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Abstract

Feedback control systems offer opportunities tooagnodate spatial and temporal
differences in crop water requirement and to imprthe automated irrigation of field
crops via real-time data from in-field plant, saiéter and evaporation sensing. This
paper describes two sensor-based strategies apfplie@dgation control, ‘lterative
Learning Control’ (ILC) and custom-designed ‘ltévat Hill Climbing Control’
(IHCC), implemented in the control simulation andaleation framework
‘VARIwise’. Simulation of an irrigated cotton crogsing soils and merged 1999-
2004 weather data of SE Queensland, Australia,remeesented by the performance
of the well-validated cotton growth and productioodel OZCOT, permitted the
relative performance of differing sensor data typad availability to be evaluated
(both as alternatives and in combination) in megtine requirement to optimise
either crop yield or water use efficiency. Theseutations indicated that ILC would
perform better at maintaining soil-water deficithilst IHCC would be better at
maximising crop yield when plant and soil sensoeseautilised in combination. This
work demonstrates that the optimal choice of feddsor(s) and control strategy will
be a function of the irrigation objective and tlpatsal and temporal availability and

type of field measurements.

Research highlights

» Two site-specific sensor-based irrigation strategvere simulated in VARIwise

» |Iterative Learning Control (ILC) produced highesglg with soil-water data input
* lterative Hill Climbing Control (IHCC) performed bewith soil-and-plant data

input



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

12

73

74

75

« Both sensor-based strategies were superior tmdlestry-standard strategy

Keywords

Variable-rate irrigation, centre pivot, lateral nepwcheduling, automation, OZCOT

1. INTRODUCTION

Irrigation application and crop water use efficiesccan be improved by scheduling
the irrigation of crops using physical and agronomiinciples (Evans 2006). The
irrigation management strategy determined usingsethegrinciples may be

automatically implemented using a control systelmigation control strategies can
use historical or real-time quantitative measurasefh the crop, weather and soill,

either singly or in combination, to automaticalbjjust the irrigation application.

Irrigation is traditionally applied uniformly oven entire field, although not all plants
in the field may require the same amount of wateany given time. In these cases,
differential irrigation application to meet the ptaequirements at different positions
in the field may improve operational performanddowever, as the plant response
and environmental conditions fluctuate throughdug tseason, control strategies
which accommodate temporal and spatial variabifityhe field and which locally

modify the control actions (irrigation amounts) dee be ‘adaptive’ (Smith et al.

2009; McCarthy et al. 2010). Site-specific irrigatis enabled for centre pivot and
lateral move irrigation machines through commelgiadvailable variable-rate

hardware (e.g. Design Feats, Zimmatic, Valley).eSehsystems adjust the irrigation
application within the field by varying the speefl tbe machine and/or pulsing

solenoid valves on each dropper. According todhgice of water outlet— sprinkler
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head or Low-Energy Precision Application (LEPA) lsoe differential application

may be achieved at the <1 m? scale.

The performance of an irrigation control systeml Wwé limited by: (i) the attributes
that are measured in the field; (ii) the spatiaotation of the sensor data for both
static sensors (e.g. soil-water probes) and orgthesensors (e.g. infrared
thermometers measuring foliage temperature); aindtifie temporal resolution of
these data inputs. However the performance delivby the control system may also
be affected by unexpected environmental condit{ergs mid-irrigation and spatially-
varied rainfall) or exceptional operational changeg. crop damage or a capacity
constraint of the irrigation machine such thatahwot deliver the optimal irrigation
volumes in time). It may be expected that adapiiigation control systems have
differing robustness to these operating conditiodata availability and system

constraints (Warwick 1993).

In principle at least, adaptive control system®maudtically and continuously re-adjust
the controller to obtain the desired performancthefsystem (Warwick 1993). Their
application to irrigation can potentially improveop development and/or water use
efficiency. In addition, adaptive control strategimay be used to accommodate the
differing levels of data quality and availabilitpmnally found in irrigation practice,
l.e. utilise the various combinations of weatheojl sand plant data available
(McCarthy et al. 2011a). Potentially optimal adagpt control strategies that
determine irrigation volume and timing may be idged by simulating alternate

adaptive control strategies in a simulation framewo
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The objective of this paper is to determine theepbél efficacy of ‘sensor-based’
adaptive control (as introduced in section 3 beldar) the practical irrigation of
cotton. A companion paper, McCarthy et al. (2018ports the implementation and

performance of model-based adaptive control stiegegefer section 3 below.

2. CONTROL SIMULATION FRAMEWORK ‘VARIwise’

A simulation framework ‘VARIwise’ was created tovadop, simulate, evaluate and
also implement (as a machine controller) uniforrd aite-specific irrigation control

strategies for centre pivot and lateral move itr@ga machines. Full details are

presented in McCarthy et al. (2010): a simplifieHdesmatic is presented in Figure 1.

Insert Figure 1 here

Within VARIwise, the field is divided into cells ofninimum area 1 fto

accommodate spatial variability. The softwarevafidor:

e the inclusion of field-scale variations in inputr@aeters (e.g. crop response, crop
age, target yield and management constraints);

» the input of data at a range of temporal scales;

« the ability to apply the various levels of contrstrategies for variable-rate
irrigation at different spatial scales; and

* requires a crop model integrated within VARIwisk the simulation mode this
model provides feedback data which permit evalmabd any control strategy

implemented.
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The well-established cotton growth model OZCOT (M/ahd Hearn 1992) has been
utilised by VARIwise for the present study. The @ZT model combines a
temperature-driven model of fruit dynamics with al-svater balance model, and
original sub-models for: fruiting, leaf area genigrg boll growth and elementary
nitrogen (Wells and Hearn 1992). The model wagelbped and validated for
different solil types from agronomic experimentsroageriod of 30 years covering a
range of Australian cotton growing regions (Heaf94). OZCOT'’s capacity to
simulate yield, fruiting dynamics, nitrogen uptaked water use has been validated in
the Ord Valley, Western Australia, for summer groeaiton during the 1960s and
70s (Hearn 1994). The model responds to differdimhatic situations, crop
physiological characteristics, agronomic variabéesl management decisions, but
does not account for the effects of insect pestegades, weeds and soil nutrient
limitations other than nitrogen. The model does simulate the effects of climate
and management on fibre quality. The OZCOT moelglires the parameters listed
in Table 1 to be written into input files. Aftdre OZCOT model has been executed,
an output file is produced that contains estimateshe soil-water, fruit load and

vegetation indices for each day of the predictetbocseason.

