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ABSTRACT: Rainfall bursts are relatively short-lived events that typically occur over consecutive days, up to a week.
Northern Australian industries like sugar farming and beef are highly sensitive to burst activity, yet little is known about
the multiweek prediction of bursts. This study evaluates summer (December–March) bursts over northern Australia in
observations and multiweek hindcasts from the Bureau of Meteorology’s multiweek to seasonal system, the Australian
Community Climate and Earth-System Simulator, Seasonal version 1 (ACCESS-S1). The main objective is to test
ACCESS-S1’s skill to confidently predict tropical burst activity, defined as rainfall accumulation exceeding a threshold
amount over three days, for the purpose of producing a practical, user-friendly burst forecast product. The ensemble hind-
casts, made up of 11 members for the period 1990–2012, display good predictive skill out to lead week 2 in the far northern
regions, despite overestimating the total number of summer burst days and the proportion of total summer rainfall from
bursts. Coinciding with a predicted strong Madden–Julian oscillation (MJO), the skill in burst event prediction can be
extended out to four weeks over the far northern coast in December; however, this improvement is not apparent in other
months or over the far northeast, which shows generally better forecast skill with a predicted weak MJO. The ability of
ACCESS-S1 to skillfully forecast bursts out to 2–3 weeks suggests the bureau’s recent prototype development of a burst
potential forecast product would be of great interest to northern Australia’s livestock and crop producers, who rely on
accurate multiweek rainfall forecasts for managing business decisions.

KEYWORDS: Atmosphere; Australia; Tropics; ENSO; Rainfall; Summer/warm season; Forecast verification/skill;
Hindcasts; Short-range prediction; Model evaluation/performance; Agriculture; Climate services;
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1. Introduction

The wet season onset over tropical northern Australia typi-
cally occurs in October, with the monsoonal rains peaking in
February and withdrawing by April (Berry and Reeder 2016;
Lisonbee et al. 2019; Wheeler and McBride 2005). Around 80%
of northern Australia’s annual mean rainfall occurs between
October andMarch (Sharmila and Hendon 2020), punctuated by
episodic rainfall events, known as rainfall bursts, that mostly last
between 3 and 10 days (Moise et al. 2020). Rainfall bursts over
the far northern coast are often associated with westerly wind
bursts stemming from active Madden–Julian oscillation (MJO)
pulses passing through the Maritime and western Pacific sectors
every 30–60 days (Hendon and Liebmann 1990a,b). However, a
recent study by Narsey et al. (2017) pinpointed a significant influ-
ence on burst activity from midlatitude Rossby wave trains and
absolute vorticity fluxes from the southern monsoon boundary;
these southerly flux–induced events peak in November but are
dominant throughout the October–March wet season and are less
influenced by the MJO.

Rainfall burst events are crucial for sustaining pasture growth
throughout the wet season (e.g., October–March) which allows

the livestock and agricultural sectors to prosper across northern
Australia’s arid, semiarid and tropical savanna regions (Mollah
and Cook 1996). Important beef cattle regions around the Gulf
of Carpentaria have seen rainfall variability increase by around
20% since the 1960s, which has driven an increase in pastoral
growth variability (Cobon et al. 2019). There has been strong
interest from northern producers to use seasonal forecasts to
help with operational decisions with respect to crop and live-
stock production (e.g., Brown et al. 2019), with beef producers
pushing for a multiweek forecast product that describes signifi-
cant rainfall events like bursts. Improving the accuracy and reli-
ability of multiweek forecasts, particularly related to rainfall,
would likely lead to increased returns for northern graziers
(An-Vo et al. 2019). For risk-averse producers, more accurate
predictions of extreme wet season rainfall beyond the 1–2-week
lead time may partially prevent damaging stock losses by
increasing forewarning times of consecutive heavy rainfall days
(Cowan et al. 2019). While the economic value of a skillful rain-
fall forecast to northern cattle industries may be relatively low
(less than $2 per head of cattle for northeast Queensland;
Cobon et al. 2020), for other industries like sugar and cotton,
the benefits of an accurate forecast are strongly linked to the
extreme nature of the wet conditions (Darbyshire et al. 2020).
Therefore, the main purposes of this study are to derive a sim-
ple burst definition fit for purpose across northern Australia,
evaluate the ability of the Bureau of Meteorology seasonal fore-
cast system to predict bursts, and showcase a real-time burst
prototype forecast product.
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There is currently no overarching wet season burst definition
for Australia’s monsoon region. One of the first definitions,
derived by Troup (1961), focused on area-averaged rainfall and
low-level winds near the northern Australian city of Darwin,
and considered events after 1 November (i.e., did not capture
premonsoonal bursts). Drosdowsky (1996) extended this to
investigate the relationship between Darwin rainfall and west-
erly wind bursts and found good agreement with the number of
active rain and wind events. More recently, dynamical insights
into Australian monsoon bursts were described by Berry and
Reeder (2016) using a rainfall-only definition, whereby area-
averaged rainfall over tropical northern Australia has to rapidly
transition from a 0.5 standard deviation below the smoothed
seasonally varying daily climatology to 0.5 standard deviation
above in fewer than 7 days. Using Darwin rainfall, Moise et al.
(2020) devised a more straightforward burst definition, where
daily rainfall must exceed its long-term average rainfall for at
least 3 out of 5 days. This approach acts to remove isolated rain-
fall events from consideration in the same manner that the Berry
and Reeder (2016) method does not classify short rainfall peaks
as bursts. The Moise et al. (2020) study found that around 85%
of Darwin’s December–March rainfall comes from bursts with
between 14% and 48% of days deemed as burst days.

World-leading subseasonal-to-seasonal models, like the
European Centre for Medium-Range Weather Forecasts sys-
tem, can skillfully predict daily rainfall intensity out to weeks 3
and 4 over northern Australia, mainly because of intraseasonal
and interannual modes of variability (Moron and Robertson
2020). The Bureau of Meteorology’s multiweek to seasonal
forecast system, the Australian Community Climate and Earth-
System Simulator, Seasonal version 1 (ACCESS-S1), also shows
potential in predicting certain extreme rainfall indices out to a
month (King et al. 2020). It is well known that MJO associated
convection and circulation anomalies can affect subseasonal
rainfall over Australia, acting as one of the primary sources of
subseasonal predictability (Marshall and Hendon 2015). A
recent study (Marshall et al. 2021) using ACCESS-S1's 11-
member ensemble forecast shows the model’s good skill in pre-
dicting extreme weekly summer rain associated with predicted
strong MJO amplitude across regions such as northwest Austra-
lia and southeast Queensland over the 1990–2012 period. The
same study showed higher skill around regions to the south of
the Gulf of Carpentaria when the MJO is strong in the spring
(September–November) season; however, there is little skill in
summer. It remains to be determined whether the prediction
skill associated with the MJO extends to multiday rainfall bursts
that exceed lesser extreme thresholds.

In this study, our main focus is on assessing the prediction
skill of rainfall bursts over northern Australia in ACCESS-S1
from a multiweek perspective. This includes investigating
ACCESS-S1 hindcast biases and dependency of prediction
skill on strong MJO activity (e.g., Marshall et al. 2021). This
work builds upon the ACCESS-S1 hindcast skill evaluation of
the northern rainfall onset (Cowan et al. 2020), the date when
50 mm of rain has accumulated from 1 September, and con-
sidered a proxy for the start of northern pasture growth (Lo
et al. 2007). While the northern rainfall onset assessment was
more seasonally focused and tied in with the role of El

Niño–Southern Oscillation (ENSO), the forecast time scale of
this study is multiweek, which is why the MJO potentially
plays an important role. Like Cowan et al. (2020), we also
showcase a real-time forecast example and evaluation of a
burst event using our newly developed prototype product (see
section 2c for product description), which will be made opera-
tional in 2022.

