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Abstract  

In recent years, it has become increasingly important to develop methodologies for reliable deterioration 

assessment of civil structures over their life-cycle to facilitate maintenance and/or rehabilitation planning 

processes. Several approaches have been established to address this issue mainly using Bayesian probabilistic 

model updating techniques with some capability to incorporate uncertainties in the updating process. However, 

Bayesian model updating techniques are often found to be complex and computationally inefficient as opposed to 

their deterministic counterparts such as conventional or hybrid techniques of sensitivity based model updating. 

Nevertheless, the deterministic model updating techniques have not been well developed for sophisticated 

assessment applications such as deterioration evaluation. To address these issues, this paper presents a novel 

methodology for deterioration assessment of building structures under serviceability loading conditions, based 

upon an improved hybrid model updating approach incorporating the use of long-term monitoring data. This is 

first realised by a simple but effective scheme to simulate the deterioration mechanism in serviceability loading 

conditions before enhanced with innovative solutions to classify structural elements as well as to handle 

measurement and updating uncertainties in a meaningful way. The effectiveness of the established methodology 

is illustrated through a benchmark ten story reinforced concrete building which is equipped with a long-term 

structural health monitoring system.  
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1. Introduction  

It is blatantly apparent that all the infrastructure systems are vulnerable to progressive deterioration and damage 

due to various reasons such as cracking, aggressive chemical attacks and other physical damage mechanisms.1 In 

the long-term these phenomena can cause detrimental effects to the structures and lead to failure in structural 

performance under serviceability loading conditions and/or extreme events such as natural disasters (earthquakes, 

cyclones) and man-made hazards (blasts, vehicle collisions). Hence, it is important to establish procedures to 

assess the deterioration of the structures over the serviceable life to facilitate the maintenance and/or rehabilitation 

planning processes in the modern society that encourages sustainable development.2  

Traditionally, deterioration and damage assessment for engineering maintenance purposes is mostly performed 

based on data obtained from visual inspection or local non-destructive testing programs. However, these programs 

are known to be either subjective or time-consuming, as well as very expensive for long-term implementation on 

civil structures.3 To overcome these limitations, modern life-cycle assessment concepts have been derived to foster 

more accurate and systematic approaches for the purpose of not only being able to cope with inherent assessment 

uncertainties but also enabling life-cycle management processes. One of such approaches is the use of finite 

element (FE) model updating by means of long-term structural health monitoring (SHM) data. 

With the rapid advancements in computer and computer-aided engineering (CAE) technologies, FE modelling 

techniques have enjoyed their dominance in civil engineering design practice while FE model updating techniques 

have become an increasingly popular tool for design validation and post-construction assessment of civil 

structures. Among many methods of classification, most model updating approaches can be broadly categorised 

as (1) deterministic methods which attempt to develop a single FE model by minimizing the error between the 

initial FE model and test data, (2) stochastic methods which treat the model updating as a problem of statistical 

inference or evolutionary optimization.4 While most deterministic model updating techniques are centralised 

around the sensitivity method, most popular stochastic methods are based on the Bayesian framework, or machine 

learning and evolutionary algorithms such as neural network, genetic algorithm and particle swarm optimization.5-

7 Even though the stochastic model updating approach is capable of taking into account uncertainties of both 

modelling and measurement processes, these methods are often found to be complex, time consuming and 

computationally costly thereby limiting the applicability to large civil engineering structures.8, 9 Deterministic 

methods such as conventional sensitivity based model updating techniques are, on the other hand, considered to 
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be less time consuming, computationally efficient and often found to be successful in real structure applications.10-

17 However, there has been a lack of using the deterministic model updating methods for more sophisticated 

assessment applications such as life-cycle management and incorporation of long-term SHM data, and 

consequently there is a real need for further research to be developed in this important direction. 

To cater for this need, this paper presents a novel deterioration assessment methodology for building structures 

under serviceability loading conditions using an improved hybrid model updating approach that has an ability to 

incorporate relevant deterioration mechanisms as well as tackling the measurement and updating uncertainties. 

