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Abstract: Using advanced deep learning (DL) algorithms for forecasting significant wave height of
coastal sea waves over a relatively short period can generate important information on its impact and
behaviour. This is vital for prior planning and decision making for events such as search and rescue
and wave surges along the coastal environment. Short-term 24 h forecasting could provide adequate
time for relevant groups to take precautionary action. This study uses features of ocean waves such
as zero up crossing wave period (Tz), peak energy wave period (Tp), sea surface temperature (SST)
and significant lags for significant wave height (Hs) forecasting. The dataset was collected from
2014 to 2019 at 30 min intervals along the coastal regions of major cities in Queensland, Australia.
The novelty of this study is the development and application of a highly accurate hybrid Boruta
random forest (BRF)–ensemble empirical mode decomposition (EEMD)–bidirectional long short-term
memory (BiLSTM) algorithm to predict significant wave height (Hs). The EEMD–BiLSTM model
outperforms all other models with a higher Pearson’s correlation (R) value of 0.9961 (BiLSTM—0.991,
EEMD-support vector regression (SVR)—0.9852, SVR—0.9801) and comparatively lower relative
mean square error (RMSE) of 0.0214 (BiLSTM—0.0248, EEMD-SVR—0.043, SVR—0.0507) for Cairns
and similarly a higher Pearson’s correlation (R) value of 0.9965 (BiLSTM—0.9903, EEMD–SVR—
0.9953, SVR—0.9935) and comparatively lower RMSE of 0.0413 (BiLSTM—0.075, EEMD-SVR—0.0481,
SVR—0.057) for Gold Coast.

Keywords: significant wave height (Hs); boruta random forest optimiser (BRF); ensemble empirical
model decomposition (EEMD); deep learning (DL); bidirectional long short-term-memory (BiLSTM);
support vector regression (SVR)

1. Introduction

About 60% of the world’s population live around coastal areas [1] and, therefore,
to understand how wave factors affect the coastal areas is extremely important. There
are many factors that influence the wave impact on the coastal areas which includes sea
level rise and changes in frequency of floods and storms. The effects of sea level rise have
impacted many island nations in the South Pacific. These islands are most vulnerable to
sea level rise leading to inundation of their land in the future [2]. Furthermore, as many
South Pacific islands have already experienced significant sea level trends and inundations,
it is extremely important to understand how this will project into the coming years for
Australia. For example, according to [3], which analysed 16 years of sea-level data from
the Australian project for sea-level trends for Tuvalu, if the increasing rate of rise continues,
the loss of land will be significant in the next 50 years.

The Great Barrier Reef in Queensland, Australia is the world’s largest coral reef system
which is made up of more than 2900 individual reefs and 900 islands stretching for over
2300 kilometres over an area of approximately 344,400 square kilometres [4]. It is a popular
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tourist destination and visitors to the site have greatly increased in the last decade. The
main reason for this has been the establishment of large pontoon-like structures that provide
comfortable platforms for viewing coral, SCUBA diving, and snorkelling [5]. The coral
polyps that make the coral are dependent on internal waves for the transfer of nutrients to
keep them alive. This important process is highly dependent on wave behaviour to allow
the circulation to take place [6]. A study by Young [7] showed that the longer period waves
generated sea-ward are completely attenuated by the reef. This was further confirmed by
Hardy and Young [8] in a later study that found the wave height was largely dependent on
the submergence of the reef. Hence, there is a need for more recent studies using modelling
techniques that provide valuable information on how the waves are changing around this
large marine ecosystem.

Sea waves are generated from solar energy through wind that causes water particles to
oscillate over the ocean’s surface by the frictional drag [9,10]. According to [11], the waves
in the South Pacific ocean are large due to the large fetch lengths and relatively high winds
in this region. The knowledge of the average wave climate requires many years of data and
an artificial intelligence model that is capable of reliable prediction. Sea waves have the
ability to travel long distances without the loss of energy in deep water conditions [11]. In
physical oceanography, the significant wave height (Hs) is defined as the mean wave height
of the highest third of the waves. Hs is measured by the height difference between the
wave crest and the preceding wave trough [12]. The prediction of Hs is of great importance
in marine and coastal engineering and is one of the most important parameters for sea
wave observation [13].

