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Abstract 

The purpose of this study was to investigate how semi-analytical inversion techniques 

developed for the remote sensing of water quality parameters (chlorophyll a, tripton and 

coloured dissolved organic matter (CDOM)) in inland waters could be adapted or 

improved for application to Australian tropical and sub-tropical water bodies. The Matrix 

Inversion Method (MIM) with a semi-analytic model of the anisotropy of the in-water 

light field was applied to MERIS images of Burdekin Falls Dam, Australia, a tropical 

freshwater impoundment.  Specific attention was required to improve the atmospheric 

correction of the MERIS data. The performance of the conventional three band exact 

solution of the MIM was compared to that of over-determined solutions that used 

constant and differential weighting for each sensor band.   

 

The results of the application of the MIM algorithm showed that the best weighting 

scheme had a mean chlorophyll a retrieval difference of 1.0 �gl-1, the three band direct 

matrix inversion scheme had a mean difference of 4.2 �gl-1 and the constant weight 

scheme had a mean difference of 5.5 �gl-1.  For tripton, the best performed weighting 

scheme had a mean difference of 1.2 mgl-1, the three band scheme had a mean difference 

of 3.4 mgl-1 and the constant weight scheme had a mean difference of 1.8 mgl-1. For the 

CDOM retrieval, the mean difference was found to be 0.12 m-1 for the best performed 

weighting scheme, 0.25 m-1 for the three band scheme and 0.52 m-1 for the constant 

weight scheme. It was found that significant improvements in the accuracy and precision 

of retrieved water quality parameter values can be obtained by using differentially 

weighted, over-determined systems of equations, rather than exact solutions. These more 

reliable estimates of water quality parameters will allow water resource managers to 

improve their monitoring regimes.  
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1. Introduction 

Water resource managers have the responsibility to deliver water of sufficient quality to 

urban, agricultural and industrial users as well as maintaining the recreational and 

ecological amenity of the inland water bodies under their control. To deliver these 

objectives it is critical that they understand and maintain the quality of the water in their 

storage reservoirs. Two of the important qualities of water that are relevant for the 

manager’s objectives are turbidity of, and the level of algal activity within, the water 

body.  The turbidity of the water, which is a major influence on the ecology of aquatic 

systems, is determined by the light absorption and light scattering processes that take 

place within the water column. Three water constituents (algal cells, suspended solids, 

and coloured dissolved organic matter (CDOM)) are major absorption and scattering 

agents within the water.  

 

This research focuses on the semi-analytical approach to the optical remote sensing of 

water quality which is based on modelling the interaction of the light field with the 

optical properties of the water. The approach is not totally analytical as it uses empiricism 

to parameterise several of the terms in the model (O'Reilly et al. 1998; Rijkeboer et al. 

1997). The physics based semi-analytical algorithms have the advantage of requiring less 

field data and allowing greater scope for multi-temporal series, which do not need 

repeated in situ measurements, to be developed. 

 

Within the semi-analytical algorithms there are three general types; the look up table 

(LUT) approach which matches measured spectra to large number of previously 

calculated spectra (Keller 2001a; Matarrese et al. 2004; Mobley et al. 2005); the neural 

network (NN) approach which uses a large set of training data to relate the measured 

spectra to the parameters used to create the training set (Baruah et al. 2001; Doerffer and 

Schiller 2007; Schaale et al. 1998; Su et al. 2006); and the inversion / optimisation 

algorithms (Lee et al. 2002; Maritorena et al. 2002; Santini et al. 2010). In the inversion / 

optimisation approach a forward model is used to simulate the spectra from a number of 

parameters and the set of parameters that minimises a selected cost function are selected 

as the solution. If the forward model is linear and the cost function is the sum of the 
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squares of the residuals then this reduces to the linear matrix inversion method (Hoge and 

Lyon 1996). The first inland water study using this method, of the Dutch Lake Braassem,  

refers to it as the Matrix Inversion Method (MIM) (Hoogenboom et al. 1998b) and this 

term is used in this study. 

 

A semi-analytical model estimates the measured reflectance as a function of the 

absorption and backscattering coefficients in each band and the MIM then solves the 

resultant system of linear equations. With the increase in the number of bands in more 

recent instruments there have been moves from using exact (same number of bands as 

unknowns) systems (Brando and Dekker 2003; Giardino et al. 2007; Hoge and Lyon 

1996; Hoge et al. 1999; Hoogenboom et al. 1998b; Lyon and Hoge 2006) to over-

determined (more bands than unknowns) systems (Boss and Roesler 2006; Hakvoort et 

al. 2002; Santini et al. 2010; Vos et al. 2003). Campbell and Phinn (2010) showed, 

through simulation, that significant improvements in the accuracy and precision of 

retrieved water quality constituent values can be obtained by using a differentially 

weighted over-determined system. The purpose of this work is to validate those results by 

applying the described methods to a tropical freshwater impoundment. 

 

As 90% of the total radiance from a scene over a water body entering a sensor comes 

from the atmospheric path radiance (Vidot and Santer 2005) the accuracy of the 

atmospheric correction has a significant effect on the final accuracies of estimated water 

quality parameter concentrations. Some image based approaches for the atmospheric 

correction over case II waters for MERIS either simultaneously retrieve atmospheric and 

water components (Doerffer and Schiller 2008) or rely on the assumption that there is 

some quality of the water reflectance spectrum that is known or invariant (Moore et al. 

