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A B S T R A C T 

With the availability of large-scale surv e ys like Kepler and TESS , there is a pressing need for automated methods to classify light 
curves according to known classes of variable stars. We introduce a new algorithm for classifying light curves that compares 
7000 time-series features to find those that most ef fecti vely classify a given set of light curves. We apply our method to Kepler 
light curves for stars with ef fecti ve temperatures in the range 6500–10 000 K. We show that the sample can be meaningfully 

represented in an interpretable 5D feature space that separates seven major classes of light curves ( δ Scuti stars, γ Doradus 
stars, RR Lyrae stars, rotational variables, contact eclipsing binaries, detached eclipsing binaries, and non-v ariables). We achie ve 
a balanced classification accuracy of 82 per cent on an independent test set of Kepler stars using a Gaussian mixture model 
classifier. We use our method to classify 12 000 Kepler light curves from Quarter 9 and provide a catalogue of the results. We 
further outline a confidence heuristic based on probability density to search our catalogue and extract candidate lists of correctly 

classified variable stars. 
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 I N T RO D U C T I O N  

he use of machine learning is becoming increasingly common in 
stronomy (Ball & Brunner 2010 ; Graff et al. 2014 ; Baron 2019 ;
vezi ́c et al. 2019 ). In particular, large-scale photometric surveys are
roducing light curves in numbers too large for humans to manually 
nspect and analyse. Considerable efforts have gone into using 
achine learning to classify light curves from large ground-based 

urv e ys (e.g. Carrasco-Davis et al. 2019 ; Tsang & Schultz 2019 ;
abral et al. 2020 ; Hosenie et al. 2020 ; Jamal & Bloom 2020 ;

ohnston et al. 2020 ; Szklen ́ar et al. 2020 ; Bassi, Sharma & Gomekar
021 ; Zhang & Bloom 2021 ). Such techniques have also been
pplied to light curves from N ASA’s K epler and K2 missions (e.g.
lomme et al. 2010 , 2011 ; Debosscher et al. 2011 ; Armstrong
t al. 2016 ; Bass & Borne 2016 ; Hon, Stello & Yu 2017 , 2018a , b ;
ohnston et al. 2019 ; Kgoadi, Whittingham & Engelbrecht 2019 ; Le
aux et al. 2019 ; Giles & Walkowicz 2020 ; Kuszlewicz, Hekker &
ell 2020 ; Audenaert et al. 2021 ; Paul & Chattopadhyay 2022 ). 
A range of algorithms have been proposed to classify light-curve 

ata bases according to known classes of stars, but these algorithms 
ften rely on black-box machine-learning methods, which limits their 
nterpretability and hence ability to drive scientific understanding. 
hose algorithms that are more interpretable rely on manually se- 

ected temporal or spectral features of light curv es (e.g. P ashchenko,
okolo vsk y & Gavras 2017 ), with minimal comparison to the
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erformance of alternatives from across a highly interdisciplinary 
ime-series analysis literature. Here, we introduce a new algorithm 

or classifying light-curve data bases that searches over 7000 time- 
eries features to automatically find interpretable features rele v ant 
o classifying a given set of light curves. Our aim is to develop a
imple, efficient classifier that uses these interpretable features to 
i ve us ne w insight into the classification of variable stars, while
aintaining comparable performance with existing methods. 
Over the course of its 4-yr mission, the Kepler spacecraft collected

ight curves for nearly 200 000 stars, most of which show variability.
ubsets of Kepler stars have been classified systematically, resulting 

n catalogues of about 2900 eclipsing binaries (EBs; Kirk et al. 2016 ),
6 000 oscillating red giants (e.g. Yu et al. 2018 , and references
herein), 2000 pulsating δ Scuti stars (Murphy et al. 2019 ), and o v er
00 γ Doradus pulsators (Li et al. 2020 ). Independently, Balona 
 2018 ) used visual inspection of light curves and power spectra to
lassify o v er 20 000 A and F Kepler stars. Finally, Audenaert et al.
 2021 ) have recently classified 167 000 light curves from one quarter
f Kepler data (see Section 4.4 ). 
In this paper, we present our methods and provide classifications 

ased on a single 3-month quarter (Quarter 9, Q9) for approximately
2 000 Kepler stars with ef fecti ve temperatures in the range 6500–
0 000 K. Our primary interest is in pulsating stars and our chosen
emperature range co v ers the classical instability strip, which has the
ichest variety of variability (e.g. Kurtz 2022 ). There are relatively
ew stars in the Kepler sample that are hotter than this range, while
ulsations on the cooler side are dominated by a single class (solar-
ike oscillations) that have already been extensively classified and 
tudied (see Jackiewicz 2021 for a recent review). We note that we
is is an Open Access article distributed under the terms of the Creative 
 permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Examples of variable stars in the detached binary , contact binary , RR Lyr, γ Doradus, δ Scuti, rotational, and non-variable stellar classes selected in the 
training set, respectively. The left-hand panel shows the first 2200 samples (at approximately 30 min per sample) of the light curves of each star, or half a Kepler 
quarter of data. The right-hand panel shows the corresponding Fourier transforms up to the Nyquist frequency. The vertical axes are scaled for ease of viewing. 
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ave previously used our method to identify samples of δ Scuti stars
Murphy et al. 2020 ) and γ Doradus stars (Li et al. 2020 ). Finally,
e compare our classification of Kepler stars to labels assigned by a

ess interpretable, performance-focused classifier in Audenaert et al.
 2021 ), where we find similar results. 

 T R A I N I N G  DATA  

.1 A selection of variable stars 

electing an adequate training set to train a feature-based classifier for
ll 200 000 stars in the Kepler field is the most challenging and time-
onsuming aspect of developing a general classification algorithm.
any classes of variable stars are rare, while others remain poorly

nderstood, and still others have not yet been identified. Indeed, new
lasses are occasionally proposed (Debosscher et al. 2011 ; Bass &
orne 2016 ; Pietrukowicz et al. 2017 ). For this reason, a good

raining set must be representative of a wide range of variable stars to
onstruct a suitably general feature-space representation of Kepler
ight curves. Rather than attempting to compile a collection of all
nown classes of variable and non-variable stars, as attempted with
imited success by Debosscher et al. ( 2011 ), we focused our research
n a subset of seven well-studied classes, within the temperature
ange 6500 K ≤ T eff ≤ 10 000 K , as an initial demonstration. The
even chosen classes are δ Scuti stars, γ Doradus stars, RR Lyrae
tars, rotational variables, contact EBs, detached EBs, and non-
ariable stars. Typical light curves and power spectra for each class
re included in Fig. 1 . These classes are commonly represented in
he wider Kepler data (with the exception of the RR Lyrae class),
re interesting stars that we wish to study in further detail, and are
ot intermediate or hybrid classes. We excluded hybrid stars to a v oid
aving light curves in the training data that belong to multiple classes.
Two of our seven classes are subclasses of EB systems, which were

atalogued in Kepler data by Kirk et al. ( 2016 ). EBs can be classed
s one of the following: detached binaries, where the two stars are far
rom each other to give highly separated eclipses; contact binaries,
NRAS 514, 2793–2804 (2022) 
here there is no space between the two stellar envelopes, producing
lmost sinusoidal eclipse patterns; and semidetached binaries, the
ntermediate class of the two extremes. In accordance with our
ecision to exclude hybrid classes, only the detached and contact
ubclasses have been included in our training set. 