The effectiveness of the established methodology is investigated through a comprehensive case study with a ten-

story reinforced concrete building structure located at Queensland University of Technology (QUT), Brisbane 

Australia.18 Arguably the first ever long-term SHM testbed in Australia, this modern building complex contains 

an innovative SHM system operating in a continuous monitoring manner to capture the ambient vibration 

responses which are then used to estimate modal properties of the structure. The variations of the most relevant 

modal parameters over the period under investigation are selected as the indicator for deterioration of the structure 

whilst a special multi-step simulation scheme is derived to search for structural elements that can physically 

represent the deterioration of the structure. During the assessment process, the uncertainties of the measured 

responses and confidence levels of the tuning parameters are statistically incorporated via an improved hybrid 

model updating approach.  

The outline of the rest of this paper is as follows. The proposed research methodology is first presented followed 

by a comprehensive application to the QUT-SHM testbed which includes the description of the test structure, 

construction of its numerical models, SHM data bank for updating, and data analyses for different stages of hybrid 

model updating process. Summaries and conclusions for the research are presented in the last section. 

2. Methodology 

2.1 Numerical deterioration simulation 

Expressing deterioration process in mathematical terms often found to be challenging and complex mainly due to 

the incomplete information about the deterioration mechanisms. However, for practical applications effective 

models can be established by assuming progressive deterioration of materials and components 2. According to 

Biondini and Frangopol19, both corrosion in steel structures and crushing and cracking in concrete structures can 

be effectively represented by a progressive reduction of the cross section of the structural elements. In the present 
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paper, this concept will be further extended to be incorporated into a hybrid model updating technique developed 

earlier by the present authors20, to assess the deterioration of building structures under serviceability operational 

loading conditions. Details of this extension and respective implementation are presented in sections 2.2 and 2.3, 

respectively. 

2.2 Hybrid model updating 

As mentioned earlier, the main advantage of hybrid model updating over the conventional model updating 

counterpart is that the former has the ability to incorporate the uncertainties in the test data and to define the 

confidence levels of the tuning parameters.20 To incorporate the aforementioned uncertainties in the hybrid model 

updating process, weighting coefficients are derived using statistical methods or judgement of the analyst and 

experimentalists.21 The objective function of the model updating algorithm is a weighted error (ER) comprised of 

the differences in the target responses and tuning parameters coupled with weighting matrices in two successive 

iterations as shown in the Equation 1 below; 

         ΔPCΔPΔRCΔRE p

t

R

t

R                                                                                                                     (1) 

= Variation in the target responses  

= Variation in the tuning parameters 

 RC   = Diagonal weighting matrix in target responses 

 PC   = Diagonal weighting matrix in tuning parameters  

(t denotes transpose operator) 

The control of the objective function is dependent on the values of CP and CR, (inverse of these parameters are the 

co-variance matrices of the test data and tuning parameters) and the scatter values are used to calculate the co-

variance matrices. As expressed in equation 2, scatter value is the ratio of the standard deviation ( ) to the mean 

value (  ) for a given set of data samples, which is also known as coefficient of variation in statistical terms. 

Since the tuning parameters are of different order and magnitude scatter values are normalized with respect to the 

mean values. 




Scatter                                                                                                                                                         (2) 

The parameters with low scatter will have high CP values and will only change if majority of the responses have 

an effect upon the change of those parameters which leads to small parameter changes. Similarly, the parameters 

R

P
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with low CP values which has high scatter values and low confidence levels will result in large parameter changes. 

For test data with low scatter values (low uncertainty) will steer the parameter changes in the updating process 

whilst test data with high scatter will only make an impact on the updating process if the responses with low 

scatter values also change the parameters in a similar way. The iterative procedure used in the automated model 

updating to obtain the target responses is achieved by commonly employed linear term approximation of Taylor’s 

expansion series and more details are available in Appendix I.  

 

2.3 Deterioration assessment using hybrid model updating 

In the proposed methodology, natural frequencies of the first few global modes are used as the indicator for 

deterioration of the structure and reduction of the cross section of structural elements are used to represent the 

deterioration of the structure. The main reason for using natural frequencies as the main deterioration indicator is 

that their precise estimates can be obtained much easier and faster than the other structural properties such as 

mode shapes, especially when considering the signal quality in ambient vibration monitoring conditions.22 In 

addition, it is widely known that changes in modal parameters are often very small for minor damage and this fact 

further highlights the need for accurate response data.  