1999). The focus for MERIS inland water remote sensing has been on temperate northern 

hemisphere environments and the inherent assumptions in the methods will not 

necessarily be appropriate for tropical and sub-tropical water bodies like Burdekin Falls 

Dam. Before the inversion algorithm could be applied to the image an atmospheric 

correction appropriate for the water body needed to be devised.  
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2. Data and Methods 

In October 2008, fieldwork was conducted at Burdekin Falls Dam in northern Australia 

to parameterise the model using the methods described in Campbell and Phinn (2010). 

Whilst it is possible to make a rudimentary validation using the same measurements for 

the parameterisation and the validation, ideally the validation measurements should be 

independent of those used to parameterise the algorithm. To counter this problem another 

field campaign to Burdekin Falls Dam was mounted in August 2009 to obtain an 

independent validation set.  

 

2.1 Site Description 

The Burdekin Falls Dam (Lake Dalrymple, 20° 37´ S, 147° 0´ E) (Figure 1) is situated in 

the dry tropics region of Northern Australia. It receives inputs from four major 

sub-catchments that cover a total area of 114,000 km2  and receive 70% of their rainfall in 

the December – March period of the year (Commonwealth Bureau of Meteorology 2010). 

From the north, the Burdekin River has its origin in tropical rainforest but primarily flows 

through tropical savannah. From the west, the lake is fed from the Cape River which rises 

in reasonably steep sedimentary country and then flows through flat less erodible areas. 

The Belyando and Suttor Rivers meet just beyond the inundated area and feed the lake 

from the south. The Belyando and Suttor Rivers suffer from  persistent turbidity as they 

flow slowly over clay soils (O'Reagain et al. 2005). During full flow conditions the 

former river takes on a grey colour and the latter red. The highly variable particle size 

distributions that have been measured over single flow events in all tributaries (Lewis et 

al. 2009) suggest that the optical properties of the suspended sediment may be variable.  

It is estimated that the dam traps 88% of the sediment that flows in from the tributaries 

during flow events with the bulk of sediment being transported by the Burdekin River 

(Bainbridge et al. 2006a; Bainbridge et al. 2006b). However the majority of the turbidity 

in the water during no flow conditions is associated with the fine clays that are 

transported from the south (O'Reagain et al. 2005). The impoundment is split into an 

upper and lower basin by a narrow neck of land situated between measurement stations 

BFD9 and BFD11 shown in Figure 1. 
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Figure 1 Location of the specific inherent optical property (SIOP) sample sites for the October 2008 
fieldwork activities on Burdekin Falls Dam, Australia. The left hand image shows the calculated full 
supply level and the right hand image shows a Landsat 5 TM true colour image at the same scale as 
the map, captured on 22nd August 2008. 

2.2 Water Quality Constituent Inherent Optical Property Models 

The inherent optical properties (IOPs) of the water are modelled as a sum of the inherent 

optical properties of pure water and the water quality constituents suspended and 

dissolved in it.  

 

2.2.1 Absorption 

A four part absorption model was used. 

( ) ( ) ( ) ( ) ( )λλλλλ φaaaaa TRCDOMw +++=       (1) 

The subscripts w, TR and φ refer to water, tripton (the non-algal particles of the 

suspended particulate matter) and chlorophyll a respectively. The values for ( )λwa  were 

obtained from Pope and Fry (1997) and Smith and Baker (1981). The absorption due to 
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the water quality constituents is proportional to the concentration of the constituent. This 

is normally represented by the use of a specific absorption coefficient. 

( ) ( )λλ *
iii aCa =          (2) 

  

The specific absorption spectra were sourced from the field measurements described 

below and are shown in Figure 4 (Campbell et al. 2011). 

 

 

2.2.2 Scattering and Backscattering 

The scattering coefficient b is combined with the volume scattering function (VSF) �(�) 

to calculate the probability of a photon being scattered in a direction greater than 90°from 

its initial direction of travel.  This is referred to as the backscattering. 

A three part backscattering model was used. 

( ) ( ) ( ) ( )λλλλ φbbTRbwb bbbb ++=        (3)  

The scattering coefficient for pure water was obtained from Morel (1974) and a ratio of 

bw:bbw of 0.5 was used. The backscattering of tripton and phytoplankton proportional to 

the concentration of the constituent were obtained from the field measurements described 

below and are shown in Figure 4 (Campbell et al. 2011) . 

2.3 IOP and Water Quality Parameter Concentration Measurements  

In situ water quality parameter measurements and near coincident MERIS images were 

obtained as part of two field campaigns. A summary of the methods used is given in 

Table 1. 

Table 1 Dates of in situ and image data acquisition and a description of the laboratory methods used. 
The laboratory that performed the measurements is shown bracketed. 

Fieldwork dates Image Date Chlorophyll a 
Concentration   

Tripton 
Concentration 

CDOM 
Concentration 

13-15 Oct 2008 15 Oct 2008 
HPLC 

(CSIRO) 
Gravimetric 

(CSIRO) 
Spectrophotometric 

(CSIRO) 

12 August 2009 13 August 2009 US EPA 445.0 
(AIMS) n.d. n.d. 
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2.3.1 Laboratory Measurements 

October 2008 Measurements 

During October 2008 the IOPs of the storage were measured at eleven stations (see 

Figure 1). Water samples were taken from approximately 0.3 m below the surface and 

kept cool for later laboratory measurement of tripton (TR), chlorophyll a (CHL) 

concentration and coloured dissolved organic matter (CDOM) absorption at 440 nm and 

spectral absorption.  