The assessment and prediction of sea wave features depends on the parameters of
wave motion. The availability of large datasets has led to the implementation of data driven
models to effectively assess and forecast ocean wave parameters. Furthermore, the recent
development in artificial intelligence models have also led to the increase in accuracy and
reliability of these forecasts. This has been shown in many recent studies where classical
machine learning methods have been used to forecast wave features [14–16]. The data-
driven models are based on the capture of the past relationship and behaviour between
sea wave parameters. For instance, the genetic algorithm–extreme learning machine
approach (GGA-ELM) is used in [15] with several subsets of features for significant wave
height and energy flux prediction. The study in [14] uses a random forest (a machine
learning algorithm) to forecast wave energy flux. In [17], the minimal resource allocation
network (MRAN) and the growing and pruning radial basis Function (GAP-RBF) network
is implemented to predict the daily wave heights in different geographical regions using
sequential learning algorithms. This study [17] also confirms that a prediction method with
superior network architecture can achieve better results.

Although many of the data-driven models provide reasonable results, their ability
to attain accurate predictions over the short-term, is constrained by the variability of the
marine environment and related factors. In the context of the available information, this
paper proposes a new approach which explores deep learning (DL) technology for Hs
prediction. The main objective of using such an advanced framework is to overcome
limitations of conventional data-driven models. These models do not efficiently capture
short and long-term dependencies between the predictors and the target. Another major
problem with classical machine learning models is the issue of overfitting [18]. By contrast,
a bidirectional long short-term memory (BiLSTM)-based DL model can overcome the
common vanishing gradient issue in many classical models. This is facilitated by its ability
to use 3 unique gates: input, forget and output [19]. These gates (see Figure 1) attempt to
explore relationships and interactions of sequential data, making it suitable to represent
the learning data over different temporal domains. Many studies [20–30] show that DL
can attain a greater accuracy compared to a stand-alone regression and single hidden layer
neural network model.
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Figure 1. Study site locations across coastal areas of Queensland, Australia.

This superior ability is enhanced with the incorporation of many neural layers to
overcome problems with relatively complex function approximation due to its capability
for non-linear mapping [30,31]. The problem of overfitting is also addressed with the use
of hyperparameter tuning of BiLSTM parameters in the model development phase. The
BiLSTM model has been successfully used in other recent studies which have shown accu-
rate and high-quality results [32–35]. However, a hybrid Boruta random forest–ensemble
empirical mode decomposition (BRF-EEMD)-BiLSTM model has not been applied in the
context of sea wave forecasting to date in any previous study. Therefore, the prediction of
Hs using this model is new and will provide useful insights on how sea wave parameters
can help to efficiently perform short-term forecasting.

A key novelty in this study is the hybrid nature of the BiLSTM model which is
incorporated with EEMD and Boruta random forest algorithms to increase the accuracy
and reliability of significant wave height forecasting. It has been shown in many past
studies [36–38] that EEMD, which is an improved version of EMD, can effectively help to
break down signals into their components and mitigates modelling complexity. In [39],
EEMD and long short-term memory (LSTM) algorithms have produced superior results
when compared with a list of benchmark models to forecast crude oil price. In another
study [40], EEMD and LSTM are combined for short-term wind speed prediction. The
proposed approach in this study also outperforms other comparable models. A study [41]
based on forecasting energy demand which also proposes a EEMD hybrid technique with
multi-model ensemble BiLSTM shows that the hybrid-based method outperforms all the
state-of-the-art techniques used for comparison. Furthermore, an EEMD-Particle Swarm
Optimisation (PSO)-support vector machine (SVM) hybrid method to predict rainfall-
runoff in watersheds in [37] shows that this approach effectively attains better results than
the benchmark standalone model.