Rotational variables are most commonly found among cooler stars,
hose star-spots present darker patches on the surface that rotate in

nd out of view, but rotational variability is also seen by Kepler
cross the ef fecti ve temperature range of our sample (Balona 2013 ;
ikora, Wade & Rowe 2020 ). Typically, the spots have lifetimes
ot much longer than the rotation period, and they may occur at
ifferent latitudes, so the variability is only quasi-periodic (Nielsen
t al. 2013 ; McQuillan, Mazeh & Aigrain 2014 ). The α2 CVn stars
re hotter stars whose strong dipolar magnetic fields concentrate
ertain elements into spots. These also rotate with the star, but occur
ear the magnetic poles and are much longer lived, leading to light
urves that do not change rapidly in period, amplitude, or shape
Wolff 1983 ). In our chosen temperature range, examples of both are
ound. 

Three classes of pulsating variable star were included (for a
ecent re vie w of pulsating stars, see Kurtz 2022 ). RR Lyr v ariables
re bright, evolved stars burning helium in their cores. As they
raverse the horizontal branch, they cross the instability strip and
ulsate periodically with a characteristic phase curve. Their use as
tandard candles has allowed measurements of the distance to the
alactic centre and to globular clusters (Oort & Plaut 1975 ; Walker
992 ). The two other pulsating star classes, γ Doradus and δ Scuti
ariables, both comprise A- or F-type stars on or near the main
equence, and embody two distinct types of oscillation: g modes, or
uoyanc y-driv en modes sensitive to the near-core region of a star;
nd p modes, pressure-driven modes most sensitive to the envelope.

Doradus stars are multiperiodic g-mode pulsators with periods
etween approximately 0.3 and 3 d (Kaye et al. 1999 ). Despite having
eriods similar to the RR Lyr variables, the multiperiodic γ Doradus
tars do not have simple phased curves. There are several hundred in
he Kepler field (Li et al. 2020 ), and they have seen substantial recent

art/stac1515_f1.eps
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Table 1. Breakdown of stars in the training set. 

Class No. stars 

Contact EB 171 
Detached EB 83 
δ Scuti 411 
γ Doradus 262 
Non-variable 201 
Rotational 166 
RR Lyrae 25 

Total 1319 
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Table 2. The training set of 1319 Kepler stars. An extract of 14 stars is 
shown, with the full table provided in the supplementary material. 

KIC ID Class 

10855535 Contact EB 

9612468 Contact EB 

3836439 Detached EB 

9711751 Detached EB 

9331207 δ Scuti 
8376471 δ Scuti 
4755510 γ Doradus 
1996456 γ Doradus 
1864603 Non-variable 
2156425 Non-variable 
1164109 Rotational 
1435836 Rotational 
3733346 RR Lyrae 
3864443 RR Lyrae 
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ttention because of their ability to probe internal rotation (Van Reeth 
t al. 2018 ; Ouazzani et al. 2019 ), dif fusi ve mixing (Bouabid et al.
013 ), and core o v ershooting (Mombarg et al. 2019 ). 
Finally, δ Scuti stars are the most common class of pulsating star

t A and F spectral types, with approximately 2000 known in Kepler
ata alone (Murphy et al. 2019 ; Guzik 2021 ). These stars are p-mode
scillators, and with periods between 18 min and 8 h they are the
ighest frequency variables in our sample. For unknown reasons, 
ven in the middle of the δ Scuti instability strip only half of the stars
ulsate as δ Scuti stars (Murphy et al. 2019 ); hence, we include a non-
ariable class in this work. We note that some δ Scuti stars are known
o lie outside of the instability strip (e.g. Bowman & Kurtz 2018 ),
ut our classifications are based only on the Kepler light curves and
ot on parameters such as ef fecti ve temperature. 

.2 Preparing the training set 

bl2We created a training set across all seven classes by hand-picking 
319 stars from candidate lists according to specific criteria. Stars 
ere restricted to the temperature range 6500 K ≤ T eff ≤ 10 000 K 

sing ef fecti ve temperatures from Mathur et al. ( 2017 ). We examined
ne quarter of long-cadence Kepler photometry for each star to 
repare the training data. Quarter 9 (Q9) was chosen because it has no
rolonged gaps in observation, such as those arising from telescope 
afe mode events, and no anomalies in data quality. We used light
urves made with simple aperture photometry (SAP), downloaded 
rom the Kepler Asteroseismic Science Operations Center (KASOC) 
ebsite (Data Release 25). 1 The choice to examine a single quarter 
as made to reduce computation time, but this also precludes the 

nalysis of variability on time-scales longer than a typical 90-d 
uarter. While we certainly recommend the investigation of 4-yr data 
n future research focused on a wider range of Kepler variables, this
ill not have a great effect on the stars chosen for our investigation.
f the seven classes, only a handful of detached binaries are known

o have a period greater than 90 d (Kirk et al. 2016 ), and we did not
nclude these in the training set. 

The training stars were chosen from lists of possible candidates for
ach of the seven classes by visually inspecting their light curves and
ourier transforms. This laborious process embodies the moti v ation 
or automated variable star classification, and was a necessary task to 
nsure that the training data were accurate and would not mislead the
utomated feature-selection process. In the following paragraphs, we 
escribe the selection of stars in training sets for each class. Table 1
ummarizes the class-specific number of stars in the training set. The 
ull list of stars is provided as supplementary material, with a sample
hown in Table 2 . 
 http:// kasoc.phys.au.dk/ 

2

S  

t

EB systems were selected from the Kepler Eclipsing Binary 
atalogue (Kirk et al. 2016 ), restricted to periods < 90 d and a
orphology index of 0 ≤ c ≤ 0.5 (detached binaries) or 0.75 ≤ c ≤

.0 (contact binaries), as recommended by Matijevi ̌c et al. ( 2012 ). 
Our selection of δ Scuti stars began with 2405 stars manually 

dentified as variable at frequencies abo v e 7 d −1 from a preliminary
ersion of the Murphy et al. ( 2019 ) catalogue. We randomly selected
000 of these, and further refined this list to remo v e an y stars that
ere also γ Doradus stars (i.e. γ Doradus/ δ Scuti hybrids) by manual 

nspection. From the same source, we also chose 500 stars that
ere not δ Scuti pulsators, and remo v ed stars with low-frequency
ariability to arrive at the 201-star non-variable class. 

We selected the γ Doradus sample from the Debosscher et al. 
 2011 ) catalogue by choosing stars with a label confidence of
 95 per cent and an ef fecti ve temperature in the appropriate range.
hile the Debosscher et al. ( 2011 ) catalogue is known to have errors,

his approach was taken due to a lack of an available list of γ Doradus
tars exhibiting a broad range of oscillatory behaviours characteristic
f the class – that is, a sample not restricted to neat and well-
tudied γ Doradus stars from which scientific inference has been 
ade (references in Section 2.1 ). The addition of rigorous manual

nspection ensured that the γ Doradus stars included in the final 
ample were significantly more likely to be correctly classified than 
n the Debosscher et al. ( 2011 ) catalogue, and that hybrid pulsators
ere remo v ed. 
Unlike the other classes, RR Lyr variables are not common in

he Kepler data set. Of the 47 Kepler RR Lyr stars we found in the
iterature (Nemec et al. 2013 ; Moln ́ar et al. 2018 ; Murphy et al.
018 ), only 25 were observed in Q9. We admitted all 25 of these in
he hope that we might disco v er additional RR Lyrae variables when
lassifying the remainder of the Kepler field (we did not). 