 

The chlorophyll a concentration was measured with HPLC following a modified version 

of the Van Heukelem and Thomas (2001) method. The tripton water samples were 

filtered through pre-weighed Whatman GF/F glass-fibre filters that had been prepared 

according to the MERIS calibration protocols (Tilstone et al. 2002) and oven-dried at 

60ºC to constant weight and weighed. The algal and non-algal spectral absorption was 

measured over the 200-900 nm spectral range in 1.3 nm increments, using a GBC 916 

UV/VIS dual beam spectrophotometer equipped with an integrating sphere. The 

pigmented material on the sample filter was then extracted using the Kishino et al. (1985) 

method and then the filter was remeasured to determine the optical density of the non-

algal particles. CDOM samples were collected in glass bottles and filtered through a 

0.22 µm polycarbonate filter (Millipore) using an all glass filtering unit and absorbance 

was measured from 200 to 900 nm using a 10 cm path length quartz cell with Milli-Q 

water (Millipore) as a reference. The scattering properties were measured in situ using a 

HydroScat-6 backscattering sensor (Maffione and Dana 1997). A detailed description of 

the IOP measurements, water quality parameter measurements and subsequent specific 

inherent optical property  (SIOP) domain calculation is provided in 

Campbell et al. (2011).  

 

August 2009 Measurements 

A second field campaign was conducted in August 2009 to obtain a larger validation 

dataset that was independent of the measurements used to parameterise the algorithm. 
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Water samples were taken from approximately 0.3 m below the surface at 25 

observations stations (shown in Figure 2). As the concentration of CDOM is not of 

interest to Australian water managers it was decided that it was preferable to allocate the 

available resources to building a more extensive validation set for the chlorophyll a and 

tripton products. Unfortunately inadequate laboratory procedures prevented the 

determination of the tripton concentrations for the 2009 campaign.  

 
Figure 2 Location of the 25 validation sample sites for the August 2009 fieldwork activities on 
Burdekin Falls Dam, Australia.  

During the second campaign the water samples taken at each station were kept cool in 

opaque storage containers and were filtered on the day of collection.  

 

Phytoplankton Pigments 

Two replicates were prepared for each water sample by filtering through a 47 mm 

diameter GF/F glass-fibre filter (Whatman, nominal pore size; 0.7 �m) and then freezing 

the filter.  

 

The pigments were measured using the US EPA method 445.0 (Arar and Collins 1997). 

This method measures the combined concentrations of chlorophyll a and pheophytin a. 

With the aid of HPLC analysis no pheophytin a was detected in the October 2008 
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samples so it is assumed that the measured concentration is only that of chlorophyll a. 

The pigments were extracted from the phytoplankton in 90% acetone and then 

centrifuged to clarify the solution. The solution was transferred to a glass cuvette and the 

chlorophyll fluorescence was measured before and after acidification to 0.003 N HCl 

with 0.1 N HCl. 

 

To get an indication of the repeatability of the measurement method, replicates, for each 

measurement station were, created by first dividing the water sample in two before 

filtering each half onto separate filters. Figure 3 compares the measured chlorophyll a 

concentrations for each replicate. The differences between the replicates had a mean of 

0.3 �gl-1 (8%) and a standard deviation of 0.35�gl-1 (9%) and the maximum difference 

was 1.36 �gl-1 (33%). 

 
Figure 3 Plot comparing the measured chlorophyll a concentrations for the two replicates of each 
measurement station for the 12th August 2009 Burdekin Falls Dam fieldwork. The dashed line is the 
line of best fit which has a slope of 0.916, an intercept of 0.22 �gl-1 and an R2 of 0.855.  The solid line 
is the line of 1:1 correspondence. 

 

2.3.2 SIOP Domains 

Notable intra-impoundment variation in the specific absorption and specific scattering of 

phytoplankton and tripton was found among the stations measured during the 2008 

fieldwork activities.  As a result, the water in Burdekin Falls Dam was characterised by 
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two SIOP sets, the upper basin and the lower basin that are shown in Figure 4 (Campbell 

et al. 2011). 

 
Figure 4 SIOP sets upper basin (left) and lower basin (right) for Burdekin Falls Dam measured 
during the October 2008 field work. The upper graph shows the spectral absorption of water (w) and 
the chlorophyll a specific absorption spectra of phytoplankton (φφφφ), tripton (TR) and coloured 
dissolved organic matter (CDOM). The lower shows the spectral backscattering of water (w) and the 
specific backscattering spectra of chlorophyll a(φφφφ) and tripton (TR). 

The primary distinction between the two SIOP domains is the higher tripton specific 

backscattering found in the lower basin SIOP set.    

 

2.4 In Situ Spectroradiometric Data 

Two RAMSES spectroradiometers were mounted in a cage. One spectroradiometer was 

fitted with a cosine collector and was orientated in the cage to measure the downwelling 

irradiance (Ed) and one radiance collector was orientated to measure the upwelling 

radiance (Lu). The cage was lowered on the unshaded side of the vessel to minimize the 

shading effects.  For each station of the 2008 field campaign, simultaneous measurements 
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of Ed and upwelling radiance Lu were combined to calculate the above surface 

reflectance. Observations for stations 9-11 are used throughout this paper for comparison 

as they were made within ninety minutes of the acquisition of the 15th October 2008 

MERIS image. 

 

2.5 Image Processing Chain 

To create the final water quality parameter map, the level 1b full resolution MERIS 

image (see Table 1) was first corrected to remove the influence of the air-water interface 

and atmosphere and processed to produce a subsurface irradiance reflectance image of 

the water. For each weighting scheme the MIM inversion was then applied using both 

SIOP sets in turn, to produce two water quality images corresponding to each of the SIOP 

domains. For each pixel in the image the optimal SIOP set was identified and the 

corresponding retrieved concentrations were combined to create the final water quality 

parameter image.  

