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 26 

Abstract 27 

Feedback control systems offer opportunities to accommodate spatial and temporal 28 

differences in crop water requirement and to improve the automated irrigation of field 29 

crops via real-time data from in-field plant, soil-water and evaporation sensing.  This 30 

paper describes two sensor-based strategies applied to irrigation control, ‘Iterative 31 

Learning Control’ (ILC) and custom-designed ‘Iterative Hill Climbing Control’ 32 

(IHCC), implemented in the control simulation and evaluation framework 33 

‘VARIwise’.  Simulation of an irrigated cotton crop using soils and merged 1999-34 

2004 weather data of SE Queensland, Australia, and represented by the performance 35 

of the well-validated cotton growth and production model OZCOT, permitted the 36 

relative performance of differing sensor data types and availability to be evaluated 37 

(both as alternatives and in combination) in meeting the requirement to optimise 38 

either crop yield or water use efficiency.  These simulations indicated that ILC would 39 

perform better at maintaining soil-water deficit, whilst IHCC would be better at 40 

maximising crop yield when plant and soil sensors were utilised in combination. This 41 

work demonstrates that the optimal choice of field sensor(s) and control strategy will 42 

be a function of the irrigation objective and the spatial and temporal availability and 43 

type of field measurements.   44 

 45 

Research highlights 46 

• Two site-specific sensor-based irrigation strategies were simulated in VARIwise 47 

• Iterative Learning Control (ILC) produced highest yield with soil-water data input 48 

• Iterative Hill Climbing Control (IHCC) performed best with soil-and-plant data 49 

input 50 
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• Both sensor-based strategies were superior  to the industry-standard strategy 51 

 52 

Keywords 53 

Variable-rate irrigation, centre pivot, lateral move, scheduling, automation, OZCOT 54 

 55 

1. INTRODUCTION 56 

Irrigation application and crop water use efficiencies can be improved by scheduling 57 

the irrigation of crops using physical and agronomic principles (Evans 2006).  The 58 

irrigation management strategy determined using these principles may be 59 

automatically implemented using a control system.  Irrigation control strategies can 60 

use historical or real-time quantitative measurements of the crop, weather and soil, 61 

either singly or in combination, to automatically adjust the irrigation application.   62 

 63 

Irrigation is traditionally applied uniformly over an entire field, although not all plants 64 

in the field may require the same amount of water at any given time.  In these cases, 65 

differential irrigation application to meet the plant requirements at different positions 66 

in the field may improve operational performance.  However, as the plant response 67 

and environmental conditions fluctuate throughout the season, control strategies 68 

which accommodate temporal and spatial variability in the field and which locally 69 

modify the control actions (irrigation amounts) need to be ‘adaptive’ (Smith et al. 70 

2009; McCarthy et al. 2010).  Site-specific irrigation is enabled for centre pivot and 71 

lateral move irrigation machines through commercially available variable-rate 72 

hardware (e.g. Design Feats, Zimmatic, Valley).  These systems adjust the irrigation 73 

application within the field by varying the speed of the machine and/or pulsing 74 

solenoid valves on each dropper.  According to the choice of water outlet– sprinkler 75 
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head or Low-Energy Precision Application (LEPA) sock – differential application 76 

may be achieved at the <1 m² scale.   77 

 78 

The performance of an irrigation control system will be limited by: (i) the attributes 79 

that are measured in the field; (ii) the spatial resolution of the sensor data for both 80 

static sensors (e.g. soil-water probes) and on-the-go sensors (e.g. infrared 81 

thermometers measuring foliage temperature); and (iii) the temporal resolution of 82 

these data inputs.  However the performance delivered by the control system may also 83 

be affected by unexpected environmental conditions (e.g. mid-irrigation and spatially-84 

varied rainfall) or exceptional operational changes (e.g. crop damage or a capacity 85 

constraint of the irrigation machine such that it cannot deliver the optimal irrigation 86 

volumes in time).  It may be expected that adaptive irrigation control systems have 87 

differing robustness to these operating conditions, data availability and system 88 

constraints (Warwick 1993).  89 

 90 

In principle at least, adaptive control systems automatically and continuously re-adjust 91 

the controller to obtain the desired performance of the system (Warwick 1993).  Their 92 

application to irrigation can potentially improve crop development and/or water use 93 

efficiency.  In addition, adaptive control strategies may be used to accommodate the 94 

differing levels of data quality and availability normally found in irrigation practice, 95 

i.e. utilise the various combinations of weather, soil and plant data available 96 

(McCarthy et al. 2011a).  Potentially optimal adaptive control strategies that 97 

determine irrigation volume and timing may be identified by simulating alternate 98 

adaptive control strategies in a simulation framework.   99 

 100 
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The objective of this paper is to determine the potential efficacy of ‘sensor-based’ 101 

adaptive control (as introduced in section 3 below) for the practical irrigation of 102 

cotton.  A companion paper, McCarthy et al. (2013), reports the implementation and 103 

performance of model-based adaptive control strategies: refer section 3 below.  104 

 105 

2. CONTROL SIMULATION FRAMEWORK ‘VARIwise’ 106 

A simulation framework ‘VARIwise’ was created to develop, simulate, evaluate and 107 

also implement (as a machine controller) uniform and site-specific irrigation control 108 

strategies for centre pivot and lateral move irrigation machines.  Full details are 109 

presented in McCarthy et al. (2010): a simplified schematic is presented in Figure 1.   110 

 111 

Insert Figure 1 here 112 

 113 

Within VARIwise, the field is divided into cells of minimum area 1 m2 to 114 

accommodate spatial variability.  The software allows for: 115 

• the inclusion of field-scale variations in input parameters (e.g. crop response, crop 116 

age, target yield and management constraints);  117 

• the input of data at a range of temporal scales;  118 

• the ability to apply the various levels of control strategies for variable-rate 119 

irrigation at different spatial scales; and 120 

• requires a crop model integrated within VARIwise.  In the simulation mode this 121 

model provides feedback data which permit evaluation of any control strategy 122 

implemented.  123 

 124 
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The well-established cotton growth model OZCOT (Wells and Hearn 1992) has been 125 

utilised by VARIwise for the present study.  The OZCOT model combines a 126 

temperature-driven model of fruit dynamics with a soil-water balance model, and 127 

original sub-models for: fruiting, leaf area generating, boll growth and elementary 128 

nitrogen (Wells and Hearn 1992).   The model was developed and validated for 129 

different soil types from agronomic experiments over a period of 30 years covering a 130 

range of Australian cotton growing regions (Hearn 1994).  OZCOT’s capacity to 131 

simulate yield, fruiting dynamics, nitrogen uptake and water use has been validated in 132 

the Ord Valley, Western Australia, for summer grown cotton during the 1960s and 133 