Construction of response data banks is as follows. First, at least two samples of modal frequency data (one 

representing the initial state and the other(s) for the current state, or any other subsequent state, of the structure) 

should be established from the vibration data pool. When selecting the datasets for each sample, it is important to 

consider a sufficiently long period of time (e.g. one year or at least several months with similar meteorological 

conditions) so that the samples are deemed to be subjected to similar environmental and operational  variations. 

In this regard, having a long-term monitoring system is advantageous not only to address the aforementioned 

problem but also to enable to life-cycle management processes. Then the selected samples are statistically 

analysed to obtain the uncertainty of the measured natural frequencies to incorporate in the deterioration 

assessment. In this study, commonly used statistical parameters such as mean, standard deviation and statistical 

scatter were used.  

On the modelling side, an initial FE model should be developed based on as-built drawings rather than the design 

ones to incorporate sufficient detailing; and the modelling should also include appropriate structural 

conceptualization. The next phase is to update the developed initial FE model through hybrid model updating 

using uncertain parameters identified by means of sensitivity analysis to represent the initial state of the structure. 
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In real applications, most often the chosen parameters for the sensitivity analysis are of different types, and hence 

in those circumstances normalized relative sensitivities are utilised for the sensitivity analysis (Appendix II). 

Once the updated model is obtained to represent the initial state of the actual structure, loads are assigned to 

simulate the serviceability mechanical loading conditions and identify the vulnerable elements to cracking under 

these loading conditions. In order to identify the structural elements that are likely to undergo cracking in this 

study, modulus of rupture value of concrete is calculated for each structural element under simulated loading 

conditions. According to ACI 318-0823 if an structural element is subjected to a stress exceeding the modulus of 

rupture of concrete that particular element will crack under the applied load conditions, and the modulus of rupture 

is calculated using the equation below; 

'
cr f5.7f                                                                                                                                                          (3) 

where rf  is the modulus of rupture and '
cf  is the compressive strength of concrete (both in psi).  

In order to effectively employ the hybrid model updating technique in the deterioration assessment process, it is 

crucial to appropriately define the scatter values for both test data and tuning parameters. Similar to the model 

updating of initial state of the structure, scatter values for the test data is derived from statistical analysis of a 

sample comprises of datasets gathered over a sufficient period of time. The confidence values of the tuning 

parameters (selected based on the stresses that exceeded the modulus of rupture value of concrete) are derived 

from the principle that the elements subjected to higher stresses are most likely to undergo cracking and hence, 

the selected structural elements with higher stresses have low confidence values. These parameters are assigned 

with high scatter values which allow them to change with more freedom in the updating process. Similarly, the 

elements with low stress values which are less prone to undergo cracking due to the simulated loading conditions, 

were assigned with low scatter values to keep the parameter change to a minimum. Hence, the scatter value for 

the cross section area of a particular element (wall, floor slab or column) has been used as the maximum stress 

that it has been subjected to under the simulated operational loading conditions.  

The stresses of the elements are calculated using the following formula:  
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P is the axial force and M2 and M3 are the bending moments in two orthogonal directions. A is the cross sectional 

area and i22 and i33 are the moment of inertia in two orthogonal directions whilst x2 and x3 are the coordinates of 

the point where the stress is calculated, measured from the centroid of the section.24 

Based on the stress distribution of the finite element model and modulus of rupture values, the structural elements 

that are subjected to cracking under serviceability mechanical loading conditions are identified and cross section 

of these elements are chosen as the tuning parameters and scatter values are assigned based on the stress values 

in the model updating procedure. The deterioration of the structure can be assessed by examining the cross section 

reduction in the chosen structural elements. This procedure can be carried out periodically by repeating the steps 

at a particular time interval, e.g. 5 years or 10 years. Figure 1 below illustrates the methodology for deterioration 

assessment of a typical building structure adopted in this study. 

 

Figure 1 Deterioration assessment process for building structures using hybrid model updating 
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The application of the proposed methodology for deterioration assessment of the benchmark structure at QUT 

under serviceability loading conditions is presented in the following sections of the paper.  

