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Abstract: Dispersive spoil/soil management is a major environmental and economic challenge for
active coal mines as well as sustainable mine closure across the globe. To explore and design a
framework for managing dispersive spoil, considering the complexities as well as data availability,
this paper has developed a Bayesian Belief Network (BBN)-a probabilistic predictive framework to
support practical and cost-effective decisions for the management of dispersive spoil. This approach
enabled incorporation of expert knowledge where data were insufficient for modelling purposes.
The performance of the model was validated using field data from actively managed mine sites
and found to be consistent in the prediction of soil erosion and ground cover. Agreement between
predicted soil erosion probability and field observations was greater than 74%, and greater than 70%
for ground cover protection. The model performance was further noticeably improved by calibration
of Conditional Probability Tables (CPTs). This demonstrates the value of the BBN modelling approach,
whereby the use of currently best-available data can provide a practical result, with the capacity for
significant model improvement over time as more (targeted) data come to hand.

Keywords: mine rehabilitation; predictive probabilistic modelling; environmental risk; soil erosion;
adaptive decision-making

1. Introduction

Dispersive spoil/soil management is a significant environmental and economic issue
in parts of Australia and internationally [1]. In Australia, the management of dispersive
mine spoil is particularly significant for the coal mining industry, where spoil materials
frequently derive from dispersive pedological and geological profiles. This presents chal-
lenges for the management of spoil in active mines, sustainable mine closure [2], and the
rehabilitation/management of historic or abandoned mine sites. For example, in the Bowen
region of the state of Queensland, Australia, the instantaneous liability for rehabilitating
dispersive spoil dumps is estimated at $AU2 to 3 billion. As a result, dispersive spoil man-
agement has been the focus of numerous industry funded projects (e.g., [1,3–8]). However,
while the causes of dispersion are relatively well understood, functional integration of the
processes that lead to failure of dispersive mine spoil, the interaction of erosion processes,
and the physical and chemical properties of dispersive materials, remains incomplete.

Dispersive soils typically contain an excess of sodium relative to calcium and magne-
sium [9] and display sodic properties such as weak aggregate stability and spontaneous
dispersion of clay particles in contact with water [1,10]. Tendency to disperse is a function
of the cation suite, osmotic pressure, physical bonding agents (such as carbon), oxides
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and carbonates, and the external forces an aggregate is exposed to [8,11,12]. Such soils are
common across Australia and in the state of Queensland, where they cover approximately
25 per cent of the state [1,13]. Dispersive spoil materials also exist in sediments overlying
deposits in coal mines and, where they occur, present significant problems for post-mining
rehabilitation and site management, including poor conditions for plant establishment,
increased risk of surface and tunnel erosion, and ultimately, slope failure [1,14]. Such
conditions severely compromise the ability to achieve critical objectives for mine closure
that relate to a safe, non-polluting, stable and productive post-mining landform [15].

A number of studies have investigated the management and rehabilitation of dis-
persive spoil/soil material [1,16]. However, while the mechanisms of dispersion-related
erosion are well understood and the importance of spoil/soil characteristics, vegetation
cover, landform design and interception structures relatively well known, there are limited
risk-based decision support frameworks to enable evaluation of the cost and effectiveness
of alternative rehabilitation design options to achieve improved rehabilitation outcomes.

Improved mine spoil management is expected to achieve a number of significant
benefits, both to industry and the environment. These may include enhanced capacity to
meet mine closure criteria; improved regulation of closure criteria; improved post-closure
land capability; improved community acceptance of post-closure land condition; reduced
contribution to cumulative impacts; enhanced social license to operate; and, in eastward
draining catchments in Queensland, improved Great Barrier Reef water quality. Returning
dispersive soil/spoil to a safe, stable, non-polluting productive use or conservation out-
come requires consideration of the soil/spoil resource, as well as the environmental and
production systems it interacts with. It requires a transdisciplinary and non-reductionist
consideration of the system complexity [11].