In addition to the data decomposition method, the uses of input selection techniques
such as BRF optimiser increases the efficiency of modelling by screening and selecting the
significant inputs. Feature selection is an important step in the application of machine-
learning methods as datasets often have too many variables to build forecasting models [42].
An obvious reason for using a feature selection method is to overcome the computational
load on algorithms by selecting more significant inputs. Due to its iterative ability, BRF
can deal with the fluctuating nature of a random forest’s importance measure and the
interactions between the attributes [42]. Many studies have effectively used BRF feature
selection for the improvement of machine learning models. A study [43] for future soil
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moisture estimation successfully uses Boruta random forest (BRF) feature selection to select
and capture significant inputs. The hybrid BRF-LSTM model outperforms the standalone
models (LSTM, SVR and Multivariate Adaptive Regression Splines (MARS)) in this study.
A similar approach is used in [44], which found superior results by a hybrid EEMD-Boruta-
ELM model when forecasting soil moisture. The importance of input selection by BRF for
data-driven streamflow forecasting is also demonstrated in [45].

2. Materials and Methods
2.1. Study Area and Data

This study utilised 30 min interval recorded wave features data (Table 1) for a period
from 2014–2019 acquired from the Queensland government open data portal for coastal
areas in Queensland. The wave features used in this study are significant wave height (Hs),
maximum wave height (Hmax), zero up crossing wave period (Tz), peak energy wave
period (Tp) and approximation of sea surface temperature (SST). Table 1 and Figure 1 show
the selected sites and geographical location.

Table 1. Geographical location of data site.

Data Site Geographical Location

Gold Coast 27◦57′53.9319” S, 153◦20′58.1543” E

Cairns 16◦55′34.4124” S, 145◦46′27.0667” E

There are no set criteria for data partition, however datasets are normally divided
into training, validation and testing. This study uses a data partition of 60% training, 20%
validation and 20% testing (see Table 2) for best results.

Table 2. Data partition for modeling.

Partition Training
(60%)

Validation
(20%)

Testing
(20%)

Dataset January 2014–July 2017 August 2017–July 2018 August 2018–August 2019

2.2. Data Preparation

The initial step in data preparation is to identify outliers, missing and ‘incorrect’ data
values in the dataset. The accuracy of data modelling depends significantly upon the
accuracy and reliability of data. Outliers are data points that are in a minority and have
patterns which are quite different to the majority of other data points in the sample [46]. Any
presence of outliers in the data will significantly affect how the machine learning models
will effectively train the model for forecasting. Cook’s distance [47] can be effectively used
to detect and remove the outliers to improve any dataset for machine learning modelling.
This method of removing outliers is mostly used to detect the influence of data points in a
regression analysis [48]. Cook’s distance Di of observation k is given as:

Di =
∑n

i=1(ŷi − (ŷi(k))
2

pMSE
(1)

where, ŷi is the ith fitted response value, ŷi(k) is the ith fitted response value when the fit
excludes observation k, MSE is the mean squared error, and p is the number of coefficients
in the regression model. The next important step is to determine the stationarity of the
time series data. In order to fit a stationary model, it is highly important to determine that
the data is a realisation of a stationary process [49].

This study uses two statistical tests to confirm the stationarity of the wave data (see
Table 3), the augmented Dickey Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests. The augmented Dickey Fuller test is for larger datasets and tests the null
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hypothesis that unit root is present in the data. A greater negative value of the ADF statistic
than the critical value confirms that null hypothesis can be rejected, and no unit root is
present. To complement the ADF test, the KPSS test can be used to confirm ADF test. If the
KPSS statistic is less than the critical value, then the null hypothesis is accepted confirming
that the series is stationary.

Table 3. Augmented Dickey Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) analysis results.

ADF Statistic: −17.44 KPSS Statistic: 0.29

Critical Values: Critical Values

5%: −2.862 5%: 0.463

10%: −2.567 10%: 0.347

The following results confirm the stationarity criteria for the Gold Coast dataset and
the same procedure was used for Cairns to confirm stationarity.

