Background: Stacked Bidirectional Long Short-Term
Memory (BiLSTM)

The LSTM-based models overcome a significant problem of RNNs of vanishing gradi-
ent and capture long term dependencies in the data modeling process. This deep learning
architecture learns what information to preserve and what to remove. There are three gates
(forget, input, and output), which handle the process, as shown in Figure 7.
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Figure 7. Figure shows the cell block representation on how the input is processed within the LSTM
network.

The BiLSTM model extends the LSTM network in which each training sequence facili-
tates both forward and backward recurrent nets [33,50,51]. The input data passes through
two LSTMs in this network model. The architecture uses full sequential information of all
data points before with the movement through the layers [52,53]. There are two movements
of input data, where data are first fed into the forward layer, and then the reverse form of
input data are fed into the backward layer, as shown in Figure 8 [54]. The mathematical
functions are given below for the units in the architecture:

Forget Gates:
ft = δg(W f xt + U f ht−1 + b f ) (3)

Input Gates:
it = δg(Wixt + Uiht−1 + bi) (4)
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Output Gates:
ot = δg(Woxt + Uoht−1 + bo) (5)

Sigmoid Function:

δg(x) =
1

1 + e−x (6)

Cell Input State:
čt = tanh(Wcxt + Ucht−1 + bc) (7)

Hypertangent Function:

tanh(x) =
ex − e−x

ex + e−x (8)

The b f , bi , bo, and bc play the role of bias vectors. The U f , Ui, Uo, and Uc are weight
matrices that form the connection between the input cell state and the previous cell output
state. W f , Wi, Wo, and Wc are weight matrices of the forget gate. The network uses sigmoid
(δg), which acts as the gate activation function [55]. The cell output ct and output ht are
computed at each iteration t as follows:

ct = ft ∗ ct−1 + it ∗ čt (9)

ht = ot ∗ tanh(ct) (10)
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Figure 8 shows how the data are processed in both directions with separate hidden
layers. All the data input features go through BiLSTM layers in the network architecture.
At the final stage, prediction output is given as Yt = [. . . yt−1,yt, yt+1 . . .]. The yt value is
found using the merge mode as:

yt = δ(
→
ht,
←
ht) (11)
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2.9. Objective Model Development: Stacked Bidirectional Long Short-Term Memory (BiLSTM)

Model parameters are selected using a grid-search technique, which provides optimum
values for the BiLSTM model. Figure 9 and Table 4 show the tuning of parameters using
grid-search and stacked BiLSTM deep learning architecture in Python during the modeling
process.

Table 4. The grid-search hyperparameter optimized parameters for BiLSTM modelling.

Optimizer Activation
Function

Weight
Regularization Dropout Early Stopping

Adam Rectified Linear Unit
(ReLU) L1 = 0, L2 = 0.01 0.1 Mode = Minimum,

Patience = 20Mathematics 2022, 10, x FOR PEER REVIEW 11 of 24 
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2.10. Benchmark Models

The benchmark models have been widely used in predictions for many real-life
applications. A robust ensemble method which combined random forest and gradient
boosting to predict design routability and design rule checking (DRC) was used in [56]. In
another study, ML algorithms are used to combine ensemble and heuristic greedy search
methods for identifying design constraints and DRC [57]. SVR is regarded as an efficient ML
model and shows high determination coefficients in [58] to predict evaporation amounts.
One study [59] found high estimation results using MLR for the prediction of organic potato
yield using tillage systems and soil properties. These models provide a sound comparative
platform for the stacked BiLSTM model for the evaluation of performance in this study.

2.10.1. Support Vector Regression (SVR)

The support vector (SV) algorithm [60] based on non-linear generalization of the
generalized portrait algorithm [60,61] was developed by Vapnik and co-workers. While it
is generally used for classification, it can also be effectively applied for regression (SVR)
problems. The regression version was also developed by Vapnik, Steven Golowich, and
Alex Smola in 1997 [62]. The SVR algorithm uses a symmetrical loss function to train the
dataset. The SVR computation complexity has the advantage of non-dependence on the
dimensionality of the input space [63,64].
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2.10.2. Adaptive Boosting Regressor (AdaBoost)

The adaptive boosting algorithm was first introduced by Freund and Schapire [65]
in 1995. It is based on meta-estimation, where the dataset is fitted with a regressor. Fol-
lowing this, additional copies of the regressor is also fitted on the original dataset with an
adjustment of the weights of instances with respect to predictor error [66].