Insert Table 1 here

3. ADAPTIVE CONTROL STRATEGIES

Adaptive control strategies applicable to irrigatimay be either: (i) ‘sensor-based’,
for which the (simulated) irrigation application dérectly adjusted according to the
measurement response; or (ii) ‘model-based’, whisé a calibrated soil and plant

model for irrigation management. These stratedifer fundamentally in their data
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requirements and their use of the crop model. fohas of this paper is the relative
performance of two candidate sensor-based irrigationtrol strategies: as noted
above, a companion paper, McCarthy et al. (20}onts the implementation and

performance of model-based strategies.

By definition, sensor-based strategies can be im@iged with a range of input
variables chosen to provide feedback for contrdhis paper reports a simulation
study to determine the appropriate input variabfefseach control strategy; and

comment on the relative utility of each strategy.

Following a review of candidate adaptive controatggies (McCarthy et al. 2011b),
the two sensor-based adaptive control strategigdemented in VARIwise are
‘Iterative Learning Control’ (ILC) and ‘lterative il Climbing Control’ (IHCC). The
two strategies are described below, and their implgation set out in the section
following. In summary, these strategies refine #mimate of each successive
irrigation volume applied by:

[ILC] — iteratively adjusting the irrigation volumapplied in each cell of the field
using the incremental response, i.e. the OZCOTrated plant growth arising
from the change iparticular field sensor informatiowhich has resulted from the
previous water application, in each cell; or

[[HCC] - similarly adjusting the irrigation volumesut based omultiple sensor
increment informationusing a range of irrigation volumes applied withi group

of homogenous cells.

3.1 Iterative Learning Control



175 lterative Learning Control (ILC) can be used totcohrepetitive processes, e.g. robot
176 arm manipulators, repetitive rotary systems, aratiofg batch processes, where the
177 process model is imperfectly known (Ahn et al. 200An irrigation system may be
178 interpreted as a repetitive process because tigation machine iteratively passes
179 over the field throughout the crop season; ancergihe complexity of variable plant
180 growth, is certainly imperfectly described from tbentrol perspective. Hence, in
181 principle, classical ILC can be used to improve thgstem performance by
182 eliminating the effects of any unknown but repeatofisturbance (Korovessi and
183 Linninger 2006). Applied to irrigation, an unknoweature of the crop response
184 model that reoccurs as a consequence of irrigatiap be regarded as a ‘repeating
185 disturbance’.

186

187 ILC requires that the process controlled by thategy is reset to the same initial
188 conditions after each iteration (Korovessi and imger 2006). Again, applied to
189 irrigation, each iteration of ILC is an irrigaticgvent, and the conditions may be
190 approximately reset by scheduling the irrigatiofteraa set amount of crop water use.
191

192 The variables soil-water, leaf area index, squatentor boll count may be used as
193 feedback to measure the system performance foittancorigation control system
194 (‘squares’ are flower buds; and ‘bolls’ are theds@®ds which contain the cotton
195 fibre of the cotton plant). For example, for so#kter-based ILC a controller may
196 target a particular soil-water deficit throughol tseason (and the data may be used
197 to calibrate the model). However, to be valid ffmedback control, these
198 measurements must be taken only after a suitaldg ft@lowing irrigation to ensure

199 the soil or crop has responded to the irrigatigpliagtion.
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Moore and Chen (2006) demonstrated an ILC strategy centre pivot irrigation
machine to determine site-specific irrigation apgiion volumes using soil-water as
the feedback variable. The strategy was evaluatstmulations using a soil model
with one dimensional flow. This soil model assumsahstant crop water use
irrespective of the crop stage, crop conditions #rel daily and sub-daily weather
dynamics. Hence, the model was reset to the saitred conditions after a fixed time

delay and irrigation events were scheduled at egdirhe intervals.

3.2 Iterative Hill Climbing Control

A drawback of the ILC strategy is the potentialigfficient system identification, and
particularly so when applied to irrigation whichshea‘learning increment’ of typically
several days. This is a result of only one irfimatvolume being evaluated in each
cell during each irrigation event. As an alternativadaptive spatially-varied
identification may be more rapidly achieved byisiilg site-specific combinations of
plant, soil and weather data in different sub-adase field, i.e. using aggregates of
cells having similar properties. Likewise, adaptisgstem identification may be
incorporated into an irrigation control system twaunt for the slow speed of crop
dynamics and the low frequency of irrigation eveni® meet these requirements and
circumvent these limitations, an alternative, mdithensional approach was

developed, as follows.

The technique is designated ‘lterative Hill Climppi€ontrol’ (IHCC), in which ‘hill

climbing’ involves changing the state of the systato one that is closer to the goal
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in the direction of steepest gradient (Russell l[dodvig 1995). IHCC provides faster

optimisation than ILC alone because it permitse@uation of both:

e a range of inputs to the system at each irrigadeent (i.e. multi-dimensional
ILC); and

* arange of irrigation volumes on different cellstie field (within the particular

sub-area) at each irrigation event.

As noted, IHCC involves grouping cells with similproperties in the field and
applying different irrigation volumes to designatéest cells’ within each group of
cells. The responses of the test cells are cordp@redetermine which irrigation
volume resulted in the response closest to theratbsesponse. This enables the
control system to identify appropriate input opsonithin a single irrigation event

without using a process model.

4. IMPLEMENTATION OF SENSOR-BASED CONTROL STRATEGIE S IN
VARIwise

The ILC and IHCC strategies were implemented in WiiRe to calculate the optimal
irrigation application volumes for each cell. Fiwe ILC strategy, the irrigation
volumes are determined from previous irrigation lggpons and measured
responses. For the IHCC strategy, the volumeppbyare determined by evaluating
the response to a range of irrigation volumes presly applied to test cells within
representative homogenous areas of the field. Kemumus areas within fields are
referred to as a management ‘zone’ in this pape&r zonme boundaries may be
determined using soil properties, crop or varietyfetences, topography or

management constraints.

