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Abstract: An interesting physical phenomenon was recently observed when a fresh-water basin is
covered by a thin ice film that has properties similar to the property of a rubber membrane. Surface
waves can be generated under the action of wind on the air–water interface that contains an ice film.
The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown
by the wind with a uniform vertical profile is studied here in terms of the airflow velocity versus
wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of
the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation
is derived using the multiple scale method in the presence of airflow. It is demonstrated that the
potentially unstable hydro-elastic waves with negative energy appear for relatively small wind
speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong.
Estimates of parameters of modulated waves for the typical conditions are given.

Keywords: wind wave; ice cover; vortex sheet; negative energy wave; modulation instability

1. Introduction

For certain weather conditions, an interesting phenomenon can be observed when a
water basin is covered by a thin ice film of 1–5 mm of thickness. The ice cover has elastic
properties similar to that of polymer or a rubber—see, for example, the movie [1]. Due
to the unusual behaviour of such an ice cover, it is referred to as “rubber ice”. Under
the influence of external forces, a wave motion can arise on the water surface covered by
an ice film. Wave perturbations, in this case, are very similar to flexural-gravity waves
(FGWs) in the oceans covered by floating ice-sheets [2–5] except some specifics caused by
much less ice-film elasticity in comparison with the ice-plate rigidity and are referred to as
hydro-elastic waves (HEWs). The softer properties of the rubber ice in comparison with the
oceanic ice result in the possibility to excite HEWs on a water surface even by the relatively
moderate wind similar to the generation of gravity-capillary waves. Wind-generated waves
can be a subject of modulation instability in the result of which high-amplitude solitary
waves can arise. This makes typical the study of conditions of modulation instability. In
the case of surface waves without an ice cover, the comprehensive study of modulation
instability of gravity-capillary waves was undertaken by several authors [6–8]. In the recent
paper [9], this study was extended to include the influence of wind in the simplest model
of uniform airflow with the tangential discontinuity of velocity at the air–water interface.

The modulation instability leads to the development of non-linear modulated wave-
trains including envelope solitons. Weakly non-linear modulated waves in the ice-covered
ocean were studied by Guyenne and Părău [10] within the framework of the nonlinear
Schrödinger (NLS) equation. Strongly non-linear solitary envelope waves (“bright” soli-
tons) were studied by Il’ichev [11,12] within the framework of the primitive Euler equation.

Fluids 2021, 6, 458. https://doi.org/10.3390/fluids6120458 https://www.mdpi.com/journal/fluids

https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-0590-5442
https://orcid.org/0000-0003-4546-0310
https://doi.org/10.3390/fluids6120458
https://doi.org/10.3390/fluids6120458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids6120458
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids6120458?type=check_update&version=1


Fluids 2021, 6, 458 2 of 18

The general analysis of modulation instability of oceanic waves with ice compression
and ice-plate inertia in the water of finite depth was carried out recently in Slunyaev and
Stepanyants [13].

The influence of wind on oceanic waves covered by a thick ice plate is, apparently,
negligible but it is not the case when surface waves are considered in basins covered by
a thin film of rubber ice. Such situations can be of particular importance for fresh-water
basins such as lakes, rivers, artificial reservoirs, etc. Therefore, it is worth studying the
modulation instability of HEWs in water basins covered by a film of rubber ice.

A wind profile over a flexible surface is usually non-uniform which makes it difficult
to study waves in shear flows. However, it is feasible to construct a simpler wind model
with a uniform vertical profile to evaluate the basic effects generated by airflow over
the water surface as shown in Figure 1. In hydrodynamics, a shear flow with tangential
discontinuity of velocity plays an important role as the reference model which allows one
to investigate the basic physical phenomena of wave-current interaction and acquire an
insight into such a complex field (see, for example, [14,15]). This model is fascinating
because of its simplicity as well as its far-reaching effects on the understanding of wave
energy propagation. In particular, it can provide simple explanations about negative
energy waves [16], wave-induced currents [17], over-reflection phenomenon [18,19], etc.
Besides, when the wavelength of interfacial disturbances is considerably larger than the
characteristic width of the shear flow profile, the model with tangential discontinuity of
velocity can be sufficient for the description of physical phenomena within certain limits
of spatial and temporal settings. The aforementioned model is well studied based on
the linear approximation in [15], whilst the modulation instability of weakly nonlinear
wavetrains in the absence of ice film was studied recently by [9]. It is of interest to find the
criteria for the occurrence of modulation instability on a water surface in the presence of
a thin film of rubber ice. In such cases, one can expect the generation of quasi-stationary
nonlinear wavetrains along with envelope solitons which can have big amplitudes and
form rogue waves [20,21].
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Figure 1. Schematic sketch of the airflow model with the tangential discontinuity above the ice
covered deep water.