2.10.3. Multilinear Regression (MLR)

Multilinear regression is a statistical technique, where many explanatory variables
are used to predict a response variable [67]. It examines how multiple independent vari-
ables are related to a single dependent variable. The MLR assumptions are based on
normal distribution, linearity, and freedom from extreme values, and observations are
independent [68].

2.11. The Performance Evaluation Metrics for AI Models

All the models were evaluated using eight statistical metrics as given by Equations
(12)–(19) on the testing dataset.

1. Correlation Coefficient (r)

r =

 ∑n
i=1(DOi −MDO)(DSi −MDS)√

∑n
i=1(DOi −MDO)2 ∑n

i=1(DSi −MDS)2

2

(12)

2. Willmott’s Index of Agreement (d)

d = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi −MDO|+ |DOi −MDS|)2

]
(13)

3. Nash–Sutcliffe Coefficient (NS)

NS = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(DOi −MDO)2

]
,−∞ ≤ NS ≤ 1 (14)

4. Legates and McCabe’s Index (LM)

LM = 1−
[

∑n
i=1|(DSi − DOi)|

∑n
i=1|DOi −MDS|

]
, 0 ≤ L ≤ 1 (15)

5. Root Mean Square Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(DSi − DOi)
2 (16)

6. Mean Absolute Error (MABE)

MAE =
1
n

n

∑
i=1
|(DSi − DOi)| (17)

7. Relative Root Mean Square Error (RRMSE)

RRMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2

1
n ∑n

i=1 DOi
× 100 (18)
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8. Mean Absolute Percentage Error (MAPE)

MAPE =
1
n

(
i=1

∑
n

∣∣∣∣ (DSi − DOi)

DOi

∣∣∣∣
)
× 100 (19)

where DSi—simulated data, DOi—observed data.

2.12. Schematic Diagram of the Data Analysis and Modelling

Figure 10 shows the steps involved in the preprocessing and VLM correction for
absolute sea level. The initial block is critical for accurate and reliable results as key aspects
of dataset preparation, such as the stationarity test, creation of lags, data normalization, and
correlation analysis. Data decomposition into its intrinsic modes is an essential statistical
step of the time series dataset, as it helps to extract features such as seasonality and trends.
The Boruta random forest optimizer selects the significant features for the AI models.
All preprocessed datasets are fed into the AI models, and the prediction output data are
denormalized for conversion to actual sea level values.
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3. Results

The preprocessed time series dataset with GNSS correction of VLM were divided
into three sets, namely, training, validation, and testing. These were then put into the
AI models as feature inputs and target variables. The prediction model was developed
in each case for sea level prediction. The evaluation was divided in two parts, firstly,
the efficiency metrics measuring the accuracy of the models, and secondly, error metrics
for predicted values. The correlation coefficient (r) is a widely used statistical measure
that determines the relationship between two variables [69]. It indicates the strength of
association, and in this case, the degree of association between the observed and predicted
sea level values for all models. Wilmott’s Index [70] is a standardized dimensionless
measure that indicates the ratio of the mean of square error and the potential error. It
detects the additive and proportional differences in the means and variances between
observed and predicted values [70,71]. Nash–Sutcliffe (NS) [72] is a normalized metric
that provides model accuracy with goodness of fit [73,74]. The index uses three quantities,
namely, measured values, means of measured values, and the predicted values [73]. The
Legates and McCabe Index [75] is considered to be a more advanced and efficient statistical
index, where the adjustment of comparisons in the evaluation of WI is utilized [76]. There
are four error metrics utilized for analyses of all models at both study sites, namely, root
mean square error (RMSE), mean absolute error (MABE), relative root mean square error
(RRMSE), and mean absolute percentage error (MAPE).

3.1. Objective and Benchmark Model Results for Kiribati and Tuvalu

The model performance and error metrics are shown in Tables 5–8.

Table 5. Model performance metrics for Kiribati.

Model Correlation
Coefficient (r)

Willmott’s
Index of

Agreement (d)

Nash–Sutcliffe
Coefficient (NS)

Legates and
McCabe Index

(L)

AdaBoost 0.964311 0.957647 0.923809 0.733546
MLR 0.758946 0.672739 0.368981 0.217703
SVR 0.988909 0.987155 0.974866 0.852321

BiLSTM 0.994207 0.994079 0.988219 0.899868

Table 6. Model error metrics for Kiribati.