We use a simple definition of consecutive (or near-consecu-
tive) daily rainfall totals over an accumulation window
(detailed in section 2c) to represent bursts, rather than rainfall
amounts that are referenced to historical measures such as
standard deviations or percentiles. Our simple definition
makes it more suitable for developing forecast products that
are easy for end-users to understand and can be modified to
suit different climatic regions. Knowledge of the forecast sys-
tem hindcast accuracy gives an end user the necessary back-
ground information regarding model biases over their region
and month(s) of interest, and how forecast skill changes with
lead time. The observational datasets, ACCESS-S1 prediction
system, and burst definition(s) are detailed in section 2.
Observed burst behavior, hindcast biases and skill, the influ-
ence of the MJO, and an analysis of forecasts from early 2021
are shown in section 3. Discussions and conclusions are pre-
sented in section 4.

2. Data and methods

a. Observational datasets

For defining observed bursts, we employed the 5-km gridded
Australian rainfall from the Australian Water Availability Pro-
ject (AWAP; Jones et al. 2009). Northern Australia is defined
as land points north of 298S to encompass important pastoral
regions in the southeast of the state of Queensland, although
most burst activity occurs equatorward of 208S (Narsey et al.
2017). To represent regional cloudiness, we used daily Outgo-
ing Longwave Radiation (OLR) data from National Oceanic
and Atmospheric Administration (NOAA), spatially interpo-
lated to a 2.58 3 2.58 grid using the nearest-neighbor method
(Liebmann and Smith 2006). We extracted rainfall data from
October 1960 to April 2018 to evaluate the long-term change
in burst behavior, and OLR for the hindcast period 1990–2012.

The analysis focused on December–March, when the major-
ity of monsoon rain falls across northern Australia (Moise et al.
2020). To assess the influence of ENSO on observed burst
activity, we used the oceanic Niño index (ONI) to determine
significant El Niño and La Niña events from 1960/61 to 2017/
18. The ONI is a 3-month running mean of sea surface temper-
ature (SST) anomalies in the region encompassing Niño-3.4
(58S–58N, 1708–1208W). The ONI was calculated using obser-
vations from the Extended Reconstructed Sea Surface Tem-
perature, version 5 dataset (ERSST.v5; Huang et al. 2017),
derived from Argo floats and the International Comprehensive
Ocean–Atmosphere Dataset Release 3.0. El Niño and La Niña
events are defined as when the ONI threshold reaches
60.58C for four consecutive 3-month seasons from October to
December through January to March, resulting in 17 El Niño
and 16 La Niña events. To make near-equal sample sizes, we
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included 1971/72 and 1983/84 in the La Niña subset despite the
ONI only reaching20.48C in January–March.

b. ACCESS-S1 forecast system

We examined the prediction skill for northern Australian
bursts in the ACCESS-S1 coupled seasonal forecast system
(Hudson et al. 2017). This system consists of the Met Office’s
Global Coupled model configuration 2 (GC2) forecast system
(MacLachlan et al. 2015), coupled to a land surface model: Joint
U.K. Land Environment Simulator (JULES; Walters et al.
2017). The ocean and sea ice component of GC2 is initialized
using the Nucleus for European Modeling of the Ocean assimi-
lation (Megann et al. 2014). Further details on the origins of the
atmospheric, oceanic and sea ice initial conditions (and coupler)
are provided in Table 1 of Hudson et al. (2017).

The ACCESS-S1 hindcast suite consists of an 11-member
ensemble that are initialized four times a month (1st, 9th, 17th,
25th) over 1990–2012. We used hindcasts calibrated using the
quantile–quantile approach against the 5-km AWAP observa-
tions (Australian Bureau of Meteorology 2019). This corrects
both the mean and shape of ACCESS-S1’s rainfall distribu-
tion, giving the calibrated hindcasts much-improved skill in
forecasting wet season precursors, compared against raw and
mean-bias-corrected hindcasts (Cowan et al. 2020). While each
hindcast member runs out to 7 months from initialization, we
focus on the first 4 weeks (28 days) of each hindcast due to the
lack of skill in predicting intraseasonal drivers associated with
extreme rainfall, like the MJO, beyond one month (Camp et al.
2018; King et al. 2020; Marshall and Hendon 2019). Here, a
week 1 (or weeks 1–2) forecast refers to a lead time 0 forecast;
as such, values for week 2 (or weeks 2–3) refer to a lead time 1
week (or fortnight) forecast. We initially focused on the hind-
casts initialized on the first day of the month (but extend to
other dates when assessing the association with the MJO).

To evaluate whether a strong or weak MJO amplitude
influences the burst prediction skill, we utilized the real-time
multivariate MJO (RMM) indices applied to each ACCESS-
S1 ensemble member (Marshall and Hendon 2019). In this
study, the MJO is deemed to be strong (or weak) if the
ensemble mean of the individual member RMM amplitudes
(

��������������������������
RMM121RMM22

√
) is greater (or less) than 1.2 for the

entire forecast period (e.g., seven days for week lead times).
This separation allows a clear distinction between strong and
weak MJO cycles, and the exclusion of instances where the
MJO transitions from a weak to a strong amplitude (or vice
versa) within the forecast period. Our determination of weak

or strong MJO amplitudes is slightly more conservative than
the strong MJO amplitude . 1 definition in Marshall et al.
(2021).

c. Rainfall burst definition

We applied a simple definition to diagnose a burst event,
where the daily rainfall accumulation had to exceed a given
threshold for a set number of days. The Northern Queensland
beef producers often use a rainfall accumulation definition for
determining their “green break of the season,” a time of year
when land management decisions regarding moving cattle
onto new pastures are necessary (Balston and English 2009).
Our simplistic definition makes it easier for producers to
interpret, as opposed to more complex definitions (e.g., Nar-
sey et al. 2018), with the rainfall threshold able to be modified
to suit particular user’s needs.

For this study, we settled on one arbitrary burst definition:

B303d burst5 30 mm in 3 days:

Our definition was chosen in part through feedback from beef
cattle industry representatives throughout northern Australia,
given the objective of this research is to produce a useful,
practical, and user-friendly burst forecast product. As such,
our definition is less applicable in semiarid environments, but
is similar to that of Mollah and Cook (1996) of 50 mm over
three days with a minimum of 2 mm on any day, used as a cri-
terion for sowing crops in the Northern Territory’s western
Top End. Other utilities of a simple threshold definition of
extended rain include hay cutting and bailing (D. Rea, Fitzroy
Basin Association 2020, personal communication), timing of
crop harvesting (Mollah and Cook 1996), and even the poten-
tial for wheat sowing in regions outside of the tropical north
(Kerr and Abrecht 1992).

We identified burst days when a 3-day moving window met
the B303d criteria for any day above 0.2 mm day21 (first con-
dition), consistent with a prototype burst product developed
within the Bureau of Meteorology. The first condition
removes nonrainfall event days (Dey et al. 2020), even if they
occur midburst event. Table 1 shows a mock rainfall example
over a period of 9 days. Applying the first condition results in
two burst events (days 3–4 and 7–9). Applying the secondary
above 0.2 mm day21 condition removes the middle day of the
second burst event as day 8 records no rain. In later analysis,
we tested the sensitivity of observed burst day frequency to
different burst thresholds (e.g., 20, 50, 70 mm), keeping the
period constant at 3 days. Extending the period out to 5 or 7

TABLE 1. Explanation of how a B303d burst event was defined for this study. The numeral 1 values in bold in the bottom row
indicate the defined burst event in a 9-day period after applying the two conditions. The assumption is that the 2 days prior to
day 1 are 0-mm days.

Day 1 2 3 4 5 6 7 8 9

Daily rain (mm) 0 10 25 1 0 0 50 0 2
3-day totals (mm); i.e., day3 5 day1 1 day2 1 day3 0 10 35 36 26 1 50 50 52
Condition 1: If 30 mm in 3 days, set to 1, else 0 — — 1 1 0 0 1 1 1
Condition 2: Daily rainfall needs to above 0.2 mm day21

— — 1 1 0 0 1 0 1
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days tended to increase the number of observed burst days
per season, but with less intensity per individual burst day
(i.e., because the burst influence is spread over a longer time
window). We also tested the sensitivity of raising the mini-
mum threshold to 2 and 5 mm day21 on any day and found
that this did not affect the hindcast skill or the magnitude of
the model biases.