The objective of this study is to investigate the existence of modulation instability on
the air–water interface in the presence of rubber ice and provide a comprehensive analysis
of conditions when the tangential discontinuity of velocity increases up to the onset of
the Kelvin–Helmholtz-type instability. The subsequent sections of the manuscript are
organised as follows: In Section 2, the physical problem is formulated and the dispersion
relation for surface waves in water covered by rubber ice under the influence of wind speed
is analysed. In Section 3, the criteria for modulation instability of HEWs are determined.
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Finally, the results are summarized in the conclusion followed by an appendix in which
the NLS equation for the HEWs in the infinitely deep basin is derived.

2. The Problem Formulation

We consider a uniform airflow over infinitely deep water covered by an infinitely
extended thin ice plate in a horizontal plane. The air and water are both considered to be
incompressible and inviscid with the flow being irrotational. The mathematical model is
considered in a two-dimensional Cartesian coordinate frame with the x-axis being directed
along the air–water interface covered by thin elastic ice film and the z-axis being directed
vertically upward as shown in Figure 1. Moreover, it is assumed that ρ1 as the density of
the air, ρ2 as the density of water, ρi as the density of ice film with d being the thickness,
η(x, t) being the ice plate deflection from the horizontal mean position and U being the
air/wind speed. In such a model with the tangential discontinuity of the velocity profile,
the vorticity is the Dirac delta-function being zero in each layer and infinite at the interface
between the layers [15].

Due to the assumptions that both the air and water are inviscid and their motion
as irrotational, the velocity potentials Φj in each layer is introduced so that uj = ∇Φj,
where j = 1, 2 with index 1 being associated with the quantities in air, and index 2 being
associated with the quantities in water. The governing equations in each layer satisfies the
Laplace equation as given by

∇2Φj = 0 for j = 1, 2. (1)

Further, it is assumed that all perturbations in the vertical direction far away from the
interface disappear; in particular, for the wave velocities we have:

|∇Φ1| → 0 as z→ ∞, |∇Φ2|and→ 0 as z→ −∞. (2)

The kinematic boundary conditions at the interface yield:(
∂

∂t
+ U

∂

∂x

)
η +

∂η

∂x
∂Φ1

∂x
=

∂Φ1

∂z
on z = η, (3)

and
∂η

∂t
+

∂η

∂x
∂Φ2

∂x
=

∂Φ2

∂z
on z = η, (4)

Moreover, the dynamic boundary condition at the interface z = η is given by

ρ1

(
∂

∂t
+ U

∂

∂x

)
Φ1 − ρ2

∂Φ2

∂t
+ (ρ1 − ρ2)gη

+
1
2
{ρ1|∇Φ1|2 − ρ2|∇Φ2|2} − D

∂4η

∂x4 − ρid
∂2η

∂t2 = 0, (5)

where D = Ed3/12(1− ν2) is the ice-plate rigidity with E being the Young’s modulus
and ν being the Poisson ratio. These quantities are not well determined for the rubber ice.
Thus, we can speculate that they are qualitatively close to the known parameters for the
Indian rubber of thickness d = 1 mm, E = 107 Pa, ν = 0.47, and ρi = 917 kg/m3. These
parametric values are used in the subsequent analysis unless otherwise mentioned.

Considering small-amplitude structural response and linearised theory of water
waves, the response of the ice sheet is assumed to be of the form

η(x, t) = Aei(kx−ωt) + c.c., (6)

where k and ω are the real-valued wavenumber and frequency, and c.c. stands for the
complex conjugate. The velocity potentials Φ1 and Φ2 satisfying the boundary conditions
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given in Equations (3) and (4) along with the far-field boundary conditions for z → ±∞
are related with the ice-sheet deflection η by the relations as given by

Φ1(x, z, t) = −η + Uηx

k
e−kz, Φ2(x, z, t) =

η

k
ekz. (7)

Substituting Equation (7) into the dynamic boundary condition as in Equation (5), the
dispersion relation is obtained as

G1(ω, k) ≡ ρ1

k
(ω− kU)2 +

(ρ2

k
+ ρid

)
ω2 + (ρ1 − ρ2)g− Dk4 = 0. (8)

In particular, for ρ1 = 0 in Equation (8), yields the dispersion relation associated with
the flexural gravity waves as given by

ω2 =
Dk5 + ρ2 gk
ρ2 + ρi d k

,

which is generated due to the interaction of surface gravity waves with a thin floating
ice-sheet as in [3–5].

The explicit form of the derivations of wave frequencies ω1,2 in terms of the wavenum-
ber k are obtained by solving Equation (8) with regard to ω (cf. [15]) and is given by

ω1,2 =
akU ±

√
(1 + a + r d k/ρ2)[(1− a)gk + Dk5/ρ2]− (1 + r d k/ρ2)ak2U2

1 + a + r d k/ρ2
, (9)

where a = ρ1/ρ2 is the stratification ratio, r = ρi/ρ2 and + and − sign correspond to ω1
and ω2, respectively. The dispersion curves are exhibited in Figure 2 for different values of
wind velocity U. For simplicity, the wavenumber k is assumed to be positive, whilst the
frequency ω might be positive or negative. It may be noted that the wave frequency ω is
a positive quantity from a physical standpoint, however, the wavenumber k ∈ (−∞, ∞)
might have either sign.

