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ABSTRACT

For the multiple regression model with error vector following elliptically contoured
distribution we propose Bayesian shrinkage estimators under balanced loss function.
Comparing a set of competing estimators for the regression vector, it is shown that the
shrinkage factor of the Stein estimator is robust with respect to the regression parameters
and unknown density generator of elliptical models. The dominance relation of the
estimators is also provided.

Key Words: Bayes estimator; Elliptically contoured distribution; Preliminary test estima-
tor; Stein-type shrinkage estimator; Positive-rule shrinkage estimator.
2010 Mathematics Subject Classification: 62J03; 62J07; 62F10.

1. Introduction

Consider the following multiple regression model
y=X0+e. (1.1)

where y is an n-veetor of responses, X is an n x p non-stochastic design matrix with full
rank p. B8 = (51.--.5)" is p-vector of regression coefficients and € = (e, - .e,)' is the n-
vector of random noises distributed as any member of the elliptically contoured distributions
(ECDs), £,.(0.6%V . g,) for some un-structured known matrix V € S(n), where S(n) denotes
the set of all pesitive definite matrices of order (n x n). The density of e is given by

f(€) = dnlo? V|2 ga[207] ' Ve, (1.2)

where d7! = 75T (2)]71 [., y¥'g.(y)dy and for some density generator function gy,(.).
The existence of the density generator g,(z) is dependent on the condition (Fang et al.,
1990) [7¥ 2%~ 1gn(z)dz < 0. If gn(.) does not depend on n, we use the notation g instead.
In this paper, we consider the estimation problem under the following loss function

L%, (6:8) = wr(|B]?) (6 — 60)'W (5 — &)
+(1—wr (1817) (6 - B)W (5 — B), (1.3)
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where w € [0,1], v(.) is a positive weight function, W is a weight matrix, and &, is a
target estimator. This loss is pioneered by Jozani et al. (2006) inspiring by Zellner’s (1994)
balanced loss function. This loss function takes both goodness of fit and error of estimation
into account. The wr (||8]|*) (6 — 80)(6 — bo) part of the loss is analogous to a penalty
term for lack of smoothness in nonparametric regression. The weight w in (1.3) calibrates
the relative importance of these two criteria. Dey et al. (1999) also considered issues of
admissibility and dominance, under the loss (1.3) ignoring the term r({.) when W = I.. For
the case w = 0, we will simply write LIV (6:8) as the quadratic loss function. Of course,
duty of the weight function r(.) is clearly apparent in the Bayesian viewpoint. In this paper,
we take it into consideration for the sake of generality. As it can be seen later, the structure
of r(.) does not alter the whole superiority conclusions.

This paper aims at the estimation of the regression parameter vector, 3 = (8y.--- . 8,)’
when it is suspected that 3 may belong to any sub-space defined by H3 = h where H
is a g x p matrix of constants and h is a g-vector of known constants with focus on the
Stein-type shrinkage estimator of 3 in addition to preliminary test estimator (PTE).

Saleh (2006) presents an overview on the topic under normal and nonparametric theory
covering many standard models. Other relevant works in the area include Arashi (2012),
Khan (2008, 2000), Arashi et al. (2008), Hoque et al. (2009), and Khan and Saleh ( 1997).

2. Preliminaries for Bayesian estimation

It is easy to show that the unrestricted estimator (UE) of B and o2 are

B=(XVIX)"IX'V-ly=Cc~'X'V~ly, C=XV-X. (2.4)

52 =n"!y - XB)V~(y - XB). and (2.5)

5% = (y - XB)'V~'(y - XB)/(n - p) (26)

is an unbiased estimator of 62 = —2¢/(0)o?, where ¢/'(0) is the first derivative of charac-

teristic generator of the elliptical model at point zero. Using the invariant theory due to
Jeffreys (1961), we define the following prior of ignorance

Tr{_B:ch) = constant, 'rr{0'2) x o2 (2.7)

