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Abstract—Federated learning (FL) represents a promising
distributed machine learning paradigm that allows smart devices
to collaboratively train a shared model via providing local
data sets. However, problems considering multiple co-existing
FL services and different types of service providers are rarely
studied. In this paper, we investigate a multiple FL service trading
problem in Unmanned Aerial Vehicle (UAV)-aided networks,
where FL service demanders (FLSDs) aim to purchase various
data sets from feasible clients (smart devices, e.g., smartphones,
smart vehicles), and model aggregation services from UAVs, to
fulfill their requirements. An auction-based trading market is
established to facilitate the trading among three parties, i.e.,
FLSDs acting as buyers, distributed located client groups acting
as data-sellers, and UAVs acting as UAV-sellers. The proposed
auction is formalized as a 0-1 integer programming problem,
aiming to maximize the overall buyers’ revenue via investigating
winner determination and payment rule design. Specifically, since
two seller types (data-sellers and UAV-sellers) are considered,
an interesting idea integrating seller pair and joint bid is in-
troduced, which turns diverse sellers into virtual seller pairs.
Vickrey-Clarke-Groves (VCG)-based, and one-sided matching-
based mechanisms are proposed, respectively, where the former
achieves the optimal solutions, which, however, is computationally
intractable. While the latter can obtain suboptimal solutions that
approach to the optimal ones, with low computational complexity,
especially upon considering a large number of participants. Sig-
nificant properties such as truthfulness and individual rationality
are comprehensively analyzed for both mechanisms. Extensive
experimental results verify the properties and demonstrate that
our proposed mechanisms outperform representative methods
significantly.

Index Terms—Reverse auction, trading, multiple federated
learning services, UAV-aided networks, VCG, one-sided matching.

I. INTRODUCTION

THE past decade has witnessed a rapid development of
connected and intelligent society, mainly characterized

by the deployment of advanced communication technologies
(e.g., 4G/5G/B5G) and the proliferation of smart devices
(e.g., smartphones, vehicles, edge servers) with enhanced
computing/communication capabilities [1], [2]. Besides, the
explosively growing big data generated by massive mobile
devices have enabled a wide variety of innovative applications
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associated with artificial intelligence (AI) and machine learn-
ing (ML), e.g., E-health, smart city, intelligent transportation
[3]. However, conventional AI and ML applications are gen-
erally conducted in a centralized manner, under which, data
are frequently collected and transmitted from various mobile
devices to centralized data centers, leading to overloaded
wireless networks [4]. Meanwhile, the ever-growing concerns
of data privacy and security also call for feasible and flexible
distributed ML mechanisms. Regarding this backdrop, the in-
teresting concept of federated learning (FL), firstly provided by
Google, offers a privacy-preserving distributed ML paradigm
and has attracted extensive attention from both industry and
academia alike [5], [6].

FL refers to the embodiment of “bringing codes to data”,
rather than “bringing data to codes” associated with traditional
centralized ML [7]. For a typical FL scheme, a set of feasible
mobile devices termed as clients or workers, will participate in
the iterative training of FL. In each iteration round, every client
first downloads a global model from a centralized aggregator,
and then, conducts local training based on its local data set, i.e,
ML-as-a-service (MLaaS) [8]. Finally, the model parameters
(or gradients) are uploaded to the aggregator synchronously
(or asynchronously) and aggregated as a new global model
via a specific aggregation algorithm, e.g., FedAvg [9]. Re-
cently, extensive efforts are devoted to different aspects of
FL, e.g., client selection [6], [10], resource management [11],
[12], architecture design [13], [14] and incentive mechanism
design [7], [15]. Although existing works have made lots of
contributions, most of them focus on the single FL service
scenario, while neglecting multiple co-existing FL services.
Since many smart devices are embedded with various sensors
that can collect different data types for diverse FL services,
which thus support multiple co-existing FL services to be
trained over the same group of clients, and presents a novel
problem that is worth attentions [16]–[18].

Generally, different FL services could have different service
requirements and economic values, where local data qualities
(e.g., data size, data distribution) of clients are significant
in evaluating FL training performance [15]. Besides, many
commercial or academic FL services often suffer from the
lack of training data and participating clients, which thus calls
for an efficient trading ecosystem, to facilitate the practical
implementation of FL services [19]. Thus, selecting feasi-
ble clients for different FL services according to clients’
data qualities is essential to guarantee mutual success, while
maximizing the overall economic values. Nevertheless, clients
are usually reluctant to provide data without profits due to
selfishness, which necessitates proper incentive mechanism
design. To fully motivate clients to participate in FL training
and report true data profiles, it is critical to provide appropriate
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monetary reward for its involvement. Recently, auction theory 
has been adopted as a popular incentive mechanism thanks
to its fairness and trading efficiency, w here p articipants can 
buy/sell requested services/resources at reasonable prices [20]–
[23]. To this end, auction becomes an effective method to 
facilitate a trading market between FL services and clients, 
where FL service demanders (FLSDs) act as buyers; while 
clients act as sellers to provide data sets and MLaaS [17],
[24].

One common challenge faced by FL services in wireless
communication networks is the inherent communication cost
(e.g., delay, energy consumption, bandwidth), mainly incurred
during FL model uploading/downloading, especially when
facing unstable communication links. Thus, it is necessary to
utilize an edge server as an intermediate FL model aggre-
gator to facilitate communication-efficient FL services [13].
Particularly, Unmanned Aerial Vehicle (UAV) is introduced as
a convenient platform for FL due to its flexibility [25]–[28],
performing as a model aggregator and relay. Similar to the
clients, monetary rewards should be paid to UAVs to cover
the overhead (e.g., delay and energy consumption) incurred
during service provisioning, as the major motivation of its
participation in the FL service market. Apparently, UAVs can
also be regarded as sellers that can offer model aggregation
and delivery services. As a result, in a UAV-aided multiple
FL service trading market, determining applicable clients and
UAVs for different FL services under appropriate incentives
becomes urgent and critical.

In this paper, we investigate an auction-promoted multiple
FL service trading problem in UAV-aided networks, where
multiple FLSDs act as buyers to purchase data sets from
groups of clients (data-sellers), as well as model aggregation
and delivery services from UAVs (UAV-sellers), to fulfill their
FL service requirements. To the best of our knowledge, this
paper is among the first to establish an efficient FL service
trading market among three parties: FLSDs, data-sellers, and
UAV-sellers, relying on a well-designed reverse auction. More
importantly, significant auction properties such as truthfulness,
individual rationality, and computational efficiency are also
carefully analyzed. Main contributions of this paper are sum-
marized as follows:
• We propose a reverse auction model for multiple FL

service trading market under UAV-aided networks via
considering three different parties: multiple FLSDs as
buyers; client groups as data sellers, and UAVs as UAV-
sellers. Specifically, the buyers and sellers submit their
bid profiles to an auctioneer who manages the auction
process. The proposed auction is formalized as a 0-1
integer programming problem aiming to maximize the
overall buyers’ revenue, where the winner determination
problem and payment rule among FLSDs, data sellers,
and UAV sellers are carefully analyzed.

• We first study a Vickrey-Clarke-Groves (VCG)-based
reverse auction mechanism that can obtain the optimal
solutions, which guarantees the truthfulness and individ-
ual rationality of sellers. Specifically, since two seller
types (data-sellers and UAV-sellers) are considered in
our proposed auction model, an interesting idea of seller
pair and joint bid is introduced to facilitate the auction
procedure by turning each seller into multiple virtual
sellers.

• The exponential computational complexity for obtain-
ing optimal auction solutions by VCG-based mecha-
nism poses great challenges (particularly upon consid-
ering a large number of participants). We thus propose
a computation-efficient suboptimal auction mechanism,
based on one-sided matching, while properties associated
with which have also been comprehensively proved.

• We conduct extensive simulations to evaluate the perfor-
mance and verify the properties of our proposed mech-
anisms. Experimental results demonstrate the commend-
able performance gain of our proposed mechanisms, in
comparison with baseline methods.