The rotational variables were selected after trialling a preliminary 
ersion of our classifier, trained on the other six classes, on a test sam-
le of Kepler stars. When visually inspecting the classification results 
cross the six classes, we found that rotational variables constituted a
onsiderable fraction of stars (approximately 15 –20 per cent ). From 

hese, we added a list of 166 rotational variables to the training set
fter a second manual verification. 

.3 Processing Kepler data 

tarting with SAP fluxes from Q9 light curves, we processed the data
o remo v e instrumental variability by eliminating long-period trends 
MNRAS 514, 2793–2804 (2022) 
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n the light curve of each star. Such variability can arise from physical
rift of the telescope, causing changes in the flux levels falling in the
perture mask, as well as other instrumental effects distinct from
tellar variability. Our processing involved division by a smoothed
ersion of each light curve (smoothed using a Savitzky–Golay filter),
emoval of single-point outliers more than 3 σ from the mean of the
moothed light curve, and converting units to magnitudes. 

Any gaps in the data of more than an hour (corresponding to
wo 29.45-min integrations) were padded with either the mean of
he time-series for long gaps of four or more integrations, or the
ean of the points on either side of smaller gaps. Even in high-

uality quarters, long gaps arise from standard telescope operations
uch as the data downlinks that happen for approximately 24 h twice
very quarter, while small gaps may be caused by e.g. cosmic ray
vents. Most machine-learning tools operate as functions of array
ndex rather than explicit functions of time, hence it is imperative
hat these gaps are filled. 

 FEATURE-BASED  L I G H T- C U RV E  

L ASSIFIC ATION  

aving constructed a training set, we next aimed to build a classifier
o accurately predict the class of a star from features of its light-
urve time-series. Our approach involved four steps: (i) mapping
ach light curve to a large feature vector, where each feature is a
ingle, real-valued summary statistic that captures some interpretable
roperty of the light curve; (ii) learning a classification rule that maps
rom a reduced subset of extracted features to the class label on a
abelled training set; (iii) e v aluating the performance of the learned
lassification rule on an independent test set; and (iv) applying this
ule to classify the full Kepler data set. 

.1 Feature extraction 

he task of selecting rele v ant properties of a time-series for a given
pplication, like light-curve classification, is commonly a manual
ne performed by a given researcher (e.g. Pashchenko et al. 2017 ).
n alternative approach, termed ‘highly comparative time-series

nalysis’ (Fulcher, Little & Jones 2013 ; Fulcher & Jones 2014 ), is
o include a large and comprehensive candidate set of possible time-
eries features, and take a data-driven approach to selecting those that
re most rele v ant to the task at hand. To extract features from a light
urve, we used a comprehensive candidate set of over 7000 time-
eries features from the HCTSA software package (v0.96) (Fulcher &
ones 2017 ). 2 The HCTSA feature set encompasses a wide range of
ime-series analysis methods, from properties of the distribution of
ime-series values, linear and nonlinear autocorrelation, entropy and
omplexity measures, stationarity, time-series model fits, wavelet
nd Fourier basis-function decompositions, and others (Fulcher et al.
013 ). This approach allowed us to represent a set of L light curves as
n L × F matrix, where F is the number of features; applying HCTSA

o our training data set yielded a 1319 × 7873 light curve × feature
atrix, where each row is labelled according to one of the seven

lasses listed in Table 1 . After performing feature extraction, we
xcluded features that contained special values ( NaN , Inf ), returned
n error, or produced near-constant outputs (within 10 × machine
recision) across all 1319 time-series, resulting in 6492 features after
ltering. As a preprocessing prior to classification, feature values
NRAS 514, 2793–2804 (2022) 

 https:// github.com/benfulcher/ hctsa 

a  

o  

f  

t  
ere normalized to the unit interval using a scaled, outlier -rob ust
igmoidal transformation (Fulcher et al. 2013 ). 

.2 Training and evaluating a classifier 

n modern applications of machine learning, complexity is often
ntroduced at the level of the classifier. In this work, we instead
ocused on selecting from a large candidate set of complex features,
ut using simple classifiers. This has the advantage of yielding
eatures that can provide clear scientific interpretation, and follows
he approach of Timmer et al. ( 1993 ): ‘The crucial problem is not the
lassificator function (linear or non-linear), but the selection of well-
iscriminating features. In addition, the features should contribute
o an understanding’. For classification, we used a Gaussian mixture
odel (GMM; McLachlan & Peel 2000 ) on a labelled time-series ×

eature matrix (described abo v e). We fitted a single-Gaussian compo-
ent to each of the seven training classes in feature space, combining
hem with equal prior probabilities to form a seven-component
robability density function (PDF). While all classes are not equally
ommon, equal priors are the simplest choice without knowing the
rue distribution of variable stars in the Kepler field. Classification
as performed by e v aluating the (posterior) probability of a star
elonging to each class using the trained PDF, and selecting the
lass with highest probability. This GMM approach was substan-
ially faster (by factors of approximately 10–100) than alternative
lgorithms such as nearest-neighbour clustering or support vector
achines, but achieved similar classification performance on our

raining set. 
We e v aluated classification performance as the average balanced

ccuracy computed using 10-fold stratified cross-validation (Hastie,
ibshirani & Friedman 2009 ). Balanced accuracy, C bal , accounts for
lass imbalance (the unequal number of observations in each class)
n our data set and is defined as 

 bal = 

1 

m 

m∑ 

i= 1 

t i 

c i 
, (1) 

here m is the number of classes, t i is the number of successfully
dentified time-series in the i th class, and c i is the total number of
ime-series in this class. 

.3 Feature subset selection 

o extract a small number of HCTSA features that are most informative
f the class labels, we used greedy forward feature selection (Hastie
t al. 2009 ; Fulcher & Jones 2014 ). This simple algorithm iteratively
uilds a feature set, one feature at a time, with the objective
f maximising the balanced classification accuracy, C bal , at each
teration. That is, at iteration k , the algorithm searches across all
ndividual features for the feature that maximizes C bal when used
n combination with the features selected in the k − 1 previous
terations. 