As a special case for U = 0, Equation (9) describes two symmetric branches of the
dispersion curve with respect to the k-axis, which correspond to the flexural-gravity waves
propagating in opposite directions with phase speeds of Vph = ω1,2/k (see Figure 2).
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U = 16.09
U = 16.095
U = 16.0978

Figure 2. Graphics of the dispersion relations ω1(k) (upper branches) and ω2(k) (lower branches) for
the ice parameters presented above – see after Equation (5); the values of U are shown in m/s.

On the other hand, the dispersion curves become non-symmetric for U 6= 0 due to the
wave drift induced by flow. Further, the lower branch of the dispersion curves changes
it sign and become positive in the interval k′1 < k < k′2 for U > Uc1(= 16.09) m/s. This
is illustrated in Figure 3 for U = 16.095 m/s, which represents the magnified portion
of Figure 2.
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Figure 3. The magnified fragment of Figure 2 for the same set of parameters.

Besides, the values of k′1 and k′2 can be obtained from Equation (9) which are real roots
of the fourth-degree polynomial in wavenumber k as given by

D
ρ2

k4 − aU2k + (1− a)g = 0. (10)

Equation (10) can be rewritten in the non-dimensional form as given by

p(κ) ≡ κ4 −V2κ + 1 = 0, (11)

with κ = k{D/[(1− a)gρ2]}1/4 and V2 = (U2aρ2/D)[(1− a)gρ2/D]−3/4. Figure 4 reveals
that the function p(κ) has no real root for V < 1.7547, whilst it has two distinct positive
real roots for V > 1.7547.

κ
-1.5 -1 -0.5 0 0.5 1 1.5

p(κ)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

V = 0.7
V = 1.7547
V = 2

Figure 4. (Color online) The shape of the polynomial p(κ) for three different values of V. Line 1,
V = 0.7,—no real roots; line 2, V = 1.7547,—there is one double root (designated by red dot); line 3,
V = 2.0,—there are two real roots (designated by blue dots).

The critical wind speed Uc1 is obtained from Equation (9), where both phase and
group velocities vanish and are given by

Uc1 =

[
4
3

1− a
a

g
(

4D
aρ2

)1/3
]3/8

. (12)

It is pertinent to mention that fragment of the dispersion curves for which the fre-
quency changes its sign corresponds to the negative energy waves (NEWs) [15]. Figure 5
illustrates the same dispersion curves as in Figure 2 for ω ≥ 0 with k being of either sign.
In this representation, the negative frequency ω is associated with the negative energy
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wave. However, the waves with the ’negative frequency’ and negative wavenumber k
are qualitatively similar and propagate in the same direction as for waves with positive
frequency and positive wavenumber k.

k
-60 -40 -20 0 20 40 60

Re(ω)

0

2

4

6

8

10

U = 0
U = 16.09
U = 16.095
U = 16.0978

Figure 5. Non-symmetric branches of dispersion curves corresponding to waves propagating in
the opposite direction. Note that the pink and blue lines have negative portions, which correspond
to NEWs.

Figure 3 reveals that with an increase in the values of wind speed U beyond Uc1,
the upper and lower branches of the dispersion curves continue to converge to each
other and ultimately reconnect at U = UKH where UKH = Uc1

√
1 + a. It may be noted

that the density ratio in the case of air–water interface is chosen as a = 0.0012 to ensure
UKH ≈ 1.0006Uc1. Besides, the Kelvin–Helmholtz-type (K–H) instability occurs when the
wind speed U exceeds UKH . Moreover, the instability occurs in the interval k1 ≤ k ≤ k2,
where k1 and k2 can be derived from the following fifth-degree polynomial equation

r d D
ρ2

k5 + (1 + a)
D
ρ2

k4 − a r d U2k2 +
[
(1− a)r d g− aU2

]
k + (1− a2) g = 0. (13)

This type of reconnection is significant for the interaction of waves with opposite
energy signs which leads to the occurrence of K–H instability [15,16]. This phenomenon
is attributed to the exchange of wave energy between the positive and negative energy
waves associated with the upper and lower branches of the dispersion relation, respectively.
Consequently, the amplitudes of both the waves synchronously grow in time.