To achieve a better understanding of both the problem and
roles of participants in the proposed auction, online shopping
in real-life is illustrated as an interesting example. In online
shopping, different buyers have different demands on various
commodities, such as purchasing a refrigerator or air condi-
tioner from an online store. In this case, buyers need to select
a feasible store according to their own needs (e.g., budget,)
and stores’ bidding prices. Generally, the required commodity
needs to be delivered by an express company from the chosen
store, where different express companies may offer different
service qualities (e.g., estimated delivery time) by charging
different fees according to commodity characteristics, e.g., de-
livery distance, commodity weight. Consequently, each buyer
has to determine the following key problem: which commodity
in which store via which express company, upon considering
lots of factors, to minimize their costs. Interestingly, our
proposed auction model can refer to the above-mentioned
example, where online stores and express companies are
regarded as data-sellers and UAV-sellers, respectively, while
data sets and UAV services are seen as commodities.

The rest of this paper is structured as follows. Related
works are discussed in Section II. System model and problem
formulation are presented in Section III. VCG-based optimal
reverse auction and the computation-efficient suboptimal re-
verse auction is proposed in Section IV and V, respectively.
Numerical simulations are conducted in Section VI before we
conclude the paper in Section VII.

II. RELATED WORK

Although many existing works have been devoted to in-
vestigating different challenges under considering single FL
service, e.g., some of them have been classified and summa-
rized in [29]–[31], only a few pioneering works put efforts
to multiple FL services, such as [16]–[18]. In [16], each FL
service is regarded as an FL task and the authors propose
a many-to-many two-sided matching algorithm for Multitask
FL. However, they only consider how to match the clients
to FL tasks at preset edge servers to minimize the overall
training latency of one global aggregation round. [17] studies
the bandwidth allocation problem for multiple simultaneous
FL services where the clients of each FL service share the
common bandwidth resources. The authors propose a two-
level resource allocation framework to tackle the intra- and
inter-service bandwidth allocation problem. [18] investigates
a general resource sharing problem for multiple FL services,
different from [16], [17] and our work, the authors assume
each client can participate in the training of multiple FL
services simultaneously, and thus not only the communication
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resources are shared by clients of each FL service but also 
the local computation (i.e., CPU) resources of each client are 
allocated among multiple FL services. However, none of these 
previous works consider the data and service trading problem 
among FLSDs, client groups, and UAVs.

Auction theory has been proven as an efficient incentive
mechanism for FL regarding economic optimality and proper-
ties [24], [28], [32]. In [24], an auction approach is proposed as
an incentive mechanism for FL in a wireless cellular network
that involves one base station and multiple clients, where
the base station acts as an auctioneer and the clients are
the sellers. A primal-dual auction mechanism is proposed
to decide the winners and maximize social welfare. The
authors in [28] study a communication-efficient FL in a UAV-
enabled vehicular network, where the UAVs act as a wireless
relay to facilitate the communication between clients and FL
aggregator. A joint auction-coalition framework is proposed
to allocate UAVs to different coalitions to maximize UAVs’
profits. [32] proposes an auction framework to incentivize
clients to provide local data sets for FL service. The authors
first propose an approximate strategy-proof auction mecha-
nism to maximize social welfare, then an automated auction
framework is further proposed to improve social welfare based
on graph neural networks and deep reinforcement learning.
Although this work also considers the data trading between the
clients and FL services, only a single FL service is considered.

UAVs have been widely applied in FL serving as FL
aggregators, wireless relays, or clients. [26] discusses the UAV-
assisted FL where the FLSD can employ UAVs as intermediate
model aggregation servers and mobile relays to deliver models
so as to increase the reach of FL and improve communication
efficiency. A multi-dimensional contract mechanism is pro-
posed to incentivize the UAVs as a case study. Similarly, [27]
also proposes a multi-dimensional contract matching approach
in a UAV-enabled vehicular network where UAVs are clients
to conduct data collection and model training for FLSD. [33]
considers FL-aided image classification tasks in UAV-aided
exploration scenarios where the UAVs act as clients to collect
image data and train a classification model. However, none of
these works have considered UAVs as sellers for multiple FL
services trading market, which represents the major difference
and novelty in our paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the auction model for the multiple
FL service trading market, the auction properties, and the
problem formulation.

A. Overview of the proposed auction
As depicted in Fig. 1, we consider a scenario of multi-

ple co-existing FL services in a UAV-aided network, which
contains multiple co-existing FLSDs, geographically isolated
subregions (each of which is composed of a set of clients
such as smart phones, smart vehicles) and UAVs. Specifically,
each FLSD has an FL service that requires to train a unique
ML model, which, however, suffers from the lack of training
data mainly owing to privacy concerns. Thus, FLSDs have to
train their models under an FL manner by purchasing training
data and MLaaS from subregions. Additionally, assuming that
each subregion consists of a sufficient number of homogeneous
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Fig. 1. An illustration of Multiple FL service trading process in UAV-aided
networks.

smart devices to cooperatively participate in the market, for
collecting data and training ML models, under a consensus
mechanism [15]. To this end, each subregion can be regarded
as a hyper data owner (DO), where terms “subregion” and
“DO” are interchangeable with each other hereafter, for ana-
lytical simplicity.

Due to the selfishness of participants, proper incentives are
encouraged. To compensate for the cost of clients (e.g., data
collection cost, storage cost, model training cost), DOs can sell
their data sets to FLSDs by charging corresponding fees. To
bridge the FLSDs’ service requirements and DOs’ data sets in
such an open market, auction has been emerged as a feasible
paradigm to incentivize both sides. In our proposed auction
model, FLSDs can report their requirements, while DOs can
submit the description of their data sets and sell-bids, where
corresponding FL services can be assigned to feasible DOs.

However, FL training may incur substantial cost on
both computation and communication, especially for FL
model transmission cost, which includes model download-
ing/uploading cost between FLSDs and DOs in dynamic wire-
less networks, etc. For example, unstable communication links
among FLSDs and DOs greatly call for flexible intermediates
to facilitate communication-efficient FL training, especially
for large ML models. Thus, in the proposed auction, UAVs
are serving as model aggregators for local trained model
aggregation and model delivery, as shown in Fig. 1. When
an FL service is assigned to a DO, a feasible UAV can be
employed which flies to the DO from the UAV base, and
hovers over the corresponding region to serve clients until
the FL training is finished. Consequently, FLSDs also have
to pay for the time and energy cost for services offered by
UAVs. Since different UAVs have different capabilities (e.g.,
communication/computation ability, flying speed) and costs,
each FLSD has to be mapped to a suitable UAV to promote the
completion of FL training and minimize the overall payments.
For analytical simplicity, assume that each FLSD can only buy
the data set from one DO and employ one UAV in this paper.1

1Note that our proposed auction can also be well applied in scenarios
where each FLSD can select multiple DOs or UAVs. Under this circumstance,
each DO (or UAV) can be seen as multiple DOs, regarding different FLSDs’
demands. This topic will be studied as an interesting future work.
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Fig. 2. Multiple FL services trading based on the proposed reverse auction
model.

To guarantee the auction efficiency and trading stability
among the FLSDs, DOs and UAVs, a trustworthy third party
(e.g., base station, road side unit, etc) is introduced as a
auctioneer to manage the auction process. Fig. 2 illustrates
the proposed auction-based FL service market. Major notations
and definitions are summarized in Table I.

B. Auction participants

1) Data-sellers: As mentioned previously, the considered
region is divided into a set of M geographically isolated
DOs, denoted by M = {1, . . . ,m, . . . ,M}, e.g., through
a clustering or partitioning algorithm [27]. For analytical
simplicity, we assume that each DO m ∈ M has a set
of identically distributed clients, where each of which is
equipped with different sensors (e.g., camera, temperature
sensor, acceleration sensor), and thus can collect different
training data sets (types) for different ML models. Suppose
that clients can collect L types of data sets associated with L
ML models. Generally, training performance of an ML model
can be approximated by the collective data quality (e.g., overall
data size and data distribution [15], [32]). For example, the
relationship between the test accuracy ∆ and data size d on
the MNIST data set can be fitted into a concave function [15],
given by the following (1),

∆ = α1 ∗ log(1 + α2 ∗ d), (1)

where α1 and α2 are positive curve fitting parameters.
In this paper, we mainly consider the overall data size of

a DO as the indicator of collective data quality (complicated
data quality parameters will be considered in our future work),
where the data size vector of DO m regarding L data sets is
denoted by ~dm = (dm,1, . . . , dm,l, . . . , dm,L). Notably, to ease
concerns about data distribution, we assume the data sets of
DOs are independent and identically distributed, and can cover
all the data classes for each FLSD. When DO m participates
in the auction, it submits a bundle Bd

m =< ~dm, ~qm > to the
auctioneer, where ~qm = (qm,1, . . . , qm,l, . . . , qm,L) represents
the sell-bid vector of DO m and L data sets. Moreover, let
~cm = (cm,1, . . . , cm,l, . . . , cm,L) denote the corresponding
data cost vector, where cm,l = σm,ldm,l describes the data
cost of data set l, and σm,l represents the average unit data
cost (and the local training cost) of all the clients in DO m,
which mainly indicates the differences between different data
set types and data-seller types. The data costs mainly rely on
each DO’s private values and are unavailable to others.