To investigate and better understand the interconnected nature of dispersive spoil
management, we developed a conceptual model using a graphical Bayesian Belief Network
(BBN) framework to capture the range of interacting variables in dispersive spoil man-
agement systems, including spoil physical and chemical characteristics; spoil treatment
regimes; site characteristics; site management practices including revegetation and hard en-
gineering works; and the process-based interactions between these [5,6,17]. Populating this
using expert-derived and empirical data, we were able to integrate numerous factors within
the BBN framework to develop a predictive, probabilistic, risk-based decision support
system within which the outcomes of different environmental and management scenarios
might be tested. Building such a model is expected to contribute to a better understanding
of dispersive mine spoil/site dynamics and priorities for empirical data collection at mine
sites. Ultimately, this study aims to build capacity to support mined-land rehabilitation to
safe, stable, non-polluting landforms suitable for relinquishment. In this paper, we describe
the model creation and its application to improve mine spoil management, including
rehabilitation decisions, through adaptive, evidence-based best practice dispersive mine
spoil management.

2. Bayesian Belief Network Models

Bayesian modelling frameworks such as BBNs are used to conceptualise and analyse
management systems [18,19] and are particularly useful in natural resource management
(NRM) contexts, where long-term data are often lacking [7,20]. BBNs are probabilistic
graphical system models that capture cause and effect relationships (referred to as con-
ditional dependencies, i.e., ‘if this, then that, dependent on these) between key variables
that influence particular outcomes. They can be used to predict the probable outcome and
effectiveness of particular management decisions and system changes (e.g., those predicted
for climate change) [21]. Bayesian network modelling is increasingly applied in many
disciplines to map, analyse and predict system behaviour in complex management decision
contexts [22,23].

Unlike deterministic modelling approaches that use quantitative parameters and initial
conditions to simulate outputs [24], BBNs use probabilistic expressions to characterize
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the strength of the relationships between variables [25,26]. This means that BBNs can
incorporate both quantitative and qualitative information, as well as information of variable
quality, such as subjective assessments (e.g., expert opinion) of the probability that a
particular outcome will occur, where data may be limiting. Uncertainty is reflected in the
model as the likelihood of the system being within a set of defined states for each variable.
A further advantage of using probability is that such models can be easily updated as new
knowledge or data become available [21].

BBNs have significant value in management applications, where they enable predic-
tion of the likelihood of particular outcomes given the condition or state of each constituent
factor in the model, thereby allowing the likely risk associated with a management deci-
sion to be assessed prior to implementation [23,27]. While reductionist/deterministic sub
models can be coupled together in a BBN to enhance understanding of system function,
BBNs have the added advantage that, where data limitations of deterministic models can
result in significant uncertainties in model outputs [28], this uncertainty is captured within
the probabilistic BBN framework.

BBN model outcomes are testable through structured model evaluation processes. Sen-
sitivity analysis tools can be used to identify key causal factors within the model; this can
also highlight specific knowledge gaps. Because probability information rapidly propagates
through a BBN, the effect of particular management interventions or changed conditions
can easily be examined through scenario analysis within the modelling framework, facil-
itating the examination of alternative decisions to optimise a particular outcome [21,29].
A significant advantage of BBNs over other modelling approaches in decision-making
contexts is their relative simplicity. They have a graphical interface, are readily interpreted
and allow explicit documentation of assumptions and uncertainties, making them easier to
understand and use than most modelling frameworks. This also makes them particularly
useful as a communication tool for engaging with stakeholders (e.g., policymakers and
practitioners), where they can be used to develop a broader understanding of the modelled
system [21].

BBNs provide an explicit and transparent representation of (present understanding
of) the system of interest [30]. Critically, BBNs also enable the explicit treatment of uncer-
tainty [21]. The simplicity of the BBN model structure (comprising a set of variables and
causal links between these) also allows a large number of state variables to be included,
often without greatly increasing model complexity or the computational power required
to run the model [31], although Pollino and Henderson [20] argue for model parsimony,
where possible.