 

2.6 Atmospheric Correction 

It would have been possible to correct the October 15th 2008 image by using the collected 

in situ spectroradiometric observations that were coincident with the satellite overpass 

(Stations 9-11). The collection of in situ spectroradiometric observations is both time 

consuming and expensive, so any long term or archival monitoring project needs to come 

to terms with how the images can be corrected in the absence of in situ data. One 

approach is to take advantage of the homogeneity of aerosols over small spatial scales of 

50-100 kms (Vidot and Santer 2005) to calculate the correction parameters and then 

apply them to the water body. A simplified version of this approach was used where the 

aerosol model was pre-selected rather than estimated from the image. The correction was 

applied to both images and was evaluated by comparing the corrected 2008 image to the 

in situ spectroradiometric observations at Stations 9-11.  

 

The c-WOMBAT-c software (Brando and Dekker 2003) implements an established 

theoretical framework  using atmospheric parameters generated by multiple runs of the 

radiative transfer code MODTRAN-4 (Adler-Golden et al. 1998; de Haan et al. 1999). In 
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this study the c-WOMBAT-c code was modified to use the 6S radiative transfer code as 

an extensive test between 6S, MODTRAN, RT3 and SHARM radiative transfer codes 

(Kotchenova et al. 2008) found that 6S was the most reliable code for calculation of solar 

radiation reflected and transmitted by a plane-parallel, non-absorbing molecular 

atmosphere. In addition, the relatively fast scalar option within MODTRAN-4 does not 

account for the azimuthal dependence of the multi-scattering solar contribution (Acharya 

et al. 1999). To take this into account the user must select the more accurate but much 

slower DISORT N-stream method which limits its practicality for multiple runs at 

multiple aerosol optical thicknesses. 

 

The 6S code requires the user to specify a number of geometric and aerosol 

characteristics. The aerosol optical thickness (AOT) at 550 nm parameter is the most 

significant and quickly varying parameter. In situ spectroradiometric observations were 

taken at stations 9-11 on the same morning as the satellite overpass. The AOT value was 

tuned to minimise the sum of the differences between corrected spectra and these in situ 

overpass stations. To make allowance for image noise and geo-referencing uncertainty 

the image spectra for each station were taken to be the average spectra from the four 

pixels that are closest to the co-ordinates for the in situ measurement.  

 

The atmospherically corrected Burdekin Falls Dam MERIS water pixels were compared 

with the in situ spectroradiometric observations taken at stations 9-11 (Figure 5). There 

was a significant anomaly below 500 nm which appears in spectra corrected with the de 

Haan et al. (1999) formulation in other published work (Bagheri et al. 2005; Candiani et 

al. 2007a; Sterckx and Debruyn 2004). The MERIS instrument performs a calibration 

every two weeks using diffuser plates illuminated by the Sun. The absolute radiometric 

gains are calculated by comparing the averaged signal to the on-ground characterisation 

of the diffuser (ESA 2006). The MERIS sensor is calibrated using the 

Thuillier et al. (2003) reference sun irradiance spectrum as recommended by the 

Committee on Earth Observation Satellites (CEOS) (CEOS 2008).  This model was 

compared to the default MODTRAN-4 solar illumination database and a major difference 

was found around 440 nm (see Figure 5 a)). As the sensor gains are calculated with 
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reference to this model the same model must be used to calculate the reflectance 

spectrum. Figure 5 b) and c) shows that when the correction was re-run using the new 

reference sun the anomaly was eliminated. 

 

Adjacency effects occur when atmospheric multiple scattering makes photons reflected 

from the area around the target pixel appear to be originating from the target pixel. This 

is particularly pronounced when the target pixel is much darker than the surrounding area 

and the aerosol loading in the atmosphere is high. Due to the size and shape of the target 

water bodies and inland waters in general, a substantial proportion of pixels can be 

contaminated by the adjacency effect. Keller (2001b) conducted an experiment to 

evaluate the theoretically expected adjacency effect, but found no significant 

contribution. In contrast, Candiani et al. (2007b) found the steep forested hills that border 

the northern section of the Lake Garda in Italy, contributed a noticeable contamination of 

the water spectra and Vos et al. (2003) eliminated all pixels within 1 km of the shoreline 

as they found that spectra were too corrupted for an accurate retrieval of the water quality 

parameter concentrations. The gentle topography and low aerosol loading that typifies the 

study site is likely to keep any adjacency effect to a minimum. The c-WOMBAT-c 

approach to correcting for the adjacency effect applies an n x n low pass filter to the 

image to supply the average radiance (Lrs,b) image. The implicit assumption is that every 

part of that area contributes the same to the environmental radiance.  The size of n has 

previously been nominated as a figure that produces the appropriate amount of adjacency 

effect. However, the effect of the background reflectance (�b)  is more complicated and 

can be represented by the integration of small contributions over the background area 

(Vermote et al. 2006). The spatially averaged background reflectance for a point M is 

 

( ) ( ) ( ) ( ) dydxyxeyx
t

M v
vd

b θρ
θ

ρ ,,,
1

� �
∞

∞−

∞

∞−

′=
     

(4)
 

 

where �´ is the reflectance of a small section of the background at coordinates of (x,y) 

from the centre of the target and td is the diffuse transmittance. The function e is the 

contribution to the diffuse transmittance from that position (x,y). This expression can be 
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converted to deal with polar co-ordinates of near vertical observation (�v <30°).  If the 

background reflectance is assumed homogenous a division can be made between the 

target of radius r and the background. The fraction of the diffuse transmittance that the 

target is responsible for becomes: 

 

( ) ( )drrerF v

r

θφπ ,,2
0
�=

        
(5)

 

 

This reasoning can be applied to model the average background radiance as 

( ) ( ) ( )( ) bcb LrFrFLML −+= 1  where Lc is the image and Lb is an n x n pixel low pass 

filter. Vermote et al. (2006) evaluate the F(r) for a particular e. Using diffuse 

transmittance calculated with 6S showed that F(r) had a small spectral dependence with a 

maximum in the blue part of the spectrum and a minimum in the NIR part. For 

r = 0.15km (for MERIS) an average value of F(r) = 0.118 was used. 