TABLE I
MAJOR NOTATIONS AND DEFINITIONS

Notation Definition
M/N/L Number of data-sellers/UAV-sellers/Buyers
M/N/L Set of data-sellers/UAV-sellers/Buyers

~dm Data size vector of data-seller m
qm,l Sell-bid of data-seller m for buyer l
cm,l Data cost of data-seller m for buyer l
σm,l Unit data cost of data-seller m for buyer l
efn,m Flying cost of UAV-seller n to data-seller m
λn Unit flying cost of UAV-seller n
tn,m Distance between UAV-seller n and data-seller m
esn,l

Service cost of UAV-seller n for buyer l
en,(m,l) Total cost of UAV-seller n
sn,m,l Sell bid of UAV-seller n
vl,(m,n) Valuation of buyer l with seller pair (m,n)
xl,m,n Winner determination decision 0-1 variable

X Winner determination decision matrix
pdm Payment of data-seller m
pun Payment of UAV-seller n

Ud
m/U

u
n/U

b
l

Revenue of data-seller m/UAV-seller n/buyer l
Ml Virtual data-seller set for buyer l
Nl,m Virtual UAV-seller set for buyer l
Jl,(m,n) Joint bid of seller pair (m,n) for buyer l
P f
m,n Total payment of seller pair (m,n)

TA/Tl Preference list of auctioneer/ buyer l

2) UAV-sellers: Considering a set N =
{1, 2, . . . , n, . . . , N} of N independent UAVs, where
each UAV n ∈ N can be regarded as a UAV-seller2. Once a
UAV is employed to serve a DO, costs are incurred, which
comprises two key parts: UAV flying cost ~efn and service cost
~esn. The flying cost accounts for the travel delay and energy
cost when UAV n flies to DO m before the training starts,
depending on the traversal distance tn,m between its starting
point and DO m. Thus, the flying cost efn,m ∈ ~efn of UAV n
for DO m is calculated by the following (2),

efn,m = λntn,m, (2)

where λn is the unit flying cost (e.g., unit time cost, unit
energy cost) associated with UAV n.

Service cost mainly concerns the cost during the UAV
service period (e.g., communication cost, UAV hovering cost).
Since different ML models have different model sizes and
training requirements, the service cost mainly relies on the
type of learning model. For analytical simplicity, the trivial
details of UAV communications, such as model uploading/
broadcasting are omitted in the proposed auction (more details
can refer to existing works, e.g., [28]). The service cost of UAV
n for FLSD l can be quantified by the following (3),

esn,l = f(Θn,l), (3)

where f(·) represents a monotone function that determines the

2Note that each UAV n can be regarded as a single UAV or a group of
UAVs of the same type.
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service cost of UAV in different scenarios3. Θn,l indicates 
the properties of UAV n when serving FLSD l, such as the 
computing ability (e.g., CPU, GPU), the communication data 
rate and reliability. This function can be altered according to 
specific s cenarios. C orrespondingly, t he t otal c ost f or UAV n
to support the training of FL service l with DO m can be 
denoted as,

en,(m,l) = efn,m + esn,l, (4)

thus, the total cost of UAV-seller n can be denoted as a matrix
en,(m,l) ∈ En, which captures the bidirectional dependence of
UAV-sellers.

Consequently, when UAV n participates in the market, it
submits a bundle Bu

n =< ~t, ~Θn,Sn > to the auctioneer, where
~t is the traversal distance vector of M DOs, and ~Θn represents
the general service capability vector. And Sn is the sell-bid
matrix of size M ∗L, where sn,m,l ∈ Sn stands for the sell-bid
of UAV n to serve FLSD l with DO m.

3) Buyers: Considering a set of L disparate FLSDs in the
proposed market, as denoted by L = {1, . . . , l, . . . , L}. Each
FLSD l4 acts as a buyer that requires to train an FL model
l to fulfill its service requirement. Similarly, buyer l submits
the corresponding bid information dl to the auctioneer, where
dl denotes the corresponding service requirement, which is
the minimum data size that can satisfy the service require-
ment5. Since different DOs and UAVs can bring different
service qualities, each buyer l holds a private value matrix
Vl = {vl,(m,n)|m ∈ M, n ∈ N}, where vl,(m,n) indicates
the private valuation which represents the monetary reward
obtained by l when the service requirement is met by sellers
m and n; while vl,(m,n) = 0, otherwise. Then, the valuation
of buyer l is defined as (5),

vl,(m,n) = Ψ(dm,l,Θn,l), (5)

where Ψ(· ) represents a general monotonic function.
4) Auctioneer: As shown in Fig. 2, the proposed auction

process can be managed by the auctioneer via solving the
following key problems:
• Winner determination (FLSD-DO-UAV matching): After

receiving the sell-bids from data-sellers and UAV-sellers
as well as service requirements from buyers, the auction-
eer initializes the auction process and decides winning
buyers and winning sellers. Specifically, the auctioneer
matches each winning buyer to applicable winning data-
seller and UAV-seller (one-to-one-to-one matching), i.e.,
xl,m,n : {l : l ∈ L}→{m : m ∈ M}→{n : n ∈ N}.
Specifically, xl,m,n represents the binary winner determi-
nation variable, where xl,m,n = 1 when buyer l wins the

3Note that service cost involves factors such as delay or energy consumption
of UAV and clients during the UAV service period, while this paper puts
less emphasis on the exact models of delay and energy consumption for
the following two reasons. First, we pay less attention on any specific cost
functions since a general quantitative cost is sufficient for the auction process,
as also supported by existing works [15], [34]–[37]. Second, our proposed
mechanism can also be well applied when considering detailed delay and
energy consumption models as proposed in [16] and [17], although there may
be some differences associated with mathematical derivations (similar ideas
can be found in [38])

4We use l to denote a FLSD, the FL service of the corresponding FLSD,
the corresponding data type of a DO and a buyer in this paper.

5We assume dl can be estimated according to a similar function as Eq. (1),
however, it is out of the scope of this paper to give the detail functions for
different ML models.

auction and can be matched to winning sellers m and n;
otherwise, xl,m,n, = 0.

• Payment rule: The auctioneer further determines the final
payments for winning sellers from corresponding buyers
with a feasible payment rule, namely, the final payment
profiles of the sellers. Let ~P d =< pd1, . . . , p

d
m, . . . , p

d
M >

and ~Pu =< pu1 , . . . , p
u
n, . . . , p

u
N > denote the final

payment profiles of M data-sellers and N UAV-sellers,
respectively. Apparently, buyers/sellers pay/receive noth-
ing if they fail in the proposed auction. Besides, to
promote the payment transaction between buyers and
sellers in practice, a centralized credit-based transaction
management system (e.g., as presented in [23] and [39]),
can be adopted. Specifically, all the buyers and sellers can
have bank accounts in a dedicated band entity, and when
the trading among the buyers and the sellers is over, the
buyers can transfer payments to the designated sellers’
accounts through the bank. Moreover, the innovative
development of electronic payment makes the transaction
management more convenient.