From the burst definition and a selection of different thresh-
olds, we have developed a prototype burst forecast product,
called “burst potential,” derived from calibrated rainfall fore-
casts from ACCESS-S1. As highlighted in a case study later in
the paper, the burst potential displays the likelihood of a burst
event starting within the forecast period, with the event able to
extend past the forecast period. The burst potential can be
directly compared to an observed climatological (1960–2018)
probability of a burst event occurring within the week in ques-
tion. Currently, the burst potential has been made available to
selected project stakeholders via the Bureau’s Forecast Viewing
Tool (de Burgh-Day et al. 2020). Hence, the main motivation
of this study is to provide a bias and skill assessment of rainfall
bursts from ACCESS-S1 hindcasts for the purpose of improv-
ing confidence in burst potential forecasts.

3. Results

a. Observed burst activity, 1960–2017

Intraseasonal monsoon activity in the form of short bursts
of rainfall is often associated with broadscale convective sys-
tems, as determined from satellite OLR measurements
(Wheeler and McBride 2005). A visual representation of burst
activity from October 2017 to April 2018 is shown in Fig. 1
over four beef cattle stations: Dampier Downs (northern
Western Australia; 18.528S, 123.458E), Mathison Station
(north Northern Territory; 15.128S, 131.698E), Gregory
Downs (northwest Queensland; 18.658S, 139.258E), and
Charters Towers (northeast Queensland; 20.058S, 146.278E).
This showcases the diverse burst behavior across northern
Australia, a region influenced by the MJO (Hendon and
Liebmann 1990b) and midlatitude interactions (Narsey et al.
2017). Here, we applied the B303d definition to individual
AWAP grid points that best represent the cattle station loca-
tions. Also shown are weighted area averaged OLR devia-
tions (from the 1980–2012 long-term daily mean) over
extended regions that encompass the cattle stations. Four
prominent active convective anomalies (purple anomalies in
Fig. 1) were observed from late December 2017 to mid-Febru-
ary 2018 over far northwest Australia, with five burst events
at Dampier Downs (Fig. 1a). The most equatorward location,
Mathison Station, also measured five burst events, with most
burst days in January 2018 associated with intense convective
activity over the north of the Northern Territory (Top End;
Fig. 1b), stemming from Tropical Cyclone Joyce and a slow-
moving tropical low.1 Across the Northern Territory border

into Queensland, Gregory Downs experienced three clear
burst events (late November and early March), with each
burst peak associated with a broadscale convective deviation
(Fig. 1c). The northeast Queensland regional center of
Charters Towers saw its earliest burst event in mid-October,
one short event in January, and considerable burst activity in
late February. These examples highlight both the spatial and
temporal diversity in the observed burst activity across north-
ern Australia and why an arbitrary one-size-fits-all definition
may not be appropriate for all regions.

Similar to the date at which 50 mm of rainfall accumulates
after 1 September (Drosdowsky and Wheeler 2014), there are
regional differences for when the first wet season burst usually
occurs, determined by the median of all seasons over the
period 1960/61–2018/19. The western Top End (north of 158S,
west of 1348E), the coastal strip around the city of Cairns
(188S, 1468E) and southeast Queensland typically experience
their first burst day in late November (Fig. 2a). For southeast
Queensland which often experiences winter rainfall (Dros-
dowsky and Wheeler 2014), the timing of the first wet season
burst carries less weight than for the northern tropics. Nearly
400 km south-southeast of Darwin, Mathison Station often
experiences their first burst in early December, about one
month prior to the three southern tropical cattle stations.

Previous studies have shown that ENSO strongly influences
early wet season precipitation and monsoon activity (Cowan
et al. 2020; Lo et al. 2007), which in turn dictates when new
season pasture is available for cattle (Balston and English
2009). El Niño events are associated with later first bursts,
with the area of northern Australia that receives its first burst
day by the start of January contracting from 29.8% (for all
years) to 24.7% for El Niño years (Fig. 2b). However, for La
Niña seasons, 41.1% of northern Australia experiences their
first burst by early January (Fig. 2c), consistent with the
greater early season rainfall (Cowan et al. 2020) and the gen-
eral asymmetric influence of ENSO events on Australian rain-
fall (Cai et al. 2010; King et al. 2013). The spatial pattern of
the last burst day of the wet season is quite zonally oriented,
with April cessations across the northern Top End and the
eastern coastline (Fig. 2d). The semiarid regions south of 188S
typically experience late February cutoffs, indicative of how
short the wet season is. In response to El Niño events, burst
activity tends to cease earlier in the wet season (Fig. 2e),
whereas La Niña events are associated with an extension of
burst activity beyond March for most of the tropical north
(Fig. 2f). Almost 2.5 times more of northern Australia experi-
ences their last burst after 1 April in La Niña years compared
with El Niño years.

b. Localized interannual observed burst variability and ENSO

We next assessed how the choice of maximum threshold
affects the determined number of observed burst days (i.e.,
“burst activity”) for weeks 1–4 of December–March at Dam-
pier Downs and Gregory Downs (Fig. 3). Alongside B303d, we
tested three other thresholds: 20 mm (B203d)—more applica-
ble to semiarid regions, 50 mm (B503d), and 70 mm in 3 days
(B703d)—suited to the far north tropics. To reiterate, the

1 A rainfall summary for January 2018, including TC Joyce can
be viewed at http://www.bom.gov.au/climate/current/month/aus/
archive/201801.summary.shtml#rainfall.
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analysis of observations was undertaken for period from Octo-
ber 1960 to April 2018. Linear trend analysis for B303d is also
shown in each panel to highlight the multidecadal changes in
burst activity.

Using our standard B303d definition, there are 30 Decembers
with at least two burst days at Gregory Downs (Fig. 3a), while
lowering the threshold to 20 mm (B203d) leads to 38 Decembers
with at least two burst days, with the most burst activity in the

year 2000 (∼19 burst days). Raising the threshold to B503d and
B703d reduces the frequency of December burst activity to 10
and 8 years, respectively, with more than half the bursts occur-
ring in El Niño years. Bursts at Gregory Downs are most promi-
nent in January and February (Figs. 3b,c), yet there is no clear
dominance in burst activity periods based on El Niño and La
Niña separation for all thresholds. However, in March, there is
slightly more burst activity (∼2–7 additional years) across the

FIG. 1. Observed outgoing longwave radiation (OLR; the top part of the panels) averaged over sections of northern Australia and daily
rainfall, 3-day accumulations, and burst days (the bottom part of the panels) at four cattle station regions (dots in maps): (a) Dampier
Downs, (b) Mathison Stations, (c) Gregory Downs, and (d) Charters Towers. The burst definition is 30 mm in 3 days (B303d) with a mini-
mum of 0.2 mm day21 on a burst day. The horizontal thick line represents the 30-mm threshold, in the bottom part of each panel. Yellow
shading in bottom part of panels represents burst events. The OLR is averaged over 108–208S and 1198–1298E in (a), 1278–1378E in (b),
1358–1458E in (c), and 1428–1528E in (d) (yellow boxes in maps), with the dashed line the climatology for 1980–2012. Gold and purple colors
indicate daily OLR anomalies above and below the climatology, representing reduced and enhanced convective activity, respectively.
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20–50-mm thresholds during La Niña compared to El Niño
(Fig. 3d). Throughout all four months, although there has been
an increasing trend in B303d, none of the trends are statistically
significant.