Bayesian Belief Network (BBN) Background

As indicated above, the BBN is a graphical system model that represents cumulative
probability distributions over all the variables modelled. It has a static topology and
consists of nodes with random variables, edges with causal relationships and their states,
and probabilistic dependency of variables [32].

The conditional probabilities can be estimated at each node of the network. For the
variable A with a range of states (conditions):

A = {a1, a2, . . . , an} (1)

The joint probability distribution of A is then:

P(A1, . . . , An) =
n

∏
i=1

P(Ai|Ai+1, . . . , aAn) (2)

P(A) by marginalisation is then:

P(a) =
n

∑
i

P(a, bi) (3)
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We can include more conditional probabilities into previous equations by involving
more events, e.g., B [33] as:

B = {B1, B2, . . . , Bm} (4)

In general, expert knowledge (i.e., a person’s belief) in a statement depends on the
body of knowledge K. Degree of belief P(A|K) depends on an uncertain event, A, which is
conditional on K. When we have two events, A and B, we can write belief as P(A|B,K) or,
for simplicity, P(A|B). Using joint probabilities, we can explain conditional probability as:

P(A|B) = P(A, B)
P(B)

(5)

All data in a BBN are represented in terms of the probability or likelihood of particular
outcomes, given the condition or state of each constituent factor in the model, thereby
allowing the risk associated with a management decision to be assessed (and understood)
prior to implementation.

3. Materials and Methods
3.1. Bayesian Belief Network Model Setup

We developed a BBN model of dispersive mine spoil behaviour using Norsys Netica™
software (Norsys Software Corp, Vancouver, BC, Canada, 1992–2017 [34]). The model
integrates key factors (variables) and the relationships between these—represented by
boxes and arrows, respectively (e.g., Figure 1)—to graphically describe the rehabilitation of
Queensland coal mine sites.
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Figure 1. A Simple Bayesian Belief Network model, an example of a sub model for soil chemistry.

An iterative process was used to develop and refine the structure of a prototype
dispersive mine spoil risk model, which was then parameterised using both quantitative
data, where available, and qualitative information (expert judgement) and informed by
published literature. This model captured the key elements (i.e., landform, soil chemistry,
biophysical components and management actions, as well as their interactions) that affect
dispersive spoil behaviour and slope stability.
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Ongoing improvement of the model has continued, as data are acquired under mul-
tiple site conditions. This has enabled further validation and improvement of the model.
Limited data to train and test a BBN model may restrict the applicability of the model as a
decision support tool; however, as we show here, a well-developed model with enough
expert knowledge may overcome this constraint.

3.1.1. Developing the Conceptual Framework

We initially consulted industry representatives, assessed a number of rehabilitated
mine sites and reviewed the scientific literature [5]. This process was used to develop an
understanding of the issues and management constraints associated with dispersive spoil
on mine sites, in general, and in the state of Queensland, in particular, where climatic
variability is a key challenge. From this, a preliminary conceptual BBN framework was
developed, based in part on an expanded form of the Universal Soil Loss Equation [35],
which was conceptualised to include tunnelling influences (Figure 2). The model incor-
porated inherent site characteristics and influences, as well as management techniques
used to modify the effect of these characteristics or influences on erosion; this was further
refined based on feedback from industry experts [5].
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‘nature’ or ‘chance’ nodes, which describe the potential empirical states exhibited by each component within the system.

The resulting BBN influence diagram (Figure 2) incorporates the following groups of
characteristics:
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• Climatic conditions;
• Inherent soil characteristics (physical, chemical, biological);
• Landform characteristics;
• Management practices to modify inherent soil characteristics and mitigate erosion;
• Vegetation characteristics and management practices; and
• Tunnelling initiation factors.

Within the BBN model, the six groups of factors listed above were classified within a
risk management framework [27,33] into two categories:

1. Vulnerability to erosion: based on the inherent soil (e.g., dispersibility, erodibility) and
site characteristics (e.g., landform design), related climatic factors and management
practices that modify erodibility; and

2. Exposure: based on an evaluation of the stresses inflicted by land management and
climate (e.g., exposure to erosive energy forces such as cumulative rainfall, rainfall
intensity, frequency, duration).