C. Revenues and economical properties
Key revenue functions and properties associated with the

proposed auction are introduced hereafter.
1) Revenues of participants:

Definition 1. (Revenue of data-seller): The revenue of data-
seller m is defined as the difference between the final received
payment pdm and the bid qm,l, i.e.,

Ud
m =

∑
l∈L

∑
n∈N

xl,m,n(pdm − qm,l). (6)

Definition 2. (Revenue of UAV-seller): The revenue of UAV-
seller n is defined by the difference between the final received
payment pun and the bid sn,(m,l), i.e.,

Uu
n =

∑
l∈L

∑
m∈M

xl,m,n(pun − sn,(m,l)). (7)

Definition 3. (Revenue of buyer): The revenue of buyer l is
defined as the difference between the valuation vl,(m,n) and
total bid (qm,l + sn,(m,l)), which can be regarded as the
maximum gain brought by the trading, i.e.,

U l
b =

∑
m∈M

∑
n∈N

xl,m,n

(
vl,(m,n) − (qm,l + sn,(m,l))

)
. (8)

2) Economical properties: In this paper, we consider a
single-round and sealed-bid auction without collusion among
the auction participants. Major properties considered in the
auction mechanism design are :
• Truthfulness (Incentive Compatibility). An auction is

truthful (incentive compatible) if all the auction par-
ticipants can maximize their revenues when bidding
truthfully, i.e., for each data-seller m and UAV-seller n,
qm,l = cm,l and sn,(m,l) = en,(m,l) holds, and none of
them can increase their revenues by misreporting the bid
information. For example, if data-seller m gets revenue
Ud
m and U

d

m for bidding truthfully and untruthfully, re-
spectively, Ud

m ≥ U
d

m always holds in a truthful auction.
• Individual Rationality. An auction is individual rational

if all the winning sellers and buyers can get non-negative
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revenues. For example, if data-seller m wins the auction,
then Ud

m ≥ 0 always holds in a individually rational
auction. In addition, if an auction is both truthful and
individual rational, then the auction is strategy-proof [40].

• Computational Efficiency. An auction is computationally
efficient if the auction results (i.e., winner determination
and final payment profiles) can be obtained within poly-
nomial time.

D. Problem formulation

In this paper, the proposed auction mechanism aims to
achieve part or all of the above-mentioned properties while
maximizing the overall revenue of buyers F (xl,m,n) as given
by the following (9), via optimizing the decision matrix
X = {xl,m,n|l ∈ L,m ∈M, n ∈ N},

F (xl,m,n) =
∑
l∈L

∑
m∈M

∑
n∈N

xl,m,nvl,(m,n)−∑
l∈L

∑
m∈M

∑
n∈N

xl,m,n(qm,l + sn,(m,l)).
(9)

Thus, the proposed auction is formulated by the following
optimization problem, as shown by (10).

max
X

F (xl,m,n) (10)

s.t. xl,m,n ∈ X ∈ {0, 1}, (10a)∑
m∈M

xl,m,n ≤ 1,∀l ∈ L, (10b)∑
l∈L

xl,m,n ≤ 1,∀m ∈M, (10c)∑
l∈L

∑
m∈M

xl,m,n ≤ 1,∀n ∈ N , (10d)

dm,l ≥ dl,∀xl,m,n = 1,m ∈M, l ∈ L. (10e)

Specifically, constraint (10b) ensures that each buyer can
only be matched to at most one data-seller, that is, each FL
service l can only be assigned to at most one DO. Constraint
(10c) indicates each data-seller can only provide service for at
most one buyer. Similarly, constraint in (10d) ensures only one
UAV-seller can be employed to serve one buyer with a data-
seller. Constraint (10e) enforces the winning data-seller should
satisfy the data size requirement. Thus problem (10) with
constraints (10a)-(10d) presents a 0-1 integer programming
problem, which is proved to be NP-Hard and computationally
intractable [41], [42].

E. Challenges of mechanism design

Notably, the proposed auction model is difficult to be
regarded as a standard reverse auction or double auction due
to the following challenges:
• Seller combination: Different from conventional auctions

with single seller type, our proposed auction considers
two seller types (data-sellers and UAV-sellers), where the
buyer-seller matching problem becomes a complicated
tripartite graph matching problem, i.e., a hypergraph
matching problem, which is generally NP-Hard [43].
Thus, it is difficult to find efficient algorithms to obtain

the optimal solution, especially when facing a large prob-
lem size, e.g., large number of buyers and sellers [44].
It is worth noting that our proposed auction also differs
from the hierarchical or tiered double auctions studied in
[45] and [46], which consider two kinds of sellers selling
the same kind of commodities with a superior and sub-
ordinate relation; while in the proposed auction, sellers
are providing different commodities independently. Be-
sides, our proposed auction applies two different purchase
mechanisms for two seller types at the same time, that
is, purchasing data set (continuous purchase) from data-
sellers, and UAV services (binary purchase) from UAV-
sellers, which is different from existing work [23], that
only considers single purchase mechanism at a time.

• Multi-type commodity: Most existing auctions mainly
focus on single item-type, namely, each seller/buyer only
sells/buys a single unit of a single type commodity, e.g.,
McAfee double auction [47]. Although some works have
extended the McAfee double auction to multi item-type
or multi-unit settings, e.g., [48] and [49], our proposed
auction is facing challenges to be solved directly by these
methods due to the following reasons. First, each data-
seller posses multi-type of commodities (data sets) with
a single-unit. Then, each UAV-seller only posses single-
type single-unit commodities (UAV services). Also, each
buyer only prefers to buy a single item of a specific type
from a data-seller. Therefore, our proposed auction model
represents a reverse auction with mutually exclusive
constraints.

• Heterogeneous bid: Due to the difference of data volume
and unit cost, each data-seller’s sell-bids for different data
sets are heterogeneous, which lead to a sell-bid vector.
Similarly, each UAV-seller also has a heterogeneous bid
on data-sellers and buyers, since they jointly determine
the cost of each UAV-seller, which requires a sell-bid
matrix. Therefore, heterogeneous bids of the participants
poses great challenge to solve this problem.

IV. VCG-BASED OPTIMAL REVERSE AUCTION

This section introduces an interesting VCG-based optimal
reverse auction mechanism by considering the joint bid asso-
ciated with data-sellers and UAV-sellers.

A. Seller pair and joint bid
Each data-seller sells L types of data with single unit, which

can thus be regarded as a group of L virtual data-sellers, where
each virtual data-seller sells a single data set. Overall, there
are M ∗ L virtual data-sellers. Similarly, each UAV-seller has
a bid matrix with size M ∗ L, and can be decomposed into
a set of M ∗ L virtual UAV-sellers, where N ∗M ∗ L virtual
UAV-sellers can be considered. For notational simplicity, we
denote the set of M virtual data-sellers selling data set l as
Ml = {1l, . . . ,ml, . . . ,Ml}, where ml is the virtual data-
seller selling data set l of data-seller m. Similarly, for any
given buyer l and data-seller m ∈Ml, N feasible virtual UAV-
sellers can be denoted as Nl,m = {1l,m, . . . , nl,m, . . . , Nl,m}.

Accordingly, the proposed auction can be regarded as a
reverse auction for each buyer l with M virtual data-sellers and
N ∗M virtual UAV-sellers. Since conventional reverse auction
only considers single seller type which brings difficulties in
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Algorithm 1 VCG-Based Optimal Reverse Auction Algorithm
Input: Buyer set L, seller setsM,N , bid information of each seller

and buyer Bd
m, ~cm, En, Bu

n , dl, Vl.
Output: Winner determination result X, final payment profile ~P d

of data-sellers and ~Pu of UAV-sellers.
1: Initializes X with all zeros. Virtualize data-sellers, UAV-sellers,

and obtain the joint bid matrix Jl for each buyer l.
2: Solve the problem (10) and obtain the optimal solution (winning

buyers and sellers) X∗.
3: for any buyer-seller pair (l, i, k) do
4: if xl,i,k = 1 then
5: Calculate the total payment P f

i,k to the winning seller pair
(i, k) with the following payment rule defined in (11).

6: Calculate the received payment of the winning data-seller
i and UAV-seller k from any winning buyer l as:

pdi =
qi,l

Jl,(i,k)
P f
i,k, puk =

sk,i,l

Jl,(i,k)
P f
i,k.

7: else
8: pdi ⇐ 0, puk ⇐ 0.
9: end if

10: end for

handling the auction procedure, an interesting idea of joint bid
is proposed in this paper. The definition of seller pair and joint
bid is detailed by the following Definition 4.

Definition 4. (Seller pair and joint bid): For each buyer l ∈ L,
the auctioneer combines a data-seller m ∈ Ml and a UAV-
seller n ∈ N(l,m) as a seller pair (m,n), and the sum of
their individual bid can be termed as a joint bid Jl,(m,n), i.e.,
Jl,(m,n) = qm,l + sn,m,l.