Considering, Hs as the time series variable for the 30 min interval, the significant lags
are then used with the other wave feature variables of zero up crossing wave period (Tz),
peak energy wave period (Tp), and sea surface temperature (SST) as the inputs to predict
the significant wave height (Hs) (see Table 4).

Table 4. Input features and description.

Input Wave Features Description

Hmax Wave Height

Tz Zero up crossing wave period

Tp Peak energy wave period

SST Sea surface temperature

2.3. Data Normalisation

All of the model input data were normalized [50–52] to make the range of [0,1] for
modelling by Equation (3):

xn = xactual−xmin
xmax−xmin (2)

After the forecasting using the trained model, values are then returned to the original
values using Equation (4).

xactual = xn(xmax − xmin) + xmin (3)

where x is the input data value, xmin is the overall minimum and xmax is the overall
maximum value.

2.4. Data Decomposition by Ensemble Empirical Mode Decomposition (EEMD)

The EEMD method is an adaptive method that decomposes its original signal into
components with amplitude and frequency-modulated parameters with a noise-assisted
and analysis technique [53]. It is based on the commonly used empirical mode decomposi-
tion (EMD) which is a self-adaptive decomposition technique [54]. This method is suitable
for both non-linear and non-stable signals as well. EEMD is largely improved from EMD
by the addition of Gaussian white noise into the raw series. Hence, it can attribute signals
with different time scales to the reference time scales.

The algorithm splits the original wave signals into intrinsic mode functions (IMFs).
The training, validation and testing data are split separately by the algorithm. This is done
to ensure no leakage of information occurs from the training IMFs into the validation and
testing phase of modeling.
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Given, n-dimensional length L of a dataset, the application in this study follows the
algorithm in [54,55]. The procedure considers two important conditions:

• The n-dimensional length either has an equal number of extrema and zero crossings,
or they differ at most by one.

• The mean value at any point which is defined by local maxima and the envelope
defined by the local minima are zero.

The EEMD is implemented as follows [54]:

• The white noise series are added to the wave data;
• Wave dataset is then decomposed with added white noise into its IMFs (see Figure 2);
• Steps 1 and 2 are repeated with different Gaussian white noise series.
• Since the mean value of added noise is zero, the average over all corresponding IMFs

will be the final decomposition.
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Figure 2. Temporal time-series signal of IMFs and residuals from the EEMD transformation of Hs.

Figure 3 shows the partial autocorrelation function (PACF) plot of the Hs time series
to show the antecedent behaviour in terms of the lag of Hs in hours. The partial autocor-
relation (PACF) function analysis is also used to determine the lags of the wave prediction
model for the target variable Hs. The PACF analysis method is widely used as it provides
partial correlation of the stationary time series with its own lagged values. It helps to
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de-termine how many past lags can be useful to include in the forecasting model. The
de-composition of original input series of 48 lags produces 6 IMFs of each lag.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 20 
 

 

model for the target variable Hs. The PACF analysis method is widely used as it provides 

partial correlation of the stationary time series with its own lagged values. It helps to de-

termine how many past lags can be useful to include in the forecasting model. The de-

composition of original input series of 48 lags produces 6 IMFs of each lag. 

 

Figure 3. Partial autocorrelation function (PACF) plot of the Hs time series exploring the antecedent behaviour in terms 

of the lag of Hs in hours. 

2.5. Feature Selection by Boruta Random Forest Optimiser (BRF) 

Boruta is a feature selection method where the algorithm is built around the random 

forest classification. It is based on an ensemble where selection is made according to the 

voting of multiple weak classifiers known as decision trees. The following steps summa-

rize the feature selection process [42]: 

 the information system is extended by the addition of all variables in consideration, 

minimum of five shadow attributes are added; 

 the added attributes are shuffled so that their correlation with the response are re-

moved; 

 the random forest classifier is applied to gather the z-scores; 

 the maximum z-score among the shadow attributes is found and every attribute that 

has a better score than this is taken as a hit; 

 a two-sided test of equality is performed with attributes that attained an undeter-

mined importance; 

 the attributes that have significantly lower z-score than the maximum z-score among 

the shadow attributes are removed; 

 the attributes that have significantly higher z-score are selected; 

 all shadow attributes are then removed. 