In this way, the model presents erosion risk as a matrix of exposure by vulnerability in
a manner similar to the intersection between likelihood and consequence in a conventional
risk assessment matrix. These are expressed in the endpoints: ‘erosion risk’ and ‘tunnelling
risk’ (Figure 2).

3.1.2. Theoretical Framework for Soil Vulnerability to Erosion

Soil erosion is a function of the interaction between energy inputs driving eroding
processes on soil and soil landscape and management. These include the erosivity of
rainfall (e.g., kinetic energy of raindrops); the depth and velocity of any overland flow;
ground cover; and chemical energy causing repulsion between soil particles.

Soil landscape and management include slope; slope length; erodibility of the soil
(i.e., physical, chemical and biological properties responsible for structural integrity);
surface cover; and land management techniques implemented in both management and
site amelioration (e.g., contour banks, surface armouring).

The interaction of energy inputs and soil and site characteristics describing surface
erosion is well described by the Revised Universal Soil Loss Equations (RUSLE) [35]:

A = R × K × LS × P × C (6)

where A is soil loss (tonnes/ha); R is rainfall erosivity factor calculated from the kinetic
energy of each rainstorm x intensity; K is soil erodibility factor; LS is slope length and
steepness based on slope length in meters and angle in %; P is erosion control practices
such as contouring to correct for variation in slope shape; and C is a management factor,
ranging from near 0 for high quality management to 1.0 for continuous fallow.

Tunnelling presents a different form of erosion common on sodic soils, but not accom-
modated by the RUSLE. Crouch (1976) [36] described a five-step process that can lead to
tunnelling:

1. Surface cracking due to desiccation;
2. Rapid infiltration into the cracks, and saturation of a subsurface layer;
3. Dispersion of the saturated layer;
4. Movement of the dispersed particles in soil water due to a hydrostatic gradient that

produces lateral flow. Generation of a “subsurface rill” or tunnel results from this
movement. Over time and with increased flow volumes, the tunnel will increase in
size and may merge with other tunnels; and

5. Expansion of the tunnel inlet and outlet. Tunnel inlets typically start as small holes
generated from subsurface cracks. Progressive collapse may cause this inlet point to
become a large depression although the tunnel inlet size may remain small depending
on the volume of water concentrated at this point.

Dispersive soils are more pre-disposed to tunnelling than non-dispersive soils. Factors
that may give rise to tunnel initiation include soil cracking due to drying, ripping (especially
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under dry conditions), rotted out tree stumps, poorly aligned contour bunds and occurrence
of ponding. Each of these factors requires consideration in a mechanistic model attempting
to describe the behaviour of dispersive spoil. Hence, the Universal Soil Loss Equation for
surface erosion is expanded to include factors that describe tunnel formation/erosion.

Soil loss = Hillslope erosion + Tunnel erosion (7)

Soil loss = f (Es Er S ScLm) + f (R Sw Po) (8)

where Es is erosivity; Er is erodibility; S is slope condition; ScLm is soil surface cover; Lm is
land management; Sw is soil water concentration; and Po is ponding.

Average annual soil loss in Equation (8) can also be explained in more detail as

Soil loss = f (RKLSCP) + f
(

Rdep Rdir Ca Sw Po

)
(9)

where R is rainfall erosivity index; K is soil erodibility factor; LS is a topographic factor (L
is for slope length and S is for slope); C is a cropping factor; P is conservation practice; Rdep
is ripping depth; Rdir is rip direction; and Ca is cracking area.