Model RMSE MABE RRMSE MAPE

AdaBoost 0.137814 0.111508 7.990359 7.322568
MLR 0.396610 0.327382 22.995112 21.019548
SVR 0.079154 0.061802 4.589257 3.889261

BiLSTM 0.054191 0.041904 3.141943 2.672222

Table 7. Model performance metrics for Tuvalu.

Model Correlation
Coefficient (r)

Willmott’s
Index of

Agreement (d)

Nash–Sutcliffe
Coefficient (NS)

Legates and
McCabe Index

(L)

AdaBoost 0.963663 0.959991 0.925800 0.744654
MLR 0.967652 0.908565 0.822057 0.592441
SVR 0.981239 0.979752 0.960339 0.807352

BiLSTM 0.996806 0.996272 0.992316 0.919732
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Table 8. Model error metrics for Tuvalu.

Model RMSE MABE RRMSE MAPE

AdaBoost 0.127630 0.101366 6.061497 4.998458
MLR 0.197646 0.161790 9.386780 7.673520
SVR 0.093310 0.076476 4.431582 3.759054

BiLSTM 0.041071 0.031864 1.950591 1.625925

3.2. Scatterplot with Correlation and Histogram Error Results for Kiribati and Tuvalu Models

A scatterplot is considered as one of the most powerful data analysis tools [77]. It is
a plot of two variables (observed and predicted) to show the association between them.
This technique emerged with the need to examine bivariate relationships between sepa-
rate variables directly [78]. The linear regression fit with a coefficient of determination
(r2) further adds to more information on the scatterplot about the behavior between the
variables in the study [79]. The stacked BiLSTM as the objective model for this study, as
shown in Figure 11, shows more compactness in the scatter of points between observed
and predicted values, indicating that higher accuracy and higher r2 further supports this
graphical representation. The MLR plot shows wider scattering with the lowest r2 value,
indicating lower model accuracy.
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r2 values between observed and predicted values.

A histogram is another widely used and common display chart in scientific study and
coined by famous statistician Karl Pearson [80]. It is constructed using attributes (absolute
prediction error) by partitioning the data distribution into "buckets" or "bins" with their
frequency in the allocated ranges [80,81]. It is an effective graphical method to evaluate
the performance of model prediction, as it shows the frequency of prediction error and its
distribution within the "bins". The stacked BiLSTM model plot in Figure 12 shows the bars
in the lower bracket indicating lesser amounts of absolute prediction error. On the contrary,
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other benchmark models in Figure 11 have more bars extending to the right, indicating
higher absolute prediction error.
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4. Discussion
4.1. Objective and Benchmark Model Performance Evaluation

As shown in Figure 13, all efficiency metrics discussed previously show superior
performance by the stacked BiLSTM model for both study sites. It attains high performance
values of 0.994207, 0.994079, 0.988219, and 0.899868 for the correlation coefficient, Wilmott’s
Index, the Nash–Sutcliffe Index, and the Legates–McCabe Index, respectively, for Kiribati.
The SVR model has also performed well as a benchmark model attaining values of 0.988909,
0.987155, 0.974866, and 0.852321 for the correlation coefficient, Wilmott’s Index, the Nash–
Sutcliffe Index, and the Legates–McCabe Index, respectively. MLR performed very poorly
at both study locations with values of 0.758946, 0.672739, 0.368981, and 0.217703 for Kiribati.
Compared with other models, this is also similar for Tuvalu, as shown in Figure 14 but with
better performance values of 0.967652, 0.908565, 0.822057, and 0.592441 for the correlation
coefficient, Wilmott’s Index, the Nash–Sutcliffe Index, and the Legates–McCabe Index,
respectively. Stacked BiLSTM has also shown superior results for Tuvalu with values of
0.996806, 0.996272, 0.992316, and 0.919732. AdaBoost as a benchmark model has also shown
good performance for both study sites, attaining values of 0.137814, 0.111508, 7.990359, and
7.322568 for Kiribati and 0.963663, 0.959991, 0.925800, and 0.744654 for Tuvalu.
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4.2. Objective and Benchmark Model Error Evaluation