For Dampier Downs (northwest Australia), December bursts
were infrequent until the mid-1990s (Fig. 3e), reflecting the
increasing summer precipitation trend over northwest Australia
since the 1950s (Dey et al. 2019) and trend toward earlier north-
ern monsoon rain onsets (Drosdowsky and Wheeler 2014).
Trend analysis suggests a statistically significant increase in
B303d bursts of 0.054 days yr21. Burst activity ramps up in
January, where between 34% (for B703d) and 86% of years (for
B203d) experience more than two burst days (Fig. 3f). Since the
1990s, there has been an noticeable lack of January burst

activity with no more than 15 burst days per month in any year.
While there has been a significant increase in burst days in
December, further analysis of burst days in January finds the
change to be insignificant (e.g., B303d: 20.003 days yr21), and
due to a significant decrease in the length of consecutive burst
days, partially offset by a significant increase in the number of
burst events (not shown). February is Dampier Downs’ most
reliable burst month with around 92% of all years experiencing
at least one B203d burst event (Fig. 3g). Even by March, B203d
bursts occur in 63% of all years, with more than twice the num-
ber of B503d and B703d bursts under La Niña conditions com-
pared to El Niño (Fig. 3h). In contrast to December, there has
only been small insignificant changes in B303d burst activity
(and other thresholds) in February and March. Despite its

FIG. 2. Observed median (left) first and (right) last burst day of the wet season (October–April inclusive) for (a),(d)
all years from 1960/61 to 2017/18; (b),(e) El Niño years; and (c),(f) La Niña years. A burst event here is defined as the
accumulation of 30 mm of rainfall in 3 days (B303d). El Niño (La Niña) years are when the 3-month running mean
anomalies of Niño-3.4 SSTs (58S–58N, 1508–908W; ONI) are 0.58C higher (lower) than a sliding 30-yr period for four
consecutive 3-month periods (October–December, November–January, December–February, and January–March).
Medium gray shading represents regions that do not have a burst event in the majority of years. Dark gray shading
represents regions where weather station density is insufficient for calculating bursts. The open circles show the loca-
tions of the four cattle stations from Fig. 1.
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distance to the equatorial Pacific, Dampier Downs experiences
higher December and March burst activity in La Niña years
than for El Niño, whereas ENSO appears to make little differ-
ence to burst activity during January and February.

c. Biases in ACCESS-S1 hindcast burst metrics

WBefore an analysis of the B303d burst prediction skill in
ACCESS-S1, we first assessed the notable biases related to burst
metrics in the calibrated hindcasts. This was achieved by calculat-
ing the difference between the hindcast ensemble December–-
March mean (i.e., mean of 23 years 3 4 months 3 11 members)
and the observations across various B303d burst metrics, includ-
ing number (frequency) of burst days, average burst duration,
and total amount of burst rainfall. Here we specifically focused
on the biases in the first four weeks of December–January–Fe-
bruary–March (DJFM), combining the first start dates for each

month. The DJFM biases in the total number of burst days and
average burst duration (i.e., the ratio of the total number of burst
days to the number of burst events), respectively, are shown in
Figs. 4a,b. For the frequency, small positive biases are located in
the central Gulf of Carpentaria region, at the junction between
northeast and northwest Australia, while negative biases in the
order of20.8 days are seen along the northeast coastline includ-
ing Cape York (Fig. 4a). In general, ACCESS-S1 produces lon-
ger burst events on average compared to observations, with the
largest biases exceeding 1 day over the far northern tropics (Fig.
4b). The semiarid rangelands and desert regions south of 208S
and west of 1458E feature few climatological burst days, and
hence biases remain small. Biases in burst frequency and dura-
tion are broadly consistent across the individual summer months
(see appendix A, Figs. A1, A2).

Like the heterogeneous bias pattern in the number of burst
days, dry biases in the total amount of rainfall from bursts are

FIG. 3. Sensitivity of the burst day count to burst definition for the period from 1960/61 to 2017/18 at cattle stations
(left) Gregory Downs and (right) Dampier Downs, for weeks 1–4 of (a),(e) December; (b),(f) January; (c),(g) February;
and (d),(h) March. El Niño and La Niña years, defined in the methods, are shown as light pink and cyan bars, respec-
tively. Linear regression lines for “30 mm in 3 days” bursts (B303d), as well the slopes (days yr

21) and p values are shown
in each panel. Only the December trend in B303d at Dampier Downs is statistically significant (p, 0.05).
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simulated along the northeast coast and the central northwest
region (Fig. 4c, and appendix A, Fig. A3). Wet biases over the
far north Top End, the central Gulf region, and down into
southeast Queensland, reflect the positive biases in burst fre-
quency. It might be expected that more frequent bursts
should generate expansive higher burst rainfall totals, consis-
tent with ACCESS-S1 ensemble having an overall wet bias
(King et al. 2020). Yet the dry biases are seen in the same
regions where burst frequency is underestimated, which is
consistent with ACCESS-S1 underpredicting the number of
wet days above 1 mm day21 (King et al. 2020). For nonburst
related rainfall, ACCESS-S1 produces a spatially homoge-
neous mean summer dry bias widely exceeding 4 mm across
most of northern Australia (Fig. 4d, and appendix A,
Fig. A4). Even adding in the 5 mm day21 minimum threshold
on any day, the model continues to exhibit widespread dry
bias (figure not shown).

To summarize the summer burst biases when compared to
AWAP observations, ACCESS-S1 produces longer burst
events on average and where hindcasts produce a dry (or wet)
bias they tend to also simulate too few (or many) burst days.
For rainfall unrelated to burst activity, dry biases dominate
throughout northern Australia. Thus, it appears that the cali-
bration on daily time scales is partially correcting the model’s

light and heavy rain distributions (shape and mean) that con-
tribute to bursts. However, in doing so the model is overcor-
recting its total wet bias in its uncalibrated hindcasts toward a
slight dry bias. The overcorrection may be because the cali-
bration treats each day independently and does not conserve
rain amounts across multiple days.

d. Burst prediction skill in ACCESS-S1 hindcasts

It is unclear whether the positive biases in summer burst
activity over the tropical north (between 208 and 108S) are
systemic throughout the four-week hindcast period. To test
this, we compared the temporal evolution of the observed
spatial average of burst day frequency over northwest
and northeast Australia (regions outlined in Fig. 4a) with
the hindcast ensemble mean, median and range for each
January selected because its large burst frequency biases
(appendix A1). The evaluation was split into weeks 1 and 2
(lead time 0), weeks 2 and 3 (lead time 1), and weeks 3 and
4 (lead time 2).

1) FORTNIGHTLY ASSESSMENT

For northwest Australia, in weeks 1 and 2 of January, the
hindcasts overestimate the number of burst days in ∼70% of
years during the hindcast period (Fig. 5a). The relationship

FIG. 4. Mean DJFM hindcast (first start dates) biases in B303d metrics for weeks 1–4 over 1990–2012, including (a)
mean total number of burst days, (b) average duration of bursts, (c) total amount of burst rainfall, and (d) rainfall not
from bursts. The bias is the difference between the calibrated hindcast mean and observed (AWAP) mean. Gray
shading represents regions where weather station density is insufficient for the calculation of bursts. A 1–2–1 spatial
filter is applied 10 times to reduce the spatial noisiness of the data. The regions of northwest Australia (1208–1388E,
208–118S) and northeast Australia (1388–1508E, 208–118S) are outlined in (a).
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between the hindcast and observed medians strengthens from
weeks 1 and 2 (R 5 0.62) through to weeks 2 and 3 (R 5 0.69;
Fig. 5b). Likewise, a reduction in the root-mean-square error
(RMSE; the mean magnitude of the hindcast error) signifies
improved prediction skill into weeks 2 and 3. The increase in
skill is only apparent in January as there is reduced skill
(based on RMSE and/or correlations) in weeks 2 and 3 for
December, February, and March (Fig. 6a) and a further
decline in skill in weeks 3 and 4 (R 5 0.52; Fig. 5c). For north-
east Australia, the skill in predicting the number of burst days
for lead time 0 (R 5 0.81, RMSE 5 2.14 days) is far superior
to that for the northwest (R 5 0.62, RMSE 5 2.40 days),
because only 30% of observations lie outside the hindcast
range (Fig. 5d). The skill drops away in lead time 1 (R 5 0.58,
RMSE 5 2.49 days) and 2 (R 5 0.40, RMSE 5 2.71 days) as
the hindcast range increases to 6.3 and 6.7 days, respectively,
from 4.7 days (for lead time 0; Figs. 5e,f). In contrast, the
average hindcast range in the lead fortnight 2 for the north-
west is 5 days, and the correlation is improved compared to
the northeast.