70s (Hearn 1994).  The model responds to different climatic situations, crop 134 

physiological characteristics, agronomic variables and management decisions, but 135 

does not account for the effects of insect pests, diseases, weeds and soil nutrient 136 

limitations other than nitrogen.  The model does not simulate the effects of climate 137 

and management on fibre quality.   The OZCOT model requires the parameters listed 138 

in Table 1 to be written into input files.  After the OZCOT model has been executed, 139 

an output file is produced that contains estimates of the soil-water, fruit load and 140 

vegetation indices for each day of the predicted cotton season. 141 

 142 

Insert Table 1 here 143 

 144 

3. ADAPTIVE CONTROL STRATEGIES  145 

Adaptive control strategies applicable to irrigation may be either: (i) ‘sensor-based’, 146 

for which the (simulated) irrigation application is directly adjusted according to the 147 

measurement response; or (ii) ‘model-based’, which use a calibrated soil and plant 148 

model for irrigation management.  These strategies differ fundamentally in their data 149 
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requirements and their use of the crop model.  The focus of this paper is the relative 150 

performance of two candidate sensor-based irrigation control strategies: as noted 151 

above, a companion paper, McCarthy et al. (2013), reports the implementation and 152 

performance of model-based strategies.   153 

 154 

By definition, sensor-based strategies can be implemented with a range of input 155 

variables chosen to provide feedback for control.  This paper reports a simulation 156 

study to determine the appropriate input variable/s for each control strategy; and 157 

comment on the relative utility of each strategy.   158 

 159 

Following a review of candidate adaptive control strategies (McCarthy et al. 2011b), 160 

the two sensor-based adaptive control strategies implemented in VARIwise are 161 

‘Iterative Learning Control’ (ILC) and ‘Iterative Hill Climbing Control’ (IHCC).  The 162 

two strategies are described below, and their implementation set out in the section 163 

following. In summary, these strategies refine the estimate of each successive 164 

irrigation volume applied by: 165 

[ILC] – iteratively adjusting the irrigation volume applied in each cell of the field 166 

using the incremental response, i.e. the OZCOT-determined plant growth arising 167 

from the change in particular field sensor information which has resulted from the 168 

previous water application, in each cell; or 169 

[IHCC] – similarly adjusting the irrigation volumes, but based on multiple sensor 170 

increment information, using a range of irrigation volumes applied within a group 171 

of homogenous cells. 172 

 173 

3.1 Iterative Learning Control 174 
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Iterative Learning Control (ILC) can be used to control repetitive processes, e.g. robot 175 

arm manipulators, repetitive rotary systems, and factory batch processes, where the 176 

process model is imperfectly known (Ahn et al. 2007).  An irrigation system may be 177 

interpreted as a repetitive process because the irrigation machine iteratively passes 178 

over the field throughout the crop season; and, given the complexity of variable plant 179 

growth, is certainly imperfectly described from the control perspective.  Hence, in 180 

principle, classical ILC can be used to improve the system performance by 181 

eliminating the effects of any unknown but repeating disturbance (Korovessi and 182 

Linninger 2006).  Applied to irrigation, an unknown feature of the crop response 183 

model that reoccurs as a consequence of irrigation may be regarded as a ‘repeating 184 

disturbance’.   185 

 186 

ILC requires that the process controlled by the strategy is reset to the same initial 187 

conditions after each iteration (Korovessi and Linninger 2006).  Again, applied to 188 

irrigation, each iteration of ILC is an irrigation event, and the conditions may be 189 

approximately reset by scheduling the irrigations after a set amount of crop water use.   190 

 191 

The variables soil-water, leaf area index, square count or boll count may be used as 192 

feedback to measure the system performance for a cotton irrigation control system 193 

(‘squares’ are flower buds; and ‘bolls’ are the seed pods which contain the cotton 194 

fibre of the cotton plant). For example, for soil-water-based ILC a controller may 195 

target a particular soil-water deficit throughout the season (and the data may be used 196 

to calibrate the model).  However, to be valid for feedback control, these 197 

measurements must be taken only after a suitable delay following irrigation to ensure 198 

the soil or crop has responded to the irrigation application. 199 
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 200 

Moore and Chen (2006) demonstrated an ILC strategy for a centre pivot irrigation 201 

machine to determine site-specific irrigation application volumes using soil-water as 202 

the feedback variable.  The strategy was evaluated in simulations using a soil model 203 

with one dimensional flow.  This soil model assumed constant crop water use 204 

irrespective of the crop stage, crop conditions and the daily and sub-daily weather 205 

dynamics.  Hence, the model was reset to the same initial conditions after a fixed time 206 

delay and irrigation events were scheduled at regular time intervals.   207 

 208 

3.2 Iterative Hill Climbing Control 209 

A drawback of the ILC strategy is the potentially inefficient system identification, and 210 

particularly so when applied to irrigation which has a ‘learning increment’ of typically 211 

several days.  This is a result of only one irrigation volume being evaluated in each 212 

cell during each irrigation event. As an alternative, adaptive spatially-varied 213 

identification may be more rapidly achieved by utilising site-specific combinations of 214 

plant, soil and weather data in different sub-areas of the field, i.e. using aggregates of 215 

cells having similar properties. Likewise, adaptive system identification may be 216 

incorporated into an irrigation control system to account for the slow speed of crop 217 

dynamics and the low frequency of irrigation events.  To meet these requirements and 218 

circumvent these limitations, an alternative, multi-dimensional approach was 219 

developed, as follows. 220 

 221 

The technique is designated ‘Iterative Hill Climbing Control’ (IHCC), in which ‘hill 222 

climbing’ involves changing the state of the system into one that is closer to the goal 223 
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in the direction of steepest gradient (Russell and Norvig 1995).  IHCC provides faster 224 

optimisation than ILC alone because it permits the evaluation of both: 225 

• a range of inputs to the system at each irrigation event (i.e. multi-dimensional 226 

ILC); and 227 

• a range of irrigation volumes on different cells in the field (within the particular 228 

sub-area) at each irrigation event.  229 

 230 

As noted, IHCC involves grouping cells with similar properties in the field and 231 

applying different irrigation volumes to designated ‘test cells’ within each group of 232 

cells.  The responses of the test cells are compared to determine which irrigation 233 

volume resulted in the response closest to the desired response.  This enables the 234 

control system to identify appropriate input options within a single irrigation event 235 

without using a process model. 236 

 237 

4. IMPLEMENTATION OF SENSOR-BASED CONTROL STRATEGIE S IN 238 

VARIwise 239 

The ILC and IHCC strategies were implemented in VARIwise to calculate the optimal 240 

irrigation application volumes for each cell.  For the ILC strategy, the irrigation 241 

volumes are determined from previous irrigation applications and measured 242 

responses.  For the IHCC strategy, the volumes to apply are determined by evaluating 243 

the response to a range of irrigation volumes previously applied to test cells within 244 

representative homogenous areas of the field.  Homogenous areas within fields are 245 

referred to as a management ‘zone’ in this paper and zone boundaries may be 246 

determined using soil properties, crop or variety differences, topography or 247 

management constraints.   248 
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 249 