Assume in the multiple regression model (1.1), € ~ £,(0,52V . g), where V € S,,. Then
w.r.t. the prior distribution given by (2.7), the posterior distribution of 3 is multivariate
Student’s t distribution. denoted by B|(X.y) ~ t,(8.%.m), where £ = S2C~", with pdf

n

FBI%,9) = [2Helmp)rd] |1+ = (3 -BY=" (8- B)

where ¢(m,p) = m%D (2)[T(2)]~!, and m = n — p. Thus the Bayes estimator is the
posterior mean given by

Bs =A. (2.8)
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Under (1.1). the distribution of Bayes estimator is £,(3.02C™".g). Thus the lst moment
of By is the zero vector and the 2nd central moment is E(35 — 8)(8 — 8) = o2tr(C™1).
Since the Bayes estimator is nothing more than that of the classical least square estimator
of 8, one may ask what would be the benefit of putting prior on the model? The answer
is that the role of the prior distribution is obvious in the loss function dealing with the
function »{|3]?).
For the elliptically contoured family distributions the function r(.) is given by

r(l18117) = g(II8I1%). (2.9)

Actually by taking this assumption, the loss function relates to the density generator of the
base model and therefore the prior information has direct impact on the model understudy.
We note that r(.) can be independent of g(.).

Overall, what we need is to compute E [r(||3|]*)] which by making use of (2.7), and
taking the constant to be 1, is given by

E[(I8I2)] = ]K 91817148 = s jﬂ Y g(y)dy = &=, (2.10)
r £ +

where d,, is the normalizing constant in (1.2).

3. Shrinkage Estimators

The restricted estimator (RE) is given by
B=8-C'H'V,(HB-h), Vi=[HC'H™ (3.11)

By making use of (1.1) one can easily see that 3 ~ £, (B—6.0°Va.g)ford =C™ H'V | (H3-
h) and Vo = C™ (I, — H'V,HC™"). Similarly, under Hy : H3 = h, the following esti-
mator is unbiased for o2.

S =(y-XB)V=-y—XB)/(n-p+q) (3.12)

from least squares theory.

letw={3:8ceRkRrF.H3=ho>0VeSn}and d={3:8ckroc>0V ¢
S(n)}. Then to remove the uncertainly in the suspected value of b, we test Ho : H3 = h
(where g < p) against H, : H3 # h, using Corollary 1 from Anderson et al. (1986), which
gives the likelihood ratio test statistic

L.=(HB-h)V(HB-h)/(gS). (3.13)
Under Hy. the pdf of £,, is given by
RN EALYS S YN B 3.14)
gim(n) = (5) 7B (5:3) (1+55n) @.

which is the central F-distribution with (g, m) degrees of freedom.
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In many practical situations, along with the model one may suspect that 3 belongs to
the sub-space defined by H3 = h. In such situation one combines the estimate of 3 and
the test-statistic to obtain shrinkage estimators as in Saleh (2006). The preliminary test
estimator (PTE) of 8 which is a convex combination of B and f‘l

BT = BI(Ln > Fa) + BI(Ln < Ea). (3.15)

where I(A4) is the indicator function of the set A and F, is the upper a** percentile of
the central F-distribution with (g, m) d.f. The PTE depends on a (0 < a < 1), the level

of significance and also it yields the extreme results, namely 3 and 3 depending on the
outcome of the test. Therefore we define Stein-type shrinkage estimator (SE) of 3, as

B =B+ (—des)(B-B)=B-dc;i(B- ). (3.16)

where
d=(g— 2)m/[g(m +2)] and ¢ > 3. (3.17)

The SE has the disadvantage that it has strange behavior for small values of £,,. Also,
the shrinkage factor (1 — d£!) becomes negative for £, < d. Hence we define a better
estimator namely the positive-rule shrinkage estimator (PRSE) of 3 as

S+

BT = B+(1-de;NILn > d)(B - B). (3.18)

4. Properties of the estimators
The bias of the unrestricted (LSE) and restricted estimators are given by
B,(UE)=E|[3— 8] = 0. and B,(RE) = E[3 — 8] = —4. respectively. (4.19)

Following Arashi et al. (2012) the bias of the PTE becomes

By(PT) = E(B" -pB)=E[B-I(L, <F.)B-B)- 8]