3. Application to QUT-SHM testbed 

3.1 Description of the QUT-SHM testbed 

The structure under investigation is the main head quarter building of the Science and Engineering Centre 

(commonly known as P block) of Gardens Point campus, QUT in the city of Brisbane, Australia. The layout of a 

typical building floor and instrumentation is shown in 

  

Figure 2. It is a ten story RC structure with four semi-underground basements, 65 m long, 45m wide and 42m 

high (measured from the formation level of the building) with story heights varies in the range of 2.7m to 4.5m. 

The structural system consists of seven two bay moment resisting frames and three shear cores (one at the western 

side and two at the eastern side) to resist the torsional forces induced by lateral loads. Although the structure is 

considered to have rather common column and slab layouts, for interior structure detailing it has number of 

variations with regard to column sizes, orientations and slab thicknesses and openings which need special attention 

in the development of initial FE models and in the model updating process.25  

The P block was instrumented with a long-term continuous SHM system employing a software-based 

synchronization method to capture the ambient vibration response. The instrumentation comprises six analog tri-

axial accelerometers and two single-axis accelerometers, which were located in the upper part of the building (as 
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shown in 

  

Figure 2) which is globally more sensitive to the ambient excitation sources such as wind loads and human 

activities.   

  

Figure 2 P block building: front corner view (left) and side view with sensor positions (right) 

As mentioned earlier, the dynamic characteristics of interest in this study are the natural frequencies of first six 

global modes of the structure of which first five modes are used in the model updating process and the sixth mode 

is used only for validation purposes and hence statistical analysis is carried out only for the natural frequencies of 

first five global modes. To extract these features, an Operational Modal Analysis (OMA) technique named data 

driven Stochastic Subspace Identification (SSI-data) was used and this was reported in detail in a previous study18. 

Figure 3 illustrates the stabilization diagram of SSI-data analysis and typical views of the input model and the first 

five global modes. As it is not used in the main analysis stage, the 6th mode view is not included in the below 

figure but can be found elsewhere18. It is worth noting that only the instrumented levels (i.e. 4, 6, 8 and 10) are 
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included in the OMA input model along with the basement where the modal displacement is assumed to be zero 

under normal operational conditions. 

 
Figure 3 OMA of the building: Stabilization diagram and typical views of input model and the first five modes  

Two samples were created by selecting datasets for two different time periods, one immediately after the sensor 

system development to represent the initial state of the P block and the other from the latest available data-sets to 

depict the current state of the building.  To account for the environmental and operational variations, several tens 

of datasets were chosen to cover a sufficiently long period of time as well as all the functional times of the building. 

Over the period of this study, the building has not deemed to be undergone any refurbishments that may cause a 

significant change in the occupancy mass. Hence, it is safe to assume that the dead weight component of the 

occupancy mass for the building is constant throughout the period under investigation. The mean values, standard 

deviations and scatter values of the natural frequencies of the first five global modes for the two samples are 

tabulated in Table 1 and the box plots diagrams for the first five modes are provided in Figure 4. 

 

Table 1 Statistics of initial state sample versus current state sample 

Mode Mean (Hz) Standard Deviation Scatter Values 
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 Initial Current Initial Current Initial Current 

1 1.150 1.140 0.005 0.005 0.473 0.440 

2 1.542 1.520 0.018 0.016 1.161 1.046 

3 1.660 1.652 0.005 0.007 0.330 0.439 

4 3.989 3.933 0.015 0.019 0.371 0.494 

5 4.268 4.244 0.021 0.014 0.491 0.319 

 
Figure 4 Box-plot diagrams of initial state sample versus current state sample 
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By analysing the statistical parameters in Table 1 and Figure 4, a small but distinct reduction can be seen in the 

natural frequencies for the first five global modes for the current state compared to the initial state (reflected 

through mean values in the table and red line in the boxplot diagram). Hence, this reduction in natural frequency 

is exploited in the structural deterioration assessment of the building through hybrid model updating techniques 

in the following sections of the paper.  