The implementation of the control strategies within VARIwise involves six steps 250 

described in the following sections.  Of necessity, the procedures differ for the ILC 251 

and IHCC strategies.  In particular, the procedure for the calculation of irrigation 252 

volumes is fundamentally different (sections 4.6 and 4.7, respectively). 253 

 254 

4.1 Select control areas 255 

The ILC and IHCC strategies require different spatial resolutions for irrigation 256 

application.  ILC can be used to determine irrigation applications to each individual 257 

cell; however, for IHCC the field must be divided into a number of zones.   258 

 259 

The identification of zones for the IHCC strategy can be undertaken automatically by 260 

VARIwise using a measured field property (e.g. soil property).  In this case, the 261 

property data assigned to each cell in the field is sorted in ascending order and then 262 

grouped into the user-specified number of evenly-sized zones.  A small number of 263 

cells (i.e. a group of ‘test cells’) are then selected in each zone to evaluate different 264 

irrigation applications.  The application of the various irrigation volumes to the test 265 

cells results in differential soil-water and crop responses. Hence, test cell responses 266 

are only indicative of the response in each zone for one irrigation event and the IHCC 267 

strategy requires the selection of new test cells in each zone for each irrigation.  In 268 

VARIwise, this is achieved by a simple increment of the test cell number along with a 269 

requirement that the replacement cell still lies within the same zone and has not 270 

previously been used as a test cell. 271 

 272 

4.2 Determine day of first irrigation 273 
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The number of days until the first irrigation in each cell or zone is calculated by 274 

dividing the plant available water capacity (PAWC) of the soil by the daily crop water 275 

use or daily crop evapotranspiration (ETc).  This procedure is described in McCarthy 276 

et al. (2010).   277 

 278 

4.3 Calculate first irrigation volume 279 

For ILC and IHCC non-test cells, the first irrigation application volume is calculated 280 

by aggregating the daily ETc since the crop was sown.  The daily ETc is calculated as 281 

evapotranspiration obtained from the weather data, i.e. via reference (potential) 282 

evapotranspiration ETo, and the appropriate crop coefficient, Kc, as published for each 283 

crop and growth stage, following the standard methodology of FAO 56, Allen et al. 284 

(1998). 285 

 286 

For IHCC test cells, the irrigation volume applied to each test cell is similarly 287 

determined using the ETo since the crop was sown, but with a range of crop 288 

coefficients imposed.  These crop coefficients are offset from the zone crop 289 

coefficient (which is the crop coefficient used to calculate the irrigation volumes 290 

applied to the non-test cells).  The crop coefficient offsets used are specified by the 291 

user as a percentage of the zone crop coefficient; for example, using a zone crop 292 

coefficient of Kc = 0.35, five test cells and an offset of 40%, the crop coefficients 293 

would be 0.07, 0.21, 0.35, 0.49 and 0.63 for each test cell, respectively (i.e. multiples 294 

of 40% on either side of the median crop coefficient, 0.35).   295 

 296 

4.4 Check data availability 297 
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In the simulation environment the model output data are obtained for the cells and 298 

days specified by the user.  This enables the performance of the control strategy to be 299 

evaluated with input data at different spatial and temporal resolutions.  In a field 300 

implementation, the currently-available datasets are kriged (i.e. spatially interpolated) 301 

across the field to ascribe a value to each cell in the field.  This is because sensor data 302 

may be unavailable due to sensor failures or the installation of sensors being 303 

impractical (large numbers of infield sensors are often obstructive to growers).   304 

 305 

4.5 Determine day of next irrigation 306 

The irrigation events are scheduled when the crop has reached a user-specified 307 

cumulative crop water use since the previous irrigation event.  The method of 308 

calculating the crop water use depends on the datasets available, thus: 309 

• If soil data input is used in the control strategy and update data are available, the 310 

crop water use is determined using the change in soil-water since the previous 311 

irrigation. 312 

• If soil and weather data inputs are used in the control strategy but update soil data 313 

are not available and update weather data are available, the cumulative crop water 314 

use is determined as the sum of the daily crop evapotranspiration (calculated using 315 

the weather data). 316 

• If soil data input is used but update data are not available, plus weather data are 317 

not available or not used, then the cumulative crop water use is calculated using 318 

historically averaged weather data. 319 

 320 
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Since the crop water use may not be uniform across the field due to spatial variability, 321 

the irrigations are initiated when an arbitrary proportional of the cells in the field have 322 

reached the user-specified cumulative crop water use (e.g. 15%).   323 

 324 

4.6 Calculate irrigation volumes – ILC 325 

For ILC the irrigation volume applied to each cell in the field is calculated using a 326 

common ILC algorithm (Ahn et al. 2007) which calculates the required system input 327 

(the irrigation volume to be applied) uk+1 at the forthcoming iteration, i.e. the (k+1)-th 328 

irrigation, according to: 329 

 330 

uk+1  =  uk  +  γ(yk(∆)  –  yd(∆))  (1) 331 

 332 

where: 333 

uk 

 

= 

 

the system input (irrigation volume) on the previous iteration  

(k-th irrigation) 

γ = the learning gain (a scalar factor) 

yk(∆) 

 

= 

 

the measured system output (i.e. sensor data value, kriged as 

necessary) after delay ∆; and 

yd(∆) 

 

= 

 

the desired system output (i.e. desired sensor data value) after 

delay ∆ 

in which the delay in measurement after each irrigation ∆ permits the crop to respond 334 

to that irrigation (typically one day for the sensing of soil-water change; longer for the 335 

sensing of a plant growth variable).  In all cases the response delay ∆ must be less that 336 

the interval between irrigations.  The learning gain γ is chosen by iteration as a 337 
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compromise between slow learning (low γ) and instability in the predicted uk+1 values 338 

(high γ). 339 

 340 

The ILC algorithm assumes that the refined input is adjusted in the same direction as 341 

the difference between the measured and desired value for a positive learning gain and 342 

that the refined input is adjusted in the opposite direction to the difference between 343 

the measured and desired value for a negative learning gain.  For example, when the 344 

desired value is less than the measured value (and the difference is negative) and the 345 

learning gain is positive, then the irrigation volume applied is less than the previous 346 

irrigation volume.  Hence, this algorithm may only be used for variables which either 347 

always increase when the irrigation volume applied increases (e.g. soil-water) or 348 

always decrease when the irrigation volume applied decreases (e.g. soil-water deficit).  349 