10



249

250 The implementation of the control strategies witMARIwise involves six steps
251 described in the following sections. Of necesditg procedures differ for the ILC
252 and IHCC strategies. In particular, the procedarethe calculation of irrigation
253 volumes is fundamentally different (sections 4.6 4rv, respectively).

254

255 4.1 Select control areas

256 The ILC and IHCC strategies require different sgatiesolutions for irrigation
257 application. ILC can be used to determine irrig@atapplications to each individual
258 cell; however, for IHCC the field must be divideda a number of zones.

259

260 The identification of zones for the IHCC strategyde undertaken automatically by
261 VARIwise using a measured field property (e.g. smibperty). In this case, the
262 property data assigned to each cell in the fieldoided in ascending order and then
263 grouped into the user-specified number of everdgdizones. A small number of
264 cells (i.e. a group of ‘test cells’) are then s&decin each zone to evaluate different
265 irrigation applications. The application of therigas irrigation volumes to the test
266 cells results in differential soil-water and cragsponses. Hence, test cell responses
267 are only indicative of the response in each zoneme irrigation event and the IHCC
268 strategy requires the selection of new test cellsach zone for each irrigation. In
269 VARIwise, this is achieved by a simple incrementhd test cell number along with a
270 requirement that the replacement cell still liegshwm the same zone and has not
271 previously been used as a test cell.

272

273 4.2 Determine day of first irrigation

11
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The number of days until the first irrigation inckacell or zone is calculated by
dividing the plant available water capaciBAWQ of the soil by the daily crop water
use or daily crop evapotranspiratidalf). This procedure is described in McCarthy

et al. (2010).

4.3 Calculate first irrigation volume

For ILC and IHCC non-test cells, the first irrigati application volume is calculated
by aggregating the dailigT; since the crop was sown. The dd&fy. is calculated as

evapotranspiration obtained from the weather da@, via reference (potential)
evapotranspiratioiT,, and the appropriate crop coefficielit, as published for each
crop and growth stage, following the standard nelagy of FAO 56, Allen et al.

(1998).

For IHCC test cells, the irrigation volume applied each test cell is similarly
determined using th&T, since the crop was sown, but with a range of crop
coefficients imposed. These crop coefficients aftset from the zone crop
coefficient (which is the crop coefficient used dalculate the irrigation volumes
applied to the non-test cells). The crop coeffitieffsets used are specified by the
user as a percentage of the zone crop coefficfentexample, using a zone crop
coefficient of K. = 0.35, five test cells and an offset of 40%, ¢thep coefficients
would be 0.07, 0.21, 0.35, 0.49 and 0.63 for eashdell, respectively (i.e. multiples

of 40% on either side of the median crop coeffitierB5).

4.4 Check data availability

12
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In the simulation environment the model output data obtained for the cells and
days specified by the user. This enables the padoce of the control strategy to be
evaluated with input data at different spatial dachporal resolutions. In a field
implementation, the currently-available datasetskaiged (i.e. spatially interpolated)
across the field to ascribe a value to each cahenfield. This is because sensor data
may be unavailable due to sensor failures or tlsalilation of sensors being

impractical (large numbers of infield sensors dteroobstructive to growers).

4.5 Determine day of next irrigation

The irrigation events are scheduled when the crap teached a user-specified

cumulative crop water use since the previous itiagaevent. The method of

calculating the crop water use depends on the elstasailable, thus:

e If soil data input is used in the control stratemd update data are available, the
crop water use is determined using the change ilvater since the previous
irrigation.

» If soil and weather data inputs are used in thdrobstrategy but update soil data
are not available and update weather data areabailthe cumulative crop water
use is determined as the sum of the daily crop @vampspiration (calculated using
the weather data).

e If soil data input is used but update data areawailable, plus weather data are
not available or not used, then the cumulative axaper use is calculated using

historically averaged weather data.

13
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Since the crop water use may not be uniform adfes§ield due to spatial variability,
the irrigations are initiated when an arbitrarygmdional of the cells in the field have

reached the user-specified cumulative crop water(e.g. 15%).

4.6 Calculate irrigation volumes — ILC

For ILC the irrigation volume applied to each cell in theld is calculated using a
common ILC algorithm (Ahn et al. 2007) which cakeals the required system input
(the irrigation volume to be applied).; at the forthcoming iteration, i.e. thierl)-th

irrigation, according to:

U = Uk + 7(YidA) — Ya(4)) (1)
where:
U = the system input (irrigation volume) on the predaieration
(k-th irrigation)
y = thelearning gain (a scalar factor)
y(A) = the measuredsystem output (i.e. sensor data value, kriged as
necessary) after delay and
vi(A) = the desiredsystem output (i.edesiredsensor data value) after

delayA
in which the delay in measurement after each itiegaA permits the crop to respond
to that irrigation (typically one day for the semgiof soil-water change; longer for the
sensing of a plant growth variable). In all casesresponse delay must be less that

the interval between irrigations. The learningngaiis chosen by iteration as a

14
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compromise between slow learning (Igyvand instability in the predictad.; values

(highy).

The ILC algorithm assumes that the refined inpwtdgisted in the same direction as
the difference between the measured and desireé @ a positive learning gain and
that the refined input is adjusted in the oppoditection to the difference between
the measured and desired value for a negativeitepgain. For example, when the
desired value is less than the measured valuetfendifference is negative) and the
learning gain is positive, then the irrigation vole applied is less than the previous
irrigation volume. Hence, this algorithm may obly used for variables which either
always increase when the irrigation volume applieceases (e.g. soil-water) or
always decrease when the irrigation volume applEcteases (e.g. soil-water deficit).
An applicable plant variable may be leaf area insiexe vegetative growth typically
increases with increased water application andénamuld require a positive learning
gain. A negative learning gain is used where wailer is the controlled variable. In
this case, the soil-water variable is calculatedsbiytracting the desired deficit from
the full point (field capacity) of the soil. Howewn conversely for cotton, the square
and boll counts are not applicable for ILC as aotieproductive growth is maximised

when the plant is under mild water stress (Gib&l.e2004).