Besides, in the interval Uc1 < U < UKH , no K–H instability occurs, whilst there exist
non-growing but potentially unstable NEWs (see Figure 3). Further, it may be noted that
the wave amplitudes will grow for wavenumber k lying in the range k′1 < k < k′2 provided
their associated energy decreases. Moreover, from Equation (12) it is clear that the velocities
Uc1 and UKH are closed to each other for smaller values of density ratio a, which happens in
the case of air–water interface for a = 0.0012. It is pertinent to mention that Benjamin [22]
was the first who discovered that for a ' 1, Uc1 ' UKH/

√
2, which is typical for internal

layers in the oceans or the atmosphere.
Although the parameters for rubber ice are not well defined, it is of interest to demon-

strate the influence of these parameters on the dispersion properties of HEWs. In the
context of the present study, the value of Young’s modulus is chosen as E = 107 Pa, which
is close to India rubber. Figure 6 illustrates the dispersion curves of HEWs for three different
values of Young’s modulus with airflow velocity U = 16.09 m/s. Figure 6 reveals that the
dispersion curve has no optima for E = 106 Pa, whereas the lower branch of the dispersion
curve attains zero minima for E = 107 Pa and K–H instability occurs for E = 108 Pa. Thus,
it is concluded that the critical wind speed varies with the change in the values of Young’s
modulus E which is also clear from Equation (12).
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Figure 6. Influence of ice elasticity on the dispersion curves for the particular airflow velocity
U = 16.09 m/s.

NEWs are neutrally stable in the absence of energy dissipation. However, they can
grow in time only if there is a mechanism for taking out their energy. Potentially, there
are different mechanisms responsible for the growth of NEWs. In particular, similar to the
dissipative instability in plasma [23], viscous dissipation in the immovable lower layer
leads to the growth of NEWs [24]. The dissipation of wave energy leading to the growth
of NEWs and shear flow instability can be related to the radiation of internal waves from
the pycnocline in the density stratified ocean [25]. For amplification of NEWs, viscosity
must lead to “positive losses”. For example, the NEWs in the model considered is damped
if the upper moving layer is viscous rather than the lower layer. On the other hand, as
the viscosity in the moving upper layer leads to “negative damping", the positive energy
waves can grow on the upper branch of the dispersion curve. Undoubtedly, when the
upper layer is at rest in the reference system, the energy associated with the growth as well
as dissipative modes change signs simultaneously [15]. In such a reference system, NEWs
exist on the upper branch of the dispersion curve, which can grow under the influence of
positive dissipation. Besides, the shear flow instability associated with this mode remains
unchanged to the choice of the reference system.

It is interesting to note that by using simple transformation ω→ ω + kU in Equation (8),
the dispersion relation associated with the stationary upper layer and oppositely moving
lower layer can be obtained as

G2(ω, k) ≡ ρ1

k
ω2 +

ρ2

k
(1 + r d k)(ω + kU)2 + (ρ1 − ρ2)g− Dk4 = 0. (14)

Proceeding in a similar manner as in the case of Equation (12), it can be easily con-
cluded that NEWs arise for a very small velocity of the moving lower layer with current
speed U > Uc2 where

Uc2 =

[
4
3

1− a
a

g
(

4D
ρ2

)1/3
]3/8

. (15)

It is noteworthy to mention that the critical velocities Uc1 and Uc2 as in Equa-
tions (12) and (15) are very close to each other in the case of a ' 1 (e.g., for internal
waves on the ocean pycnocline). However, it is significant for a � 1 where Uc1 is much
greater than Uc2 with Uc2 ≈ 0.545 m/s and Uc1 ≈ 16.09 m/s as considered in the present
study. A fragment of the dispersion curve associated with Equation (14) in the frame co-
moving with the upper layer (i.e., static upper layer and moving lower layer) is exhibited
in Figure 7 for different values of U including Uc2 = 0.545 m/s. In general, Figure 7 reveals
that the NEWs can exist on both branches of the dispersion curves for waves that are
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slowed down relative to the flow with phase velocities being lower than the velocities of
the associated fluid layer.

k
0 10 20 30 40 50 60

Re(ω)

-10

-5

0

5

10

U = 0
U = 0.5
U = 0.54
U = 0.6

Figure 7. Dispersion relation (14) in the frame co-moving with the upper layer (air) for a few values
of U.

3. The Analysis of Modulation Instability of HEWs

In this section, the expressions for the dispersion coefficient P and nonlinear coeffi-
cients Q, as defined in Equation (A20), will be considered in detail for the lower and upper
branches of the dispersion curves associated with Equation (9), to determine the criteria of
modulation instability.