Since the sell-bids of each Ml represents a vector of size
1 ∗M and is a matrix of size N ∗M of N(l,m), we can use a
matrix Jl,(m,n) ∈ Jl of size N ∗M to represent the joint bid of
seller pairs regarding each buyer. Accordingly, the auctioneer
can conduct the proposed reverse auction based on joint bid.

B. VCG-based optimal reverse auction algorithm
The proposed VCG-based optimal reverse auction for Mul-

tiple FL service market is summarized in Algorithm 1.
Specifically, we can obtain the joint bid of each seller pair for
each buyer by line 1. Getting the optimal solution of problem
(10) relies on determining the winning buyers and seller-pairs
(line 2 in Algorithm 1), which represents the key issue to
ensure the truthfulness of VCG mechanism. Moreover, VCG-
based payment rule determines the final total payment P f

i,k of
the winning seller pair (i, k) with joint bid Jl,(i,k) as follows,

P f
i,k = F (x∗l,m,n)− F\(i,k)(y∗l,m,n) + Jl,(i,k), (11)

where F (x∗l,m,n) is the the value of function (9) under the
optimal decision matrix X∗ and F\(i,k)(y∗l,m,n) represents the
optimal result when data-seller i and UAV-seller k do not
join in the auction, and y∗l,m,n stands for the optimal solution
without seller pair (i, k). From lines 6-9 in Algorithm 1, the
final payment can be allocated to the data-seller and UAV-
seller in proportion to their sell bids.

C. Complexity and properties analysis
The computational complexity of Algorithm 1 is dominated

by the optimal solution of the problem (10). The computa-
tion complexity of winner determination is O(2LMN ) and
O(L2LMN ) for payment rule.

Since the joint bid is the sum of sell-bids of both data-
seller and UAV-seller, the auction properties can be proved
under considering the following three cases:
• Case 1: Both sellers bid truthfully and the joint bid equals

to the total cost.
• Case 2: At least one seller bids untruthfully and the joint

bid does not equal to the total cost.
• Case 3: Both sellers bid untruthfully but the joint bid still

equals to the total cost, e.g., one underbids and the other
overbids.

Then, we first focus on the first two cases and prove the overall
truthfulness of seller pair. Based on definitions in Section III,
we give the definition of seller pair’s revenue as,

Definition 5. (Revenue of seller pair): For any seller pair
(i, k) associated with data-seller i ∈Ml and UAV-seller n ∈
Nl,i, the corresponding revenue is defined as the difference
between the final total payment P f

i,k and the true joint bid
Jl,(i,k),

U(i,k) =
∑
l∈L

xl,i,k

(
P f
i,k − Jl,(i,k)

)
. (12)

Theorem 1. (Truthfulness of seller pair): In the VCG-based
reverse auction of FL service market, for any seller pair (i, k)
where data-seller i ∈ Ml and UAV-seller k ∈ Nl,i, having
joint bid equals to the total cost (i.e., Jl,(i,k) = ci,l + ek,(i,l))
is a weakly dominant strategy.

Proof. Based on the Definition 5 and (11), for any given
winning buyer l and seller pair (i, k), the seller pair’s revenue
can be denoted as follows with truthful bid,

U(i,k) = F (x∗l,m,n)− F\(i,k)(y∗l,m,n), (13)

and the revenue when seller pair (i, k) bids untruthfully with
J̄l,(i,k) is

U (i,k) =F (x∗l,m,n)− F\(i,k)(y∗l,m,n) + J l,(i,k)−
(qi,l + sk,(i,l)).

(14)

Note that F\(i,k)(y∗l,m,n) = F\(i,k)(y
∗
l,m,n), since they both

denote the optimal solution excluding seller pair (i, k), the
difference of U(i,k) and U (i,k) can be denoted as

U(i,k) − U (i,k) =F (x∗l,m,n)− F (x∗l,m,n)− J l,(i,k)+

(qi,l + sk,(i,l)),
(15)

where

F (x∗l,m,n) =
∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nvl,(m,n)−∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nJl,(m,n),
(16)

and

F (x∗l,m,n) =
∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nvl,(m,n)−∑
l∈L

∑
m∈Ml,
m6=i

∑
n∈Nl,m,

n6=k

x∗l,m,nJl,(m,n)−

J l,(i,k).

(17)
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By substituting (16) and (17) into (15), we have

U(i,k) − U (i,k) =

∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nvl,(m,n)−

∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nJl,(m,n)

−
∑

l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nvl,(m,n)−

∑
l∈L

∑
m∈Ml

∑
n∈Nl,m

x∗l,m,nJl,(m,n)



(18)

Since x∗l,m,n is the optimal solution of (10), which can
definitely achieve an overall revenue larger than or equal to
other solutions (e.g, x∗l,m,n). Thus, U(i,k)−U (i,k) ≥ 0 always
holds according to (18), which indicates each seller pair has
no incentive to bid untruthfully.

Theorem 2. (Individual rationality of seller pair): In the
VCG-based reverse auction of FL service market, for any data-
seller i ∈ Ml and UAV-seller k ∈ Nl,i, seller pair (i, k)
possesses the property of individual rationality.

Proof. Given that all seller pairs are truthful in VCG-based re-
verse auction, the revenue of any seller pair (i, k) can be calcu-
lated by (13). Since F (x∗l,m,n) stands for the optimal solution
of upon considering all the participants and F\(i,k)(y

∗
l,m,n)

represents the optimal solution excluding seller pair (i, k), the
solution space of y∗l,m,n can be regarded as a subset of that
of x∗l,m,n. Thus, we have F (x∗l,m,n) − F\(i,k)(y

∗
l,m,n) ≥ 0.

Consequently, each seller pair is individual rational and can
obtain non-negative revenue when winning the auction.

Corollary 1. In the VCG-based reverse auction of FL service
market, each data-seller i ∈ Ml and UAV-seller k ∈ Nl,i of
seller pair (i, k) is individual rational.

Proof. The above-mentioned analysis has proved that each
seller pair is individual rational. According to the payment rule
in Algorithm 1, it is straight to conclude that each data-seller
or UAV-seller can obtain non-negative revenue when winning
the auction. Thus each individual seller of each seller pair is
individual rational.

Corollary 2. In the VCG-based reverse auction of FL service
market, for any data-seller i ∈ Ml and UAV-seller k ∈ Nl,i,
having sell-bids equals to the cost (qi,l = ci,l, sk,(i,l) =
ek,(i,l)) is a weakly dominant strategy.

Proof. Although we have proved that having the joint bid
equals to the total cost is a weakly dominant strategy for
any seller pairs, Case 3 may exist when considering both the
sellers bid untruthfully, while the joint bid still equals to the
total cost. However, since we assume that there is no collusion
or negotiation between the sellers, no individual seller has
incentives to bid untruthfully. This can be proved via a simple
example.

Suppose that an untruthful seller pair (i, k), with the cor-
responding joint bid Jl,(i,k) equals to the total cost, where
data-seller i underbids with qi,l and UAV-seller k overbids

with sk,(i,l) where qi,l + sk,(i,l) = Jl,(i,k), qi,l = qi,l − σ,
sk,(i,l) = qi,l + σ, and σ is positive. Let the seller pair’s total
payment with truthful joint bid Jl,(i,k) be P f

i,k. Then, the data-
seller’s revenue with truthful and untruthful bid can be denoted
as (19), and (20), respectively,

Ud
i =

qi,l
Jl,(i,k)

P f
i,k − qi,l, (19)

U
d

i =
qi,l

Jl,(i,k)
P f
i,k − qi,l. (20)

The difference of Ud
i and U

d

i can be denoted as

Ud
i − U

d

i =
P f
i,k

Jl,(i,k)
(qi,l − qi,l)− (qi,l − qi,l)

=

(
P f
i,k

Jl,(i,k)
− 1

)
(qi,l − qi,l).

(21)

As (qi,l− qi,l) = σ > 0, and
P f

i,k

jl,(i,k)
≥ 1 holds based on the

individual rationality of seller pair. Thus, Ud
i −U

d

i ≥ 0 always
holds, which indicates sellers cannot obtain larger revenue
by underbidding. On the contrary, sellers have incentives to
overbids as long as remain the joint bid truthful. However,
since we assume there is no collusion and interest transfer
between the sellers, thus no sellers have incentives to sacrifice
their revenue to subsidize the others. Thus, truthful bidding is
a weakly dominant strategy for individual seller in each seller
pair.