For each irrigation event and cell, the ILC aldumt of equation (1) calculates the
volume to apply at the next irrigation event usingasured field data and the desired
value based on a single measured varigblelowever, because more than one soil or

plant measured variable may be applicable, an @quhnlLC algorithm was

15
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implemented to accommodate for multiple variablés.this case, optimisation may

be achieved by either one, or a combination, ofdhewing (Liu et al. 2001):

I. assigning a weighting to each optimisation objectivariabley) and
constructing a weighted sum of all the objectises]/or

ii. optimising each objective separately to explorderaffs

where the separate optimisation objectives areedrildy difference between the

measured and desired variable valygsandy; 4 respectively.

The multi-objective optimisation option (i) requsresubjective selection of the
weights for each objective; however the separajeetibe option (ii) requires an
additional decision-making procedure to determinieictv objective optimisation
results in the desired performance for both objesti The present VARIwise
implementation for sensor-based irrigation optirtisaaims to evaluate the effect of
using multiple data inputs and the multi-objectigptimisation option (i) was
presumed sufficient with each objective equallyghed. Hence, the multi-objective

ILC algorithm is:

bor = U+ WX G —%d@) @)

i=1

wheren variables are used in the control strategy ani$ the weighting of théth

variable for the control strategy (and all weigggrsum to unity).

4.7 Calculate irrigation volumes — IHCC

16
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A performance index (PI) is calculated for each tedl in each zone. In VARIwise,
the data used to determine the PI is specifiedheyuser, and for a cotton crop
appropriate parameters are leaf area index (LAY ‘aquare count’ (‘squares’ are
flower buds on a cotton plant). The type of dgtac#fied affects how the Pl is
calculated. To optimise cotton yield, the Pl candalculated as the ratio of the

current boll or square count to the maximum codinhe test cells using:

Pl = Currentvalug(t)
Maximunvalugt)

3)
For cotton, the LAI data should not simply be mased as this would result in
excessive vegetative growth rather than reprodedrowth. Hence, the Pl for LAI

can be calculated and compared to the reporteddrAdn optimal crop. For data that

correspond to an optimal time series data sepén®rmance index is:

P = |Targetva|ue(t) —Current value(t)|
| Targetvalug(t) |

(4)

wheret represents the day of the data collection.

Multiple data variables may be incorporated inte Bl by applying weights to the
performance index of each data type and summingwémghted indices. For
example, if leaf area index and square count agd wsth respective weights of 0.2

and 0.8, the total Pl would be:

Pl = 0.2 XP a1 + 0.8 XPsquare/boll count (5)

17
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The PI for each test cell can be evaluated to nheter the crop coefficient to be used
for the ‘non-test’ cells in the next irrigation. h& crop coefficient used for the next
irrigation corresponds to the maximum PI: this vabble obtained by finding the
maximum point of a quadratic equation fitted thdoygpints plotted on a Pl versus

crop coefficient graph.

Multiple data variables may be incorporated inte B by applying weight to the
performance index of each data typd) and summing the weighted indices (where
there aren data inputs). Hence, the general form for theddulation with multiple

data variables and weights is:

n

Pl = Z ki PI; where ' k=1 (6)

i=1 i=1

If the maximum point of the quadratic lies outsitiss range, then the crop coefficient
for the test cell with the highest Pl is selectsdlee optimal crop coefficient. If all
the test cells have the same PI then the cropicueff is estimated from Table 12 of

Allen et al. (1998).

After the crop has consumed a user-defined cumelatiop water use, the non-test
cells are then irrigated with an amount calculaisthg the aggregatddT, and the
optimal crop coefficient. The volumes applied ke thew test cells are calculated
using the user-defined offset percentage appliedh& optimal crop coefficient

identified for the previous irrigation.

4.8 Practical considerations

18



435 For centre pivot and lateral move machines, thehmaccapacity and application
436 volumes affect the time taken to traverse the fialtd hence the timing of irrigation
437 applications to each cell. To minimise the impatttravel time, the irrigation
438 application to individual cells is limited to anb#trary maximum volume (e.g. 25
439 mm) and the amount of water applied to individwglscis adjusted by the travel time
440 and the daily crop water use.

441

442 5. CASE STUDY - EVALUATION OF SENSOR-BASED CONTROL
443 STRATEGIES WITH COTTON

444  This section reports a case study using VARIwiseaimpare the performance of the
445 ILC and IHCC strategies when different field sendata (e.g. soil, plant and weather)
446 were available, both singly or in combination. 3@estrategies were also compared
447  with the yield and water use performance producedHe equivalent crop irrigated
448 according to an industry-standard irrigation mamnagat strategy.

449

450 5.1 Simulated crop, growing conditions and crop nebd

451 The case study involved simulations of a whole @eatton crop grown on the
452 Darling Downs, Australia with parameters as outlime Table 1. The sowing data,
453 soil properties and weather pattern was charatiten$ cotton growing regions in
454  Australia. The soil and plant parameters of th#ocomodel OZCOT were kept
455  within the boundary values defined by Wells andiH€a992).

456

457 The spatial variability in soil parameters in easll and the zones applied for the
458 IHCC strategy are shown in Figure 2. In the sireddield, the plant available water

459 capacity (PAWC) ranges from 60 to 200 mm. This selected to ensure the control

19



460 strategies could deal with the different soil typleat often exist within fields. The
461 spatial variability in PAWC across irrigated broadafields in Australia can be 30 to
462 500% (Wong et al. 2006; Rab et al. 2009) becaustfigrences in soil texture and
463  root distribution.

464

465 Insert Figure 2 here

466

467 Averaged weather input was used when sensed weddleiwas not an input. This
468 provided the model with the minimum set of weath@brmation that could be
469 generated which would enable the model to operdiee averaged weather dataset
470 was generated using SILO (QNRM 2009) climate d#safee the cropping period in
471 the previous five years and calculating the daigrage maximum and minimum
472 temperature, solar radiation and rainfall such #@ath day in the season had the same
473 weather conditions.