_ _cEV B, < BV (HB - h)| = —8G\;  (Fa: AZ) . (4.20)
where
of2=h ol +2 m
GEnllar2) = 3 K@D, L2242,
r=0
lo = %ﬂ?m I:[a.b] = [Fu*~!(1 —u)*~'du is the incomplete beta function and

r a\ T poc =1y=r+h  _aZ2i_ay’
K(A%) = [—20/ (0)]" (%) / (7R el
]

r!
The bias of the SE is
By(S) = EB°-B)=EB-dcz'(B-B)- 8|

= —dCcT'H'VIPELT VN HE - h)| = —dgs EP 5 (A2)]. (4.21)
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where
; -z h -
EC-Npg @ =3 - h W(AD(g+s—2+2r)!

J"}D
and that of the PRSE is
Bs(S+) = E(B8°-8)- Ell(L, < d)(@ - ) +dEILI (L, < (B - B))
= —dgsEQ (X 1a(AD)] +6GT, | (d:A2)

gd (2 - 2 2 gd
+q+ 2 6LE ) |:'Fq+2 m[A*)I [Fq+2._m[A*) < m) L (4'22)
where
EIZ h)[ q+.! n—p[&zjf['Fq"Fﬂ-ﬁ—P[AE) < dl)]

_ ZKI.‘L

in which d, = —‘ffi and z' —Ed— Note that as the non-centrality parameter A2 — o0,
B, = B; = By, = B = 0 while é becomes unbounded. However, under Hy : H3 = h.,
bccauscé—ﬂ_ Bl Bg—Bs B4 Bs—ﬂ

The risk function for any estimator 3* of @ under balanced loss function is

RY5,(8":8) = Ep {Ex[L5.(87: 8)118} - (4.23)

(q+s)'B[HL§"'~’i:L;2ijf [q+s+2r—2j m+2j}
p/ B E) 7 2 oz [

Using the above definition we find the risk function (4.23) when s = 3, as the target
cstimator, and W = C, given by (2.1), evaluate the risks of the five different estimators.
For the case w = 0, we will simply write R} (3" 3).

For the risk of the Bayes estimator, from RSE('; 3) given in (4.23), we have

RC;(B:8) = [l—w)E,g{r(Hﬁ”)E[B 8)yc(d - ,9)”,3}
= pal(l—-wEz {r(|8I°)} =pd7'al(1-w). (4.24)

Noting V'3 (HB — h) ~ £ (Vi (HB — h).02I,.g). the risk of the RE is

RE3(B:8) = wEs {r(I8I") EI(HB - h)'V.(HB - h)||3)}
+(1-w)Ea {r (I18I2) EI(B - B/C(B-B)IB}

RS 5(B:8) — gdytol + (1 - w)d'e, (4.25)

where § = 8§'C§ = (HB — h)'V,(HB — h). Note that R = CTY*H'V,\HC'? is
a symmetric idempotent matrix of rank ¢ € p. Thus, there exists an orthogonal ma-

trix Q@ (Q'Q = ij such that QRQ' = [ IS g } Now we define random vector w =
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QCi-”Z_B—QCI'I-’JQH’VIh: then w ~ &,(n.0°I,. g). wheren = QC;-”Z_B—QCI_I"JQH’VIh.
Partitioning the vector w = (w}, w})' and n = (n}.n%)" where wy and w, are sub-vectors
of order ¢ and p — g respectively, we can represent the test statistic £, given by (2.6) as

Ln = wyw/(gS?), and 0 = nin,. (4.26)

For the risk of the PTE, note 3 — 3 = C'lH’VlHC"ﬁw: then simplifications vield

PT

RE4B7":8) = wEs{r(IBI%) ElI(n < Fa)(B - B)C(B-B)IIB}
H1-wEs {r (1817 E(B" - 8yc (3™ - 8))18}
= RC;(B:8) - (1 - w)gold; ' GLly , (Fai A7)
+20(1 = w)d7t (267, 1 (Fai A2) = GRy  (FaiAD)] . (427)

On simplifications, the rigk of the SE becomes

RC,(3:8) = RC;(3:0)+ qd;l{ [ — 2d(1 — )] ED T (A2)]