HCTSA was developed to encompass a comprehensive sample of
he interdisciplinary time-series analysis literature, and thus contains
roups of features with highly correlated behaviour (Fulcher et al.
013 ; Henderson & Fulcher 2021 ). When multiple features exhibit
imilar classification performance, we implemented a simple heuris-
ic constraint to fa v our the selection of faster-to-compute features:
t each iteration, of the features with an accuracy within a margin
f 1 per cent of the best-performing feature, the feature with the
astest computation time was selected. The iterative procedure was
erminated when the impro v ement in training-set C bal from adding

https://github.com/benfulcher/hctsa


Classifying Kepler light curves 2797

Figure 2. A 2D t -SNE projection of our Kepler training set of 1319 stars in 
the 6492D HCTSA feature space, where each light curve is coloured by its class 
label. Most stars form clear clusters that match their class identity, indicating 
that the HCTSA features provide a useful space in which to represent Kepler 
light curves. 
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Figure 3. Classification performance as a function of the number of time- 
series features. Balanced misclassification rate on the training set (using a 
GMM classifier) is plotted as a function of selected features, shown as the 
mean and standard deviation across 10-fold cross-validation. 
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nother feature dropped below 1 per cent. Note that applying this
lgorithm to the full training data set has the potential to o v erfit, since
he selection step at each iteration (despite using cross-validation for 
ach feature) uses the training set itself to select the best-performing
eature. Accordingly, we e v aluate the performance of our reduced 
eature set on an independent test set in Section 4 . 

 RESULTS  A N D  DISCUSSION  

.1 Representing light cur v es in a high-dimensional feature 
pace 

e first investigated the structure of the seven labelled classes of
319 Kepler stars in the 6492D HCTSA feature space. We found that
he HCTSA feature space is able to capture characteristic properties 
f the seven labelled classes of stars, obtaining a high mean 10-
old cross-validated balanced accuracy of 95.9 per cent [using a 
inear support vector machine (Hastie et al. 2009 ), compared with 
 chance rate for seven classes of 14.3 per cent]. This indicates that
ach type of star displays distinctive dynamics in ways that can be
etected by the features included in HCTSA . To better understand 
he structure of light curves in the high-dimensional HCTSA feature 
pace, we inspected a 2D t -SNE visualization ( t -distributed stochastic
eighbour embedding; Van Der Maaten & Hinton 2008 ). The result
s shown in Fig. 2 , where each point is a light curve, and light curves
ith similar features tend to be positioned closely in the space. While

 -SNE is an unsupervised technique (Fig. 2 was constructed without 
nowledge of the class labels), stars are meaningfully organized 
ccording to their labelled class, with most stars clustering with other 
tars of the same type. Consistent with the high classification results
eported abo v e, this indicates that the HCTSA feature space captures
istinctive dynamical properties of the light curves corresponding to 
he seven different types of stars. The plot also reveals scientifically 

eaningful structure between classes, such as the continuum from 

on-variable (light orange) stars to rotational-variable (light blue) 
tars. We also see a small o v erlap between RR Lyr stars and contact
Bs, which reflects the similar morphologies of their light curves 
see Fig. 1 ). 

.2 Representing light cur v es in a reduced feature space 

he results abo v e demonstrate that time-series properties in HCTSA

an capture differences in light-curve dynamics between different 
ypes of stars. But which types of individual time-series features are

ost informative of these differences? To address this question, we 
imed to construct a reduced set of HCTSA features that display strong
lassification performance using greedy forward selection (see Sec- 
ion 3.3 for details). The cross-validated balanced misclassification 
ate on the training set is shown as a function of the number of
elected features in Fig. 3 . This plot reveals that strong in-sample
lassification performance can be obtained with a relatively small 
et of well-chosen time-series features, e.g. a balanced accuracy of 
5.2 per cent with just three features. According to our termination
riterion – when an additional feature provides < 1 per cent marginal
mpro v ement in balanced accuracy – we obtained an informative 5D
eature space in which to represent Kepler light curves. 

To visualize how stars are organized in the reduced feature space,
e plotted the training set in the space corresponding to three of the

elected features in Fig. 4 (left). Despite a dramatic dimensionality 
eduction of each time-series – from the 4767 data points in a
ypical Q9 time-series to just three extracted summary statistics 

the space meaningfully organizes all seven training classes in
his low-dimensional feature representation, with each occupying a
haracteristic region of the space. Much like the t -SNE construction
n Fig. 2 , the relative positions of each class are consistent with what
e would intuitively expect from their light curves and power spectra

n Fig. 1 . For example, detached binaries are highly separated from
he other classes, as their light curves are the most distinct; non-
ariable stars blend with rotational variables when the rotations are 
eak and difficult to distinguish by eye, such that the light curves

re almost non-varying; the γ Doradus and δ Scuti stars lie on 
pposite sides of the space, reflecting their contrasting low- and 
igh-frequency pulsations; and the contact binaries are close to the γ
oradus and RR Lyrae clusters, which all characteristically exhibit 

e gular low-frequenc y variability. 
MNRAS 514, 2793–2804 (2022) 
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Figure 4. Separation of different classes of stars in the (normalized) space of three time-series features selected from HCTSA using greedy forward-feature 
selection. The two figures show (left) the training set, and (right) the training set alongside unlabelled Kepler data with 6500 K ≤ T eff ≤ 10 000 K . The three 
features correspond to AC nl 001 , MF steps ahead ar best 6 mabserr 5 , and SP Summaries welch rect peakPower 5 , as described in detail 
in Section 4.2.1 . 

4

W  

c  

p  

a  

o  

t  

s  

f  

I  

t  

i
 

n  

〈  

s  

a  

a  

l  

(  

s  

s  

t  

p  

c  

w  

T  

B  

n
 

i  

p  

m  

B  

T  

(  

Figure 5. Values for Feature 1, which computes 〈 x 3 t x t−1 〉 t (see Sec- 
tion 4.2.1 ). The violin plots show the normalized output of AC nl 001 
across the seven classes of stars in the training set. Sigmoidal normalization 
scaled to the unit interval (see methods) was used to aid visualization of the 
large range of raw values of this feature. 
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.2.1 The reduced feature set 

e have demonstrated the usefulness of representing Kepler light
urves in a low-dimensional feature space, but what types of
roperties are these features measuring, and what can that tell us
bout how light-curve dynamics differ between the seven classes
f stars? In this section, we explain the five features in order of
heir selection by our greedy forward selection algorithm. Noting the
mall marginal impro v ements in accurac y after approximately three
eatures (shown in Fig. 3 ), we focus in particular on these features.
n the following discussion, note that the time-series were converted
o magnitudes, so that positiv e e xcursions correspond to decreases
n stellar flux, and vice versa. 

The first selected feature (labelled AC nl 001 in HCTSA ), is a
on-linear autocorrelation statistic that computes the time-average,
 x 3 t x t−1 〉 t , of the z-scored time-series x t , with a time lag of 1
ample (approximately 30 min in the time domain). Similar to
 lag-1 autocorrelation, 〈 x t x t − 1 〉 t , it gives high values to highly
utocorrelated light curves, but the modification ( x 3 t ) accentuates
arge deviations from the mean. The distribution of this feature’s
sigmoid-normalized) values across the seven classes of stars is
hown in Fig. 5 . Detached binaries have the largest values of this
tatistic, driven by large positiv e e xcursions from the mean (since the
ime-series are in magnitudes). Autocorrelation arising from slower
eriodic patterns, as in γ Doradus, rotational stars, RR Lyr and
ontact binaries, lead to moderate positi ve v alues of AC nl 001 ,
hile the non-variable stars have lo w v alues (raw v alues near-zero).
he high-frequency oscillations seen in some δ Scuti stars (e.g.
alona, Holdsworth & Cunha 2019 ; Bedding et al. 2020 ) resulted in
e gativ e values of AC nl 001 (the lowest normalized values). 
Feature 2 (labelled MF steps ahead ar best 6 mabserr 5