The Revised Universal Soil Loss Equation [37], in combination with the above description
of tunnelling, was used to build the conceptual framework of the BBN model (Figure 2) to
guide understanding and improvements in management. Variables presented in Figure 3 were
integrated by building links between them according to current mechanistic understanding to
create a graphical representation of surface and tunnel erosion on mine sites. The model was
then spatially arranged as a number of pseudo ‘sub-models’ (Figure 2), although these are not
discrete as interactions between individual variables in different sections of the model occur.
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Environmental management issues are inherently both multivariate and multidi-
mensional [19,38]. Pollino and Henderson (2010) [20] discuss the tension between model
complexity or ‘truthfulness’ and the need for model parsimony to ensure that models do
not exceed the ‘power’ of the data or incorporate so much detail that model accuracy is
compromised. The number of parameters and interactions included in the ‘dispersive
spoil’ BBN model framework was reduced over several iterations; however, it remains
relatively complex. Ongoing targeted data collection and its incorporation into the model
are required, along with user feedback, to inform further refinement.

3.1.3. Key Factors Influencing Erosion of Dispersive Mine Spoil
Rainfall Erosivity

When rainfall exceeds infiltration capacity, surface runoff results [39] and slope gra-
dient of the land surface increases its ability to detach and transport soil particles in
proportion with the depth, velocity and volume of the flow [40]. Where water concentrates,



Sustainability 2021, 13, 11267 8 of 23

rills and gullies can form and significantly increase sediment transport capacity and soil
erosion rate. The higher rate of soil particle detachment in dispersive soils on steep slopes
can accelerate sediment transport and erosion [41,42]. In addition to the direct impact of
rain, water that accumulates or ponds and finds preferential flow paths through dispersive
soil may lead to tunnelling due to the dispersion of fine clay particles into the water stream
moving through the soil under gravity [43].

Soil Characteristics Affecting Erodibility

The erodibility of soil is related to its physical, chemical and biological properties
and to the nature of the erosion process (e.g., runoff depth) and mechanism (e.g., runoff
or splash detachment). In the development of the BBN model, we have considered seven
factors that influence the erodibility of dispersive soil:

1. the composition and ratio of exchangeable cations (variously measured as ESP and
CROSS) [44,45];

2. the overall cation suite and magnitude of exchange capacity (CEC) [46];
3. the concentration of salts in the soil solution (EC) [11,46,47];
4. the nature of the clay minerals present (e.g., smectites which have a significant

swelling potential) [47,48];
5. the percentage of clay present [49];
6. pH, as it influences the solubility of salts, electrolyte balance and net charge of ions in

the soil solution [1,49,50];
7. Zeta (electrokinetic) potential, as it affects the net charge available for clay–water

interactions [11,12].

This portion of the model was built to consider not only the inherent stability, but
also the effect of changes in the soil solution (e.g., rainfall or irrigation) on the attractive
and repulsive forces governing soil/spoil aggregate stability. Simplification of this pseudo-
sub-model could be provided by a direct measure of aggregate stability [51], but this
would disallow the use of historical soil data, as aggregate stability in water is not part
of the traditional suite of measures; instead, a reliance on chemical proxies such as ESP
would ensue.

3.2. Model Parameterisation

Variables (‘nodes’) in the BBN model were categorised into variable states (‘condi-
tions’) which encompass the expected range of values for each variable. These were defined
as either Boolean (e.g., true or false), categorical (e.g., high, medium, low) or continuous
(value range divided into sub-ranges with discrete values). To the extent possible, node
state sub-ranges were identified based on documentary evidence of relevance (e.g., re-
sponse thresholds for chemical parameters). Where such evidence was limiting, states for
continuous variables were defined based on terciles of the value range of the parameter
and categorical states were based on stakeholder advice.