An applicable plant variable may be leaf area index since vegetative growth typically 350 

increases with increased water application and hence would require a positive learning 351 

gain.  A negative learning gain is used where soil-water is the controlled variable.  In 352 

this case, the soil-water variable is calculated by subtracting the desired deficit from 353 

the full point (field capacity) of the soil.  However, conversely for cotton, the square 354 

and boll counts are not applicable for ILC as cotton reproductive growth is maximised 355 

when the plant is under mild water stress (Gibb et al. 2004). 356 

 357 

For each irrigation event and cell, the ILC algorithm of equation (1) calculates the 358 

volume to apply at the next irrigation event using measured field data and the desired 359 

value based on a single measured variable y.  However, because more than one soil or 360 

plant measured variable may be applicable, an expanded ILC algorithm was 361 
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implemented to accommodate for multiple variables.  In this case, optimisation may 362 

be achieved by either one, or a combination, of the following (Liu et al. 2001): 363 

 364 

i. assigning a weighting to each optimisation objective (variable yi) and 365 

constructing a weighted sum of all the objectives, and/or 366 

ii.  optimising each objective separately to explore trade-offs 367 

 368 

where the separate optimisation objectives are driven by difference between the 369 

measured and desired variable values, yi,k and yi,d respectively.   370 

 371 

The multi-objective optimisation option (i) requires subjective selection of the 372 

weights for each objective; however the separate-objective option (ii) requires an 373 

additional decision-making procedure to determine which objective optimisation 374 

results in the desired performance for both objectives.  The present VARIwise 375 

implementation for sensor-based irrigation optimisation aims to evaluate the effect of 376 

using multiple data inputs and the multi-objective optimisation option (i) was 377 

presumed sufficient with each objective equally weighed.  Hence, the multi-objective 378 

ILC algorithm is: 379 

 380 

uk+1   =   uk  +  γ ∑
=

n

i 1

(wi  ×  (yi,k(∆) – yi,d(∆)))  (2) 381 

 382 

where n variables are used in the control strategy and wi is the weighting of the i-th 383 

variable for the control strategy (and all weightings sum to unity).   384 

 385 

4.7 Calculate irrigation volumes – IHCC 386 
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A performance index (PI) is calculated for each test cell in each zone.  In VARIwise, 387 

the data used to determine the PI is specified by the user, and for a cotton crop 388 

appropriate parameters are leaf area index (LAI) and ‘square count’ (‘squares’ are 389 

flower buds on a cotton plant).  The type of data specified affects how the PI is 390 

calculated.  To optimise cotton yield, the PI can be calculated as the ratio of the 391 

current boll or square count to the maximum count of the test cells using: 392 

 393 

)(

)(

tvalue Maximum

tvalue Current
PI =  (3) 394 

For cotton, the LAI data should not simply be maximised as this would result in 395 

excessive vegetative growth rather than reproductive growth.  Hence, the PI for LAI 396 

can be calculated and compared to the reported LAI for an optimal crop.  For data that 397 

correspond to an optimal time series data set, the performance index is:  398 

 399 

)(

)()(

tvalue Target

tvalue tCurrentvalue Target
PI

−=  (4) 400 

where t represents the day of the data collection. 401 

 402 

Multiple data variables may be incorporated into the PI by applying weights to the 403 

performance index of each data type and summing the weighted indices.  For 404 

example, if leaf area index and square count are used with respective weights of 0.2 405 

and 0.8, the total PI would be: 406 

 407 

PI  =  0.2 × PLAI  + 0.8 × Psquare/boll count (5) 408 

 409 
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The PI for each test cell can be evaluated to determine the crop coefficient to be used 410 

for the ‘non-test’ cells in the next irrigation.  The crop coefficient used for the next 411 

irrigation corresponds to the maximum PI: this would be obtained by finding the 412 

maximum point of a quadratic equation fitted through points plotted on a PI versus 413 

crop coefficient graph. 414 

 415 

Multiple data variables may be incorporated into the PI by applying weights (ki) to the 416 

performance index of each data type (PIi) and summing the weighted indices (where 417 

there are n data inputs).  Hence, the general form for the PI calculation with multiple 418 

data variables and weights is: 419 

 420 

PI =  ∑
=

n

i 1

ki PIi  where   ∑
=

n

i 1

ki = 1 (6) 421 

 422 

If the maximum point of the quadratic lies outside this range, then the crop coefficient 423 

for the test cell with the highest PI is selected as the optimal crop coefficient.  If all 424 

the test cells have the same PI then the crop coefficient is estimated from Table 12 of 425 

Allen et al. (1998). 426 

 427 

After the crop has consumed a user-defined cumulative crop water use, the non-test 428 

cells are then irrigated with an amount calculated using the aggregated ETo and the 429 

optimal crop coefficient.  The volumes applied to the new test cells are calculated 430 

using the user-defined offset percentage applied to the optimal crop coefficient 431 

identified for the previous irrigation.   432 

 433 

4.8 Practical considerations 434 
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For centre pivot and lateral move machines, the machine capacity and application 435 

volumes affect the time taken to traverse the field, and hence the timing of irrigation 436 

applications to each cell.  To minimise the impact of travel time, the irrigation 437 

application to individual cells is limited to an arbitrary maximum volume (e.g. 25 438 

mm) and the amount of water applied to individual cells is adjusted by the travel time 439 

and the daily crop water use.   440 

 441 

5. CASE STUDY – EVALUATION OF SENSOR-BASED CONTROL 442 

STRATEGIES WITH COTTON 443 

This section reports a case study using VARIwise to compare the performance of  the 444 

ILC and IHCC strategies when different field sensor data (e.g. soil, plant and weather) 445 

were available, both singly or in combination.  These strategies were also compared 446 

with the yield and water use performance produced for the equivalent crop irrigated 447 

according to an industry-standard irrigation management strategy. 448 

 449 

5.1 Simulated crop, growing conditions and crop model 450 

The case study involved simulations of a whole season cotton crop grown on the 451 

Darling Downs, Australia with parameters as outlined in Table 1.  The sowing data, 452 

soil properties and weather pattern was characteristic of cotton growing regions in 453 

Australia.  The soil and plant parameters of the cotton model OZCOT were kept 454 

within the boundary values defined by Wells and Hearn (1992).   455 

 456 

The spatial variability in soil parameters in each cell and the zones applied for the 457 