  

An understanding of the scale of the adjacency effect was obtained by running the 

modified c-WOMBAT-c algorithm using background images described above with 

values of n from 3 to 15 and comparing it to a run which uses the image itself as a 

background file. By comparing in situ spectra that were co-incident with the satellite 

overpass with the image processed with alternative values of n it should be theoretically 

possible to nominate an optimal value for n. However, the standard deviation of the in 

situ observations in the case of Stations 10 and 11 was larger than the range of the 

calculated adjacency effect (see Figure 6). Relying solely on Station 9, a value of n = 9 

was found to minimise the sum of the differences between image and in situ spectrum. 

This value results in a 2.7 km x 2.7 km adjacency window. 
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Figure 5 Comparison of two MODTRAN solar irradiance databases.  a) The default MODTRAN database (newkur.dat) is shown in grey and the 
Thuiller database (thurkur.dat) is shown in black. The databases were convolved with the MERIS band response function (shown dotted) to produce 
estimated values for the default database shown by diamonds and the Thuiller database depicted by squares. b) an d c) Mean above surface reflectance 
spectra of the corrected Burdekin Falls Dam water pixels at Stations 9 and 10. The image was corrected using the MODTRAN-4 two stream model and 
the Thuillier et al (2003) and the MODTRAN-4 default reference sun irradiance. No correction for the adjacency effect has been made. 

 

 
Figure 6 The amount of correction for the adjacency effect for a 3 x 3 (diamonds) and a 15 x15 (squares) adjacency window, a) Station 9, b) Station 10 
and c) Station 11. The thick line shows the standard deviation in the in situ observations.    
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The Vidot and Santer approach assumes that the reflectance value of the dense dark 

vegetation (DDV) in the blue and red regions is known and uses these values to identify 

the aerosol type and retrieve the aerosol optical thickness. In this work the aerosol type 

was selected based on the water body location and the prevailing wind conditions prior to 

the image acquisition. The reference DDV values for three bands (412, 443 and 665 nm), 

corrected for the BRDF effects using the Leroy et al. (1998) model, were extracted from 

the MERIS auxiliary files: model 9 equatorial_asia_nov for September – February and 

model 20 equatorial_asia_june for March – August.  Image pixels were designated as 

DDV pixels if their Atmospherically Resistant Vegetation Index (ARVI) (Kaufman and 

Tanre 1992) was above a given threshold. The ARVI was calculated by 

 

 rb
aG

NIR
aG

rb
aG

NIR
aGARVI

ρρ
ρρ

+
−

=
         

(6) 

 

( )r
aG

b
aG

r
aG

rb
aG ρργρρ −−=         (7) 

 

where �aG is the remote sensing reflectance in the blue (b) (443 nm), red (r) (665 nm) and 

NIR (865 nm) bands that has been corrected for molecular scattering and gaseous 

absorption. This molecular scattering and gaseous absorption corrected image is created 

by running the c-WOMBAT-c code described above with an AOT of 0.0. The selection 

of � is left to the discretion of the user. Santer et al. (2006) showed that the value of � has 

little effect on the ARVI threshold for aerosols dominated by large particles and the value 

� = 1.3  is the most robust in the case of small particle dominated aerosols. The  value of 

� = 1.3 was used (Floricioiu and Rott 2005; Santer et al. 1999; Vidot and Santer 2005). A 

simple ARVI threshold is prone to select normal vegetation that is shadowed by cloud at 

the time of the image acquisition. The reflectance value in the 865 nm band was used to 

separate cloud shadow from DDV using a minimum reflectance of 17% (Floricioiu and 

Rott 2005) and a subset of image pixels that represented the highest 0.5% of ARVI values 

was selected. The DDV pixel subset was averaged to get the DDV spectrum for that AOT 
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value. The AOT value was iterated until the image DDV value matched the reference 

DDV.   

 

2.7 Matrix Inversion Method 

A version of the Gordon et al. (1975) subsurface irradiance reflectance (R(0-)) model, 

with the higher order terms neglected, was used: 

( ) ( ) ( )
( ) ( )ibi

ib
ibi ba

b
fR

λλ
λλµωλ

+
=− ,,,0 0       (8) 

The proportionality factor ( f ) was modelled as a cubic function of the subsurface 

reflectance and the sun zenith angle calculated from Hydrolight ® simulations  

(Campbell and Phinn 2010). The absorption and backscattering models described in 

Equations 1-3 were substituted into Equation 8 (Brando and Dekker 2003). Rearranging 

the equation and putting it in matrix form for all wavelengths of the spectra leads to 

Equation 9 (Hoogenboom et al. 1998b). 
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(9) 

or  

Axy =           (10) 

Where A is a 3 x N dimension matrix with N being the number of bands utilised by the 

inversion. 