On the modelling aspect, initial FE models and it is important to include appropriate detailing and choose feasible 

conceptualization techniques since the level of structural detailing and/or structural conceptualization (such as 

fixities of structural elements) of the initial FE model might have a considerable effect on the outcome of the 

sensitivity based automated model updating26 and hence affect the deterioration assessment. An extensive study 

has been conducted on the P block structure to study these phenomena and to select sufficiently detailed and 

suitably conceptualized initial FE model for the model updating process.27, 28 Only selected information is 

presented in this paper to serve the purpose of completeness and to highlight the importance of initial FE modelling 

in the context of structural deterioration assessment.  

First, a simple FE model developed based purely on the design drawings was trialled but the error in the natural 

frequencies between the FE model and the experiment were close to 50% which is by no means acceptable for 

model updating. Hence, a detailed 3D FE modelling exercise was undertaken using the commercial software 

package SAP2000.  As-built drawings and documentation were used to take into account all the changes that 

occurred in every building floor level and bearing component during the construction stage. Upon checking with 

actual concrete sample test results, standard material properties of three designated concrete grades (32, 40 and 

50 MPa) as specified by the Australian standard AS3600-2009 for concrete structures29 were used to assign into 

the 3D frame model. Young’s modulus values were taken as 30100, 32800, 34800 MPa, respectively while 

Poisson ratio of 0.2 were assigned for all concrete grades. Mass density was chosen as 2500 kg/m3 to take into 

account the mass of reinforcement besides concrete. In addition, some special considerations taken during the 

initial modelling include: (1) detailed modelling of shear cores (openings and thin walls), (2) assigned floor 

diaphragms to maintain the rigid behaviour, (3) non-structural components are not included since the initial 

investigations revealed that effect of stiffness and mass of these components has little impact on the global 

behaviour of the overall system and (4) average slab thicknesses are used for the floor slabs since the structure 

has complicated internal slab thickness variations and the simplification is addressed in the model updating for 

initial state.   
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Figure 5 Three FE models with different fixities for basement walls  

Apart from using sufficient detailing, to identify the most appropriate structural conceptualization for the initial 

FE models in order to facilitate effective model updating, three FE models were developed based on the fixity of 

the underground basement levels (Figure 5) for comparison with the OMA results. No fixities and full fixities for 

all basement levels were considered in the FE model 1 and FE model 2 respectively; where as in FE model 3 full 

fixity is considered for basement levels up to level 3. FE model 1 provided the best match with the OMA results, 

hence it was chosen as the initial model for the deterioration assessment case study under ambient vibration 

conditions. The natural frequencies of the first six lateral modes were used for the correlation analysis and the 

results for the selected initial FE model are tabulated in Table 2. For illustration purposes, the FE model and its 

first five modes are shown in Figure 6. 

Table 2 Comparison of natural frequencies between the selected FE model and OMA results 

Mode No Mode Shape Natural Frequency Error 

Initial FE model OMA 

1 1st translational – X direction 0.990 Hz 1.147 Hz -13.69% 

2 1st translational – Y direction 1.452 Hz 1.544 Hz -5.96% 

3 1st torsional 1.678 Hz 1.653 Hz 1.51% 

4 2nd translational – X direction 3.680 Hz 3.989 Hz -7.75% 

5 2nd torsional 4.972 Hz 4.254 Hz 16.88% 

6 2ndtranslational – Y direction 5.220 Hz 4.912 Hz 6.27% 
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Figure 6 Initial FE model and its first five modes 

Compared to the FE model used in design stage, the developed initial FE model in this study shows good 

correlation with OMA in-terms of natural frequencies. However, still the natural frequency error is substantial to 

use in the FE model to represent the actual structure, hence model updating need to be carried out to minimise the 

discrepancies to an acceptable limit.  

3.2 Hybrid model updating : Initial state of the structure 

This section describes the model updating work carried out to reduce the error in natural frequencies of the 

developed initial FE model using hybrid model updating techniques in the initial state of the structure. The first 

part of the section explains the sensitivity analysis process carried out to identify the uncertain tuning parameters 

in the updating process and hybrid model updating procedure adopted in this study whilst latter part outlines the 

model updating results.  