+2(- ) BV (A} + 07
{ [dw— 2400 -)] ED () - 2401 - )
xE® [y o(A2)] +d°(1 - w)E':”[x;lZ{ﬁi)]} ,
(4.28)

where

E':Z‘“)[x;:{.&f)] = Z K"‘){A Ng+s—242r)" (g+s—4+2r)""
:r'}D

Finally, for the risk of PRSE, after some simplifications, we obtain

c nS+I _ c aSI
R.;d___é {B ? B) = R;‘.._J_g {B . Bj
_d‘—loj EI:I) 1— 22 qd {A j 2 F {&2) < q_d
TL '3 q q ? r;+2rr1 g=+2.m L — q+2
0 qd L z
+_52E‘2) (1_ EH-? H‘+2 m{AE)) ( g+2, m{‘ﬁ :| }
—2d719E®) Kl — qqd Fq-ﬂ m{ﬁf)) 1( g+2.m(AZ) )J
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5. Performance comparison

This section provides risk analysis of the above estimators with the weight matrix C. From
equations (4.24) and (4.25) the risk difference of the UE and RE is given by

Do = RS 5(B:8) - RS 5(B:8) = d* [(1 - w)0 - go?]. (5.30)
Then it can be directly concluded that ;'_':I performs better than 3 that is, E'-] dominates 3
(B = B) provided 0 < 0 < -1’1’:"25 for w £ 1 sinee d,, > 0.
For comparing the _f‘lPT and 3, the risk difference is
- . PT {
Dz = Rié{_ﬁg_ﬁ) - Ria{_ﬁ :8) = (1-2w)yg d;lgzc;;jz__m (Fa: AL
The right hand side of (5.31) is nonnegative i.c. _f‘lpT = B for w # 1 whenever
(1 - 2w)qo2Gyly m (Fa:A3)

21 - @) [26Z 1 (Fai A2) - G, (Fai 82)]

0 < (5.32)
Moreover, under Hy : HB3 = h. because of 8§ =0, _SPT = A for values w such that w < %
Now we compare 3 and 3 o by the risk difference

Das = RS4(8:8)-RS;(87:8)

= -9 d:lo—g[l - {1 - Qw)GE'{zZ._m E'F"-“; AE)] + 8 d;l{l - ““l)[l - QGE'Z-QZ._:TL E'F"-“; AE)
G, (FarA2)). (5.33)

LPT 4
Thus 3 = 3 whenever

g+2,m

(1-w) (1= 260, 1 (Fai A2) + Gy (Fai A2)]

, 992 [L = (1= 20)G ;. (Foi A2)]

: (5.34)

and vice versa. However, under Hy, the dominance order of 3, 3 and BPT is as follows
BB =B o BT =B=3 (5.35)

depending on the value o satisfving (5.5).

In order to determine the superiority of _f‘ls to 3, we give the following results.
Theorem 5.1. Consider the model (1.1) where the error-vector belongs to the ECD, £,(0,0°V , g).
Then the Stein-type shrinkage estimator, EIS of B given by

B =p-ar; 3-8
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uniformly dominates the Bayes estimator 3 with respect to the balanced loss function LS (8; 3)
and is minimaz if and only if 0 < d* < :1—1*2 The largest reduction of the risk is attained

) . TTl
when d* = -

Following Srivastava and Bilodeau (1989), the risk difference of the SE and Bayes esti-
mator under balanced loss function, is given by

Dy = Eg {E{fﬂs - _B)JC{_SS -8) - E{B - -B)’Ci"é —A) |B}
d;! {W ()" E- (%) W dE (é“g‘zlf)} |

T ~ 7712 and _B’H’V1H_B | 7 ~ T_254X3{5): where 6 = 8'H'V Hp.

where Ex means getting expectation with respect to multivariate normal with covariance
77152V and E, means getting expectation with respect to measure dW(.).

Therefore, Dy < 01f and only if 0 < d* < ;22 since [ poery AW (1) > 0.