A broader skill assessment of the number of burst days
over northwest and northeast Australia is shown in Fig. 6,

focusing on correlation and RMSE of the ensemble mean
(not the mean correlation and RMSE of the ensemble mem-
bers) and the respective 11-member ensemble spread based
for each DJFM month (first start date). For the northwest,
skill in the number of burst days drops consistently with lead
time for December, from R 5 0.65 in weeks 1 and 2, to
R 5 0.4 in weeks 3 and 4 (Fig. 6a). The hindcast skill peaks in
February (R 5 0.84) and remains high in March in weeks 1
and 2; however, the skill slightly weakens in weeks 2 and 3,
with correlations borderline significant in weeks 3 and 4 for
January–March. Consistent with the weaker correlations, the
RMSE increases with the lead time (pale yellow bars in
Fig. 6a), with the ensemble mean RMSEs lying at the bottom
of the range. Similar temporal skill is seen for the total burst
rainfall amount (see appendix B).

As with the drop in skill for January as lead time increases
(Figs. 5d–f), the correlation skill in burst frequency for north-
east Australia shows a general decline from lead time 0
through to lead time 2 (Fig. 6b). March is the exception, con-
sistently showing high correlations out to weeks 3 and 4 in
both burst frequency and intensity. Interestingly, there is a sub-
stantial decline in correlation skill in December and February,

FIG. 5. Observed and ACCESS-S1 hindcast total number of B303d burst days, averaged over (a)–(c) northwest
Australia and (d)–(f) northeast Australia, for all Januarys over 1990–2012 for (a),(d) weeks 1 and 2; (b),(e) weeks 2
and 3; and (c),(f) weeks 3 and 4. Correlation coefficients (Rmed) and root-mean-square error (RMSEmed) come from
the ensemble hindcast median. The hindcast ensemble mean (asterisk), median (horizontal line) and 11-member
range (colored bars) are compared to observations (open circles). Note, the weeks 2 and 3 totals are based on statis-
tics calculated from the start of the month, so likely contain burst days from events that start in week 1. The same
applies to weeks 3 and 4, with a chance that some days are from events that begin in week 2.
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compared with January and March. The poor December skill
likely reflects the weak observed teleconnection with large-scale
climate modes in that month, and a stronger association
with localized meteorological events, based on an assess-
ment of extreme rainfall metrics (King et al. 2020). How-
ever, this is also apparent in the other summer months,
consistent with a weaker relationship between climate
modes like ENSO and extreme rainfall compared to mean
rainfall (King et al. 2014); therefore weak teleconnections
may not be wholly responsible for the drop in skill. The
RMSE for the northeast generally increases through the wet
season as correlations become weaker, with December and
January showing the lowest RMSE values (i.e., highest skill)
for lead times 0 and 1.

2) WEEKLY ASSESSMENT

In developing a probabilistic forecast product, we need to
carefully consider its potential usefulness and applicability for
on-the-ground decision making by producers during the wet
season, particularly in the case of flooding (Cowan et al.
2019). Here, we evaluated ACCESS-S1’s ability to forecast
any burst event within the multiweek timeframe (i.e., lead
weeks 0 through to 2). Skillfully forecasting the arrival of a burst
event during the wet season would be of great benefit to

northern producers (J. Macdonald 2020, personal communica-
tion), placing less emphasis on accurately forecasting specific
burst details like duration and intensity. Here we focused on the
chance of any burst event occurring within the forecast period,
allowing for some leeway in the forecast of a burst event’s tim-
ing. We determined skill through the Brier score (BS) and Brier
skill score (BSS) metrics, where the BS (or mean squared prob-
ability forecast error) is

BS5
1
N

∑N

i5 1

pi 2 oi( )2,

where pi is the forecast probability of a burst event in the
forecast period, oi is the observed outcome (05 no event, 15
event), and N is the total number of DJFM forecasts using the
first of the month start dates (23 years 3 4 months). The BSS
describes the relative skillfulness of a prediction against a cli-
matological forecast:

BSS5 12
BS

BSclim
,

where BS are the forecast probabilities, and BSclim is the cli-
matological reference (P 5 0.5), using a cross-validated
method where the year in question is left out the climatology
(Lo et al. 2007). In Fig. 7, the BSS is shown for weeks 1–4
(lead time 0–3), with regional averages shown in Fig. 8a. For
week 1, the hindcast skill is particularly strong across much of
northern Australia (Fig. 7a), and aside for the Kimberley
region of northwest Australia, average skill scores are at or
above 25% (Fig. 8a). The drop in skill is quite dramatic into
week 2 for the Central North region which falls below 8%
while Cape York and the Top End drop to around 13% and
the Kimberley maintains 16%–17%. The drop in skill in week
3 is less dramatic than for week 2 with the northwest and
northeast showing scores of 7.1% and 9.5%, respectively (Fig.
7c). Into week 4, all regions except for the Central North
show a small improvement over climatology, with the Top
End and Cape York above 6% (Figs. 7d and 8a). From this
analysis, if we consider a BSS . 110% as being statistically
significant (Lim et al. 2011), ACCESS-S1 has demonstrated
reasonable skill for Cape York and the Top End out to week
3 (lead time 2), the Kimberley out to week 2 (lead time 1),
and the central northern region only to week 1 (lead time 0).
For the whole of northern Australia, ACCESS-S1 has reason-
able skill out to week 2.

e. The influence of the MJO on hindcast burst skill

The MJO is one of the main drivers of intraseasonal rainfall
variability during northern Australia’s wet season, with a
greater probability of wet conditions across northern Australia
during active MJO phases 4–7, and dry conditions during the
suppressed MJO phases 8, 1–3 (Marshall et al. 2021; Wheeler
et al. 2009). While ACCESS-S1’s skill in predicting rainfall
extremes in the wet season falls away beyond one week (King
et al. 2020), it skillfully predicts the MJO out to about 28 days
in summer (Marshall et al. 2021; Marshall and Hendon 2019),

FIG. 6. Relationship between observed and hindcast ensemble
mean total number of B303d burst days over 1990–2012, averaged
over (a) northwest Australia and (b) northeast Australia, for
December–March across the three fortnight forecast periods. Shown
are correlation (circles, left vertical axes) and root-mean-square
error (RMSE; asterisks, right vertical axes; days). Vertical bars rep-
resent the range of correlations and RMSEs from the 11 individual
model ensemble members. A significant correlation at the 5% level
for a sample size of 23 years is ∼0.4. Weeks 1 and 2 refer to a lead
time 0 forecast, weeks 2 and 3 a lead time 1 forecast, and so forth.
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and captures the MJO-induced variations in tropical cyclone
activity (Camp et al. 2018). For each first start date per month
for DJFM over 1990–2012, we determined whether the ensem-
ble mean MJO amplitudes for weeks 1, 2, 3, and 4 were strong
or weak (see section 2b). The BSS was calculated for these
hindcast weeks, and then averaged over northern Australia
and the four subregions (as in Fig. 8a). It is worth noting that
the hindcast MJO amplitude in summer has been shown to be
considerably weaker (10%–20%) than the observed amplitude
after ∼10 days (Marshall et al. 2021), which may influence skill
from lead time 1 onward.