IHCC strategy are shown in Figure 2.  In the simulated field, the plant available water 458 

capacity (PAWC) ranges from 60 to 200 mm.  This was selected to ensure the control 459 
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strategies could deal with the different soil types that often exist within fields.  The 460 

spatial variability in PAWC across irrigated broadacre fields in Australia can be 30 to 461 

500% (Wong et al. 2006; Rab et al. 2009) because of differences in soil texture and 462 

root distribution.   463 

 464 

Insert Figure 2 here 465 

 466 

Averaged weather input was used when sensed weather data was not an input.  This 467 

provided the model with the minimum set of weather information that could be 468 

generated which would enable the model to operate.  The averaged weather dataset 469 

was generated using SILO (QNRM 2009) climate datasets for the cropping period in 470 

the previous five years and calculating the daily average maximum and minimum 471 

temperature, solar radiation and rainfall such that each day in the season had the same 472 

weather conditions. 473 

 474 

A daily weather profile was obtained for the GPS location -28.18°N 151.26°E from an 475 

Australian Bureau of Meteorology SILO dataset (QNRM 2009) for 2004/2005.  The 476 

weather profile is relatively hot and wet, late in the crop season. The weather profile 477 

(Figure 3) was used as the weather data input for simulations that include weather in 478 

the input data combination, whilst the same weather profile (Figure 3) was averaged 479 

daily and used as the weather data input for simulations without weather in the input 480 

data combination.   481 

 482 

Insert Figure 3 here 483 

 484 
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5.2 Determination of the industry-standard (baseline) irrigation schedule 485 

An industry-standard irrigation management strategy was implemented as a baseline 486 

for the performance of the adaptive control strategies.  This strategy applied a uniform 487 

irrigation treatment across the field where irrigation events were initiated when the 488 

soil-water deficit reached a set amount in one point in the field.  The soil-water deficit 489 

was taken in the cell with the lowest plant available water capacity, as this is the most 490 

limiting soil (Figure 2(a)).  In this simulation, 25 mm was applied to the whole field 491 

when the soil-water deficit had reached 30 mm in the cell with sandy soil.  492 

 493 

5.3 Adaptive control implementation 494 

The robustness of the irrigation control strategy to sensed data availability was 495 

evaluated by simulating the strategies using different combinations of data input 496 

(McCarthy et al. 2011a).  This indicated the control inputs that are most appropriate to 497 

each control strategy.  The simulations used the same underlying crop model but 498 

different combinations of input variables for control.  For example, the simulation 499 

evaluating the importance of sensed soil data to the ILC strategy involves adjusting 500 

the irrigation volume according to the error between the desired soil-water and the 501 

measured soil-water after each irrigation event.  502 

 503 

An optimal time series dataset is required for each input variable to compare with the 504 

measured output and calculate the next irrigation volume uk+1.  The leaf area index 505 

(LAI) for an optimal cotton crop is shown in Figure 4.  The dataset was obtained from 506 

OZCOT for a high yielding simulation and the curve was smoothed using exponential 507 

smoothing with a smoothing factor of 0.85.  For this case study, a 12.6 ha centre pivot 508 
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irrigated field was automatically divided into 1266 cells of area 100 m² (with cell 509 

dimensions of 10 m wide and 10 m long). 510 

 511 

Insert Figure 4 here 512 

 513 

5.3.1 Methodology – ILC  514 

The ILC strategy was simulated using the five applicable input data combinations 515 

(Table 2).  For the simulations with two input data variables, the weightings on each 516 

variable were chosen to be 0.5.  Irrigations were initiated when 15% of the cells had 517 

reached a 40 mm soil-water deficit.  The simulations using soil data input adjusted the 518 

irrigation volume to achieve a deficit of 10% of the plant available water capacity in 519 

each cell following each irrigation event.  The data for feedback in the control strategy 520 

were obtained from the OZCOT model on different days depending on the data type: 521 

the soil dataset was obtained one day after the previous irrigation event, whilst the 522 

plant dataset was obtained one day prior to next scheduled irrigation event. 523 

 524 

Insert Table 2 here 525 

 526 

Simulations for ILC were conducted in VARIwise using the agronomic factors in 527 

Table 1 and the underlying soil variability in Figure 2(a).  The desired LAI time series 528 

set of Figure 4 was used.  This cell size was selected to enable timely execution of the 529 

simulations and accommodate substantial in-field spatial variability of soil properties.  530 

The following values were used for the ILC parameters defined in Section 4.6: 531 

• the learning gain (γ) was unity; 532 

• the irrigations were initiated after 40 mm of crop water use; and 533 
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• the time delay (∆) between the irrigation event and the parameter measurement 534 

depended on the data input.   535 

 536 

5.3.2 Methodology – IHCC 537 

Using weather, soil and plant input data, there are six possible combinations of data 538 

input for IHCC (Table 3).  As with ILC, weather-only input is not applicable for 539 

control as the weather data does not provide a measure of the crop response.  For the 540 

simulations with two input variables, the weighting on each variable was set to be 0.5.  541 

The simulations using plant data to determine the irrigation application used square 542 

count as the input variable for control.  This is because squares form earlier in the 543 

crop season than bolls (and can be controlled earlier in the crop season).  Square count 544 

was used instead of leaf area index to maximise the reproductive growth of the cotton 545 

plant (which should maximise the final yield) rather than manage the vegetative 546 

growth.  The strategies with soil data input aimed to maintain a soil-water deficit 547 

equal to 10% of the plant available water capacity in each cell following each 548 

irrigation event. 549 

 550 

Insert Table 3 here 551 

 552 

For IHCC strategies there must be sufficient cells in the field for the test cells to be 553 

replaced after each irrigation event in the crop season.  For example, a field with three 554 

zones and five test cells requires 15 test cells for each irrigation event.  Because these 555 

test cells must be replaced with new test cells after every irrigation event, a minimum 556 

of 300 cells are required for a season with 20 irrigation events.  The field of 1266 cells 557 
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was automatically divided into three zones (Figure 2(b)) and five test cells were used 558 

in each zone.   559 

 560 

The underlying soil variability of Figure 2(a) was implemented.  The feedback data 561 

were obtained from the OZCOT model one day after the previous irrigation event for 562 

soil responses and one day before the next scheduled irrigation event for plant 563 

responses.   564 

 565 

5.4 Performance of control strategies 566 

 567 

5.4.1 Performance using an industry-standard irrigation management strategy  568 

An industry-standard irrigation schedule was implemented with field properties as per 569 

Table 1 and involved applying 25 mm between 14 October 2004 and 14 March 2005 570 

when the soil-water deficit in a sandy cell reached 30 mm.  The final yield was 9.1 ± 571 