n HCTSA ) uses a linear autore gressiv e (AR) model to measure how
redictable a time-series is. This statistic captures how well an AR
odel (of optimal order, selected in the range 1–10 using Schwartz’s
ayesian Criterion) can predict 5 time-steps ahead in the time-series.
his is measured relative to simple benchmark forecasting methods

including simple mean forecasts and a constant global-mean
NRAS 514, 2793–2804 (2022) 
orecast), calculated as the mean absolute error. The distribution of
eature values across the seven classes of stars is shown in Fig. 6 .
alues near-zero indicate strong prediction performance of the AR
odel relative to simple benchmarks, while values greater than 1

ndicate relatively inferior model performance. We see high values
or the non-variable stars, detached binaries, rotational stars, and
ost of the δ Scuti stars, with RR Lyr stars displaying intermediate

alues (a few RR Lyr stars with highly symmetric light curves have
o w v alues). The γ Doradus and contact binary light curv es e xhibit
 strong linear correlation structure that allowed the AR models to
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Figure 6. Distribution of Feature 2 values by class (see Section 4.2.1 ), which 
measures how predictable the time-series is using a linear autore gressiv e 
(AR) model; high values (near 1) are given to light curves for which the 
AR model performs worse than simple benchmarks, whereas values near 0 
are given when the AR model strongly outperforms the benchmarks. Violin 
plots are shown for the distribution of this feature across the seven classes 
of stars. 
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Table 3. The test set of 515 Kepler stars. An extract of 12 stars is shown, 
with the full table provided in the supplementary material. 

KIC ID Class 

8282730 Contact EB 

6957185 Contact EB 

8953296 Detached EB 

5090690 Detached EB 

8585472 δ Scuti 
3648131 δ Scuti 
6041803 γ Doradus 
8739181 γ Doradus 
5616145 Non-variable 
8153411 Non-variable 
3847563 Rotational 
3967219 Rotational 

Figure 7. Confusion matrix summarizing GMM classification performance. 
The GMM and test labels are the classifier predictions and manually assigned 
truth labels (respectively) for stars in our test set. Summaries in grey on 
the right of the matrix correspond to the (unbalanced) percentage of correct 
predictions, while summaries at the bottom are the (unbalanced) percentage 
of each class that was correctly classified. The raw classification accuracy is 
shown in blue (balanced accuracy 81.6 per cent). There were no RR Lyrae 
stars in our test set. 
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ake strong forecasts of these time-series, yielding lo w v alues for
his statistic. 

Feature 3, labelled CO trev 3 num in HCTSA , e v aluates the
ollowing time-average: 〈 ( x t − x t − 3 ) 3 〉 t . This statistic, using a time-
ag τ = 3, can be thought of as capturing asymmetry in the size of
ncreases ( x t − x t − 3 > 0) versus decreases ( x t − x t − 3 < 0). For
xample, time-series with sudden increases but gradual decreases (at 
 time lag of three samples) will have large values of this feature.
R Lyr are distinguished by ne gativ e values of CO trev 3 num ,
ue to the characteristic asymmetry in the shapes of their light curves
e.g. Catelan & Smith 2015 ). 

Feature 4, labelled ST LocalExtrema n100 medianmax in 
CTSA , captures ho w positi ve outliers are distributed through the

ime-series. Operating on the z-scored time-series, this algorithm 

omputes the maximum value in each of 100 o v erlapping windows
each containing 47 samples corresponding to approximately 23 h), 
nd outputs the median of these local maxima. For time-series with 
elatively infrequent large positive excursions (like the light curves 
rom many detached binaries, recalling that the calculations are done 
ith magnitudes), most windows will have very low maxima, and 

hus the median of the maxima will be a low value. However, for
ime-series with maxima spaced more evenly throughout time, like 

ost non-variable and δ Scuti stars, high values are obtained for this
tatistic. 

Feature 5, labelled SP Summaries welch rect peakPower
n HCTSA , uses Welch’s method and a rectangular window to estimate
he power spectrum and returns the proportion of power captured 
y the five most prominent identified peaks. Broadly, this feature 
ives high values to time-series that are well captured by a 
elatively small number of dominant frequencies. The lowest values 
or this feature were found for non-variable stars and rotational 
ariables, while high values were obtained for contact binaries and 
R Lyr stars. 
.2.2 Evaluation on a test data set 

aving computed an informati ve lo w-dimensional space in which 
o represent Kepler light curv es, we inv estigated its ef fecti veness
n classifying variable stars outside our training set. We manually 
ompiled a test set of 515 stars in the Kepler field belonging to
lasses of variable stars in our training set, and with 6500 K ≤ T eff ≤
0 000 K . The full list of test stars is provided as supplementary
aterial, with a sample shown in Table 3 . 
To e v aluate classification performance on the test set in the trained

D feature space, we constructed a GMM consisting of seven 
aussian components, one fitted to each class in our training set

with uniform prior class probabilities), and used it to classify each
f the test stars. Fig. 7 summarizes our results on the test set as a
onfusion matrix. 
MNRAS 514, 2793–2804 (2022) 
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Table 4. Extract of GMM posterior class probabilities and probability density p ( x ) for 12 088 unlabelled stars in the Kepler field. 
The first 10 lines are shown, with the full table provided in the supplementary material. 

KIC ID Contact EB Detached EB δ Scuti γ Dor Non-variable Rotational variable RR Lyrae p ( x ) 

757280 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 .73 
892667 0.00 0.00 0.00 0.00 0.00 1.00 0.00 9 .12 
892828 0.00 0.00 0.00 0.00 0.93 0.07 0.00 307 .19 
893234 0.00 0.00 0.00 0.00 0.01 0.99 0.00 4 .12 
893944 0.00 0.00 0.00 0.00 1.00 0.00 0.00 3802 .55 
1026133 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1 .02 
1026255 0.00 0.00 0.00 0.00 0.51 0.49 0.00 0 .71 
1026475 0.00 0.00 0.00 0.00 0.00 1.00 0.00 9 .54 
1026861 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0 .44 
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The confusion matrix can be interpreted as follows. Labels on
ach row were assigned by the GMM classifier, while labels on
ach column correspond to manually assigned labels from our test
et. Each cell ( i , j ) of the confusion matrix shows the number of
tars (and percentage of all stars considered) that were classified as
ategory i by the GMM, and as category j in our test set. For example,
here were 18 stars classified as detached binaries by the GMM but
abelled as non-variable in the test set. Diagonal elements of the

atrix (in green) correspond to correctly classified stars. Summaries
n grey on the right of the matrix correspond to the (unbalanced)
ercentage of correct predictions, while summaries at the bottom are
he percentage of each class that was correctly classified. The raw
lassification accuracy is shown in blue in the bottom-right corner. 

Our classifier achieved a balanced accuracy of 81.6 per cent on the
est set and performed well on all classes, with two understandable
xceptions highlighted in Fig. 7 : 

(i) Non-variable stars are commonly misclassified as detached
inaries (18 misclassifications). Most have sharp transitions in
heir light curves at the beginning or end of the quarter, or just
efore or after the Kepler telescope paused observation for data
ransmission. These transitions appear as sharp peaks or troughs,
nd are represented similarly to eclipses in our feature space. 