474

475 A daily weather profile was obtained for the GP&lion -28.18°N 151.26°E from an
476 Australian Bureau of Meteorology SILO dataset (QNRBD9) for 2004/2005. The
477 weather profile is relatively hot and wet, latetie crop season. The weather profile
478 (Figure 3) was used as the weather data inputifaulations that include weather in
479 the input data combination, whilst the same weatinefile (Figure 3) was averaged
480 daily and used as the weather data input for sitiaumis without weather in the input
481 data combination.

482

483 Insert Figure 3 here

484
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5.2 Determination of the industry-standard (basethirrigation schedule

An industry-standard irrigation management strateg@g implemented as a baseline
for the performance of the adaptive control strigeg This strategy applied a uniform
irrigation treatment across the field where irrigatevents were initiated when the
soil-water deficit reached a set amount in one fpaithe field. The soil-water deficit
was taken in the cell with the lowest plant avddalater capacity, as this is the most
limiting soil (Figure 2(a)). In this simulation52nm was applied to the whole field

when the soil-water deficit had reached 30 mm endéll with sandy soil.

5.3 Adaptive control implementation

The robustness of the irrigation control strategysensed data availability was
evaluated by simulating the strategies using dffercombinations of data input
(McCarthy et al. 2011a). This indicated the cantrputs that are most appropriate to
each control strategy. The simulations used timeesanderlying crop model but
different combinations of input variables for catr For example, the simulation
evaluating the importance of sensed soil data @olltlC strategy involves adjusting
the irrigation volume according to the error betwéle desired soil-water and the

measured soil-water after each irrigation event.

An optimal time series dataset is required for eaplt variable to compare with the
measured output and calculate the next irrigatiolume ug.;. The leaf area index

(LAI) for an optimal cotton crop is shown in Figute The dataset was obtained from
OZCOT for a high yielding simulation and the cuwas smoothed using exponential

smoothing with a smoothing factor of 0.85. Fostbase study, a 12.6 ha centre pivot
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532

533

irrigated field was automatically divided into 1266lls of area 100 m? (with cell

dimensions of 10 m wide and 10 m long).

Insert Figure 4 here

5.3.1 Methodology — ILC

The ILC strategy was simulated using the five aggtlle input data combinations
(Table 2). For the simulations with two input dataiables, the weightings on each
variable were chosen to be 0.5. Irrigations wartated when 15% of the cells had
reached a 40 mm soil-water deficit. The simulatiasing soil data input adjusted the
irrigation volume to achieve a deficit of 10% ottplant available water capacity in
each cell following each irrigation event. Thealfdr feedback in the control strategy
were obtained from the OZCOT model on differentddgpending on the data type:
the soil dataset was obtained one day after theique® irrigation event, whilst the

plant dataset was obtained one day prior to ndhaédided irrigation event.

Insert Table 2 here

Simulations for ILC were conducted in VARIwise ugithe agronomic factors in
Table 1 and the underlying soil variability in Figl2(a). The desired LAI time series
set of Figure 4 was used. This cell size was s=leto enable timely execution of the
simulations and accommodate substantial in-fieltiapvariability of soil properties.
The following values were used for the ILC paramsetefined in Section 4.6:

* the learning gainyl was unity;

» the irrigations were initiated after 40 mm of crepter use; and
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* the time delay A) between the irrigation event and the parameteasomement

depended on the data input.

5.3.2 Methodology — IHCC

Using weather, soil and plant input data, theresaepossible combinations of data
input for IHCC (Table 3). As with ILC, weather-gninput is not applicable for
control as the weather data does not provide auneas the crop response. For the
simulations with two input variables, the weightioig each variable was set to be 0.5.
The simulations using plant data to determine thgation application used square
count as the input variable for control. This ecause squares form earlier in the
crop season than bolls (and can be controlledeganlithe crop season). Square count
was used instead of leaf area index to maximisedpeductive growth of the cotton
plant (which should maximise the final yield) raththan manage the vegetative
growth. The strategies with soil data input aintedmaintain a soil-water deficit
equal to 10% of the plant available water capaaityeach cell following each

irrigation event.

Insert Table 3 here

For IHCC strategies there must be sufficient cellghe field for the test cells to be
replaced after each irrigation event in the cragsea. For example, a field with three
zones and five test cells requires 15 test cetleéah irrigation event. Because these
test cells must be replaced with new test cellsravery irrigation event, a minimum

of 300 cells are required for a season with 2@ation events. The field of 1266 cells
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was automatically divided into three zones (Fig(ie)) and five test cells were used

in each zone.

The underlying soil variability of Figure 2(a) wasplemented. The feedback data
were obtained from the OZCOT model one day afterptevious irrigation event for
soil responses and one day before the next sclieduigation event for plant

responses.

5.4 Performance of control strategies

5.4.1 Performance using an industry-standard irtign management strategy

An industry-standard irrigation schedule was impdated with field properties as per
Table 1 and involved applying 25 mm between 14 Bet®004 and 14 March 2005
when the soil-water deficit in a sandy cell reacB8dnm. The final yield was 9.1 +
1.9 bales/ha with CWUI of 0.9 bales/Mk, (total water in ML) and IWUI of 1.4
bales/MLirigated (irrigation applied in ML) (Figure 5). IWUI is ératio of the crop
yield (e.g. bales of cotton) to the irrigation wasgpplied (ML), whilst CWUI is the
ratio of crop yield (e.g. bales) to the total wateed by the crop (ML) (BPA 1999).
The total volume of water applied to the crop (uuthg rainfall) was 10.2 ML/ha,
whilst the irrigation applied to the crop was 6.8 /Wa. Variations reported in the
average yield values are standard deviations ¢d gieross the field (Figures 5 and 6).
The applied water and yields produced by the sitimnla are consistent with local

typical experience.

Insert Figure 5 here
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5.4.2 Performance using ILC

Figure 6 sets out the simulated outputs of the Hifategies using the data input
combinations described in Table 3. The simulatedation applied, soil-water and
leaf area index in the sand, clay loam and clals @gke compared for the strategies
with plant-only input (simulation #1) and soil-onlyput (simulation #2) (Figure 7(a)
and 7(b)). The ILC strategy produced the highedtyand water use efficiency with

soil-water input (simulation #1).