1.9 bales/ha with CWUI of 0.9 bales/MLtotal (total water in ML) and IWUI of 1.4 572 

bales/MLirrigated (irrigation applied in ML) (Figure 5).  IWUI is the ratio of the crop 573 

yield (e.g. bales of cotton) to the irrigation water applied (ML), whilst CWUI is the 574 

ratio of crop yield (e.g. bales) to the total water used by the crop (ML) (BPA 1999).  575 

The total volume of water applied to the crop (including rainfall) was 10.2 ML/ha, 576 

whilst the irrigation applied to the crop was 6.8 ML/ha. Variations reported in the 577 

average yield values are standard deviations of yield across the field (Figures 5 and 6).  578 

The applied water and yields produced by the simulations are consistent with local 579 

typical experience. 580 

 581 

Insert Figure 5 here 582 
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 583 

5.4.2 Performance using ILC  584 

Figure 6 sets out the simulated outputs of the ILC strategies using the data input 585 

combinations described in Table 3.  The simulated irrigation applied, soil-water and 586 

leaf area index in the sand, clay loam and clay cells are compared for the strategies 587 

with plant-only input (simulation #1) and soil-only input (simulation #2) (Figure 7(a) 588 

and 7(b)).  The ILC strategy produced the highest yield and water use efficiency with 589 

soil-water input (simulation #1).  590 

 591 

Insert Figure 6 here 592 

Insert Figure 7 here 593 

 594 

ILC produced lower yields with leaf area index input (simulations #2, #3 and #5) than 595 

with soil-water input (Figure 6).  The irrigation volumes applied were higher 596 

throughout the crop season for ILC targeting leaf area index than soil-water deficit 597 

(Figure 7).  This indicates that the leaf area index is not proportionally related to 598 

irrigation application and that the leaf area index input is not effective to determine 599 

the crop water requirements for this crop.  The leaf area index measurement also may 600 

not have detected whether the plant was actively transpiring or stressed.  The 601 

irrigation volumes applied using leaf area index also exceeded the soil-water deficit 602 

(Figure 8(b)); hence, ILC with leaf area index input could not adapt to the difference 603 

in soil-water for different soils.  The leaf area index was also generally lower for ILC 604 

targeting leaf area index than ILC maintaining soil-water deficit (Figure 9).  This 605 

suggests that leaf area index is a less effective indicator of irrigation requirement than 606 

soil-water deficit for ILC.  The additional input of plant data to the soil simulation 607 
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(simulation #4) also reduced the simulated yield and water use efficiency (compared 608 

with simulation #1).  609 

 610 

There were differences between the simulated and desired soil-water deficit for the 611 

strategy targeting soil-water deficit (#simulation 1, Figure 8(a)).  These were likely 612 

caused by the plant physiological response varying to each irrigation event during the 613 

crop season, while the ILC relies on process repetition to refine the irrigation volume 614 

and assumes that the crop conditions essentially ‘reset’ before the next irrigation 615 

event.    616 

 617 

Insert Figure 8 here 618 

Insert Figure 9 here 619 

 620 

5.4.3 Performance using IHCC  621 

The simulations described in Table 3 produced the yields and water use efficiencies in 622 

Figure 10.  IHCC produced reasonable yields and water use efficiencies for all data 623 

input combinations.  The highest yield was simulated using the soil-and-plant input 624 

(simulation #9), whilst the lowest yields were simulated using plant-only input 625 

(simulation #7) and weather-and-plant input (simulation #8).  The IHCC strategy that 626 

maximised square/boll count (simulation #9) resulted in a higher maximum square 627 

count than the strategy that attempted to maintain a fixed soil-water deficit 628 

(simulation #6) (Figure 9).  The simulations using plant input in combinations with 629 

weather or soil data (simulations #8-10) produced higher yields than those only using 630 

only soil data input (simulations #6).  This suggests that square count indicated the 631 

plant status more accurately than soil response.  The soil-and-plant strategy that 632 
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targeted a soil-water deficit and maximised square/boll count (simulation #9) 633 

performed better than simulations that maximised square/boll count (simulation #10).  634 

This is because the first squares form approximately 60 days after sowing, and the 635 

strategy requires soil-water indicate crop water requirement during this early stage. 636 

 637 

Insert Figure 10 here 638 

Insert Figure 11 here 639 

 640 

IHCC with soil-and-plant input (simulation #9) applied less irrigation water than that 641 

with plant-only (simulation #7).  This is because the fruit load input does not 642 

accurately identify the irrigation timing or volume of water to be applied and tends to 643 

over-irrigate during wet periods of the crop season (eg. 63 to 86 days after sowing, 644 

Figure 11).  Including the soil data improves the accuracy of the application volume 645 

determination and hence, the efficiency of water application was higher using soil 646 

data in combination with the plant data. 647 

 648 

The spatial variability observed in the simulated yield (Figure 10) was higher when a 649 

single sensor input (simulations #6 and #7) was used compared to a multi-sensor 650 

combinations.  Spatial variability in yield was caused by both differences in the soil 651 

properties and the ‘test’ irrigation volumes being applied to various cells across the 652 

field.  The irrigation volumes applied to the clay loam and clay cells were generally 653 

larger than those applied to the sand cells (Figure 11).  The higher soil-water storage 654 

capacity on these soils was found to produce larger crops which then resulted in larger 655 

irrigation deficits at irrigation.  It was also noted that the soil-water deficit at irrigation 656 

in the sand, clay loam and clay cells was generally closer to the target deficit (6 mm, 657 
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10 mm and 19 mm, respectively) using weather-and-soil input (Figure 11(a)) than 658 

using weather-and-plant input (Figure 11(b)).   659 

 660 

Deviations from the desired soil-water deficit were also caused by the test cells not 661 

being representative of all the cells in the zone, causing the ‘best’ response of the test 662 

cells to be inaccurate and the irrigation application of the whole zone to be 663 

inappropriate.  It follows that the square count may not be maximised in each cell of 664 

the field because of the differences in properties of the test cells and non-test cells.  665 

Deviations may also have been caused by test cells being inappropriately chosen at 666 

the border between zones where the zone division is jagged and therefore less certain.  667 

Hence, the location of the test cells is important for the irrigation optimisation.   668 

 669 

6. DISCUSSION 670 

The Iterative Learning Control strategy generally produced higher crop water use 671 

efficiency performance indices than the Iterative Hill Climbing Control strategy.  The 672 

highest crop and irrigation water use efficiencies were achieved using ILC with soil-673 

water data (simulation #1), whilst the highest irrigation water use efficiency using 674 

IHCC was achieved when soil-and-plant data (simulation #9) was used.  Similar 675 

yields were obtained for the IHCC strategy with soil-and-plant input (simulation #9, 676 