3.2.1 Sensitivity Analysis and Model Updating Procedure 
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Selection of correct number of responses and appropriate tuning parameters is vital for a successful automated 

sensitivity based model updating.30 Since, only natural frequencies are used in the deterioration assessment 

process and only the data for 6 modes of the real structure are available through OMA, the natural frequencies of 

the first five modes were used in the hybrid model updating process and natural frequency of the 6th mode is used 

to validate the updated model.  To choose the appropriate tuning parameters which are uncertain in the FE model, 

in order to facilitate physically meaningful updated parameters yet most sensitive to the selected parameters, a 

sensitivity analysis is carried out prior to the model updating process. Normalized sensitivity analysis is utilized 

in this study since the tuning parameters are in different order and magnitude (More details about normalized 

sensitivity analysis are available in Appendix II).  

The uncertain parameters in the FE model that can be systematically coped in an automatic model updating process 

were used in the sensitivity analysis. The uncertain parameters included in the sensitivity analysis are Young’s 

modulus and mass density of all local elements (9400 local elements each), cross sectional area, torsional stiffness, 

bending moment of inertia about Y direction and Z direction of all columns (1400 local elements each) and shell 

thickness of floor slabs (5680 local elements). Hence, the total parameter space used for the sensitivity analysis 

was 30080 local parameters. The outcome of the sensitivity analysis revealed that the highest sensitive parameter 

for all the target responses is the shell thickness of floor slabs and Young’s modulus of concrete, hence these local 

elements are chosen as the updating parameters to obtain the FE model to represent the initial state. Once the 

tuning parameters are selected, it is the common practice to group and define upper/lower bounds for the selected 

parameters to make the model updating more realistic and meaningful. However, in this study the parameter sets 

were defined only for Young’s modulus (E)  of concrete, because as stated earlier, average slab thicknesses are 

used in the initial FE model and slab thicknesses vary significantly in small portions in the actual structure, not 

defining parameter sets for shell thickness is justifiable. For the E value of concrete, parameter sets were defined 

based on individual columns (for frame elements) and individual walls and slabs in each level (for shell elements). 

Further, 10% change from the original value has been used as the upper/lower bound for the E value of concrete 

and a 30% value has been used for slab thickness that has a higher uncertainty in the initial FE model.  

Then the model updating is carried out using the hybrid approach utilizing the scatter values to represent the 

uncertainty in test data and confidence values in tuning parameters. The scatter values for the test data obtained 

through statistical analysis of data-sets are presented in the section 3.1. The values corresponding to the initial 

state were used in the process of developing updated models for the initial state of the building. Since there is no 

actual testing data available for the derivation of scatter values for the tuning parameters, these values have been 
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estimated based on codified recommendation and engineering judgement. For example, according to Australian 

standard for concrete structures29 the E value of concrete can have a scatter up to 20% from the design values, 

hence 20% value was chosen as the scatter for the tuning parameter E. Since the shell thickness has a relatively 

high scatter for this particular case study a scatter value of 30% was used in this study.  

3.2.2 Model updating results 

The correlation function ( fC ), weighted relative difference between natural frequencies, is used as the 

optimization algorithm to minimize the the weighted error RE and hence to improve the response prediction of the 

FE model.  

                                                           (5) 

 

Where 



N

1i

RR i
CC ; 

iRC are weighting values of responses; N  is the total number of target responses (natural 

frequencies) considered; iΔf  and if  are the frequency error and target frequency respectively. The stopping 

criteria set for the optimization algorithm are as follows; 

 Minimum residue value  - 0.1% 

 Minimum  improvement between two consecutive iterations – 0.01% 

 Maximum number of iterations – 100 

The established minimum residue value of 0.1% was achieved after 16 iterations. As stated earlier, only the natural 

frequencies of the first five global modes were selected as the target responses and natural frequency of the 6th 

mode is used to check the prediction ability of the updated FE model beyond the active frequency range. Table 3 

summarises the OMA frequencies and the FE model frequencies both before and after updating process for the 

first six global modes.  The results clearly show a significant improvement in the natural frequencies, especially 

in the active frequency range where the maximum error has reduced to 0.19%. Naturally frequency of the sixth 

mode which was in the passive range and used to validate the updated model also shows good improvement with 

a reduction in the error from 6.27% to 1.05% which enhanced the reliability of the updated model.  