Behind each variable in the model sits a Conditional Probability Table (CPT), which
specifies the likelihood of the system being within each of the states defined for each
variable. CPTs were parameterised using a combination of evidence from the literature,
empirical data, quantitative data (with probabilities defined by the frequency distribution
of the data) (e.g., [33,52,53]) and input by the model developers (i.e., expert opinion), who
collectively have prior experience in soil science, mine site rehabilitation, and dispersive
spoil and environmental management. Expert opinion was established based on the obser-
vations and outcomes of laboratory and field studies of both soils and spoil management.
The probability values applied represent the best initial estimate and the BBN model is a
base working model that can be iteratively improved and refined over time with additional
data collection and feedback from industry.
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3.3. Model Analysis
3.3.1. Model Sensitivity Testing

The sensitivity of the model response to variation in each of the model terms across
the observed range of data from which the CPTs were derived was tested in Netica™. This
analysis checks the relative strength of relationships between variables [21] and quantifies
the level of influence of each variable on the model outcomes, expressed as a percentage
reduction in variance [34]. Sensitivity analysis was conducted to test the logic of the expert
derived relationships in the model.

3.3.2. Scenario Testing

Noting the need for further validation and iterative improvement, preliminary sce-
nario testing was carried out to investigate the impact of modelled management decisions
on predicted output parameters of the model (specifically, ‘erosion risk’ and ‘tunnelling
risk’). To do this, the neutral BBN model was modified to identify scenarios (i.e., the vari-
able conditions) that would support two possible outcomes in terms of erosion/tunnelling
risk: (i) ‘good’ condition at 100% of sites (i.e., best-case scenario); and (ii) ‘poor’ condition
at 100% of sites (i.e., worst-case scenario).

3.3.3. Model Validation

The validation of the BBN model is an important step, providing confidence in its use
as a decision support tool. BBN validation can include evaluating model performance for
prediction, sensitivity analysis, and comparison with other modelling results and historical
data [54,55].

The initial parameterized consensus BBN model described in this paper was built
on a combination of established literature, expert opinion and feedback from industry
stakeholders with experience in dispersive mine site rehabilitation. It has provided the
basis for subsequent targeted data collection from a range of post-treatment observations
and preliminary results from dedicated field trials (described below). This has enabled
model validation, which, along with ongoing feedback from industry decision makers and
discipline experts, has supported updating and improvements in the model.

3.4. Field Trials–Data Collection for Model Validation

Field trial sites were established at three open cut coal mines in the Bowen Basin in the
state of Queensland, Australia. These sites included two on rehabilitated spoil pits and one
on a spoil stockpile from an underground mine (Figure 3). Spoil at all sites displayed high
exchangeable sodium percentage (ESP) and susceptibility to erosion. The rainfall across all
sites ranged from 544 to 616 mm/year. For all sites, erosive rainfall events exceeding 50
mm/h can be expected with an average return period of five years [6]. Notwithstanding,
in the absence of any amelioration of dispersive spoil conditions, all sites also exhibit
considerable erosion on less intense rainfall events. Data obtained from the field trials were
used to validate the developed BBN model.

3.4.1. Lake Lindsay

A comprehensive trial was established at Lake Lindsay (Figure 3) in March 2018. This
trial provides a valuable, long-term resource as a benchmark for current best practice and as
a leading indicator of expected post-closure performance; it also provides an opportunity
to integrate all learnings from the project. The trial implements a full framework of
considerations comprising the mechanistic model outlined in Section 3.1.1. and includes an
untreated control and standard practice (full rock mulch to 0.5 m) treatment. The replicated
trial is designed to test varying combinations of gypsum application rates and irrigation on
highly dispersive spoil (mean ESP of 24% for replicate 1 and 38% for replicate 2) with slopes
of 10%. Standard treatments across trial plots include: depth of gypsum treatment in the
underlying sub-soil and overlying topsoil; spoil ripping depth and sequencing (pre-topsoil
application); fertiliser (custom designed to address all plant nutritional deficiencies); soil
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organic matter amendment; and seed sowing with topsoil cultivation and a successional
seed mix composition.

The site experiences a distinct summer rainfall, receiving an average of 604 mm/yr in
the period from December to March when the average monthly rainfall exceeds 50 mm.
The frequency of rain days per week with rainfall of greater than 50 mm is greater than
0.5 days in weeks 1 to 10 and 49 to 52. Mean summer maximum temperatures range from
32.7 to 33.6 ◦C and a mean winter minimum temperature range from 8.1 to 9.7 ◦C, and
evaporation significantly exceeds rainfall in all months of the year.