) 2
since (%‘%—)

el
Theorem 5.2. Suppose in the model (1.1), € ~ £,(0, a2V, g). Then the Stein-type shrink-
age estimator

" g . I,

B, =B-dl-w)ti'(B-5) (5.36)

uniformly dominates 8 under the balanced loss function LEE—:{B; 8.

Corollary 5.1. Suppose in the model (1.1), € ~ E.(0,6%V,g). Then EIS = B under the
balanced loss function LSE{,B;,B).

The proof directly follows from Theorem 5.2 for the special case w = 0. To compare 3 and
- §
3 . it is easy to show that

RE(A%:8) - RE(.S:.BJHI;I(QJE—Q—dqzaf{iq—?)E[xzfz{&f)]

+ 28 e .
+[1- 2 eanepczian} ). (5.37)
Under H. this becomes
RE(B°:8) = RS(B:8)+qd;'o2(1-d) > RE(B:6). with (5.38)
R§(B3:8) = RE(B:8)-qd;'c? <RE(B:8). (5.39)

s a8 s a8
Therefore, 3 = 3 under Hy with the balanced loss L§ (3*, 3). Therefore under Hy, 3 = 3
with the balanced loss Lf_a{_ﬁ*;_ﬁj. However, as 1, moves away from 0, f increases and

the risk of B becomes unbounded while the risk of ,.C:IS remains below the risk of 3; thus for
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-5 N

dsimilar reasons, 3 dominates 3 outside an interval around the origin under the balanced
-5 - PT

loss LS P (3" 3). This scenario repeats when we compare 3 and 3 . Under Hp

RE(B%:8) = RE(B:8)+qds'o1-a—d > RSB :0),

, , PT
for all a such that F,7,  (d.0) < 5% This means, B does not always dominate 3

under Hy. So under HD with o satisfying F_ _,_2 m(d.0) £ g% under the balanced loss
function we have 3 = B >- _B » B.. The risk difference of_BS+ and _.E:IS is given by

55+,

D = RC(5°7:8)- RC;(8°:8) =

gd 2 2 2y o 99
l—— g+ q+2:-r1{A ) 1| Fasom(AL )< m

2
gd .y 2 '?d
(l_ q+2Fq+2 :-n{A*)) I( g+2. m{& j q-l—?

-1 (2 gd .y 2 gd
_an 708 ) |:(1_ q 2‘Fg+2 m{é‘*)) I (‘FH"FQ._J'H{A )< q+ 2):|

—dglaz{qu”

a8
+—2E|‘2)
i,

E

Ther.h.s. of the above equality is —ve since for Fy 4o ,(AZ) < (AZ)-1)>0

8
and also the expectation of a positive random variable is positive. Thus ;3 =3,

= g‘+2 {g‘+2 9+2 m

A S+
Remark 5.1. The positive-rule shrinkage estimator 3 of B s minimaz.

Continue the comparisons under LS (3";3). The results are the same for the balanced
5 ]
loss LEE{_B*;_B). To compare 3 and 3 +: note under Hy, i.e., gy =0,

REB™8) = RSB0 +eda {0- )~ Bl - rnh, 0
gd

xI(Fyq2.m(0) < q—)]})RD{B ).

since E |(1— fﬁfq—ﬂm{o))mfﬁz__m{o)g Eaj_g)] < E[{l L m{o))?] —1-d

Thus under Hy, B = ,B . But, as i, moves away from 0, # increases and the risk of
3 becomes unbounded while the risk of _f'is-" remains below the risk of 3 thus BS-" domi-
nates 3 outside an interval around the origin. When Hy holds, Gy . (Fs.0) = 1 —a,

.5 d
REB8) = REWTip)+adrior{1-a—d-E|0- LLrg, (o)

xI(Fy2.m(0) < qq%)}} > RE{;S ;_B): for all @ satisfying

gd

gd
B|(1= 2l 0PI (Fran(0) € 2] <1-a-d
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~ 8 -
Thus, 3 * does not always dominates _BPT when the null-hypothesis Hy holds.
Therefore the dominance order of five estimators under the balanced loss function LE B (8™ 8)

can be determine under following two categories
L g=B8T =8 =4 B a2 g =5 -8 -
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