 

The solution of this equation uses a square (NxN) weight matrix which is a diagonal 

matrix (W) where Wii= relative weight of band i. The solution then becomes  

[ ] WyAWAAx T1T −
=         (11) 
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2.8 Weighting Schemes 

A large number of weighting schemes were investigated and seven are reported here. The 

first two schemes represent the conventional approach where all bands are given equal 

weighting (NO_WEIGHTS) or where exactly determined systems of equations of a 

priori selected bands are used (3BANDS). In this case the three bands selected were as 

close as possible to those used by Brando and Dekker (2003) for a turbid coastal 

embayment  in a subtropical coastal area, two centred at 490 and 670 nm and one in the 

700-740 nm range. The next scheme represents the assumption that that there is a 

uniform noise in reflectance (Hakvoort et al. 2002) meaning that those bands with a high 

value of reflectance should have a higher signal to noise ratio and thus will be more 

reliable (REF).  Giardino et al. (2007) and Hoogenboom et al. (1998a) make the 

argument that bands which exhibit the greatest change in reflectance when an increase in 

a water quality constituent concentration occurs should be of greater use in determining 

the concentration. This assumption was represented by a scheme that weighted the bands 

by the first derivative of the simulated spectra with respect to the water quality 

constituent concentration (DER). The last two schemes were derived empirically (RAN). 

Inversions were run using the previously mentioned Hydrolight ® simulations as the 

subject spectra. The weights were allowed to vary randomly and those that returned the 

water quality parameters that were closest to the values used in the simulation were 

retained and the commonalities of the best performed schemes were combined. In 

addition to the unweighted inversion, a total 37 weighting schemes were trialled but only 

the results of a representative subset shown in Figure 7 will be reported. 

 

2.9  SIOP Domain Selection 

An image or inversion based measure that selected the optimal SIOP set was used. Phinn 

et al. (2005) used the difference between the imagery R(0-) and the ‘inverse-forward’ 

simulated R(0-) as a measure of the optical closure of each pixel. This approach was 

implemented by using the sum of the squares of the difference between the imagery R(0-) 

and the ‘inverse-forward’ simulated R(0-). For convenience this will be called the mis-

close sum.
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Figure 7 The weights for the selection of weighting schemes reported in the results sections. The band numbers relate to the MERIS sensor with 
nominal band centres of (1) 412.5 nm, (2) 442.5 nm, (3) 490 nm, (4) 510 nm, (5) 560 nm, (6) 620 nm, (7) 665 nm, (8) 681.25 nm, (9) 708.75 nm, (10) 753.75 
nm, (11) 760.625 nm and (12) 778.75 nm. 

 

 
Figure 8 Comparing the in situ spectroradiometric measurements with the corrected image for 15th October 2008 at Burdekin Falls Dam. The diamonds 
show the mean spectra of four pixels closest to the in situ measurement and the black squares show the mean of the in situ spectra. The dotted lines 
represent one standard deviation either side of the mean for the in situ measurements. The observations were made within 1½ hours of the MERIS 
image of 15th October. 
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3. Results 
3.1 Atmospheric Correction 

The corrected October 15th 2008 image was compared to the in situ measurements for 

stations 9-11 and the comparison is shown in Figure 8 and the results were comparable to 

recent observations made at European lakes using the SCAPE-M (Guanter et al. 2010) 

and the BEAM Case-2 Regional atmospheric corrections (Odermatt et al. 2010). It should 

be noted that the direct comparison of in situ measurements and the image pixel is 

hampered by complications arising from the homogeneity of the water, the difference in 

the instantaneous field of view of the sensors and the inherent noise in the image. Even if 

it is assumed that the adjacency effect has been fully accounted for, the MERIS image 

pixel still represents an average spectrum for an area of 290 m x 260 m.  

 

3.3 SIOP Selection 

Selecting the SIOP set that corresponded to the lower of the two mis-close sums meant 

the lower basin SIOP set was selected for only 4.3% of the pixels and those were in the 

extreme upstream ends of the water storage. This was an unexpected result as SIOP 

measurements made at the time of the image acquisition (Stn 10 &11 – 15th October 

2008) measured directly the SIOPs in the water and found them to be closer to the lower 

basin SIOP set.  

 

To investigate the significance of the differences between the mis-close sums that result 

from using each of the two SIOP sets, the pixels were separated into upper basin and 

lower basin groups based on their geographic position. The comparison between the mis-

close sums resulting from the two SIOP sets is displayed in Figure 9, which shows a clear 

trend for the ratio between the mis-close sums to be lower for the lower basin group of 

pixels. Lines of best fit were calculated for the two groups with gradient and R2 values of 

0.877 and 0.992 for the upper basin SIOP set and 0.818 and 0.986 for the lower basin 

SIOP set. In both cases the y intercept was negligible, so the ratio of the lower and upper 

mis-close sums was calculated and considered.  The ratio of the upper basin SIOP set 

mis-close sums to the lower basin SIOP set mis-close sums was generally higher for 
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those pixels that represented water in the upper basin. The inversion was rerun and this 

time a threshold of 0.847 for the ratio of the mis-close sum was used to select the 

appropriate SIOP set. 

 

 
Figure 9 The mis-close sum that results from the lower basin SIOP set against the mis-close sum that 
results from using the upper basin SIOP set. Those data associated with pixels in the upper basin 
group are plotted in black and those associated with the lower basin group are plotted in green. 