As is clear from the week 1 prediction (lead time 0) of a
strong MJO amplitude, the predictive skill for burst activity is
enhanced for the Top End only (red line, Fig. 8), with BSS of
∼30% above climatology (MJO strong) compared to 12% for
a weak MJO prediction (Figs. 8b,c). For all other regions, the
week 1 skill in predicting burst activity is either the same or
marginally enhanced when hindcasts are predicting weak
MJO amplitudes. Into week 2 (lead time 1), the burst skill for
the Central North and Kimberley (Figs. 8b,c) is higher when
the prediction is for strong MJO amplitudes. The opposite is
true for the Top End and Cape York, with greater burst skill
accompanying a weak MJO amplitude. Through to week 3
(lead time 2), the Top End and Cape York both stand out as
being the only regions with substantially stronger skill when
accompanying a weak MJO amplitude – this raises the skill
level across northern Australia (thick black line, Fig. 8). Other

regions either show no difference between MJO amplitudes
or greater skill with a strong MJO. As burst skill declines
through to week 4 (lead time 3), aside from the Top End, all
regions show better burst skill scores accompanying weak
MJO amplitudes. A lack of clear separation in burst predic-
tive skill between MJO phases for most regions confirms the
lack of extreme weekly rain predictability over central north-
ern Australia when the MJO is strong (Marshall et al. 2021),
possibly implying an issue with MJO–summer rainfall
teleconnections.

It is possible that individual summer months are degrad-
ing the hindcast skill, as shown for extreme rainfall in
December (King et al. 2020). Another possible issue is that
sample sizes are too small to make robust interpretations.
To overcome the issues of the effect of individual months
on skill and small sample sizes, we combined the four hind-
cast start dates (1st, 9th, 17th, 25th). This allowed us to reas-
sess the influence of predicted MJO amplitude strength on
the burst forecast skill for the two regions that have a strong
observed MJO–rainfall teleconnection: the Top End and
Cape York (Wheeler et al. 2009). Combining multiple start
dates for December produced week 1 output for 1–7, 9–15,
17–23, and 25–31 December. For week 2, this was a combi-
nation of 8–14, 16–22, 24–30 December and 26 December–1
January.

The results for the Top End for December and January
start dates shows that the burst skill accompanying a strong

FIG. 7. Brier skill scores for the prediction of hindcast B303d burst events for (a) week 1, (b) week 2, (c) week 3,
and (d) week 4 for the first of month start dates combined for December, January, February, and March. A burst
event is determined when at least two burst days are forecast within the week. Black hatching cover regions with less
than 10% burst activity across the sample size of 92 (23 years 3 4 months). Average skill scores over northwest
Australia (NWA) and northeast Australia (NEA), as marked in (a), are shown above each panel. Week 1 refers to a
lead time 0 forecast, week 2 refers to a lead time 1 forecast, and so forth.
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MJO amplitude prediction is generally greater than for a
weak MJO forecast (red lines; Figs. 9a,b). The difference is
greatest in weeks 2 and 3 for December, and weeks 1 and 2
for January. Into February, there is no clear skill improve-
ment based on the MJO forecast through to week 2, while in
week 3, the skill associated with a weak MJO forecast
(∼20%) far outperforms that for a strong MJO forecast which
is no better than climatology (Fig. 9c). Through March, there
is little separating skill scores based on MJO amplitude in the
first two weeks (Fig. 9d). Averaged over far northeast in Cape
York, aside from December, the week 1 skill from January to
March is greater for a weak MJO compared to a strong MJO
amplitude forecast (gray lines; Fig. 9). In January, the burst
skill for a strong MJO amplitude drops rapidly and remains at
or below the climatological forecast (0% skill) in week 2–3,
while the skill with a weak MJO amplitude remains at ∼20%
(Fig. 9b). Although little separates the burst skill in February
(Fig. 9c), in March, the burst skill gap between MJO weak
and strong amplitude forecasts remains constant throughout
the forecast periods (Fig. 9d).

The above results suggest that any skill in burst event predic-
tion that arises due to the MJO amplitude is highly regionally
dependent, confirming the Marshall et al. (2021) analysis, who
found that Cape York is one region where ACCESS-S1 shows

reduced skill in predicting extreme weekly rainfall associated
with a strong MJO. This could be related to the lack of eastward
propagation of MJO-induced rainfall over the western Pacific in
ACCESS-S1 during summer (Marshall and Hendon 2019), inhib-
iting the correct rainfall response over the far northeast of Aus-
tralia. Other forecast systems have shown deficiencies in the
MJO’s eastward propagation over the Maritime Continent
(Jones et al. 2015). It is also possible that ACCESS-S1 does not
properly capture the local convective phase of the MJO over
the northern Australia, which may stem from moisture conver-
gence and sea breeze biases along the northern coastlines (Haw-
croft et al. 2021). This lack of predictive skill for rainfall
associated with an active MJO phases is also limited over the
western United States in other dynamical forecast systems, par-
ticularly for hindcasts initialized in MJO phases 3–4 (Pan et al.
2019). For northern Australia, two-thirds of all bursts have a
midlatitude influence and are only weakly related to the MJO
(Narsey et al. 2017). The extent to which ACCESS-S1 can cap-
ture the midlatitude influence in bursts is yet to be determined.

f. Real-time example of burst potential forecasts for early
2021 from ACCESS-S1

Here we showcase a real-time forecast product showing the
likelihood of a burst event, called “burst potential,” in the

FIG. 8. Brier skill scores for the prediction of hindcast B303d burst events for weeks 1, 2, 3, and 4, averaged over
northern Australia and four subregions, for (a) all hindcasts, (b) hindcasts where the ensemble mean predicts strong
MJO amplitudes for the week, and (c) hindcasts where the ensemble mean predicts weak MJO amplitudes for the
week. Shown are hindcasts with a first of the month start date for DJFM. The sample sizes for each week are listed
along the horizontal axes. Definition details for strong and weak MJO amplitudes are in the main text. Along the hor-
izontal axis, week 1 refers to a lead time 0 forecast, week 2 refers to a lead time1 forecast, and so forth.
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three weeks from a late January 2021 forecast. Introduced for
the 2020/21 northern wet season, the burst potential prototype
forecast product is from ACCESS-S1, and part of its suite of
prototype products on the bureau’s Forecast Viewing Tool
(de Burgh-Day et al. 2020). The development of the burst
potential follows on from the successful release of the north-
ern rainfall onset forecast product from ACCESS-S1 for the
2019/2020 wet season, replacing the forecast maps produced
by the bureau’s older-generation model (Cowan et al. 2020).
The burst potential example shown here is for a 30 January
2021 model initialization when there was strong MJO activity
in phase 6, a phase that typically shows a strong interaction
with northern Australian summer rainfall (Wheeler et al.
2009). From initialization, the ACCESS-S1 ensemble mean of
99 members (description of which can be found in Australian
Bureau of Meteorology 2019) shows a prediction of an active
MJO progressing eastward into phase 7 (western Pacific) and
remaining there until 19 February (Fig. 10a). Climatologi-
cally in observations, as the MJO traverses eastward into
the western Pacific, the region of enhanced rainfall proba-
bilities moves away from the northwest of Australia and the
Top End to the far northeast and Cape York (Wheeler et al.
2009). Figures 10b–d shows the lead time 0–2-week forecast
of the probability of a B303d burst event occurring within
the forecast period, where darker purple shades represent

higher likelihoods. A direct comparison can be made to the
observed climatological probability of a B303d burst event
occurring in each separate week, based on all years from
1960 to 2018 (appendix C). These burst potential maps dis-
play the percentage of 99 ensemble members that forecast a
burst event to commence within the forecast period. Given
this product describes an accumulation over 3 days, a burst
can extend across two forecast periods, meaning a predicted
burst in week 2 may form part of a yesterweek burst event.
The prototype forecast maps, which include B203d, B503d,
and B703d maps for lead weeks 0–2 and lead fortnights 0–2,
are produced every day and are available to key stakehold-
ers from northern Australia (e.g., beef producers).