Table 3 Frequencies of initial model and updated model against OMA results - initial state 

Mode 

Number 

OMA Frequency Initial FE model Updated FE model –Initial State 

Frequency Error Frequency Error 

1 1.147 Hz 0.990 Hz -13.69% 1.146 Hz -0.09% 

]
f

Δf
C
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1
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i

i
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R

R
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
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2 1.544 Hz 1.452 Hz -5.96% 1.547 Hz 0.19% 

3 1.653 Hz 1.678 Hz 1.51% 1.654 Hz 0.06% 

4 3.989 Hz 3.680 Hz -7.75% 3.985 Hz -0.10% 

5 4.254 Hz 4.972 Hz 16.88% 4.254 Hz 0.00% 

6 4.912 Hz 5.220 Hz 6.27% 4.964 Hz 1.05% 

 

The above updated model utilising the test data sample obtained during the early stage of the sensor development 

(just after the construction) has been used to represent the initial state of the structure. The following section 

describes the deterioration assessment process utilising the updated model in this section, hybrid model updating 

technique, test data sample obtained recently and using tuning parameters to express deterioration of the structure.  

3.3 Hybrid model updating : Current state of the structure & Deterioration Assessment 

This section of the paper presents the identification of structural elements that are subjected to cracking under 

serviceability loading conditions and the hybrid model updating carried out to obtain the FE model to represent 

the current state of the structure using cross section area of the identified structural elements with appropriate 

scatter values derived based on stress values of individual structural elements.  

To determine the structural elements that will undergo cracking, investigations were carried out on the initial state 

FE model by simulating serviceability operational loading conditions such as dead loads, live loads and wind 

loads based on the Australian/New Zealand code for wind actions31 since the structure is located in Brisbane, 

Queensland, Australia. Similar to the initial state model updating scatter values for the test data were obtained 

from statistical analysis of a data-set sample (Section 4) whilst the scatter values for the tuning parameters (cross 

section area) are the corresponding stress values of the structural elements. The stress distribution of the shell 

elements and columns under serviceability loading conditions are illustrated in Figure 7 respectively. 
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Figure 7 Stress distributions of shell elements (upper) and columns (lower) 

Based on the stress distribution of the finite element model and modulus of rupture values, the structural elements 

that are subjected to cracking under serviceability loading conditions were identified. Then, the cross sections of 

these elements (397 column elements, 498 wall elements and 226 slab elements) are chosen as the tuning 

parameters in the model updating procedure.  Confidence values for the chosen structural elements were assigned 

based on the stress values and upper bound of the tuning parameter is set to 0% since the deterioration process is 

represented as a reduction in the cross section area.  Further, since the structure is relatively new and there are no 

visible cracks the deterioration of the structure is small and to account for that small value (0.40%) has been used 

as the lower bound for the tuning parameters.  

The same stopping criteria used in the model updating process for the initial state was used in the current state 

updating and the updating process has stopped after 47 iterations due to the minimum  improvement between two 
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consecutive iterations fallen below the set-up value of 0.01%. Similar to the earlier case, only the natural 

frequencies of first five modes were selected in the model updating process and sixth mode was used to validate 

the updated model. OMA frequencies and the FE model frequencies both before and after the model updating 

process for the first six natural modes are tabulated in Table 4. The model updating results show a good agreement 

with the OMA frequencies for the current state with a maximum error in the frequency for active range dropped 

down to 0.20% and the validity of the updated model is proven by the good agreement of the natural frequency 

of the sixth mode which was in the passive range.  