To support the performance metrics above, error calculations were done for each model
with their prediction results. Error evaluation is a significant aspect of model evaluation, as
shown in many past studies using AI models for prediction [33,45]. Four error metrics are
computed in this study for error analysis. Figures 15 and 16 show the bar charts for model
errors at both study sites. It is clearly evident that the stacked BiLSTM model outperformed
all other models with the lowest values of 0.041071, 0.031864, 1.950591, and 1.625925 for
root mean square error (RMSE), mean absolute error (MABE), relative root mean square
error (RRMSE), and mean absolute percentage error (MAPE), respectively. This is similar
for Tuvalu with values of 0.041071, 0.031864, 1.950591, and 1.625925 in the same order. MLR
had the highest error values in both cases with 0.396610, 0.327382, 22.995112, and 21.019548
(Kiribati) and 0.197646, 0.161790, 9.386780, and 7.673520 (Tuvalu) for root mean square
error (RMSE), mean absolute error (MABE), relative root mean square error (RRMSE), and
mean absolute percentage error (MAPE), respectively.
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4.3. Times Series Comparison of Models for Kiribati and Tuvalu Sea Levels

Figure 17 shows a time series comparison of all model results between 23 December
2021 and 31 December 2021. The data points show the tracking of observed and predicted
data points within the testing phase of modeling. All AI models are able to track the
observed data; however, stacked BiLSTM shows the best fit, and all predicted points
overlap, indicating greater accuracy than all benchmark models. The MLR model shows
most deviation between the observed and predicted points. AdaBoost and SVR also show
better tracking of the GNSS-VLM sea level than the MLR model with the predicted dataset.
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4.4. GNSS-VLM-Corrected Sea Level Trend Analysis and Linear Projection

Figure 18 shows the annual sea level average with VLM correction with 2 per moving
average, which shows an increasing trend based on the analysis of the tide gauge dataset
located in Tarawa, Kiribati. The GNSS-VLM measurement was adjusted from each obser-
vation for the analysis. The annual rate of increase is estimated to be 2.1 mm/year, and
with a linear projection, the sea level is expected to reach close to 1.75 m in 2040. This is
an estimated increase from 1.67 m at an average of 80 mm. According to [82], there is a
significant increase in the extreme water level according to Betio tide gauge data since 1984
(>2.8 m above datum) due to decadal variability in the frequency of “Central Pacific” El
Niño events. Furthermore, it states that sea level variability could increase by 20–40 mm by
the end of century due to the evolution of ENSO dynamics and including other factors. In
another study of Tarawa in Kiribati [83], a sea level rise rate trend of 3.9 mm per year was
found from 1992 to 2008.
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Figure 19 shows the annual average GNSS-VLM-corrected sea level trend for Tuvalu.
The rate of rise is higher in the case of Tuvalu, with an annual average rate rise of 3.9
m/year. The linear projection shows an estimate rise to 2.16 m for 2040 with an increase of
150 mm from 2.01 m. Other studies, such as Donner and Webber [84], of sea level rise in
Tuvalu, with a 16-year TG data analysis from 2008, found a higher average rate rise of 5.9
mm/year. The higher values can be attributed to a different timeline considered as this
study considers the dataset from 2001 to 2021 and the consideration of GNSS-VLM TG
adjustment in sea level observations.
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5. Conclusions

Based on the implementation of artificial intelligence models, including new deep
learning analysis with data decomposition, it can be clearly seen with the comprehensive
evaluation of all AI models shown that the GNSS-VLM-corrected sea level trend can be
predicted with high accuracy. The objective stacked BiLSTM model outperformed all
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benchmark models in the study with greater accuracy. The trend assessment and linear
forecast with the new GNSS-VLM-corrected average values provides insight into the highly
debated issue of sea level rise with climate change in small island countries. With use of
a recent dataset and improved accuracy of predicted rise, stakeholders can make better
decisions on adaptation and mitigation strategies for Kiribati and Tuvalu. There is no doubt
that the sea level is rising and that the extent and nature of its impact is different across
the world. As seen in the analysis of this study, the expected rate of rise in Kiribati (2.1
mm/year) is not the same as in Tuvalu (3.9 mm/year) despite being in the South Pacific
region. This information needs to be considered with other factors such as the topological
changes in the land area to assess how the impacts may occur on the atoll islands with
their vulnerability to flooding and inundation. Each island state has its own context of
geographic, topographic, and cultural variety which must be assessed for real impacts of
sea level rise [85]. This can be a future scope for the extension of this study.
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