3.1. The NLS Equation and Modulation Instability in the Lower Branch of the Dispersion Curve

In this subsection, we use the frequency ω2 that corresponds to the lower branch of
the dispersion relation (9) to derive the expressions for the dispersion coefficient Pl and the
nonlinear coefficient Ql in the NLS Equation (A20). Then, we obtain:

Pl =
A2

8B3/2(1 + a + R)
− r2d2(

√
B− a k U)

(1 + a + R)3 −
r d
(

a U + A/
√

4B
)

(1 + a + R)2

+
2aU2(1 + R) + 2r d C− 20(1 + a + R)Dk3/ρ2 + 4a r d k U2

4
√

B(1 + a + R)
, (16)

Ql = −
k2

2
√

k(Dk4 + gρ2 − agρ2)B1 − C1ρ2
2

×


F1k +

2ρ2

[
a
(

kU + ρ2
A1

B1

)2
− ρ2R1

A2
1

B2
1

]2

(1− a)gk + 16k5 D
ρ2
− 2a

(
kU + ρ2

A1

B1

)2
− 2ρ2

2(1 + 2d k r)
A2

1
B2

1


, (17)

where

A = (1 + a + R)C− r d F + 2a U2(1 + F)k + a r d k2U2,

B = (1 + a + R)F− a k2U2(1 + R), C = g(a− 1)− 5Dk4/ρ2,

F = Dk5/ρ2 + (1− a)gk, R = r d k,

A1 =
√

kB1F1/ρ2
2 − C1 − akU, B1 = (1 + a)ρ2 + ρ d k,

C1 = a k2U2R1/ρ2, F1 = Dk4 + (1− a)ρ2g, R1 = ρ2 + ρ d k.
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In particular, for a = U = D = ρi = 0, the dispersion relation (9), corresponding
group velocity, dispersion and nonlinear coefficients Pl and Ql reduce to:

ω2 = −
√

gk, cg = −1
2

√
g
k

, Pl =
1
8

√
g
k3 , Ql =

1
2

√
gk5, (18)

where the coefficients Pl and Ql are analogous to the coefficients of the NLS equation for
surface gravity waves in deep water [26–28]. Note also that the dispersion and nonlinear
coefficients of the NLS equation for flexural-gravity waves in deep water [13] follow from
Equations (16) and (17) by setting a = 0 and U = 0.

In Figures 8 and 9, the dependencies of Pl(k) and Ql(k) are shown for the lower
branch of the dispersion curve for three different values of wind speed, U = 0 m/s,
U = Uc1 = 16.09 m/s and U = UKH ≈ 16.10 m/s. Figure 8 reveals that for all values of
U the dispersion coefficient Pl(k) has only one root where its sign changes from positive
to negative. On the other hand, Figure 9 reveals that the nonlinear coefficient Ql(k) for
all values of U has a singularity at k = ks ≈ 29.11/m where Ql(k) changes its sign from
positive to negative. It is worth mentioning that both the functions Pl(k) and Ql(k) attain
their minima around the point k ≈ 42.1/m where K–H instability occurs for U = UKH . The
minima become deeper and deeper when U approaches UKH , and in the limit, U → UKH ,
the singularities appear in both the functions Pl(k) and Ql(k).

As per the Lighthill criterion, a uniform wavetrain becomes unstable with respect to
self-modulation in the case of the function Wl(k) ≡ Pl(k)Ql(k) is positive [29,30]. Figure 10
demonstrates the zones of modulation stability (S) and instability (US) in the (k, U) plane.
Furthermore, a dramatic change in the stability diagram is observed for the wind speed U
higher than the critical value Um = 8.19 m/s, which is caused by several sign changes of
the nonlinear coefficient Ql(k) when U > Um. Figure 10 shows, in particular, zones of the
modulation instability for flexural-gravity waves in deep-water when U = 0 and a = 0 [13].

k
0 10 20 30 40 50 60

Pl

-0.2

-0.1

0

0.1
U = 0
U = 16.09
U = 16.10

Figure 8. (Color online) Variation of dispersion coefficient Pl(k) versus wavenumber k for different
values of wind speed in the case of the lower branch of the dispersion curve.
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U = 0
U = 16.09
U = 16.10

Figure 9. (Color online) Variation of the nonlinear coefficient Ql versus wavenumber k for different
values of wind speed U in the case of lower branch of dispersion curve.

k10
0
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1
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2

U

0

2

4

6

8

10

12

14

16
UKH

US USS

US
S US

US

US S

Um = 8.19 B1

Figure 10. Zones of modulation stability (S) and instability (US) in the (k, U) plane. The dashed line
on the top depicts the critical velocity UKH = 16.101/m at which the Kelvin–Helmholtz instability
arises. The bifurcation point in the diagram is denoted by B1 for U = Um.

It is worth mentioning that the maximum growth rate of modulation instability occurs
for the wavenumber of modulation Kmax = b0

√
Ql/Pl in the NLS Equation (A20), where

b0 is referred as the sinusoidal wave amplitude (see, e.g., [31]). Further, it is important to
note that Imax = |Ql(k)|b2

0 is the maximal value of the growth rate. For a given value of U,
this expression can be further optimized with respect to the carrier wavenumber k [32].