In this case the result is much more keeping with the SIOP measurements made at the 

time of the image acquisition. Aside from the lower area that was used to calculate the 

threshold, the method identified an area around the former confluence of the Burdekin 

and Suttor Rivers.  The tripton specific backscattering spectrum that was measured in this 

area (Stn 4) showed the largest slope measured in the upper basin region, much closer to 

the lower basin than the other upper basin observations.  

 

3.4 Water Quality Parameter Maps 15th October 2008 

The water quality parameter maps produced from the 15th October 2008 image are shown 

in Figure 10 and a comparison of the laboratory concentrations and image retrieved 

concentrations for selected weighting schemes are shown in Figure 11. The in situ 

samples were taken in a 48 hr period prior to the satellite overpass. The means of the 

absolute values of difference between the laboratory measured concentrations and those 

retrieved from the image are shown in Table 2. 
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Figure 10 Maps of the water quality parameters  retrieved from the 15th October 2008 image using 
the ratio threshold and the MER_BU_RAN2 weighting scheme. a) Chlorophyll a, b) Tripton, 
c) CDOM and d) True colour  MERIS image. Approximately 5% of the pixels returned a physically 
impossible negative concentration for chlorophyll a. The pixels have been masked out of image a). 
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Table 2 The means of the absolute values of difference between the laboratory measured 
concentrations and those retrieved from the 15th October 2008 image and the ratio threshold for 
selected weighting schemes.  

 Chl (�gl-1) TR (mgl-1) CDOM(m-1) 
 Av SD Av SD Av SD 

NO_WEIGHTS 4.31 2.82 1.79 1.23 0.52 0.26 
3_BANDS 7.72 5.53 3.39 3.04 0.25 0.25 
MER_BL_RAN1 13.8 5.35 1.74 0.84 0.12 0.11 
MER_BL_REF3 3.88 3.31 1.24 1.07 0.39 0.24 
MER_BU_DER6 3.28 2.16 4.22 1.12 0.87 0.18 
MER_BU_RAN1 1.44 1.68 2.71 2.36 0.28 0.17 
MER_BU_RAN2 1.66 1.62 2.69 2.35 0.25 0.18 

 

 
Figure 11 The laboratory concentrations vs. image retrieved concentrations for selected weighting 
schemes for the 15th October 2009 image, a) Unweighted over-determined scheme, b) Exact three 
band scheme and c) the best performed scheme (MER_BU_RAN2). The dashed lines show the 
bounds of 1�gl-1 for chlorophyll a, 1mgl-1 of tripton and 0.1 m-1 for CDOM. The points marked with a 
cross and a triangle had in situ samples taken two days and on the day before the satellite overpass 
respectively, and the points marked with a square had in situ samples taken on the day of the satellite 
overpass. 
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3.5 August 2009 Validation 

Water samples were taken from the surface water at 25 observations stations (shown in 

Figure 2) on the afternoon of 12th August 2009 between 1:40 pm and 4:10 pm. The image 

was obtained by the MERIS sensor at approximately 10am the next day. 

 

The MERIS image of the 13th August 2009 was obtained as it was closest in time to the 

field observations of 12th August 2009. Between the collection of the samples and the 

satellite overpass no significant inflows were recorded from the source rivers and the site 

experienced light winds.   The MIM algorithm was applied to this image and the water 

quality parameter concentrations were retrieved. The water quality parameter maps 

produced from the 13th August 2009 image are shown in Figure 12 and a comparison of 

the laboratory concentrations and image retrieved concentrations for selected weighting 

schemes are shown in Figure 13. The means of the absolute values of difference between 

the laboratory measured concentrations and those retrieved from the image are shown in 

Table 3. 

Table 3 The means of the absolute values of difference between the laboratory measured 
concentrations and those retrieved from the 13th August 2009 image for selected weighting schemes. 

 Chl (�gl-1) 
 Av SD 

NO_WEIGHTS 5.96 1.26 
3_BANDS 2.81 1.16 
MER_BL_RAN1 7.08 1.14 
MER_BL_REF3 2.73 1.48 
MER_BU_DER6 4.64 2.14 
MER_BU_RAN1 0.88 0.61 
MER_BU_RAN2 0.78 0.70 

 

 

The differences displayed by the laboratory-image comparison may not be entirely 

attributed to errors in the retrieval algorithm. Whilst there were benign weather 

conditions between the in situ sampling and image acquisition, the 18-20 hour time 

difference is sufficient for the dynamic nature of the water body to be a factor.  
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Figure 12 Maps of the water quality parameters retrieved from the 13th August 2009 image using the 
ratio threshold and the MER_BU_RAN2 weighting scheme. a) Chlorophyll a, b) Tripton, c) CDOM 
and d) True colour  MERIS image. 
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Figure 13 The laboratory concentrations vs. image retrieved concentrations for selected weighting 
schemes for the 13th August 2009 image, a) Unweighted over-determined scheme, b) Exact three band 
scheme and c) the best performed scheme (MER_BU_RAN2). The dashed lines show the bounds of 
1�gl-1 for chlorophyll a. 

4. Discussion 

A comparison between Table 2 and Table 3 shows that the accuracy and precision of the 

chlorophyll a retrieval in the 2009 image is comparable to, if not better than the 2008 

image.  