Finally, we can conclude that the proposed VCG-based
reverse auction of FL service market is strategy-proof, which,
however, is not computationally efficient.

V. ONE-SIDED MATCHING-BASED SUBOPTIMAL REVERSE
AUCTION

Although the VCG-based reverse auction can ensure the
optimality, as well as the truthfulness and individual rationality
of sellers, the exponential complexity of winner determination
and payment rule impedes it in practical application with
a large number of auction participants. Thus, this section
proposes a computationally efficient winner determination and
payment rule based on one-sided matching, which can also
ensure the truthfulness and individual rationality of sellers.

A. One-sided matching-based mechanism design

To maximize the overall revenue of buyers, the auctioneer
will match the buyers to feasible sellers with maximum overall
revenue, while each buyer prefers to select sellers to maximize
its revenue as well. Moreover, sellers sell their commodities to
buyers to obtain revenue but without initiatives in the reverse
auction. Thus, preference priority can be considered from the
perspective of auctioneer and buyers in such a one-to-one one-
sided matching. Based on (8), we define the preference value
for any buyer-seller pair (l,m, n), l ∈ L,m ∈ Ml, n ∈ Nl,m

as:
Rl,m,n = vl,(m,n) − Jl,(m,n). (22)
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From the view of auctioneer, it can hold a preference list
denoted by TA (which contains the indexes of buyer-seller
pairs) for any buyer-seller pair in a non-ascending order so as
to maximize the overall revenue. Accordingly, the preference
list can be established based on the preference relationship as
(23),

TA : (l,m, n) �A (l, i, k)⇔ Rl,m,n > Rl,i,k, (23)

where �A means the auctioneer prefers the left than the right.
Similarly, each buyer l can establish a preference list

Tl (indexes of seller pairs) by sorting the preference value
Rl,m,n,m ∈ Ml, n ∈ Nl,m in a non-ascending order, which
can be denoted as,

Tl : (l, (m,n)) �l (l, (i, k))⇔ Rl,m,n > Rl,i,k. (24)

Finally, we can obtain TA and Tl for both the auctioneer
and each buyer l, respectively. To ensure the truthfulness of
the sellers, we add a virtual NULL seller pair at the end of
Tl with preference value equals 0, which describing that if
no real sellers wins the auction for the buyer, the buyer is
assigned to a null seller pair. Particularly, if any preference
value Rl,m,n < 0, then buyer-seller pair (l,m, n) will not be
stored in TA and Tl to prevent non-positive revenue.

Obviously, each buyer tends to select the top sell pairs in its
preference list. However, as each seller pair can only trade with
one buyer, the auctioneer prefers to assign the seller pair to
the buyer with higher preference value. For example, assume
seller pair (m,n) is on the top of list of buyer l and l′ at the
same time, the auctioneer assigns seller pair (m,n) to buyer
l if Rl,m,n > Rl′,m,n. Considering the preference lists of the
auctioneer and buyers, winning buyer-seller pairs are matched
accordingly in the one-sided matching process until all buyers
are matched.

B. Suboptimal winner determination and payment rule
To facilitate the presentation of our proposed winner deter-

mination and payment rule, the definition of critical value is
given below:

Definition 6. (Critical value): The critical value of any buyer-
seller pair (l,m, n) in one-sided matching is defined as

R̃l,m,n = v
l,(̃m,n)

− J
l,(̃m,n)

, (25)

where (̃m,n) is the first seller pair located behind seller pair
(m,n) in the preference list Tl.

The overall one-sided matching-based suboptimal reverse
auction mechanism mainly compromises two phases: 1) one-
sided one-to-one matching based suboptimal winner determi-
nation; 2) and payment calculation. We first give the payment
rule based on the one-sided matching result. Specifically, the
total payment P f

i,k of the winning seller pair (i, k) from buyer
l is calculated as

P f
i,k = vl,(i,k) − R̃l,i,k. (26)

We summarize the one-sided matching based suboptimal
reverse auction in Algorithm 2. By applying lines 1-4, we
calculate the preference value by given the input parameter,
then we build the preference list for the auctioneer and buyers
by sorting the preference value in non-ascending order in

Algorithm 2 One-Sided Matching-Based Suboptimal Reverse
Auction Algorithm
Input: Buyer set L, seller setsM,N , bid information of each seller

and buyer Bd
m, ~cm, En, Bu

n , dl, Vl.
Output: Winner determination result X, final payment profile ~P d

of data-sellers and ~Pu of UAV-sellers.
1: Initializes X with all zeros.Virtualize data-sellers, UAV-sellers,

and obtain the joint matrix Jl for each buyer l.
2: for buyer l ∈M and seller pair (i, k), i ∈Ml, k ∈ Nl,i do
3: Calculate the preference value Rl,i,k according to (22).
4: end for
5: TA ⇐ Sort(l ∈ L, i ∈ Ml, k ∈ Nl,i|Rl,i,k, “non −

ascending′′).
6: Tl ⇐ Sort(i ∈Ml, k ∈ Nl,i|Rl,i,k, “non− ascending′′).
7: W ⇐M.
8: while TA 6= ∅ andW 6= ∅ do %Phase 1: Winner determination
9: for each first entry (l, i, k) ∈ TA do

10: xl,i,k ⇐ 1
11: TA ⇐ TA\{all elements related to l, i, k}
12: W ⇐W \ {l}
13: end for
14: end while
15: for xl,i,k ∈ X do %Phase 2: Payment calculation
16: if xl,i,k = 1 then
17: Calculate the total payment P f

i,k of seller pair (i, k)
according to (27).

18: Calculate the received payment of the winning data-seller
i and UAV-seller k as:

pdi =
qi,l

Jl,(i,k)
P f
i,k, puk =

sk,i,l

Jl,(i,k)
P f
i,k.

19: else
20: pdi ⇐ 0, puk ⇐ 0.
21: end if
22: end for

lines 5-6. Lines 8-14 illustrate the one-sided matching process.
Finally, the final payment of the winning seller is calculated
in lines 15-21.

C. Complexity and properties analysis
In this subsection, we analyze the complexity and properties

of the proposed one-sided matching-based reverse auction.
Moreover, we prove that the one-sided matching-based reverse
auction is stable.

Theorem 3. (Computational efficiency): The proposed one-
sided matching-based reverse auction algorithm is computa-
tionally efficient.

Proof. In Algorithm 2, the time complexity of line 1-4
is O(LMN) and the two sort procedures in line 5 and
6 is O(LMNlog(LMN)) and O(MNlog(MN)), respec-
tively [40]. Similarly, the time complexity of line 8-21 is
O(2LMN). Thus, Algorithm 2 has overall polynomial time
complexity.

Theorem 4. (Truthfulness of seller pair): The proposed one-
sided matching-based reverse auction of FL service market is
truthful for each seller pair.

Proof. First, for any given seller pair (i, k) with truthful bid
Jl,(i,k) = ci,l + ek,(i,l), according to (12), (25) and (26), the
seller pair’s revenue can be denoted as,

U(i,k) = vl,(i,k) − R̃l,i,k − Jl,(i,k). (27)

Meanwhile, we assume a virtual seller pair (i′, k′) who is
exactly the same as the seller pair (i, k) except the sell-bid, is
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considered as the case that seller pair (i, k) bids untruthfully
with a different joint bid Jl,(i,k)

′, thus its revenue can be
denoted as,

U ′(i,k) = vl,(i,k)
′ − R̃l,i,k

′
− Jl,(i,k). (28)

Then, U(i,k) − U ′(i,k) can be denoted as,

U(i,k) − U ′(i,k) = vl,(i,k) − R̃l,i,k − vl,(i,k)′ + R̃l,i,k

′

= R̃l,i,k

′
− R̃l,i,k,

(29)

note that vl,(i,k) = vl,(i,k)
′ since they have same properties.

Generally, there are two cases: seller pair (i, k) wins or loses
in the original auction. First, we assume that seller pair (i, k)
used to be a winner and obtains revenue U(i,k).

1) If Jl,(i,k)
′ < Jl,(i,k), in this case, seller pair (i′, k′) always

wins as it must be located before (i, k) or at its original
position in Tl, which means R̃l,i,k

′
≥ R̃l,i,k, thus we

have U(i,k) − U ′(i,k) ≥ 0.
2) If Jl,(i,k)

′ > Jl,(i,k), it is obvious that seller pair (i′, k′)
will locate at the same position or behind (i, k) in Tl: if
(i′, k′) stays at the original position, then it obtains the
revenue U ′(i,k) = U(i,k) according to the payment rule; if
seller pair (i′, k′) located behind (i, k) in Tl, then (i′, k′)
definitely loses and gets revenue U ′(i,k) = 0, as there
must be another seller pair can offer higher revenue to
be matched with buyer l.