12.4 ± 1.6 bales/ha) and the ILC strategy with soil-only input (simulation #1, 12.2 ± 677 

1.5 bales/ha).   678 

 679 

ILC adjusted the irrigation volume to achieve the desired soil-water deficit following 680 

the irrigation event for the different soil types in the field.  The IHCC strategy was 681 

less effective at maintaining a target soil-water deficit than the ILC strategy (Figure 682 
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8).  With soil-only input, IHCC produced an average yield and crop water use 683 

efficiency (simulation #6, 11.2 ± 1.8 bales/ha and 1.0 bales/MLtotal, respectively) 684 

lower than those of the ILC strategy with soil-input (simulation #1).   685 

 686 

The IHCC strategy can optimise parameters (e.g. through maximising square/boll 687 

counts) and targeting temporally-variable soil/crop responses, whilst the ILC strategy 688 

can only target temporally-variable soil/crop responses (e.g. soil-water deficit).  689 

Hence, leaf area index was selected for ILC and fruit load was selected for IHCC.  690 

ILC performed poorly with plant data (i.e. leaf area index) input.  This suggests that 691 

IHCC may be more appropriate for weather-and-plant data input, whilst ILC may be 692 

preferable with soil-input only.  However, the case study indicates that leaf area index 693 

input was not appropriate for ILC because of its lack of sensitivity to irrigation 694 

volume application.  For the ILC strategy, there was no benefit in using multiple 695 

combinations of soil, plant or weather data.   696 

 697 

The irrigation refinement was most effective during dry periods of the season as 698 

rainfall was a (non-repeating) disturbance in the control system.  However, ILC 699 

adapted rapidly to the new system state in dry periods following the rainfall.   700 

 701 

7. CONCLUSION 702 

Two sensor-based irrigation control strategies, ‘Iterative Learning Control’ (ILC) and 703 

custom-designed ‘Iterative Hill Climbing Control’ (IHCC) were simulated in the 704 

software VARIwise for a cotton crop ‘grown’ with the soils and merged 2004-2009 705 

weather data of south-east Queensland, Australia, and represented by the performance 706 

of the well-validated cotton growth and production model OZCOT.  These strategies 707 
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used the crop water use to determine irrigation timing and soil and/or crop response to 708 

determine irrigation application volume.  The simulations indicated that there was no 709 

significant difference between the highest yield achieved by the ILC strategy using 710 

soil-water data and the IHCC strategy using soil and plant sensor data.  Both strategies 711 

produced higher simulated yields and water use efficiencies than an industry-standard 712 

irrigation management strategy.   713 

 714 

The optimal sensor combination and control strategy that should be used in the field 715 

will depend on the crop and water availability.   Where sensor data availability is non-716 

limiting then the simulated IHCC strategy using plant and soil sensors produced 717 

higher yield than the ILC strategy.  However, where sensor data availability is limited 718 

then the results indicate that an ILC strategy would be preferable to optimise irrigated 719 

water use efficiency.  Valid field validation remains a challenge (unless there are 720 

multiple fields and irrigation machines) but further work will involve field evaluations 721 

to compare the simulated and measured control strategy performance.   722 
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Figures and Tables 814 
 815 
Table 1: Agronomic factors used in cotton model OZCOT for control strategy 816 
simulations (where HydroLOGIC is a user interface for OZCOT, Richards et al. 817 
(2008)) 818 
 819 

Agronomic factor Value Source 
Sowing data 4 October 2004 Nil 
Plant stand 12 plants/m Default in HydroLOGIC 
Seed depth 5 cm Default in HydroLOGIC 

Row spacing 1 m Default in HydroLOGIC 

Available nitrogen 250 kg/ha (for maximum yield) 
Rochestor (2006); 

Rochester et al. (2009) 
Previous crop Other Nil 

Defoliation dates Determined by OZCOT Nil 
Harvest date Determined by OZCOT Nil 

Cotton variety Sicot 73 Nil 
Plant available water capacity As per Figure 1 Nil 

Starting soil-water Plant available water capacity Nil 
Weather data As per Figure 2 Nil 
Machine type Centre pivot Nil 

Field size 400 m diameter Nil 
Machine capacity 15 mm/day Nil 

End of irrigation period 14 March 2005 Nil 



 

36 
 

Table 2: Simulations conducted to compare interactions between control strategies 820 
(labelled by ID#) and input variables for Iterative Learning Control.  821 
 822 

Irrigation calculation ID 
# 

Input 
variables for 

control 

Weather 
data input Irrigation volume Irrigation 

timing 

1 Soil 
Averaged 
SILO data Maintain soil-water deficit 

Change in 
soil-water 

2 Plant 
Averaged 
SILO data 

Target leaf area index Change in ETc 

3 
Weather AND 

plant 
SILO data Target leaf area index Change in ETc 

4 
Soil AND 
plant (A) 

Averaged 
SILO data 

Maintain soil-water deficit and 
target leaf area index 

Change in 
soil-water 

5 
Soil AND 
plant (B) 

Averaged 
SILO data 

Target leaf area index 
Change in 
soil-water 
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Table 3: Simulations conducted to compare interactions between control strategies 823 
(labelled by ID#) and input variables for Iterative Hill Climbing Control. N 824 
 825 

Irrigation calculation ID 
# 

Input 
variables for 

control 

Weather 
data input Irrigation volume Irrigation 

timing 

6 Soil 
Averaged 
SILO data 

Maintain soil-water deficit 
Change in 
soil-water 

7 Plant 
Averaged 
SILO data 

Maximise square/boll count Change in ETc 

8 
Weather AND 

plant 
SILO data Maximise square/boll count Change in ETc 

9 
Soil AND 
plant (A) 

Averaged 
SILO data 

Maintain soil-water deficit and 
maximise square/boll count 

Change in 
soil-water 

10 
Soil AND 
plant (B) 

Averaged 
SILO data 

Maximise square/boll count 
Change in 
soil-water 

 826 
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Table 4: Performance of the industry-standard irrigation strategy for homogeneous 827 
and spatially variable field 828 

Infield soil 
properties 

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated

/ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

Sand 5.8 9.0 6.0 0.6 1.0 
Clay loam 10.0 8.7 5.8 1.1 1.7 

Clay 10.7 9.5 6.3 1.1 1.7 
Spatial variable 9.1 ± 1.9 10.2 6.8 0.9 1.4 

 829 
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Table 5: Performance of the ILC strategies with different data input combinations for 830 
homogenous and spatially variable fields 831 