Insert Figure 6 here

Insert Figure 7 here

ILC produced lower yields with leaf area index ihggimulations #2, #3 and #5) than
with soil-water input (Figure 6). The irrigationolumes applied were higher
throughout the crop season for ILC targeting le@gandex than soil-water deficit
(Figure 7). This indicates that the leaf area indenot proportionally related to
irrigation application and that the leaf area indeput is not effective to determine
the crop water requirements for this crop. Thé &aa index measurement also may
not have detected whether the plant was activedypspiring or stressed. The
irrigation volumes applied using leaf area indesoa¢xceeded the soil-water deficit
(Figure 8(b)); hence, ILC with leaf area index ihpould not adapt to the difference
in soil-water for different soils. The leaf areméx was also generally lower for ILC
targeting leaf area index than ILC maintaining saalter deficit (Figure 9). This
suggests that leaf area index is a less effeatidieator of irrigation requirement than

soil-water deficit for ILC. The additional inpuf plant data to the soil simulation
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(simulation #4) also reduced the simulated yield amter use efficiency (compared

with simulation #1).

There were differences between the simulated asagedkesoil-water deficit for the
strategy targeting soil-water deficit (#simulatidbn Figure 8(a)). These were likely
caused by the plant physiological response variongach irrigation event during the
crop season, while the ILC relies on process repetto refine the irrigation volume
and assumes that the crop conditions essentiaietr before the next irrigation

event.

Insert Figure 8 here

Insert Figure 9 here

5.4.3 Performance using IHCC

The simulations described in Table 3 produced tekly and water use efficiencies in
Figure 10. IHCC produced reasonable yields ancgmade efficiencies for all data
input combinations. The highest yield was simulatiging the soil-and-plant input
(simulation #9), whilst the lowest yields were slatad using plant-only input
(simulation #7) and weather-and-plant input (sihafa#8). The IHCC strategy that
maximised square/boll count (simulation #9) resllite a higher maximum square
count than the strategy that attempted to maintairfixed soil-water deficit
(simulation #6) (Figure 9). The simulations uspignt input in combinations with
weather or soil data (simulations #8-10) producetidr yields than those only using
only soil data input (simulations #6). This suggabat square count indicated the

plant status more accurately than soil responsée Joil-and-plant strategy that
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targeted a soil-water deficit and maximised squeie/count (simulation #9)
performed better than simulations that maximisagasg/boll count (simulation #10).
This is because the first squares form approximadél days after sowing, and the

strategy requires soil-water indicate crop watgqunement during this early stage.

Insert Figure 10 here

Insert Figure 11 here

IHCC with soil-and-plant input (simulation #9) ajgal less irrigation water than that
with plant-only (simulation #7). This is becaudee tfruit load input does not
accurately identify the irrigation timing or volunoé water to be applied and tends to
over-irrigate during wet periods of the crop seagam 63 to 86 days after sowing,
Figure 11). Including the soil data improves tloewsiacy of the application volume
determination and hence, the efficiency of watepliaption was higher using soil

data in combination with the plant data.

The spatial variability observed in the simulateeld/ (Figure 10) was higher when a
single sensor input (simulations #6 and #7) wasl usempared to a multi-sensor
combinations. Spatial variability in yield was sad by both differences in the soil
properties and the ‘test’ irrigation volumes besgplied to various cells across the
field. The irrigation volumes applied to the claam and clay cells were generally
larger than those applied to the sand cells (Fiddje The higher soil-water storage
capacity on these soils was found to produce laogmgrs which then resulted in larger
irrigation deficits at irrigation. It was also ok that the soil-water deficit at irrigation

in the sand, clay loam and clay cells was generddlger to the target deficit (6 mm,
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10 mm and 19 mm, respectively) using weather-aidhgout (Figure 11(a)) than

using weather-and-plant input (Figure 11(b)).

Deviations from the desired soil-water deficit walso caused by the test cells not
being representative of all the cells in the zaaeising the ‘best’ response of the test
cells to be inaccurate and the irrigation applaratiof the whole zone to be
inappropriate. It follows that the square countymat be maximised in each cell of
the field because of the differences in propertikeshe test cells and non-test cells.
Deviations may also have been caused by test loeitg) inappropriately chosen at
the border between zones where the zone divisiagged and therefore less certain.

Hence, the location of the test cells is imporfanthe irrigation optimisation.

6. DISCUSSION

The lterative Learning Control strategy generaltpduced higher crop water use
efficiency performance indices than the Iterativt Elimbing Control strategy. The

highest crop and irrigation water use efficienaese achieved using ILC with soil-

water data (simulation #1), whilst the highestgation water use efficiency using
IHCC was achieved when soil-and-plant data (sinadat9) was used. Similar

yields were obtained for the IHCC strategy withl-smid-plant input (simulation #9,

12.4 + 1.6 bales/ha) and the ILC strategy with-sally input (simulation #1, 12.2 +

1.5 bales/ha).

ILC adjusted the irrigation volume to achieve thesided soil-water deficit following
the irrigation event for the different soil typesthe field. The IHCC strategy was

less effective at maintaining a target soil-watefiait than the ILC strategy (Figure
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8). With soil-only input, IHCC produced an averageld and crop water use
efficiency (simulation #6, 11.2 + 1.8 bales/ha ah0 bales/Mkea, respectively)

lower than those of the ILC strategy with soil-ihgsimulation #1).

The IHCC strategy can optimise parameters (e.gquutiit maximising square/boll
counts) and targeting temporally-variable soil/crepponses, whilst the ILC strategy
can only target temporally-variable soil/crop rasges (e.g. soil-water deficit).
Hence, leaf area index was selected for ILC and foad was selected for IHCC.
ILC performed poorly with plant data (i.e. leaf an@adex) input. This suggests that
IHCC may be more appropriate for weather-and-ptité input, whilst ILC may be
preferable with soil-input only. However, the casedy indicates that leaf area index
input was not appropriate for ILC because of itsklaf sensitivity to irrigation
volume application. For the ILC strategy, thereswe benefit in using multiple

combinations of soil, plant or weather data.