Second, we consider seller pair (i, k) used to be a loser and
obtains U(i,k) = 0 :

1) If Jl,(i,k)
′ < Jl,(i,k), in this case, there are possibilities

that seller pair (i′, k′) locates at the same position or
before (i, k). Specifically, if (i′, k′) stays at the original
location, then it still loses and gets revenue U ′(i,k) = 0.
If (i′, k′) locates before (i, k) and loses, it still obtains
revenue U ′(i,k) = 0; if (i′, k′) locates before (i, k) and
wins, then it gets revenue U ′(i,k), according to (22) and
(28), U ′(i,k) can be rewrite as follows:

U ′(i,k) = Rl,i,k − R̃l,i,k

′
, (30)

thus if seller pair (i′, k′) is in front of (i, k), we have
Rl,i,k < R̃l,i,k

′
and U ′(i,k) < U(i,k) = 0, which means it

is not encouraged for an individual rational seller.
2) If Jl,(i,k)

′ > Jl,(i,k), obviously, seller pair (i′, k′) always
loses and obtains revenue U ′(i,k) = 0.

Thus, we can conclude that any seller pair (i, k) cannot
obtain higher revenue by bidding untruthfully.

Theorem 5. (Individual rationality of seller pair): The pro-
posed one-sided matching-based reverse auction of FL service
market is individually rational for each seller pair.

Proof. As denoted in (27), the revenue of any winning seller
pair (i, k) can be further denoted as,

U(i,k) = vl,(i,k) − R̃l,i,k − Jl,(i,k)
= (vl,(i,k) − Jl,(i,k))− R̃l,i,k

= Rl,i,k − R̃l,i,k.

(31)

Since R̃l,i,k is the preference value of seller pair located
behind (i, k) in Tl, thus Rl,i,k − R̃l,i,k ≥ 0 always holds,
thus each seller pair can obtain non-negative revenue when it
wins the auction.

Similarly, based on the truthfulness and individual rational-
ity of seller pair, we can also have the following corollary.

Corollary 3. In the one-sided matching-based reverse auction
of FL service market, each data-seller and UAV-seller is
individual rational and truthful.

Proof. The proof is the same as the proof in Section IV and
is omitted here.

Although the truthfulness and individual rationality of the
proposed one-sided matching-based reverse auction have been
proved, considering the selfishness of buyers and sellers,
matching stability is critical to ensure the stability and effi-
ciency of reverse auction. We first present the definition of
stability of reverse auction in Definition 7.

Definition 7. (Stability of reverse auction): The proposed one-
sided matching-based reverse auction is said to be stable if no
buyer or sellers have incentives to deviate from the auction
result.

Theorem 6. The proposed one-sided matching-based reverse
auction of FL service market is stable.

Proof. First, for sellers, based on the mechanism of reverse
auction, once a seller wins the auction, it can obtain non-
negative revenue and this seller cannot refuse to deliver ser-
vices. Besides, if any buyer l is matched to the seller pair (i, k),
each buyer has two choices. If buyer l quits, then its service
requirement cannot be fulfilled and thus get zero revenue,
which clearly is not a dominant strategy. When the buyer
intends to replace its auction result to obtain higher revenue,
however, which is not possible, since the matching result is
determined by the preference list of TA which maximizes the
overall revenue. Thus, both buyers and sellers are stable in the
proposed one-sided matching-based reverse auction.

Remark 1. The winning buyers are generally truthful and
individually rational in the proposed reverse auction.

Proof. Since buyers cannot determine the final trading prices
in the proposed reverse auction, the corresponding truthfulness
and individual rationality of buyers are often overlooked, e.g.,
in [32] and [42]. This part briefly discusses these two proper-
ties of winning buyers. First, submits a service requirement bid
lower than a buyer’s true need, will definitely fail to meet its
requirement. Besides, if a buyer reports a service requirement
bid higher than its true need, the corresponding payment may
increase since the payment relies heavily on the corresponding
service requirements. Apparently, each buyer has no incentive
to be untruthful in our proposed reverse auction model.

Individual rationality of winning buyers can be analyzed
from the following two views. First, in the VCG-based reverse
auction, since F (x∗l,m,n) − F\(i,k)(y∗l,m,n) ≥ 0 always holds
(see Theorem 2), we can conclude that if a buyer wins the
auction, it can obtain non-negative revenue. More intuitively,
a buyer can be selected as a winner iff it will not decrease the
overall revenue. Then, in the proposed one-sided matching-
based reverse auction, we build the preference list based on
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TABLE II
RUNNING TIME (SECONDS) OF DIFFERENT METHODS CONSIDERING VARIOUS NUMBER OF BUYERS/UAV-SELLERS/DATA-SELLERS

Methods
Problem size

1/5/5 3/5/5 5/5/5 7/5/5 9/5/5 1/3/5 2/4/6 3/5/7 4/6/8

Opt 10097 11384 13771 27799 2213192 7478 11901 25048 151866
Subopt 0.358 0.558 1.304 1.097 1.303 0.266 0.432 0.743 1.093
FOGA 3.94 5.43 15.50 81.01 1137.99 0.73 5.25 192.16 17870.20
HVPM 0.305 0.321 0.388 0.414 0.421 0.250 0.309 0.321 0.364
LCPM 0.277 0.331 0.350 0.411 0.424 0.279 0.310 0.329 0.382
RSBM 0.305 0.400 0.407 0.427 0.434 0.292 0.336 0.342 0.354
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Fig. 3. The obtained total revenue of buyers of different methods versus the number of buyers/UAV-sellers/data-sellers.

the preference value as defined in (22), and delete the buyer-
seller pair associated with any negative preference value. Thus,
the final winning buyers can always get non-negative revenues.

VI. SIMULATION AND PERFORMANCE EVALUATION

This section conducts comprehensive simulations to evalu-
ate the feasibility of our proposed reverse auction mechanisms.
Notably, this paper mainly focuses on the trading in the mul-
tiple FL services trading market based on general evaluation
functions (e.g., cost function, valuation function). Besides,
the proposed algorithms are executed before the specific FL
training starts, which means they are irrelevant to specific
FL algorithms and ML models (as also supported by existing
works [15]–[17], [32]) and can be applied in any distributed
learning schemes. To this end, numerical simulations based on
general assumptions of properties of participants are sufficient
to verify our proposed Algorithms. Specifically, the proposed
Algorithm 1 and Algorithm 2 are abbreviated as ”Opt” and
”Subopt” for notational simplicity. Moreover, to better evaluate
performance gains achieved by the proposed algorithms, while
considering the characteristics of problem given in (10), four
heuristic methods are considered as baselines [50]:
• Fragmental Optimization Genetic Algorithm (FOGA):

FOGA [51] is a heuristic algorithm that can be used to
solve tripartite matching problems, e.g., problem (10),
which is a combination of fragmental optimization and
genetic algorithm.

• High Valuation Preferred Method (HVPM): In HVPM,
a seller pair is matched to a buyer is of the highest value,
based on (5), under constraints (10b)-(10e), until all the
buyers are assigned to feasible seller pairs.

• Low Cost Preferred Method (LCPM): Similar to
HVPM, in LCPM, a seller pair is matched to a buyer
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Fig. 4. Individual rationality of seller-pairs and individual sellers upon
considering 8 buyers, 10 UAV-sellers and 12 data-sellers.

is of the lowest cost, under constraints (10b)-(10e), until
all the buyers are assigned to feasible seller pairs.

• Random Sampling-Based Method (RSBM): In RSBM,
a seller pair is randomly selected for each buyer, under
constraints (10b)-(10e), until all the buyers are assigned
to feasible seller pairs.

Notably, buyers may fail to be matched to feasible seller
pairs due to factors such as the conflicts among buyers, and
insufficient number of sellers.