Control 
strategy 

ID # 

Infield soil 
properties 

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated

/ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

Sand 10.0 9.0 5.8 1.1 1.7 
Clay loam 12.7 8.8 5.7 1.4 2.2 

Clay 12.9 8.5 5.5 1.5 2.3 1 
Spatially 
variable 

12.2 ± 1.5 11.3 7.3 1.1 1.7 

Sand 7.4 15.0 9.7 0.6 0.8 
Clay loam 7.5 15.9 10.3 0.5 0.7 

Clay 8.5 15.8 10.2 0.7 0.8 2 
Spatially 
variable 

8.3 ± 1.6 16.5 10.3 0.5 0.8 

Sand 8.5 12.2 7.9 0.7 1.1 
Clay loam 8.2 14.4 9.3 0.6 0.9 

Clay 9.1 14.1 9.1 0.6 1.0 3 
Spatially 
variable 

8.9 ± 1.9 12.6 8.0 0.7 1.1 

Sand 9.7 8.8 5.7 1.1 1.7 
Clay loam 11.4 10.6 6.9 1.1 1.7 

Clay 12.7 11.3 7.3 1.1 1.7 4 
Spatially 
variable 

10.2 ± 1.4 11.1 7.7 0.9 1.3 

Sand 9.5 9.3 6.0 1.0 1.6 
Clay loam 10.9 11.1 7.2 1.0 1.5 

Clay 11.9 11.6 7.5 1.0 1.6 5 
Spatially 
variable 

9.9 ± 2.0 12.8 7.9 0.8 1.3 

 832 
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Table 6: Performance of the IHCC strategy with different data input combinations for 833 
homogenous and spatially variable fields 834 

Control 
strategy 

ID # 

Infield soil 
properties 

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated

/ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

Sand 9.9 8.8 5.7 1.1 1.7 
Clay loam 12.3 9.0 5.8 1.4 2.1 

Clay 12.6 9.3 6.0 1.4 2.1 6 
Spatially 
variable 

11.2 ± 1.9 11.1 7.9 1.0 1.4 

Sand 9.0 7.6 4.9 1.2 1.8 
Clay loam 10.9 7.9 5.1 1.4 2.1 

Clay 11.1 8.5 5.5 1.3 2.0 7 
Spatially 
variable 

10.9 ± 2.5 11.9 7.7 0.9 1.4 

Sand 9.2 7.4 4.8 1.2 1.9 
Clay loam 11.2 7.6 4.9 1.5 2.3 

Clay 11.4 11.6 5.1 1.0 2.2 8 
Spatially 
variable 

11.0 ± 1.8 11.2 7.5 1.0 1.5 

Sand 10.0 8.8 5.7 1.1 7.5 
Clay loam 12.4 9.1 5.9 1.4 2.1 

Clay 12.7 9.4 6.1 1.4 2.1 9 
Spatially 
variable 

12.4 ± 1.6 12.6 8.1 1.0 1.5 

Sand 10.1 8.8 5.7 1.4 1.8 
Clay loam 12.4 9.1 5.9 1.4 2.1 

Clay 12.7 9.6 6.2 1.3 2.0 10 
Spatially 
variable 

11.4 ± 1.8 11.6 7.3 1.0 1.6 
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 835 
 836 
Figure 1: The simulation framework VARIwise configured to evaluate (in simulation 837 
mode) the sensor-based adaptive control strategies.  The items shown in grey/hatched 838 
are not implemented but would be present in a field evaluation.)  This diagram is 839 
adapted from the full VARIwise flowchart presented as Figure 2 of McCarthy et al. 840 
(2010).  841 
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 842 
(a) 843 

 844 
(c) 845 

 846 
Figure 2: Soil variability for: (a) industry-standard, ILC and IHCC strategy 847 
simulation; and (b) the cells assigned to each zone using the soil variability data of 848 
Figure 2(a) 849 
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 850 
Figure 3: Weather profile used in industry-standard irrigation management and 851 
iterative learning, iterative hill climbing control strategies 852 



 

44 
 

 853 
Figure 4: Target leaf area index used for iterative learning control strategy for cotton 854 
in VARIwise (Wells and Hearn 1992) 855 
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 857 
Figure 5: Yield map for industry-standard irrigation management strategy for 858 
comparison with adaptive control strategy results (average 9.1 ± 1.9 bales/ha) 859 



 

46 
 

 860 
(a) Simulation #1 

 
Soil only 

(b) Simulation #2 

 
Plant only 

(c) Simulation #3 

 
Weather AND plant 

 (d) Simulation #4 

 
Soil AND plant (A) 

 (e) Simulation #5 

 
Soil AND plant (B) 
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 861 
Figure 6: Yield maps and average yield and irrigation outputs of iterative learning 862 
control (ILC) strategy with variable-rate irrigation machine and legend for yield maps 863 
for simulations specified in Table 2 864 
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 (a) 866 

 867 
(b) 868 
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Figure 7: Irrigation volumes applied to sand, clay loam and clay cells for ILC 869 
strategies that target: (a) soil-water deficit (simulation #1); and (b) leaf area index 870 
(simulation #2) 871 
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     872 
(a)      (b) 873 

   874 
 (c)      (d) 875 

 876 
Figure 8: Simulated daily soil-water deficit in sand, clay loam and clay cells for ILC 877 
strategies that target: (a) soil-water deficit (simulation #1); and (b) leaf area index 878 
(simulation #2); and IHCC strategies that: (c) target soil-water deficit and maximise 879 
square/boll count (simulation #8); and (d) maximise square/boll count (simulation #9) 880 
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  881 
(a)      (b) 882 

  883 
(c)      (d) 884 

 885 
Figure 9: Simulated daily leaf area index in sand, clay loam and clay cells for ILC 886 
strategies that target: (a) soil-water deficit (simulation #1); and (b) leaf area index 887 
(simulation #2); and square count for IHCC strategies that: (c) target soil-water deficit 888 
(simulation #6); and (d) maximise square/boll count (simulation #9) 889 
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 890 
(a) Simulation #6 

 
Soil only 

(b) Simulation #7 

 
Plant only 

 (c) Simulation #8 

 
Weather AND plant 

 (d) Simulation #9 

 
Soil AND plant (A)  

 (e) Simulation #10 

 
Soil AND plant (B) 
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 891 
Figure 10: Yield maps and average yield and irrigation outputs of iterative hill 892 
climbing control (IHCC) strategy with variable-rate irrigation machine and legend for 893 
yield maps for simulations specified in Table 3 894 
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895 
(a) 896 

 897 
(b) 898 
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Figure 11: Irrigation volumes applied to sand, clay loam and clay cells for IHCC 899 
strategies that maximise square/boll count and determine irrigation timing using: (a) 900 
weather data (simulation #7); and (b) soil-water content (simulation #9) 901 
 902 

 903 