The correlogram in Figure 4 shows the covariance between the objective variable (Hs) 

in terms of the cross-correlation coefficient (rcross) for Cairns. The input lags are then 

selected based on their significance when the IMFs are screened by the Boruta algorithm 

(see Figure 5). 

Figure 3. Partial autocorrelation function (PACF) plot of the Hs time series exploring the antecedent behaviour in terms of
the lag of Hs in hours.

2.5. Feature Selection by Boruta Random Forest Optimiser (BRF)

Boruta is a feature selection method where the algorithm is built around the random
forest classification. It is based on an ensemble where selection is made according to the
voting of multiple weak classifiers known as decision trees. The following steps summarize
the feature selection process [42]:

• the information system is extended by the addition of all variables in consideration,
minimum of five shadow attributes are added;

• the added attributes are shuffled so that their correlation with the response are removed;
• the random forest classifier is applied to gather the z-scores;
• the maximum z-score among the shadow attributes is found and every attribute that

has a better score than this is taken as a hit;
• a two-sided test of equality is performed with attributes that attained an undetermin-

ed importance;
• the attributes that have significantly lower z-score than the maximum z-score among

the shadow attributes are removed;
• the attributes that have significantly higher z-score are selected;
• all shadow attributes are then removed.

The correlogram in Figure 4 shows the covariance between the objective variable (Hs)
in terms of the cross-correlation coefficient (rcross) for Cairns. The input lags are then
selected based on their significance when the IMFs are screened by the Boruta algorithm
(see Figure 5).



Remote Sens. 2021, 13, 1456 8 of 20
Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Correlogram showing the covariance between the objective variable (Hs) in terms of the cross-correlation coef-

ficient (rcross) for Cairns. 

 

Figure 5. Boruta feature selection output for Cairns. The intrinsic mode functions (IMFs) are compared with shadow at-

tributes and declared as confirmed (hit) or rejected (removed) using the Boruta algorithm in R package. 

Figure 4. Correlogram showing the covariance between the objective variable (Hs) in terms of the cross-correlation
coefficient (rcross) for Cairns.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Correlogram showing the covariance between the objective variable (Hs) in terms of the cross-correlation coef-

ficient (rcross) for Cairns. 

 

Figure 5. Boruta feature selection output for Cairns. The intrinsic mode functions (IMFs) are compared with shadow at-

tributes and declared as confirmed (hit) or rejected (removed) using the Boruta algorithm in R package. 

Figure 5. Boruta feature selection output for Cairns. The intrinsic mode functions (IMFs) are compared with shadow
attributes and declared as confirmed (hit) or rejected (removed) using the Boruta algorithm in R package.



Remote Sens. 2021, 13, 1456 9 of 20

Figure 6 shows the overview of the workflow for the hybrid model development. The
wave predictors and target variable (Hs) pass through a series of model screening process
so that significant features are extracted from the raw data.
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2.6. Modal Development
2.6.1. Bidirectional Long Short-Term Memory (BiLSTM) Model Development

Figure 7 shows the proposed BiLSTM architecture snapshot used for significant wave
height modelling. The input connects to five layers, two BiLSTM layers, a unidirectional
LSTM layer, a dense layer and an activation layer which finally connects to the output.

Model design variables and hyperparameters are set manually with a pre-determined
value before the training phase. These can be considered as ‘knobs’ which can be turned to
tune the deep learning models. These values can be found by a trial and error approach,
doing 100% manual search or alternatively by grid-search as in this study. Table 5 shows
the model variables and hyperparameters which were used for BiLSTM.

Table 5. BiLSTM model variables and hyperparameters obtained from grid search.