Table 4 Frequencies of initial state and current state updated models versus OMA results of current state 

Mode 

Number 

OMA Frequency 

– Current State 

Updated FE model – Initial State Updated FE model –Current 

State 

Frequency Error Frequency Error 

1 1.139 1.146 Hz 0.61% 1.138 Hz -0.09% 

2 1.528 1.547 Hz 1.24% 1.531 Hz 0.20% 

3 1.650 1.654 Hz 0.24% 1.649 Hz -0.06% 

4 3.933 3.985 Hz 1.3% 3.935 Hz -0.05% 

5 4.243 4.254 Hz 0.26% 4.242 Hz -0.02% 

6 4.818 Hz 4.964 Hz 3.03% 4.835 Hz 0.35% 

 

4 Conclusions 
 

This paper has presented a novel methodology for deterioration assessment of building structures under 

serviceability operational loading conditions based on an improved hybrid sensitivity based model updating 

approach assisted by the use of long-term SHM data. This was realised by a simple yet effective scheme to 

simulate progressive deterioration for new-built structures; as well as innovative methods to effectively manage 

measurement, modelling and updating uncertainties. By statically analysing measured modal data as well as 

ranking the structural elements according to their vulnerability to cracking, the developed procedure is able to 

classify the levels of uncertainties and confidence for the tuning parameter and response. Based on these, 

appropriate weighting coefficients and upper/lower bounds are then assigned to ensure that all changes taken place 

in the numerical model are physically and structurally meaningful. The efficacy of the established methodology 

is studied through a case study of a ten story benchmark structure located at Queensland University of Technology 

(QUT) premises equipped with a long-term SHM system. The results showed that the established methodology is 

successful in providing an alternative deterministic approach which is computationally efficient compared to the 

existing probabilistic deterioration assessment processes. A long-term SHM system such as the one of QUT-SHM 

testbed is very helpful in providing representative datasets not just for global anomaly detection exercises as 
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demonstrated earlier32 but also for continually tracking the deterioration status of the structure from an onset as 

studied herein. The proposed methodology can be further developed by incorporating degradation due to chemical 

attacks which have an effect on the deterioration of concrete structures in the long-term and these developments 

will be reported elsewhere in future.   
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APPENDIX I – Hybrid model updating algorithm 

         ΔPCΔPΔRCΔRE p

t

R

t

R                                                                                                                     (6) 

= Difference of the responses  

= Difference of the parameters 

R

P
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 RC   = Diagonal weighting matrix for responses 

 PC   = Diagonal weighting matrix for parameters  

The linear term of Taylor’s expansion series is used to approximate the target response vector eR  using the 

vectors 0R (original response vector), 0P (original parameter vector) and uP (updated parameter vector).

)PS(PRR 0u0e                                                                                                                                             (7) 

Hence, using the above linear relationship between target responses and tuning parameters, parameter difference 

ΔP  can be expressed as follows; 

)RG(RPPΔP 0e0u                                                                                                                                    (8) 

 G    = Gain matrix 

 

Matrix G is derived in such a way to minimise the error function and when there are more responses than 

parameters it is calculated as; 

 

             R

t

n

1

nR

t

np CSSCSCG


                                                                                                                    (9) 

 

And when there are more parameters than responses matrix G is calculated as; 

 

1t
n

1
Pn

1
R

t
n

1
p )][S])]([C[S]([C][S])([C[G]                                                                                                (10) 

 nS    = normalized relative sensitivity matrix 

Updated parameter vector can be obtained through a re-arranged equation 7 and the new response vector 

corresponding to the new updating parameter uP  is calculated from the modal analysis.  

      ΔRGPP ou                                                                                                                                           (11) 

The resulting response vector and the updated parameters will be the starting vectors 0R  and 0P   for the next 

iteration. This iteration process is carried out until the error function is minimized to a pre-determined tolerance. 

APPENDIX II – Normalized sensitivity analysis 

The relative sensitivity matrix  rS  is a rectangular matrix of order nm  where m and n are the number of target 

responses and parameters, respectively.   
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ijS  is the sensitivity of the target response iR  due to the change in tuning parameter value 
jP  and the operator 

δ represents the change in the variable while ][Pj j is the diagonal square matrix holding the tuning parameter 

values. The forward finite difference approach has been implemented to compute the derivatives in equation 2. 
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)(PR ji
 is the ith response value for the parameter value 

jP  and )ΔP(PR jji   is the response of the ith  response 

value when the parameter value changes by 
jΔP . Then the sensitivity matrix is normalized with respective to the 

response value as shown in equation 4. 

 

                                                                                                             (14) 

 nS  = Normalized relative sensitivity matrix; 

 iR  = A diagonal, square matrix holding the response value 
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