In the course of the development of modulation instability, envelope solitary waves
(solitons), breathers, freak waves can emerge from certain initial perturbations; the detailed
description of fascinating phenomena related to the interactions of such formations can
be found in Refs. [8,26,33]. In the case of modulational stability, dark solitons can be
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developed on the background of a quasi-sinusoidal wave [8]. Figure 11 demonstrates the
examples of (a) bright and (b) dark solitary envelope waves.

x

a) b)

Figure 11. (Color online) Examples of (a) bright and (b) dark envelope solitons.

The NLS Equation (A20) becomes inapplicable when its coefficients P(k) or Q(k)
vanish. This occurs at the boundaries between the domains of stability and instability
shown in Figure 10. In such a case, the generalised NLS equation should be derived
by taking into account the higher-order terms as in Refs. [34,35]. However, this is not
considered in the present study and will be studied separately.

3.2. The NLS Equation and Modulation Instability in the Upper Branch of the Dispersion Curve

Now let us use the frequency ω1 that corresponds to the upper branch of the dispersion
relation (9) for the derivation of the dispersion and nonlinear coefficients Pu and Qu and to
determine the condition of modulation instability. As in the case of the lower branch of
the dispersion relation, the dispersive coefficient Pu and the nonlinear coefficient Qu in the
NLS Equation (A20) are obtained as:

Pu =
−1

(1 + a + R)

[
A2

4B3/2 −
r2d2(

√
B + a k U)

(1 + a + R)2 +
r d

1 + a + R

(
a U − A

2
√

B

)
+

2a U2(1 + R) + 2r d C− 20(1 + a + R)Dk3/ρ2 + 4a r d k U2

2
√

B

]
, (19)

Qu =
k2

2
√

k(Dk4 + g ρ2 − a g ρ2)B1 − C1ρ2
2

×


F1k +

2ρ2

[
a
(

Uk− ρ2
P1

B1

)2
− ρ2R1

P2
1

B2
1

]2

(1− a)g k + 16k5 D
ρ2
− 2a

(
k U − ρ2

P1

B1

)2
− 2ρ2

2(1 + 2d k r)
P2

1
B2

1


, (20)

where A, B, C, R, B1, C1, F1 and R1 are the same as in Equations (16) and (17) with

P1 =
√

kB1F1/ρ2
2 − C1 + a k U. The coefficients Pu and Qu are exhibited in Figures 12 and 13.

A comparison of Figures 8 and 9 with that of Figures 12 and 13 reveals that the trend of
the dispersion and nonlinear coefficients for the upper branch of the dispersion curves are
opposite to that of Pl and Ql .

Equations (19) and (20) attribute that the modulational instability occurs for positive
values of the function Wu(k) ≡ Pu(k)Qu(k) associated with the upper branch of the
dispersion curve. Figure 14 demonstrates the zones in (k, U)-plane where the function
Wu(k) is positive, and that leads to the occurrence of modulation instability. Further, the
graphic begins to alter dramatically when U exceeds a critical limit Um = 9.4719 m/s,
which is caused again by multiple changes of sign of the nonlinear coefficient Quwhen
U > Um. It is evident from Figures 10 and 14 that the domains of modulation stability and
instability are bizarrely interspersed on the diagram when U exceeds the critical value Um
in each branch of the dispersion curve. The importance of highlighting such domains is in
the understanding of the existence of bright and dark solitary envelope waves. The former
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can arise in the process of the development of modulation instability, whereas the latter
can appear in the modulationally stable regions on the parameter plane. Moreover, in the
case of modulation instability, rogue waves with extremely high amplitudes can emerge
from rather regular initial perturbations [33]. The most important conclusion which can
be derived from this study is the existence of modulationally unstable waves of negative
energy for wind speed in the range Uc2 < U < Um. Such waves can grow in time if a
dissipative mechanism extracting energy from such waves is taken into account. This can
be, for example, a turbulent viscosity of air which can be very high in comparison with the
molecular viscosity even at the relatively weak wind. However, this issue is beyond the
scope of the present study.

k
0 10 20 30 40 50 60

Pu

-0.1

-0.05

0

0.05

0.1

0.15

U = 0
U = 16.09
U = 16.10

Figure 12. (Color online) Variation of the dispersion coefficient Pu versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.

k
0 10 20 30 40 50 60

Qu

×10
6

-1

-0.5

0

0.5

1

1.5

2

U = 0
U = 16.09
U = 16.10

Figure 13. (Color online) Variation of the nonlinear coefficient Qu versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.
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USS

S

US

Um = 9.47

S

Q1

Figure 14. Modulation stability (S) and instability (US) zones in the (k, U) plane. The dashed line
on the top depicts that the velocity corresponds to the K–H instability UKH = 16.0978 m/s. The
bifurcation point in the diagram is denoted by Q1 for U = Um.