Optimizer Activation Function Weight Regularization Dropout Early Stopping

Adam Rectified Linear Unit L1 = 0, L2 = 0.01 0.1
Mode =

Minimum,
Patience = 20
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2.6.2. Support Vector Regression (SVR) Model Development

The penalty or the cost function C in SVR determines if the data are of a good quality
by the narrow distance between any two hyperplanes. If the data are noisy, a smaller value
of C is preferred so that support vectors are not penalised. Therefore, it is important to
deduce an optimal value of C. Hence, a cross-validated grid search was done on the γ and
C values, at different values of ε. For different combinations for ε, γ, and C, Table 6 shows
the optimal scores obtained from the grid search procedure.

Table 6. Optimal values obtained from grid search for ε, γ, and C in the support vector regression
(SVR) model.

Epsilon (ε) Gamma (γ) Parameter (C) Kernel

0.1 1 × 10−7 1.0 Radial Basis Function

2.6.3. Bi-Directional Long Short-Term Memory (BiLSTM) Architecture

Each LSTM network unit is a special kind of recurrent neural network (RNN) (see
Figure 8) and is an effective model for many sequential learning problems [56–61]. It was
designed to model temporal information and long-term memory more than conventional
RNNs. RNN is an artificial neural network and is a strong dynamic system that takes
the input sequence one at a time (see Figure 9), which has the capability of holding
historical information of already processed inputs in the hidden units [62]. However, the
back-propagation with time method also presents an issue with vanishing and exploding
gradient [63,64]. In addition to this, RNN does not have the capability to model the long-
range context dependency between the inputs and outputs. Hence, to overcome these
problems, LSTM was introduced which has special memory units in the hidden layer).
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Figure 9. The long short-term memory (LSTM) cell block representation on how the input is processed
within the architecture.

The BiLSTM model (see Figure 10) is a DL network architecture and is an extension of
the single unidirectional LSTM where each training sequence is fed into both, forward and
backward recurrent nets that are separately connected to the same output layer. Hence, for
every point in a given sequence, the network structure takes full sequential information
about all points before and after [65,66]. The following gates and functions form the basis
of the overall architecture:

Forget Gates:
ft=δg(Wfxt+Ufht−1+bf) (4)

Input Gates:
it=δg(Wixt+Uiht−1+bi) (5)

Output Gates:
ot=δg(Woxt+Uoht−1+bo) (6)

Sigmoid Function:

δg(x)=
1

1+e−x (7)

Cell Input State:
ˇ
ct=tanh(Wcxt+Ucht−1+bc) (8)
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Figure 10. The BiLSTM cell structure at time step t. The architecture has the forward and backward
flow arrangement of connected LSTM layers.

Hypertangent Function:

tanh(x)=
ex−e−x

ex+e−x (9)

where, bf, bi, bo and bc are bias vectors. The Uf, Ui, Uo, and Uc are weight matrices which
connects the previous cell output state to the gates and the input cell state. The Wf, Wi, Wo,
and Wc are weight matrices that maps the hidden layer input to the gates and the input
cell state. The gate activation function δg is sigmoid. The cell output ct and output ht at
each iteration t are calculated as follows:

ct=ft∗ct−1+it∗
ˇ
ct (10)

ht=ot∗tanh(ct) (11)

The BiLSTM network takes data and processes it in both directions with separate
hidden layers (Figure 10). It takes output from these two sequences and combines them
using a merge mode which could be a concatenating ‘concat’, summation ‘sum’, average
‘ave’ or a multiplication ‘mul’ function. Finally, the sequence gives an output of prediction
vectors: Yt = [. . . yt−1,yt, yt+1 . . .]. Each yt is calculated using the merge mode as follows:

yt=δ(
→
ht,
←
ht) (12)