(ii) γ Doradus stars are commonly misclassified as rotational
ariables. Both classes have low-frequency variations (e.g. Li et al.
019 ) and even for an expert eye, it can be difficult to resolve

Doradus oscillations from a single quarter of Kepler data. The
ehaviour may therefore look similar to rotation in our feature space.

Apart from these exceptions, our approach yielded high overall
lassification accuracies despite relying on very simple methods
greedy forward feature selection and GMM classification),
emonstrating the usefulness of the comprehensive HCTSA feature
pace in highlighting high-performing interpretable features for a
iven problem. We expect that repeating the feature selection and
lassification procedures with more sophisticated algorithms, while
till working with a rich set of interpretable features, would further
mpro v e the accurac y reported here using simple methods. Ho we ver,
s discussed in Section 4.3 , our method is already a useful tool for
lassifying and searching large data sets. 

.3 Classifying the Kepler field 

n this section, we use the low-dimensional feature space learned
rom the training set and validated on the test set to classify variable
tars across the entire Kepler field. Our full classification catalogue
s provided as supplementary material (Table 4 ). 
NRAS 514, 2793–2804 (2022) 
.3.1 Classifying unlabelled stars 

e computed the 5D feature-space representation of all 12 088
tars with Q9 data in the Kepler field and 6500 K ≤ T eff ≤ 10 000 K
excluding our training set of 1319 stars). These are plotted in
he right-hand panel of Fig. 4 as unlabelled stars (grey). Each
eature vector was normalized using the same scaled robust sigmoid
ransformation (including its coefficients) as used on the training set,
reserving the structure of our normalized feature space. The grey
nlabelled stars are clearly clustered around the coloured training
roups, with the majority of stars residing near the non-variable
luster. This clustering occurs naturally because of our choice of
eature space. Intuitively, we might expect that (i) unlabelled stars
ear each training cluster belong to that respective class; (ii) stars
idw ay between tw o groups are hybrids of both classes; and (iii) stars

ar from any group are new classes of variable stars unaccounted for in
ur training set. We have already verified the first of these hypotheses
y applying our GMM classifier to the test set with reasonably high
ccuracy in Section 4.2.2 . We leave investigation of the remaining
wo claims as future work. 

We e v aluated our trained GMM classifier on all 12 088 unlabelled
tars to generate a catalogue of posterior probabilities, giving a
redicted classification for each star. The first 10 lines of this
atalogue are shown in Table 4 , with the full catalogue provided
s supplementary material. For each star in the catalogue, its classifi-
ation is the class with maximum posterior probability. The catalogue
s intended as a useful tool in searching for candidate variable stars
f interest. We note that this catalogue and our broader methodology
ave already proven useful in identifying new γ Doradus stars (Li
t al. 2019 ) and δ Scuti stars (Murphy et al. 2020 ) in the Kepler field.
e provide suggestions for searching our catalogue in Section 4.3.2 .

.3.2 Using probability density as a confidence heuristic 

lose examination of Fig. 4 reveals that many unlabelled stars
ie in areas between the training set clusters, far from where the
MM classifier was trained. We may therefore ask: how does our

lassification accuracy improve if we restrict the test set to stars ‘near’
he training distributions? We define p ( x ) as the probability density
f a star represented by feature vector x , where the PDF is the 7-
lass GMM used for classification. Stars close (in feature space) to
he centre of the multi v ariate Gaussians will have large probability
ensities, p ( x ), while those far from the class centroids will have low
 ( x ). In this sense, we can use p ( x ) as a heuristic measure of how
ikely a star is to belong to any of the training classes. p ( x ) is provided
n the final column of Table 4 . 

As an example, the left-hand and right-hand panels of Fig. 8 show
he distributions of p ( x ) for all δ Scuti stars in the training set and
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Figure 8. Histograms of GMM probability density p ( x ) for all stars classified as δ Scutis in (left) the training set, and (right) the remainder of the Kepler field 
with 6500 K ≤T eff ≤ 10 000 K. Lines in the training distribution indicate p ( x ) percentile cut-offs. For example, 90 per cent of stars classified as δ Scuti in the 
training set lie abo v e the blue line. Stars in the right-hand panel are classified according to Murphy et al. ( 2019 ). 
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Figure 9. Balanced classification accuracy as a function of p ( x ) percentile 
cut-offs. Applying the classifier to stars close to regions of feature space 
that we trained on significantly impro v es the o v erall accurac y. Dotted lines 
correspond to the same percentile cut-offs o v erlaid in Fig. 8 . 
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he rest of the Kepler field (in our temperature range of interest),
espectively. Classifications in the right-hand panel of Fig. 8 are 
rom the (manually compiled) Murphy et al. ( 2019 ) catalogue. As
nticipated, misclassification is far more common at low densities. 
nterestingly, the distribution in Fig. 8 shows that abo v e p ( x ) ≈ 1, all
redictions of δ Scuti stars are correct. We would intuitively expect 
imilar p ( x ) cut-offs for the other classes, abo v e which we hav e high
onfidence in the GMM predictions. Ho we v er, defining e xact cut-
ffs is impossible without a full labelled catalogue of the Kepler 
eld. Instead, we can define values for p ( x ) representing regions of

ncreasing proximity to our trained distribution. The vertical lines 
n the left-hand panel of Fig. 8 show p ( x ) percentile cut-offs, abo v e
hich a certain percentage of the training data fall. For example, only

he 90 per cent ‘closest’ δ Scuti training stars to the δ Scuti centroid
in terms of probability density) lie abo v e the blue line in Fig. 8 . 

The results abo v e, for δ Scuti stars, suggest that our predictions
re more accurate in higher confidence areas of the feature space, 
orresponding to areas with higher modelled density for the training 
et. To test whether this holds more generally, we computed the 
alanced classification accuracy (across all classes) on the test set 
or a range of p ( x ) percentile thresholds. As shown in Fig. 9 , we
nd that accuracy improves with more stringent restrictions on 
 ( x ), demonstrating the usefulness of p ( x ) as a proxy for prediction
onfidence. Even small restrictions in p ( x ), such as the 95 th percentile
ut-off (green line), impro v e the classification performance on our 
est set to approximately 90 per cent accuracy. This is an example of
 useful way to search our catalogue and obtain a list of confidently
lassified variable stars for further analysis – as p ( x ) increases
or each class, so too does the confidence of our predictions. We
nce again stress that such intuitive search criteria are a direct 
onsequence of our choice of feature space and simple classification 
lgorithm. One could achie ve e ven more accurate results with more
ophisticated approaches, but this may come at the expense of 
nterpretability of our low-dimensional feature space. 

.4 Comparison with Audenaert et al. ( 2021 ) 

hen our paper was in the final stages of preparation, a new
lassification of Kepler light curves was published by Audenaert 
t al. ( 2021 , hereafter Aud21 ). Their w ork w as done as part of
fforts to design an automated classification algorithm for the TESS 
ission. Given the complementary nature of Aud21 and our own 

tudy, especially given that both were based on Q9 data, it is
orthwhile to carry out a brief comparison. We should keep in mind

hat the emphasis in Aud21 was on providing a high-performance 
lassification pipeline from existing methods, whereas ours involved 
esigning an interpretable classifier from a rich library of time-series 
eatures. 