A. Simulation settings

For data-sellers, we assume that the normalized data size
(normalized by 500 units6) dm,l of each data-seller m fol-
lows a uniform distribution [10, 30], and the unit data cost
σm,l can be randomly selected from a uniform distribution
[0.0002, 0.0004]. For UAV-sellers, we assume the fly distance
tn follows the distribution [10, 100] meters, while the unit

6One unit could be 1 KB, 1 MB or 1 GB data.
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TABLE III
DETAILED PERFORMANCE OF THE PROPOSED ONE-SIDED MATCHING-BASED REVERSE AUCTION UPON CONSIDERING 8 BUYERS, 10 UAV-SELLERS AND

12 DATA-SELLERS.

Winning pairUAV’s bidDO’ bidJoint bidTotal paymentSeller pair’s revenueUAV’s paymentUAV’s revenueDO’s paymentDO’s revenue
1/1/8 1.8304 2.6219 4.4523 4.6337 0.1814 1.9066 0.0762 2.7271 0.1052

2/12/7 1.6292 2.9789 4.0681 4.6187 0.0106 1.6329 0.0037 2.9858 0.0069
3/7/5 1.6438 3.2232 4.8670 4.8910 0.0240 1.6519 0.0081 3.2391 0.0159

4/10/4 1.1473 2.7552 3.9025 3.9537 0.0502 1.1624 0.0151 2.7913 0.0361
5/3/2 1.0655 3.0868 4.1523 4.2638 0.1115 1.0941 0.0286 3.1697 0.0829

6/11/10 1.2048 3.6317 4.8365 4.8609 0.0244 1.2109 0.0061 3.6500 0.0183
7/5/6 0.8124 2.4433 3.2557 3.2562 0.0005 0.8125 0.0001 2.4437 0.004
8/8/1 1.6318 3.8899 5.5217 5.5673 0.0456 1.6453 0.0135 3.9220 0.0321
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Fig. 5. Truthfulness of seller-pairs and individual sellers: a) UAV-seller bids truthfully and data-seller bids untruthfully; b) UAV-seller bids untruthfully and
data-seller bids truthfully; c) both sellers bid untruthfully when the joint bid remains truthful.

flying cost λn follows the distribution [0.02, 0.05]. For sim-
plicity, we mainly consider the UAV communication delay
during the model transmission as the estimation of UAV-
service cost function [32]7. Specifically, we assume the model
size of each buyer follows a uniform distribution [100, 500]
KB, while the communication rate between UAV-seller n and
data-seller m follows a uniform distribution [100, 300] KB/s
[16], so that the model transmission delay (namely, service
cost of UAV) can be calculated. For buyers, the valuation
function of each buyer is supposed to be calculated by a
log function α1 ∗ log(1 + α2 ∗ d) according to [15], where
α2 = 1 and α1 follows a uniform distribution [8, 12], which
can be different from various buyers. We set dl = 5000 for all
the buyers. We conduct the simulation with MATLAB 2021b
on Intel(R) Core(M) i7-11700F@2.5 GHz, and the simulation
results demonstrated in the following sections are the results
averaged over 1000 simulations (auctions), unless otherwise
stated.

B. Performance of running time
The running time performance comparison is detailed by

Table II, upon considering different number of buyers, UAV-
sellers, and data-sellers. For example, let 2/4/6 denote the
problem of 2 buyers, 4 UAV-sellers and 6 data-sellers. Notably,
the running time of the proposed Opt algorithm is about 102 to

7More complicated service costs can be replaced by considering specific
scenario or communication protocols as future work.

106 times that of the other five methods. Since a large number
of enumeration and permutation calculations are required
during the execution process of Opt algorithm, which thus
causes huge memory pressure and makes it computationally
intractable and unpractical in implementation. Moreover, it can
be observed that the proposed Subopt algorithm has the same
or lower level regarding running time in comparison with base-
line methods, which proves the corresponding computational
efficiency, and thus can achieve acceptable running time for
various problem sizes.

C. Performance of total revenue of buyers

The comparisons on the total revenue of buyers, i.e., the
value of F (xl,m,n) defined in (9), among six methods upon
considering various problem sizes, are demonstrated in Fig.
3. Firstly, Fig. 3 indicates that the proposed Subopt algorithm
achieves similar or approaches to the total revenue of FOGA
and the Opt algorithm, and greatly outperforms the other
three baseline methods. For example, compared with Opt,
the obtained total revenue is only decreased by 2.25% via
applying the proposed Subopt algorithm and decreased by
1.5%, 25.64%, 49.70%, and 47.30% when considering FOGA,
HVPM, LCPM, and RSBM, respectively, under problem size
6/8/10. Although FOGA achieves slightly larger revenue than
the Subopt algorithm under the cost of longer running time,
it fails to guarantee the properties of truthfulness, individual
rationality, and computational efficiency. Revisit the above-



13

mentioned running time performance, the proposed Subopt
algorithm can achieve a satisfying trade-off between running
time and total revenue, in comparison with FOGA. Then, Fig.
3(b), Fig. 3(c), and Fig. 3(d) illustrate the performance of
the total revenue versus the number of buyers, UAV-sellers,
and data-sellers, respectively, when keeping the number of
other two (of the three) parties fixed at 5. Obviously, the
total revenue of different methods increases with the increasing
number of participants, at different growth rates. Interestingly,
the growth rates of Opt, Subopt and FOGA slowed down
significantly after 5 (the value of x-axis), while other methods
can still maintain a slow growth. This is because as the
number of participants increases, other methods can obtain
better suboptimal solutions thanks to a larger searching space.

D. Performance of economical properties
Since the properties of the VCG-based reverse auction have

been extensively verified in existing works, we thus focus
on the properties (truthfulness and individual rationality) of
the proposed Subopt algorithm. Specifically, we conduct the
simulations under 8 buyers, 10 UAV-sellers, and 12 data-
sellers. Performance on individual rationality is shown in Fig.
4, with the joint bid and the total payment of winning seller
pairs (8 in this figure), as well as individual bids and the
corresponding payment of each UAV/data seller. For example,
2/12/7 means buyer 2 is matched to the winning UAV-seller
12 and data-seller 7. Notably, each winning seller can obtain a
final payment no less than its bid, which proves the individual
rationality of both seller pairs and individual sellers as given
in Theorem 5 and Corollary 3. To achieve better analysis,
detailed performance of each winning seller pair is shown by
Table III.

Fig. 5 illustrates the truthfulness of seller pairs and indi-
vidual sellers. As discussed in subsection C of Section IV,
three seller pairs (seller pair 8/1, 1/8, and 3/2) in Table III are
taken as examples. In Fig. 5(a), UAV-seller 8 bids truthfully
at 1.6318 while data-seller 1 bids untruthfully from 1.8899
to 5.8899. Notably, if data-seller 1 bids smaller than its cost,
the revenue of seller pair remains the same at 0.0456 and
becomes zero when data-seller 1 overbids, while data-seller 1
only obtains positive revenue 0.0321 when the bid equals its
cost 3.8899 (marked by a red circle), which indicates that any
individual seller or seller pair cannot obtain higher revenue by
bidding untruthfully, similar conclusion can also be concluded
from Fig. 3(b). In Fig. 3(c), UAV-seller 3 overbids from 1.0655
to 4.0655, and data-seller 2 underbids from 3.0688 to 0.0868,
and the joint bid remains truthful. It can be observed that the
seller pair’s revenue remains unchanged, and the UAV-seller’s
revenue increases with the increase of its bid, while data-
seller 2 only obtains negative revenue by underbidding, which
is consistent with the analysis in Corollary 2. Finally, we
can conclude from Fig. 5 that the proposed Subopt algorithm
greatly holds the property of truthfulness.

VII. CONCLUSION

In this paper, we study a novel multiple FL services
trading problem among buyers, data-sellers and UAV-sellers,
in a UAV-aided network based on a well-designed reverse
auction. A 0-1 integer programming problem is formulated
to maximize the overall revenue of buyers. An interesting

concept of seller pair and joint bid is proposed to facilitate the
trading among these three parties. We first propose a VCG-
based reverse auction mechanism to obtain the optimal solu-
tions which, however, is computationally intractable. We then
propose a computation-efficient one-sided matching-based re-
verse auction mechanism to obtain suboptimal solutions that
approach to optimal ones, upon considering a large number
of participants. Significant properties such as truthfulness and
individual rationality are comprehensively analyzed for both
mechanisms. Finally, extensive simulation results demonstrate
the effectiveness of our proposed algorithms as compared with
four baseline methods.
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