The support vector (SV) algorithm was developed by Vapnik and co-workers in
Russia [67]. The algorithm is based on non-linear generalisation of the generalised portrait
algorithm developed in Russia in the past three decades [67,68]. The support vector
machine (SVM) can also be applied using regression (SVR) and is based on the same
principles (see Figure 11). This regression version was developed by Vapnik, Steven
Golowich, and Alex Smola in 1997 [69]. It can be effectively used for prediction to minimize
the error, find the optimum solution and avoid the “curse of dimensionality” [70].
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Subject to: min
w,b,ξ,ξ∗

1
2‖w‖

2 + C
n
∑

i=1
(ξ + ξ∗)


wφ(xi) + b− yi ≤ ε + ξi

∗

yi −wφ(xi)− b ≤ ε + ξi
∗

ξi, ξi
∗ ≥ 0, i = 1, . . . n.

 (13)

where C = penalty parameter, ε = an insensitive loss function and ξi, ξi
∗ = slack variables.

3. Results and Discussion

Several statistical metrics were used in this study to evaluate the performance of the
stacked BiLSTM and the SVR models. The commonly used model score metrics such as the
Pearson’s correlation coefficient (R), Nash–Sutcliffe coefficient (NS), Willmott’s index of
agreement (WI), root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE).

The mathematical forms are as follows:

DOi −Data observed, DSi −Data simulated,
MDO− Mean of observed data, MDS− Mean of simulated data

1. Pearson’s Correlation Coefficient (R)

R =

 ∑n
i=1(DOi −MDO)(DSi −MDS)√

∑n
i=1(DOi −MDO)2

√
∑n

i=1(DSi −MDS)2

 (14)

2 Nash-Sutcliffe Coefficient (NS)

ENS = 1−
[

∑n
i=1(DOi−DSi)

2

∑n
i=1(DOi−MDO)2

]
−∞ ≤ NS ≤ 1

(15)

3 Willmott’s Index of agreement (WI)
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d = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi −MDO|+|DOi −MDS|)2

]
(16)

4 Root Mean Square Error (RMSE)

RMSE =

√(
1
n

) n

∑
i=1

(DSi − DOi)
2 (17)

5 Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1
|(DSi − DOi)| (18)

6 Mean Absolute Percentage Error (MAPE)

MAPE =
1
n

(
n

∑
i=1

∣∣∣∣ (DSi − DOi)

DOi

∣∣∣∣
)
∗ 100 (19)

Results obtained from the standalone and hybrid models for forecasting significant
wave height (Hs) were assessed to validate their effectiveness in the 24 h forecasting. The
forecasted values using all models in this study were analysed in terms of the predictive
accuracy. The comparison was made based on the six key statistical performance criteria
(Equations (13)–(18)). The performance metrics of all models in the testing phases are
shown in Table 7 with the best model in bold.

Table 7. Testing metrics results for SVR, EEMD-SVR, BiLSTM and EEMD-BiLSTM models.

Model
Cairns Gold Coast

R WI NS RMSE MAE MAPE R WI NS RMSE MAE MAPE
EEMD-BiLSTM 0.9961 0.9979 0.9912 0.0214 0.0133 2.8609 0.9965 0.9983 0.9931 0.0413 0.0293 2.5258

BiLSTM 0.9911 0.9873 0.9873 0.0248 0.0187 3.3921 0.9903 0.9945 0.9772 0.075 0.0553 5.5633

EEMD-SVR 0.9852 0.9913 0.9647 0.043 0.0313 8.6412 0.9953 0.9976 0.9906 0.0481 0.034 3.0422

SVR 0.9801 0.9879 0.9508 0.0507 0.0357 9.8301 0.9935 0.9967 0.9868 0.057 0.042 3.9214

For all the study locations in the testing phase of significant wave height prediction
Hs, the EEMD-BiLSTM model outperformed all other benchmark models with higher
Pearson’s correlation coefficient (R) value and lower RMSE, MAPE and MAE (see Table 7).
The Taylor diagram (see Figure 12) shows the statistical summary of how the observed
values match with the forecasting values. Figure 12 shows the comparison of the models
in terms of Pearson’s correlation, RMSE and standard deviation. The illustration shows
the objective model (red dot) outperforming all other benchmark models in terms of these
important performance measuring metrics.