The classification by Aud21 included about 167 000 Kepler Q9 
ight curv es, re gardless of ef fecti ve temperature, whereas our work is
estricted to about 12 000 stars with 6500 K ≤ T eff ≤ 10 000 K . We
ave compared our classifications with Aud21 in Fig. 10 . There is
n obvious mapping between most of our classes and those used by
ud21 , with the following differences: 

(i) Aud21 combined contact EBs and rotational (spotted) variables
nto a single class. 
MNRAS 514, 2793–2804 (2022) 
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Figure 10. Confusion matrix comparing the results of the Aud21 classifier 
to our own classifications for about 12 000 stars in the Kepler field with 
6500 K ≤ T eff ≤ 10 000 K . Much like in Fig. 7 , the grey summary boxes on 
the right correspond to the percentage of Aud21 labels that agree with our 
GMM predictions, while summaries at the bottom are the percentage of our 
predictions for each class that agree with Aud21 . 
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(ii) Aud21 included δ Scuti stars in a class with β Cephei stars.
hese have similar light curves but the β Cep pulsators have higher
f fecti ve temperatures that lie outside the range of our sample.
imilarly, Aud21 combined γ Doradus stars with SPBs (slowly
ulsating B stars), which are also hotter than our sample. 
(iii) Aud21 included a class for solar-like oscillators, which should

ot appear in our sample because they occur in stars whose ef fecti ve
emperatures fall below our range. 

(iv) Aud21 also included a class for aperiodic variables.

We see from the confusion matrix in Fig. 10 that there is generally
xcellent agreement between our results and those of Aud21 . We
riefly discuss the areas with the greatest disagreement: 

(i) 3094 stars that our classifier labelled as non-variable were
lassified by Aud21 as rotational/contact EBs. We inspected 200
f these light curves (and their Fourier amplitude spectra) and found
hat most are non-variable, with some showing a weak rotation signal.

(ii) 637 stars that we labelled as contact EBs or rotational variables
ere classified by Aud21 as γ Doradus pulsators. Inspection of
00 light curves shows that most are indeed γ Doradus stars. This
ay be a shortcoming of our specific feature space and classifier,

articularly when considering Fig. 7 , where the same disagreement
ccurs between our GMM classifications and our independent test
et. 

(iii) 153 stars were labelled by us as γ Doradus stars and by Aud21
s contact EBs or rotational variables. Inspection of these shows that
any are indeed γ Doradus stars, although it is sometimes difficult

o be sure. 
(iv) 139 stars in our sample were labelled by Aud21 as having

olar-like oscillations, which is not a class that we considered
ecause these oscillations occur in stars below our temperature range.
NRAS 514, 2793–2804 (2022) 
ur classifications for these light curves were mainly as rotational
ariables, contact EBs, or non-variable. We inspected all 139 light
urves and found that our classifications were mostly correct. 

(v) 106 stars were labelled by us as contact EBs or rotational
ariables, and by Aud21 as δ Scuti stars. We inspected all light
urves and found that most have δ Scuti pulsations, but many also
av e low-frequenc y variability. 

Finally, we note KIC 10024862, which is one of two stars listed
y Aud21 as non-variable and by our algorithm as a detached binary.
n f act, Kaw ahara & Masuda ( 2019 ) identified this as a Jupiter-sized
xoplanet in a long-period orbit that has only one transit during the
-yr Kepler mission, which happened to be in Q9. This suggests that
t might be worthwhile to look in more detail at groups for which
lassification methods are in disagreement for a small number of
tars.

Much like our approach, Aud21 assigned labels to each star
ccording to the class with the highest posterior probability from their
lassifier. Fig. 10 therefore contains samples where either classifier
ay be confused – for example, a given light curve may have

robabilities of 0.34, 0.35, and 0.01 split between three classes and
he maximum probability (0.35) is relati vely lo w . Not surprisingly ,
e found that by restricting to stars with a high maximum probability

n both samples, the agreement increased between our classification
abels and those from Aud21 . A detailed comparison of the two
atalogues goes beyond the scope of this paper and would require a
easure of label confidence from the Aud21 classifier similar to the

robability density heuristic from Section 4.3.2 . 
In general, we conclude that the two approaches produce results

hat generally agree well. The difference in point (i) reflects the
ubjectivity in drawing the line between variables and non-variables
and perhaps also different amounts of filtering applied to the light
urves). Points (ii) and (iii) reflect the difficulty – especially with
hort data sets – in deciding whether low-frequency variability is due
o pulsation or rotation (e.g. Briquet et al. 2007 ; Lee 2021 ; Kurtz
022 ). 

 C O N C L U S I O N S  

e have used a feature-based machine-learning algorithm to classify
epler light curves for stars with ef fecti ve temperatures in the range
500–10 000 K. We first created a training set of 1319 light curves,
hich we classified into seven classes: δ Scuti stars, γ Doradus

tars, RR Lyrae stars, rotational variables, contact EBs, detached
Bs, and non-variable stars. We built a classifier using features
elected with the HCTSA package (highly comparative time-series
nalysis; Fulcher & Jones 2017 ), which includes o v er 7000 time-
eries features. We found that five features were sufficient to represent
he training set with a balanced accuracy of 98 per cent, and a separate
est set of 500 stars with a balanced accuracy of 82 per cent. 

We used our method to classify Kepler light curves for all 12 000
tars with ef fecti ve temperatures in the range 6500–10 000 K, and the
esults are tabulated in the online supplementary material (Table 4 ).

e further outlined a confidence heuristic based on probability
ensity to search our catalogue and extract candidate lists of correctly
lassified variable stars. We also compared our classifications to
ecent work on the same light curves by Aud21 and generally found
ood agreement. 
While many modern approaches to machine learning focus on

erformance o v er interpretability (resulting in the common descrip-
ion of being ‘black-box’ algorithms), here we fa v oured the selec-
ion of high-performing and interpretable features to meaningfully
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epresent Kepler light curv es. Giv en the ease with which our five
eatures can be computed for a large data base of light curves,
omparing complex classification algorithms to our methods could 
rovide an independent benchmark for general light-curve classifi- 
ation algorithms, much like we have shown with our comparison 
o Aud21 . 

Further extensions of this work might include using our catalogue 
o search for rare classes of variable stars, hybrid systems, and new
tars entirely different from our training sample. In particular, we 
xpect stars with roughly equal posterior probabilities between two 
lasses to be hybrid systems, and very different stars to have much
ower probability density scores than any other star in the Kepler field.
ur methods could also be applied to individual classes of variable 

tars to try to identify interesting or unusual behaviour within a 
lass, such as the recently disco v ered high-frequenc y δ Scuti stars
Bedding et al. 2020 ). Another possibility is to extend our intuitive
eature-based methods by adding more complex feature selection 
nd classification algorithms. Such extensions are likely to improve 
ur already strong classification performance, and strengthen results 
hen applying our methods to even larger photometric surv e ys, such

s that from TESS . 
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oln ́ar L., Plachy E., Juh ́asz Á. L., Rimoldini L., 2018, A&A , 620,

A127 
ombarg J. S. G., Van Reeth T., Pedersen M. G., Molenberghs G., Bowman

D. M., Johnston C., Tkachenko A., Aerts C., 2019, MNRAS , 485, 3248
urphy S. J., Moe M., Kurtz D. W., Bedding T. R., Shibahashi H., Boffin H.