As the lead time extends from 0 to 2, the region with the
greatest burst event probability shifts from the northwest to
the far northeast, in line with the MJO forecast. Based on the
observed climatological probabilities of an event occurrence,
there are only small changes in the expected likelihood across
the three weeks (appendix C). For lead time 0 (30 January–
5 February), forecast probabilities above 75% stretch from
the Pilbara in the far west all the way to the northeast
(Fig. 10b). These predictions are well above the observed cli-
matological probability for that week of the year (appendix
Fig. C1). Moving ahead one week (6–12 February), with the
predicted MJO well into phase 7, the strong potential for a

FIG. 9. Brier skill scores for the prediction of hindcast B303d burst events for weeks 1, 2, 3, and 4, averaged over the
Top End (red lines) and Cape York (gray lines), for strong MJO amplitudes (thick lines) and weak MJO amplitudes
(dashed lines), in (a) December, (b) January, (c) February, and (d) March. Shown are all hindcast start dates of the
month over 1990–2012. Along the horizontal axis, week 1 refers to a lead time 0 forecast, week 2 refers to a lead time
1 forecast, and so forth.
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burst event shifts toward the northeast (Fig. 10c). As the pre-
dicted MJO slightly weakens and moves into phase 8 in lead
week 2 (13–19 February), the forecast of burst activity tapers off
toward the observed climatology (appendix Fig. C3), with only a
high event probability of an event in Cape York and an isolated
region of the Top End (Fig. 10d). Early indications from the
2020/21 wet season are that forecasting burst events beyond lead
week 1 in semiarid regions where the forecast skill is climatologi-
cally low will continue to be challenging because of the rare
nature of extreme rain events. It is also yet to be determined
whether the MJO has some control over simulated burst
amounts as observed (e.g., Berry and Reeder 2016).

4. Discussion and conclusions

In this study, we have presented a simplified and more practi-
cal (for end-users) definition of a summer burst event—the accu-
mulation of 30 mm in 3 days—to investigate burst activity in
observations and the bureau’s current operational multiweek to
seasonal prediction system, ACCESS-S1. We first showed that
observed bursts are generally associated with broad-scale convec-
tive events, with the first onset of a burst event typically occur-
ring over the far north and east of Australia in late November.
As might be expected, La Niña conditions push the burst season
well into late April over the far northern coasts, while further
inland, burst activity typically ceases by late March. Based on
our threshold-based rainfall definition, bursts peak in January
and February across northern Australia, following the seasonal

cycle in rainfall, slightly later than the Berry and Reeder (2016)
defined burst events. In general, observed bursts across northern
Australia are somewhat independent of the state of ENSO
(Berry and Reeder 2016), and our results confirm this for the
peak summer months, January and February.

Using calibrated hindcasts of summer (first of the month
start dates; December–March) rainfall, we have shown that
ACCESS-S1 is skillful in predicting a burst event, out to a
lead time of at least two weeks for the Cape York, Kimberley,
and Top End subregions. The only subregion with poor skill
is the Central North subregion. The prediction skill for the
fortnight periods closely matches the week-to-week evolution
(appendix B). The skill of ACCESS-S1 is overshadowed by
the hindcast biases, whereby regions that experience more
burst days than in observations tend to also experience more
burst rain and vice versa (e.g., Fig. 4). Similar biases in burst
activity have been uncovered in coupled climate models, with
a tendency for models to produce excess summer rainfall over
northern Australia (Narsey et al. 2018). Calibrating the raw
hindcast rainfall to observations significantly reduces the
biases in burst frequency, duration, and total burst rainfall;
however, calibration also leads to an overcorrection, contrib-
uting to a greater percentage of summer rain from bursts than
observed, particularly in December and January (see appen-
dix A). Given the primary interest is ACCESS-S1’s ability to
predict burst events skillfully, calibration is a necessary part of
maintaining the consistency and integrity of the forecasts; how-
ever, model biases in the depiction of the MJO and convective

FIG. 10. (a) MJO forecast initialized on 30 Jan 2021 showing 33 ensemble member forecasts out to 30 days (colored
lines) and the ensemble mean (thick black line). (b) Probability of a B303d burst event for week 1 (lead time 0): 30
Jan–5 Feb 2021 from a 99-member lagged forecast ensemble. (c),(d) As in (b), but for week 2 (lead time 1) and week
3 (lead time 2). The forecast maps are snapshots of the actual prototype forecast product from the bureau’s Forecast
Viewing Tool, with the product’s visual design set to match other prototype products. In these maps, the burst poten-
tial product is called burst event potential.
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processes that initiate bursts still require further improvement
(e.g., Marshall et al. 2021). Observational studies have determined
that two thirds of bursts that occur during northern Australia’s
wet season (October–April) have a midlatitude influence (Narsey
et al. 2017), often stemming from extratropical Rossby waves in
the Indian Ocean (Berry and Reeder 2016). To what extent
ACCESS-S1 can simulate the majority split between midlati-
tude and tropically generated bursts remains to be verified.
Furthermore, climate models show difficulty in capturing the
association between the MJO and bursts over northern Aus-
tralia (Narsey et al. 2018), which appears consistent with the
forecast performance of ACCESS-S1 for summer with respect
to heavy rainfall (King et al. 2020; Marshall et al. 2021).

A strong motivation of this study was to provide a skill assess-
ment of bursts in ACCESS-S1 ahead of a possible operationaliza-
tion of the burst product. In early July 2021, the bureau’s
prototype burst product was officially selected as an operational
product (D. Hudson 2021, personal communication). The selection
should pave the way for the development of other multiweek and
seasonal rainfall or multivariate-based products, particularly tar-
geted to the agricultural and livestock sectors, and provide useful
information to end-users beyond the timeframe of a deterministic
forecast. Initial feedback from northern producers on the burst
potential indicated it could be integrated into the practical man-
agement decisions related to pasture growth, weed spraying, road
crossings (E. Hinds 2020, personal communication) or cutting hay
(D. Rea 2020, personal communication). As such, the definition
for the final burst potential product needs to be simple and fit for
purpose, and modified to suit different regions with vastly different
soil types or in vastly different climatic zones (i.e., temperate ver-
sus tropical versus semiarid). A definition which uses absolute
rainfall values rather than relative values has greater utility for pro-
ducers since it is relatable to direct experience (Balston and
English 2009). Some limitations to using an “absolute burst thresh-
old over 3-day” definition is that it does not capture near-events
that almost reach the total (e.g., 19 mm over 3 days), but which
may be important to pastoralists during dry periods. Also as there
is little effect on pasture growth during the wet season for heavy
rainfall compared to moderate rainfall (Brown et al. 2019), a burst
product may be more appropriate for preventative logistical plan-
ning (i.e., moving cattle away from possible flood zones). Also, in
a practical sense, there may be some latency in the uptake of such
a product like the burst potential by some producers, due to past
dependencies on other rainfall-related rules that help with man-
agement decisions (Balston and English 2009), or simply because
of the information overload to producers (e.g., Mclntosh et al.
2017). Therefore, it is important that further discussions and feed-
back take place with the bureau’s major agricultural clients, includ-
ing those from southern regions, before a final operational version
of the burst potential product is made available.