 

There will be uncertainty with any experimental determination of the AOT. The 

suitability of the atmospheric correction of the 2008 image was confirmed by comparing 

it to co-incident in situ radiometric measurements at three places in the image. To 

investigate the effect of selecting either of the next reasonable estimates of the AOT, a 

simple test was performed on the 13th August 2009 image. The image was corrected 

using AOT at 550nm values higher (0.11) and lower (0.07) than the figure provided by 

the DDV approach. These images were then inverted using the MER_BU_RAN2 

weighting scheme and the change in retrieved concentration was calculated. To isolate 

the effect of the atmospheric correction, the differences were only calculated on those 

pixels that selected the same SIOP set in both inversions. In the comparison of 0.07 AOT 

at 550nm and 0.09 AOT at 550 nm 98.9% of the pixels were used and in the comparison 

of 0.09 AOT at 550nm and 0.11 AOT at 550 nm 99.6% of the pixels were used. 

The chlorophyll a retrieval had a mean of -0.028 �gl-1 (sd 0.222 �gl-1) for the 0.07-0.09 

difference and a mean 0.009 �gl-1 (sd 0.270 �gl-1) for the 0.09-0.11 difference. The 

tripton retrieval had a mean of -0.025 mgl-1 (sd 0.120 mgl-1) for the 0.07-0.09 difference 

and a mean -0.010 mgl-1 (sd 0.124 mgl-1) for the 0.09-0.11 difference. In all cases the 
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distribution of the differences are centred close to zero but it is clear that the tripton is 

less sensitive to the atmospheric correction as the standard deviation of the differences is 

smaller in both the under and over corrected cases. The low values of the AOT in this 

case will reduce the importance of the atmospheric correction. With this is mind and the 

result of the exercise, it is likely that a poor atmospheric correction will have a greater 

effect on the chlorophyll a rather than tripton determination for Australian water bodies.  

 

In both validation sets the preferred retrieval weighting scheme (MER_BU_RAN2) had a 

lower mean difference for the chlorophyll a estimation than the conventional exact three 

band or unweighted over-determined system schemes. In the two latter cases 

chlorophyll a was systematically overestimated when compared to the laboratory 

measurements whereas the weighted scheme neither underestimated nor overestimated. If 

the two validation sets are pooled the MER_BU_RAN2 weighting scheme has a mean 

difference of chlorophyll a  retrieval of 1.0 �gl-1, the three band scheme had a mean 

difference of 4.2 �gl-1 and the unweighted scheme had a mean difference of 5.5 �gl-1. 

This is not to say that this is the definitive error for the method as a number caveats 

should be attached to these results. Firstly, the range of water quality parameter 

concentrations measured in the two field campaigns was limited. For example, the 

measured in situ chlorophyll a values ranged from 1.8-7.7 �gl-1, but 80% of the values 

within the range of 2.7-5.5 �gl-1. The minimum detection limits and retrieval accuracy of 

water quality parameters are dependent on the parameter as well as the concentrations of 

the other colour producing agents in the water. Likewise, there is no way to evaluate the 

accuracy of the atmospheric correction on any particular image without some additional 

in situ data. Lastly, it is not possible to be definitive about the accuracy when there is 

notable uncertainty in the ground truth values. An attempt to quantify this uncertainty 

was made which showed the mean difference between the two replicate groups was 0.3 

�gl-1 (8%) with a standard deviation of 0.35 �gl-1 (9%) and the maximum difference was 

1.36 �gl-1 (33%).  

 

The assessment of the average difference for tripton retrieval suffers from the same 

caveats as those mentioned from the chlorophyll a retrieval: that is, a limited range and 
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uncertainty in the ground truth data. Unfortunately the tripton concentrations for the 2009 

campaign were unable to be determined so only the results for the October 2008 image 

will be discussed and their usefulness is limited by the sample size of ten. The best 

performed MER_BL_REF3 weighting scheme had a mean difference of 1.2 mgl-1, the 

three band scheme had a mean difference of 3.4 mgl-1 and the unweighted scheme had a 

mean difference of 1.8 mgl-1. Although in this case the difference between the weighted 

and unweighted schemes was not significant at the 95% level it was significant at the 

70% level.  

 

As with tripton, the assessment of the CDOM retrieval accuracy suffers from a small 

sample size but it was found that the best performed MER_BL_RAN1 weighting scheme 

had a mean difference of 0.12 m-1, the three band scheme had a mean difference of 

0.25 m-1 and the unweighted scheme had a mean difference of 0.52 m-1. In this case the 

difference between the weighted and the three band scheme was significant at only the 

85% level and the three band and unweighted scheme difference was significant at only 

the 90% level. 

 

5. Conclusions 

This paper described the work done to validate the findings of the previous work in 

relation to the MIM approach (Campbell and Phinn 2010). The MIM with 

semi-analytically estimated values for the anisotropic factor of the underwater light 

distribution was validated against field observations taken at Burdekin Falls Dam in 

October 2008 and August 2009. The paper then showed how that optical closure can be 

used to identify the most appropriate SIOP set in water bodies like Burdekin Falls Dam 

that have multiple SIOP domains. Finally, the laboratory measured water quality 

parameter concentrations were used to calculate the accuracy and precision of the MIM 

approach, albeit with a smaller sample size in the case of the tripton concentration 

retrieval. It was found that significant improvements in the accuracy and precision of 

retrieved water quality parameter values can be obtained by using differentially weighted, 

over-determined systems of equations, rather than exact solutions.  

 



30 

 

A rudimentary test showed that the estimation of water quality parameter concentrations 

was only slightly affected by errors in the atmospheric correction for this study site. The 

simulation in Campbell & Phinn (2010) showed that the difference had a linear response 

to an increase in atmospheric noise and the test in this chapter showed that the gradient of 

the line was reasonably flat for a practical application. This result is encouraging as it 

suggests that the risks inherent in the approximations and assumptions in the atmospheric 

correction may be reasonable for Australian water bodies. 
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