In addition to this, to further evaluate and validate the accuracy of the models, di-
mensionless metrics such as WI [71] and NS [72] have been calculated. These metrics
overcome the insensitivity of correlation-based measures to differences in the observed
and model-simulated means and variance [71–73]. WI is a dimensionless measurement of
model accuracy which is bounded by 0 and 1, meaning no agreement for 0, and a perfect
fit for 1 [71,74]. The values obtained show consistent higher scores of more than 95% for
standalone and greater than 98% for hybrid models. NS is another normalised metric that
is widely used in evaluating forecasted results [75]. It ranges from −∞ to 1, an efficiency of
1 corresponds to a perfect match of simulated data to the observed data. EEMD-BiLSTM NS
achieves a value of greater than 0.95 (Figure 13), these values confirm the efficiency of the
prediction models as used in many past research studies [75–78]. The curve fitting between
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the observed significant wave height (Hsobs) and predicted significant wave height (Hspred)
for 30-min prediction are shown in Figure 13 for both the models at the two coastal sites.
The scatter plot shows the relationship between the normalized predicted and observed
values. EEMD-BiLSTM provides a better curve fitting between (Hsobs) and (Hspred), a
higher quality of fit R2 and a small residual error.
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difference for proposed hybrid EEMD-BiLSTM vs. benchmark models for Cairns and Gold Coast.
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Figure 13. Scatter plot of forecasted vs. observed Hs of Cairns and Gold Coast sites. A least
square regression line and coefficient of determination (R2) with a linear fit equation are shown in
each sub-panel.
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The histograms in Figure 14 compare the 24 h absolute forecasting error. These show
the difference between the forecasting model value and the actual value in the testing
period. The EEMD models where signal decomposition was used shows high frequency of
values with lower absolute forecasting error whereas the standalone models have higher
absolute forecasting error with larger values. The objective model, EEMD-BiLSTM, has a
lower range of forecasting error when compared with all benchmark models used in the
study for both study sites.
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4. Conclusions

Since the physical models present many challenges of computational complexity
and convergence issues of solutions, data-driven models can be an important alternative
in providing ocean wave predictions and assessment. The results have shown that the
hybrid EEMD-BiLSTM model that is enhanced with the Boruta feature selection optimiser
can provide valuable and accurate insight into 24-hour forecasting, much needed for
prior preparation for coastal wave events. This information on wave heights and notable
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changes in the sea level could be very helpful for assessing wave activities along coastal
areas. According to [79], coastal vulnerability is in the medium range if the mean significant
wave height is between 1.25 m and 1.4 m. The analysis of wave data in this study shows
Gold Coast with a high frequency of Hs with height greater than 2 m when compared
with Cairns. Thus, any accurate and reliable forecasting will help to ensure prior planning
and preparation. The Australian Bureau of Meteorology (BOM) also uses this concept of
significant wave height for warnings regarding ocean swells.

This study has also shown that a new and advanced hybrid methodology that com-
bines two LSTM layers where LSTM units have taken the dependence between consecutive
events into computation on a relevant time stamp can be effectively implemented with an
effective signal decomposition and feature selection technique for the marine environment.
It represents a new paradigm in significant wave height forecasting where all timesteps of
the input features are utilised through the forward and backward feed network structure.
To validate the merits of the proposed BRF-EEMD-BiLSTM model, a comprehensive evalua-
tion of the model was carried out through calculation of statistical metrics and visualisation
with comparison with benchmark models. Considering these results, the newly proposed
hybrid model with half-hourly wave input data can be an effective tool for short-term
prediction of Hs. The overall analysis and assessment of wave features at the two coastal
sites of Queensland shows high wave impact and more coastal vulnerability towards the
South East region. The availability of forecasting ability of artificial intelligence models
such as those used in this study will further enable more reliable and accurate future
wave warning systems. This study can also be extended at medium to long time-horizon
Hs forecasting.
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