The irrigation refinement was most effective duridgy periods of the season as
rainfall was a (non-repeating) disturbance in tloatol system. However, ILC

adapted rapidly to the new system state in dryogsrfollowing the rainfall.

7. CONCLUSION

Two sensor-based irrigation control strategiegrétive Learning Control’ (ILC) and
custom-designed ‘lterative Hill Climbing ControliIHCC) were simulated in the
software VARIwise for a cotton crop ‘grown’ withehsoils and merged 2004-2009
weather data of south-east Queensland, Australthrepresented by the performance

of the well-validated cotton growth and productimodel OZCOT. These strategies
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used the crop water use to determine irrigatiomignand soil and/or crop response to
determine irrigation application volume. The siatidns indicated that there was no
significant difference between the highest yielthieeed by the ILC strategy using

soil-water data and the IHCC strategy using sail plant sensor data. Both strategies
produced higher simulated yields and water useieffcies than an industry-standard

irrigation management strategy.

The optimal sensor combination and control stratibgy should be used in the field
will depend on the crop and water availability. h&¥e sensor data availability is non-
limiting then the simulated IHCC strategy usingnpland soil sensors produced
higher yield than the ILC strategy. However, wheeasor data availability is limited
then the results indicate that an ILC strategy Wdé preferable to optimise irrigated
water use efficiency. Valid field validation remaia challenge (unless there are
multiple fields and irrigation machines) but funttveork will involve field evaluations

to compare the simulated and measured controkglyaterformance.
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814

Figures and Tables

()

815
816 Table 1: Agronomic factors used in cotton model @ACfor control strategy
817 simulations (where HydroLOGIC is a user interface ©ZCOT, Richards et al.
818 (2008))
819
Agronomic factor Value Source
Sowing data 4 October 2004 Nil
Plant stand 12 plants/m Default in HydroLOGI
Seed depth 5cm Default in HydroLOGI(
Row spacing 1m Default in HydroLOGI(
Available nitrogen 250 kg/ha (for maximum yield) Roi%%gf::gt(azl(.)?ggbg)
Previous crop Other Nil
Defoliation dates Determined by OZCOT Nil
Harvest date Determined by OZCOT Nil
Cotton variety Sicot 73 Nil
Plant available water capacity As per Figure 1 Nil
Starting soilwater Plant available water capacity Nil
Weather data As per Figure 2 Nil
Machine type Centre pivot Nil
Field size 400 m diameter Nil
Machine capacity 15 mm/day Nil
End of irrigation period 14 March 2005 Nil
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820 Table 2: Simulations conducted to compare intevastibetween control strategies
821 (labelled by ID#) and input variables for Iterativearning Control.
822

D Varil;g:ts o Weather Irrigation calculation igaton
# control data input Irrigation volume timing
: Averaged N . - Change in
1 Soil SILO data Maintain soitwaterdeficit soil-water
Averaged :
2 Plant SILO data Target leaf area index Changesii,
3 Wea;rl]aer:tAND SILO data Target leaf area index ChangETa
4 Soil AND Averaged | Maintain soitwaterdeficit and Change in
plant (A) SILO data target leaf area index soil-water
Soil AND Averaged . Change in
5 plant (B) SILO data Target leaf area index soil-water
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823 Table 3: Simulations conducted to compare intevastibetween control strategies

824
825

826

(labelled by ID#) and input variables for Iteratidél Climbing Control. N

D varig]gzts for Weather rraation caieuatan Irrigation
# control data input Irrigation volume timing
. Averaged o . - Change in
6 Saoll SILO data Maintain soil-water deficit Soil-water
Averaged -
7 Plant SILO data Maximise square/boll count Changetiff,
8 Wea;?;r:tAND SILO data Maximise square/boll count Chang&Tp
9 Soil AND Averaged | Maintain soil-water deficit and| = Change in
plant (A) SILO data maximise square/boll count soil-water
Soil AND Averaged . Change in
10 olant (B) SILO data Maximise square/boll count o 1 uads

37




827
828

829

Table 4: Performance of the industry-standardatran strategy for homogeneous
and spatially variable field

Average Average
. : Average 9 irrigation | CWUI IWUI
Infield soil ild water lied bales/ bales/
properties yie applied appiie (bales (bales
(bales/ha) (ML irrgated | ML wotal) | ML irrigated)
(ML totallha) /ha)
Sand 5.8 9.0 6.0 0.6 1.0
Clay loam 10.0 8.7 5.8 1.1 1.7
Clay 10.7 9.5 6.3 1.1 1.7
Spatial variable 9.1+£19 10.2 6.8 0.9 1.4
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830
831

832

Table 5: Performance of the ILC strategies witliedlént data input combinations for
homogenous and spatially variable fields

Average 'A.vergge
Control Infield soil Avc_arage water |rr|ga§|on Cwul IWUI
strategy properties yield applied applied (bales/ (bales/
ID# (baleS/ha) (ML /ha) (ML irrigated ML total) ML irrigated)
total /ha)
Sand 10.0 9.0 5.8 1.1 1.7
Clay loam 12.7 8.8 5.7 1.4 2.2
1 Clay 12.9 8.5 5.5 15 2.3
Spatially 12.2+15 113 73 11 1.7
variable ' ' ' '
Sand 7.4 15.0 9.7 0.6 0.8
Clay loam 7.5 15.9 10.3 0.5 0.7
2 Clay 8.5 15.8 10.2 0.7 0.8
Spatially 8.3+1.6
variable 16.5 10.3 0.5 0.8
Sand 8.5 12.2 7.9 0.7 1.1
Clay loam 8.2 14.4 9.3 0.6 0.9
3 Clay 9.1 14.1 9.1 0.6 1.0
Spatially 8.9+1.9 126 30 0.7 11
variable ' ' ' '
Sand 9.7 8.8 5.7 1.1 1.7
Clay loam 11.4 10.6 6.9 1.1 1.7
4 Clay 12.7 11.3 7.3 1.1 1.7
Spatially 102+ 1.4 111 77 0.9 13
variable ' ' ' '
Sand 9.5 9.3 6.0 1.0 1.6
Clay loam 10.9 11.1 7.2 1.0 1.5
5 Clay 11.9 11.6 7.5 1.0 1.6
Spatially 9.9+ 2.0 128 79 0.8 13
variable ' ' ' '