M. J., 2018, MNRAS , 474, 4322
urphy S. J., Hey D., Van Reeth T ., Bedding T . R., 2019, MNRAS , 485,

2380 
urphy S. J., Barbara N. H., Hey D., Bedding T. R., Fulcher B. D., 2020,

MNRAS , 493, 5382 
emec J. M., Cohen J. G., Ripepi V., Derekas A., Moskalik P., Sesar B.,

Chadid M., Bruntt H., 2013, ApJ , 773, 181 
MNRAS 514, 2793–2804 (2022) 

http://kasoc.phys.au.dk/
https://github.com/benfulcher/hctsa
http://dx.doi.org/10.1093/mnras/stv2836
http://dx.doi.org/10.3847/1538-3881/ac166a
http://dx.doi.org/10.1142/S0218271810017160
http://dx.doi.org/10.1093/mnras/stt322
http://dx.doi.org/10.1093/mnras/sty1511
http://dx.doi.org/10.1093/mnras/stz1423
http://arxiv.org/abs/1904.07248
http://dx.doi.org/10.1093/mnras/stw810
http://dx.doi.org/10.3389/fspas.2021.718139
http://dx.doi.org/10.1038/s41586-020-2226-8
http://dx.doi.org/10.1088/2041-8205/713/2/L204
http://dx.doi.org/10.1111/j.1365-2966.2011.19466.x
http://dx.doi.org/10.1093/mnras/sts517
http://dx.doi.org/10.1093/mnras/sty449
http://dx.doi.org/10.1051/0004-6361:20066940
http://dx.doi.org/10.1051/0004-6361/202038314
http://dx.doi.org/10.1088/1538-3873/aaef12
http://dx.doi.org/10.1051/0004-6361/201015647
http://dx.doi.org/10.1109/TKDE.2014.2316504
http://dx.doi.org/10.1098/rsif.2013.0048
http://dx.doi.org/10.1093/mnras/staa2736
http://dx.doi.org/10.1093/mnras/stu642
http://dx.doi.org/10.3389/fspas.2021.653558
http://dx.doi.org/10.1109/ICDMW53433.2021.00134
http://dx.doi.org/10.1093/mnras/stx1174
http://dx.doi.org/10.1093/mnras/sty483
http://dx.doi.org/10.3847/1538-4357/aabfdb
http://dx.doi.org/10.1093/mnras/staa642
http://dx.doi.org/10.3389/fspas.2020.595017
http://dx.doi.org/10.3847/1538-4365/aba8ff
http://dx.doi.org/10.1186/s40668-019-0031-2
http://dx.doi.org/10.1093/mnras/stz3165
http://dx.doi.org/10.3847/1538-3881/ab18ab
http://dx.doi.org/10.1086/316399
http://dx.doi.org/10.3847/0004-6256/151/3/68
http://arxiv.org/abs/2201.11629
http://dx.doi.org/10.1093/mnras/staa2155
http://dx.doi.org/10.1093/mnras/stab1433
http://dx.doi.org/10.1093/mnras/stz1171
http://dx.doi.org/10.1093/mnras/stz2906
http://dx.doi.org/10.1088/0067-0049/211/2/24
http://dx.doi.org/10.3847/1538-4365/229/2/30
http://dx.doi.org/10.1088/0004-6256/143/5/123
http://dx.doi.org/10.1051/0004-6361/201833514
http://dx.doi.org/10.1093/mnras/stz501
http://dx.doi.org/10.1093/mnras/stx3049
http://dx.doi.org/10.1093/mnras/stz590
http://dx.doi.org/10.1093/mnras/staa562
http://dx.doi.org/10.1088/0004-637X/773/2/181


2804 N. H. Barbara et al.

M

N
O
O  

P  

P
P
S
S  

T  

T
V
V
W
W  

Y  

Z

S

S

t
t
t

P  

o  

A  

c

T

ielsen M. B., Gizon L., Schunker H., Karoff C., 2013, A&A , 557, L10 
ort J. H., Plaut L., 1975, A&A, 41, 71 
uazzani R. M., Marques J. P., Goupil M. J., Christophe S., Antoci V., Salmon

S. J. A. J., Ballot J., 2019, A&A , 626, A121 
ashchenko I. N., Sokolo vsk y K. V., Gavras P., 2017, MNRAS , 475,

2326 
aul S., Chattopadhyay T., 2022, preprint ( arXiv:2201.08755 ) 
ietrukowicz P. et al., 2017, Nat. Astron. , 1, 0166 
ikora J., Wade G. A., Rowe J., 2020, MNRAS , 498, 2456 
zklen ́ar T., B ́odi A., Tarczay-Neh ́ez D., Vida K., Marton G., Mez ̋o G., Forr ́o

A., Szab ́o R., 2020, ApJ , 897, L12 
immer J., Gantert C., Deuschl G., Honerkamp J., 1993, Biol. Cybern. , 70,

75 
sang B. T. H., Schultz W. C., 2019, ApJ , 877, L14 
an Der Maaten L., Hinton G., 2008, J. Mach. Learn. Res., 9, 2579 
an Reeth T. et al., 2018, A&A , 618, A24 
alker A. R., 1992, ApJ , 390, L81 
olff S. C., 1983, The A-type Stars: Problems and Perspectives. NASA

SP-463, Washington D.C. 
NRAS 514, 2793–2804 (2022) 
u J., Huber D., Bedding T. R., Stello D., Hon M., Murphy S. J., Khanna S.,
2018, ApJS , 236, 42 

hang K., Bloom J. S., 2021, MNRAS , 505, 515 

UPPORTING  I N F O R M AT I O N  

upplementary data are available at MNRAS online. 

able2-training-set.txt 
able3-test-set.txt 
able4-classification-posteriors.txt 

lease note: Oxford University Press is not responsible for the content
r functionality of any supporting materials supplied by the authors.
ny queries (other than missing material) should be directed to the

orresponding author for the article. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

http://dx.doi.org/10.1051/0004-6361/201321912
http://dx.doi.org/10.1051/0004-6361/201832607
http://dx.doi.org/10.1093/mnras/stx3222
http://arxiv.org/abs/2201.08755
http://dx.doi.org/10.1038/s41550-017-0166
http://dx.doi.org/10.1093/mnras/staa2444
http://dx.doi.org/10.3847/2041-8213/ab9ca4
http://dx.doi.org/10.1007/BF00202568
http://dx.doi.org/10.3847/2041-8213/ab212c
http://dx.doi.org/10.1051/0004-6361/201832718
http://dx.doi.org/10.1086/186377
http://dx.doi.org/10.3847/1538-4365/aaaf74
http://dx.doi.org/10.1093/mnras/stab1248
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stac1515#supplementary-data

	1 INTRODUCTION
	2 TRAINING DATA
	3 FEATURE-BASED LIGHT-CURVE CLASSIFICATION
	4 RESULTSAND DISCUSSION
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	SUPPORTING INFORMATION