In this study, we have shown that the bureau’s current mul-
tiweek to seasonal prediction system, ACCESS-S1, has good
prediction skill for summer rainfall bursts out to a lead week
2 time. The model’s prediction is most skillful over the far
tropical north regions of the Top End and Cape York that typ-
ically experience bursts from late November/early December
through to late April. Further work is required to fully recon-
cile the influence of the MJO on predicted rainfall bursts, and

to see if prediction skill has improved in the next model ver-
sion, ACCESS-S2. It is anticipated that the upgrade of the
bureau’s operational seasonal prediction system to ACCESS-
S2 should lead to improvements in forecast skill of rare
weather events beyond seven days, based on several model
improvements including a new coupled assimilation scheme
and an updated soil moisture initialization. Research is also
ongoing in the Met Office to improve the convection scheme
that will be incorporated into later versions of ACCESS-S.
Other areas of improvements more generally across the Uni-
fied Model systems include fixing biases concerning sea
breezes and the timing of convectively induced rainfall (which
then creates errors in the sea breezes; Birch et al. 2015). The
expectation is that by uncovering new insights into the dynam-
ics of what initiates and maintains bursts over northern
Australia, this will lead to improved accuracy in burst predic-
tion and greater confidence (and potentially uptake) in the
bureau’s multiweek forecasting products.
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APPENDIX A

Burst Metric Biases in ACCESS-S1 across the Wet
Season Months

To confirm burst metric biases seen in ACCESS-S1 are
consistent across the individual austral summer months, we
calculated the week 1–4 biases for December, January,
February, and March, separately. Shown for B303d bursts,
are frequency (Fig. A1), duration (Fig. A2), total burst rain-
fall (Fig. A3), rainfall unrelated to bursts (Fig. A4), per-
centage of total rainfall from bursts (Fig. A5), and average
daily intensity of bursts (Fig. A6). The results suggest burst
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FIG. A2. Hindcast bias in the mean duration of B303d bursts for weeks 1–4 over 1990–2012 for (a) December,
(b) January, (c) February, and (d) March. The bias is the difference between the calibrated hindcast mean and
observed (AWAP) mean. Gray shading represents regions where weather station density is insufficient for the calcu-
lation of bursts. A 1–2–1 spatial filter is applied 10 times to reduce the spatial noisiness of the data.

FIG. A1. Hindcast bias in the mean total number of B303d burst days for weeks 1–4 over 1990–2012 for
(a) December, (b) January, (c) February, and (d) March. The bias is the difference between the calibrated hindcast
mean and observed (AWAP) mean. Gray shading represents regions where weather station density is insufficient for
the calculation of bursts. A 1–2–1 spatial filter is applied 10 times to reduce the spatial noisiness of the data.
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FIG. A3. Hindcast bias in the total amount of rainfall from B303d bursts for weeks 1–4 over 1990–2012 for
(a) December, (b) January, (c) February, and (d) March. The bias is the difference between the calibrated hindcast
mean and observed (AWAP) mean. Gray shading represents regions where weather station density is insufficient for
the calculation of bursts. A 1–2–1 spatial filter is applied 10 times to reduce the spatial noisiness of the data.

FIG. A4. Hindcast bias in the total amount of rainfall unrelated to B303d bursts for weeks 1–4 over 1990–2012 for
(a) December, (b) January, (c) February, and (d) March. The bias is the difference between the calibrated hindcast
mean and observed (AWAP) mean. Gray shading represents regions where weather station density is insufficient for
the calculation of bursts. A 1–2–1 spatial filter is applied 10 times to reduce the spatial noisiness of the data.
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FIG. A5. Bias in the percentage of total rainfall from B303d bursts for weeks 1–4 over 1990–2012 for (a) December,
(b) January, (c) February, and (d) March. Lighter gray shading indicates where there are less than 50% of bursts
detected over the 23 years in the observed or simulated by ACCESS-S1 to determine a median. Darker gray shading
represents regions where weather station density is insufficient for the calculation of bursts. A 1–2–1 spatial filter is
applied 10 times to reduce the spatial noisiness of the data.

FIG. A6. Bias in the average daily intensity of B303d bursts for weeks 1–4 over 1990–2012 for (a) December,
(b) January, (c) February, and (d) March. The intensity is the total average amount of burst precipitation that falls on
each burst day. The bias is the difference between the calibrated hindcast mean and observed (AWAP) mean. Lighter
gray shading indicates where there are less than 50% of bursts detected over the 23 years in the observed or simulated
by ACCESS-S1. Darker gray shading represents regions where weather station density is insufficient for the calcula-
tion of bursts. A 1–2–1 spatial filter is applied 10 times to reduce the spatial noisiness of the data.
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day frequency biases are greatest in December and January
(Fig. A1). Burst duration biases peak in January to February
with anomalies greater than 1 day across the northwest
(Fig. A2). The wet bias in burst rainfall is prominent over
northwest Australia from December and January, whereas a
dry bias is seen over the northeast in February (Fig. A3).
The positive bias in burst rain over the northwest may reflect
an overall broader systematic wet bias in ACCESS-S1 (Hud-
son et al. 2017; King et al. 2020). Despite this, a dry model
bias in nonburst rainfall persists across the summer months
(Fig. A4), contributing to widespread positive biases in the
proportion of total rainfall from bursts (Fig. A5). The aver-
age daily intensity of rainfall from bursts (i.e., the total aver-
age amount of precipitation from each burst day) is generally
underpredicted in ACCESS-S1 across much of the tropical
north (Fig. A6), in agreement with the negative model biases
in maximum 1-day rainfall extremes (King et al. 2020).

APPENDIX B

Burst Metric Skill in ACCESS-S1

In Fig. 6, we show an assessment of the temporal rela-
tionship between the observed and hindcast ensemble mean
total number of B303d burst days. Figure B1 displays the
total rainfall from B303d bursts relationship for each sum-
mer month. In general, model skill deteriorates from weeks
1 and 2 through weeks 3 and 4, more so in northeast
Australia than northwest Australia.

In assessing the prediction skill for a burst event to occur
within the lead week and fortnight timeframes, we use the

FIG. B1. Relationship between observed and hindcast ensemble
mean total rainfall from B303d bursts, averaged over (a) northwest
Australia and (b) northeast Australia, for December–March fore-
casts across the three forecast periods. Shown are correlation
(circles, left vertical axes) and root-mean-square error (RMSE;
asterisks, right vertical axes; mm). Vertical bars represent the range
of correlations and RMSEs from the 11 individual model ensemble
members. Significant correlations at the 5% level for a sample
size of 23 years is ∼0.4. Weeks 1 and 2 refer to a lead time 0 fore-
cast, weeks 2 and 3 refer to a lead time 1 forecast, and so forth.

FIG. B2. Brier skill scores of hindcast burst events for (a) weeks 1 and 2, (b) weeks 2 and 3, and (c) weeks 3 and 4,
for the first of the month start dates for DJFM. A burst event is determined when at least two burst days are forecast
within each fortnight. Black hatching cover regions with less than 10% burst activity across 1990–2012. Weeks 1 and 2
refer to a lead time 0 forecast, weeks 2 and 3 a lead time 1 forecast, and so forth.
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Brier skill score. The fortnight predictions can extend the
skill to lead time 1 (Figs. B2a,b); however, we cannot distin-
guish a predicted event occurring on days 1 and 2, or on
days 13 and 14. With this in mind, the prediction skill of a
burst event over northeast Australia lies just above 7%
improvement over climatology in weeks 3 and 4 (Fig. B2),
while for the northwest Australia, the skill sits at just above
5% improvement.

APPENDIX C

Observed Burst Event Potential Climatology

The real-time analysis of burst potential forecasts for the
three weeks from 30 January 2021 initialization shows how

the probability of a B303d burst event over the far tropical
northwest region ranges from 75%–100% in lead week 0 to
less than 50% in lead week 2 (Figs. 10b–d). We can com-
pare these forecasts to the observed climatological proba-
bility for the three weeks in question, shown in Figs.
C1–C3, based on all individual weeks over the period
1960–2018. That is, for the week of 30 January–5 February,
we determine the percentage of the 59 observed years that
have a B303d burst event for that particular week. As can
be seen, the lead week 0 forecast (Fig. 10b) shows stronger
probabilities
than the observed climatological probabilities over the
northwest (Fig. C1). For lead week 1 and over the same
region (Fig. 10c), the forecast shows slightly decreased odds
of a burst event than would be expected on average
(Fig. C2), while in lead week 3 (Fig. 10c), the forecasts
across northern Australia tend to offer no more skill than
climatology (Fig. C3).
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