4. Conclusions

In the present paper, the criteria for modulation instability of hydro-elastic waves on
the air–water interface have been investigated under the influence of wind. The considera-
tion was carried out within the framework of the simplest model of wind with the uniform
profile and tangential velocity discontinuity. However, this is a widely used canonical
model of the flow in hydrodynamics, physical oceanography, geophysical fluid dynamics,
plasma physics, and other fields. Despite the simplicity, the model provides an insight into
the complicated range of phenomena occurring in the wave-current interactions. To the
best of the authors’ knowledge, the modulation instability of hydro-elastic waves under
the influence of wind was not studied thus far. Thus, the present study has filled the said
gap on modulation instability in the literature. The study exhibits the wavenumber range
based on the current speed in which the stability and instability can occur in the lower and
upper branches of the dispersion relation. From the general model investigated here, the
limiting cases of pure gravity waves or flexural-gravity waves without airflow are repro-
duced. It is important to note that within the model with the uniform velocity profile, the
boundary layer effects at the air–water interface are neglected. This is acceptable for long
perturbations with wavelengths much greater than the typical thickness of the boundary
layer. Therefore, our analysis is not applicable to waves with large wavenumbers.

As a summary, an estimate of parameters of a modulated wave are presented with
wavenumber k = 10.1/m (λ = 2π/k ≈ 0.63 m), amplitude η0 = 0.01 m and U = 1 m/s.
Subsequently, the most rapidly increasing modulation wavenumber Kmax = η0

√
Qu/Pu

≈ 2.011/m and wavelength Λ = 2π/Kmax ≈ 3.12 m are obtained. The maximal value of
the growth rate is found to be Imax = |Q(k)|η2

0 ≈ 0.051/s along with the characteristic
time of wave growth τ = 1/Imax ≈ 20.4 s. These parameters look reasonable for the
rubber ice and, they are practically insensible to the variation of the wind speed in the
interval Uc2 < U < Um. The study can be generalized to deal with complex flow patterns
including turbulent viscosity of air as well as the role of lateral compressive force on the
floating ice sheet.
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Appendix A. Derivation of the Nonlinear Schrödinger Equation for Hydro-Elastic
Waves in the Presence of Wind with the Tangential Discontinuity of Velocity

In this Appendix, we derive the NLS equation for the air–water interface covered
by rubber ice in the presence of wind with the tangential discontinuity of velocity. It is
assumed that the perturbation is small and can be presented in the form of Equation (6),
whereas the amplitude A is considered now to be a slowly varying function of space x
and time t. Using the presentation of the velocity potentials as in Equation (7), we look for
solutions for Φj(z) (j = 1, 2) taking into account their dependences on the perturbation
of the interface η [9,36]. Then, from the kinematic boundary conditions (3)–(5) along with
the vertical boundary conditions for |z| → ∞ as in Equation (2), we present the velocity
potentials in the forms:

Φ1(x, z, t) = − ηt + Uηx

k(1 + iηx)
e−kz = − e−kz

k
(ηt + Uηx)

(
1− iηx − η2

x + . . .
)

, (A1)

Φ2(x, z, t) =
ηt

k(1− iηx)
ekz =

e−kz

k
ηt

(
1 + iηx − η2

x + . . .
)

. (A2)

Substituting the solutions for Φ1 and Φ2 from Equations (A1) and (A2) into the dynamic
boundary condition (5), we obtain the following nonlinear equation (up to the third order
on η):

G1(ω, k)η = α(ω, k)η2 + β(ω, k)η3, (A3)

where

α(ω, k) = ρ2(1 + r d k)ω2 − ρ1(ω− kU)2, (A4)

β(ω, k) = −k
[
ρ1(ω− kU)2 + ρ2(1 + r d k)ω2

]
. (A5)

and G1(ω, k) is given in Equation (8). In the linear approximation on η, the dispersion
relation (9), G1(ω, k) = 0, naturally follows from Equation (A3). Using the dispersion relation,
we derive the coefficients of nonlinear terms α and β in Equations (A4) and (A5) in terms of
the wavenumber k for the lower (j = 1) and upper (j = 2) branches of dispersion curves:
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α1(k) = ρ2

(√
D + a k U

)2
(1 + r d k)− a

(√
D − k U(1 + r d k)

)2

(1 + a + r d k)2 , (A6)

α2(k) = ρ2

(√
D − a k U

)2
(1 + r d k)− a

(√
D + k U(1 + r d k)

)2

(1 + a + r d k)2 , (A7)

D(k) = (1 + a + r d k)
[
(1− a)gk + Dk5/ρ2

]
− ak2U2(1 + r d k), (A8)

β1(k) = β2(k) = −k2[Dk4 + (1− a)gρ2]. (A9)

The nonlinear terms in Equation ((A3)) provide the second harmonic as well as the
mean flow generation by the quasi-sinusoidal primary-harmonic wave.