39




833 Table 6: Performance of the IHCC strategy withet#ht data input combinations for

834

homogenous and spatially variable fields
Average Average
Control . : Average g irrigation | CWUI IWuUI
Infield soil . water ;
strategy properties yield applied applied (bales/ (bales/
ID# (baIeS/ha) (MI— irrigated ML total) ML irrigated)
(ML totallha) /ha)
Sand 9.9 8.8 5.7 1.1 1.7
Clay loam 12.3 9.0 5.8 1.4 2.1
6 Clay 12.6 9.3 6.0 1.4 2.1
Spatially | 11.2+1.9 11.1 7.9 1.0 1.4
variable
Sand 9.0 7.6 4.9 1.2 1.8
Clay loam 10.9 7.9 5.1 1.4 2.1
7 Clay 11.1 8.5 5.5 1.3 2.0
Spatially | 10.9+2.5 11.9 7.7 0.9 1.4
variable
Sand 9.2 7.4 4.8 12 1.9
Clay loam 11.2 7.6 4.9 15 2.3
8 Clay 11.4 11.6 5.1 1.0 2.2
Spatially | 11.0+1.8 11.2 75 1.0 15
variable
Sand 10.0 8.8 5.7 1.1 7.5
Clay loam 12.4 9.1 5.9 1.4 2.1
9 Clay 12.7 9.4 6.1 1.4 2.1
Spatially ) 12.4-1.6 12.6 8.1 1.0 15
variable
Sand 10.1 8.8 5.7 14 1.8
Clay loam 12.4 9.1 5.9 1.4 2.1
10 Clay 12.7 9.6 6.2 1.3 2.0
Spatially #7154+ 1.8 11.6 7.3 1.0 1.6
variable
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835
836

837
838
839
840
841

Weather data Field sensor data

Initialisation
Continuous

User-input databases:
Property; Field; Crop type; Machine; (ngazrzia?ltggtlasbase) Display
Sensors; Spatial division (cells)

Timestepped Timestepped
update update

Crop model:

Irrigation
application
amount

Figure 1. The simulation framework VARIwise configd to evaluate (in simulation
mode) the sensor-based adaptive control stratediks.items shown in grey/hatched
are not implemented but would be present in a feldluation.) This diagram is
adapted from the full VARIwise flowchart present&sl Figure 2 of McCarthy et al.
(2010).
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Sand :
(PAWC=60mm)

Clay loam A
(PAWC=150mm)~ 7>

Clay
(PAWC=200mm)

Plant available
water content

60 {mm}) 200
842
843
Key:
[0 Zone 1
E Zone 2
M Zone 3
844
845 (©)
846

847 Figure 2: Soil variability for: (a) industry-stamda ILC and IHCC strategy
848 simulation; and (b) the cells assigned to each awmneg the soil variability data of
849 Figure 2(a)

42



60

Rainfall event of
120mm on day 67

Weather units

Days after sowing

ORainfall (mm) 0 Minimum temperature (°C)
850 m MaximumtemEerature gC{ m Solar radiation gMJ!m’z

851 Figure 3: Weather profile used in industry-standarijation management and
852 iterative learning, iterative hill climbing contrstrategies
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Target leaf area index

184

1.6

14 4

12

0.8

Leaf area index

0.6 1

0.4

0.2 +

0 50 100 150 200 250
. .
853 Days after sowing

854 Figure 4: Target leaf area index used for iteral®agning control strategy for cotton
855 in VARIwise (Wells and Hearn 1992)
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856

Yield
(bales/ha)

15

857
858 Figure 5: Yield map for industry-standard irrigationanagement strategy for
859 comparison with adaptive control strategy resw@tefage 9.1 £ 1.9 bales/ha)
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860

861
862
863
864

(a) Simulation #1

(b) Simulation #2

(c) Simulation #3

Soil only

Plant only

Weather AND plant

(d) Simulation #4

(e) Simulation #5

Soil AND plant (A)

Soil AND plant (B)

5

Yield (bales/ha)

15

Figure 6: Yield maps and average yield and irr@atoutputs of iterative learning

control (ILC) strategy with variable-rate irrigatianachine and legend for yield maps

for simulations specified in Table 2
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869 Figure 7: lIrrigation volumes applied to sand, clagm and clay cells for ILC
870 strategies that target: (a) soil-water deficit (giation #1); and (b) leaf area index
871 (simulation #2)
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Figure 8: Simulated daily soil-water deficit in samtlay loam and clay cells for ILC
strategies that target: (a) soil-water deficit (giation #1); and (b) leaf area index
(simulation #2); and IHCC strategies that: (c) &rgoil-water deficit and maximise
square/boll count (simulation #8); and (d) maxinggeare/boll count (simulation #9)
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886 Figure 9: Simulated daily leaf area index in satay loam and clay cells for ILC

887 strategies that target: (a) soil-water deficit (siation #1); and (b) leaf area index
888 (simulation #2); and square count for IHCC stragedhat: (c) target soil-water deficit
889 (simulation #6); and (d) maximise square/boll cofsimhulation #9)
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(a) Simulation #6

(b) Simulation #7

(c) Simulation #8

Soil only

Plant only

Weather AND plant

(d) Simulation #9

(e) Simulation #10

Soil AND plant (A)

Soil AND plant (B)

5

Yield (bales/ha)

15

Figure 10: Yield maps and average yield and irrgatoutputs of iterative hill
climbing control (IHCC) strategy with variable-rategation machine and legend for
yield maps for simulations specified in Table 3
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903

Figure 11: Irrigation volumes applied to sand, clagm and clay cells for IHCC
strategies that maximise square/boll count andriehite irrigation timing using: (a)
weather data (simulation #7); and (b) soil-waterteat (simulation #9)
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