As the next step, we use the method of multiple-scale expansions by introducing ‘fast’
and ‘slow’ variables along with a non-dimensional small parameter ε� 1 such that:

tn = εnt, xn = εnx, n = 0, 1, 2. (A10)

Here, t0, x0 represent fast variables, and t1, x1, t2, and x2 are slow variable. The
differential operators ∂/∂t and ∂/∂x are expressed via the derivative expansions in the
following forms:

∂

∂t
= −ω

∂

∂θ0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . . , (A11)

∂

∂x
= k

∂

∂θ0
+ ε

∂

∂x1
+ ε2 ∂

∂x2
+ . . . , (A12)

where θ0 = kx0 −ωt0 with ω and k being related through the dispersion relation (9). Using
the expansions of the derivatives (A11) and (A12), the linear part of Equation ((A3)) is
represented through the operator:

L̂
[
(−iω, ik) + ε

(
∂

∂t1
,

∂

∂x1

)
+ ε2

(
∂

∂t2
,

∂

∂x2

)
+ . . .

]
.

This operator can be also expanded in terms of ε and its powers about the point (−iω, ik):

L̂ = L̂0 + εL̂1 + ε2 L̂2 + . . . .

Thus, under the assumption of the linear approximation, it can be readily derived
from Equation (A3) that

L̂η =
(

L̂0 + εL̂1 + ε2 L̂2 + . . .
)

η = 0. (A13)

Further, the perturbation of the air–water interface η can be expanded in the form of
the following series:

η(x, t) =
3

∑
n=1

εnηn(θ0, x1, x2; t1, t2) + O(ε4). (A14)

Substituting Equations (A13) and (A14) in Equation ((A3)), the linear and successive
higher order of partial differential equations can be obtained by equating the components
of equal powers on the small parameter ε:
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O(ε) : L0η1 = 0;

O(ε2) : L0η2 = −L1η1 + αη2
1 ;

O(ε3) : L0η3 = −L1η2 − L2η1 + 2αη1η2 + βη3
1 .

Under the assumption of the lowest-order approximation, a quasi-monochromatic
solution for the perturbation is considered in terms of slowly varying amplitude (cf.
Equation (6)):

η1 = A(x1, x2; t1, t2)eiθ0 + c.c.

Proceeding in the similar manner, we obtain for η2:

L0η2 = −i
(

∂G1

∂ω

∂A
∂t1
− ∂G1

∂k
∂A
∂x1

)
eiθ0 + αA2e2iθ0 + c.c. (A15)

The coefficient of eiθ0 represents a secular term in this equation. This term can be
eliminated by using the solvability condition:

∂G1

∂ω

∂A
∂t1
− ∂G1

∂k
∂A
∂x1

= 0.

Taking into account the definition of the group velocity cg =
dω

dk
= −∂G1

∂k
/

∂G1

∂ω
, the

solvability condition can be reduced to the simple wave equation:

∂A
∂t1

+ cg
∂A
∂x1

= 0. (A16)

After that, a uniformly valid solution for η2 can be written in the form:

η2 =
αA2

G1(2ω, 2k)
e2iθ0 + c.c.

With the help of definition of G1(ω, k) as per Equation (8), function G1(2ω, 2k) is
obtained both for the upper and lower branches of dispersion curves:

G1(2ω1,2(k), 2k) = ρ2

[
2a
k

(
kU −

√
D + akU

1 + a + r d k

)2

− 16D
ρ2

k4 − (1− a)g

+
2
k
(1 + 2r d k)(

√
D + a k U)2

(1 + a + r d k)2

]
.

Proceeding further in the similar manner, from the third-order approximation on
the parameter ε i.e., including terms of O(ε3), we obtain the solvability condition for the
equation containing L0η3 in the left-hand side (cf. Equation (A15)):

i
(

∂G1

∂ω

∂A
∂t2
− ∂G1

∂k
∂A
∂x2

)
=

1
2

∂2G1

∂ω2
∂2 A
∂t2

1
− ∂2G1

∂ω∂k
∂2 A

∂x1∂t1

+
1
2

∂2G1

∂k2
∂2 A
∂x2

1
+

(
2α2

G1(2ω, 2k)
+ β

)
|A|2 A. (A17)
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Further, the solvability condition (A16) can be rewritten as:

∂2 A
∂t2

1
= c2

g
∂2 A
∂x2

1
. (A18)

Setting xn = εnx and tn = εnt, and using Equation (A18) in Equation (A17), we obtain
the NLS equation:

i
(

∂A
∂t

+ cg
∂A
∂x

)
+ P

∂2 A
∂x2 + ε2Q|A|2 A = 0, (A19)

where the dispersion P and nonlinear Q coefficients are given as:

P =
1
2

dcg

dk
, Q = −

(
2α2

G1(2ω, 2k)
+ β

)(
∂G1

∂ω

)−1
.

Substituting the new variable b = εA, we arrive to the NLS equation in the standard
form (see, e.g., [8,31]):

i
(

∂b
∂t

+ cg
∂b
∂x

)
+ P

∂2b
∂x2 + Q|b|2b = 0. (A20)
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