For treatments other than the standard rock mulch treatment, the base rehabilitation
activities were:

(a) Ripping of spoil (pre-topsoiling) to a depth of 20 cm;
(b) Application of topsoil to a depth of 15 cm;
(c) Incorporation of organic matter into the topsoil at a rate of 52 t/ha (to achieve a target

organic matter content of 2%);
(d) Application of a custom fertiliser blend to address all identified nutrient deficiencies;
(e) Cultivation of topsoil (post fertiliser, organic matter and, where relevant, gypsum, to

a depth of 15 cm; and
(f) Application of a successional seed mix at the rate of 42 kg/ha.

Soil chemistry details and details of the treatment combinations of the Lake Lindsay
site trials are presented in Table S2 in Supplementary Materials.

Revegetation at the Lake Lindsay site was designed as a successional seed mix, with a
choice of pasture species adapted to the region. Seed was lightly harrowed into the topsoil
to a maximum depth of 50 mm in a major variation to the common practice of deep ripping.
This was to avoid bringing dispersive material to the surface, avoid loss of seed in deep
rip lines, avoid compaction with heavy machinery, and deposit seed below the surface
at a depth conducive to emergence following adequate rainfall to sustain early growth
following germination.

3.4.2. German Creek East

Field trials at German Creek East were established in November 2014 (Figures 3 and 4) on
batter slopes of approximately 20% to test the effect of a range of treatments:

(a) rock mulch to 500 mm;
(b) rock mulch to 250 mm;
(c) rock mulch to 100 mm with gypsum; and
(d) contour benching with rock-lined drains.

These trials demonstrate the geotechnical influence of rock armouring on erosion
rather than the influence of vegetation. Erosion assessment found a distinct trend of
increasing sheet and rill erosion with decreasing rock armouring. Sheet erosion increased
from minor for the 250 and 500 mm rock mulching treatments, to moderate for the 100 mm
rock mulch and contour bank treatments. Rill erosion increased from minor/moderate for
the 250 and 500 mm rock mulching treatments, to moderate/severe for the 100 mm rock
mulch and contour bank treatments. While no sites exhibited gully erosion, minor tunnel
erosion was recorded on the 100 mm rock mulch and contour bank treatments.

3.4.3. Moranbah North

Moranbah North mine site is located approximately 16 km north of Moranbah and
145 km southwest of Mackay within the Bowen Basin, eastern Queensland. The trial site is
one of a number of spoil dumps excavated from underground access workings. The spoil
is covered with topsoil and stabilised for the life of the mine without amendment. The
site experiences a distinct summer rainfall, receiving an average of 544 mm/year in the
months from December to March when average monthly rainfall exceeds 50 mm. Soil and
vegetation data were collected in December 2019.
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Figure 4. The experimental trials at German Creek East in November 2015 and February 2017. The
selected spoil treatments are full rock mulch at 500 mm (Treatment 1), Gypsum + 100 mm rock mulch
(Treatment 3) and Topsoil, rip, seed, and gypsum (Treatment 3).

3.5. Updating of CPTs

A BBN model that is established from expert opinion and the published literature can
be improved by incorporating additional available datasets to calibrate the CPTs [56,57] as
new data become available over time. The Dirichlet distribution for CPT columns intuitively
interprets the combined data (expert beliefs and observed data) [58]; however, considering
the small number of available datasets, we applied a manual calibration [24]. To do this,
the CPTs of the initial expert-elicited BBN model were updated, where possible, from the
available spoil characteristics and environmental covariates using the Lake Lindsay site
data collected 18 months post treatment (Figure 5).

The numerical observed data for relevant environmental covariates and spoil physical
and chemical characteristics, listed below, were initially converted to categorical data based
on the categories and classifications described for the expert elicited CPT dataset and the
conditional probabilities modified to match the observed conditions. Other conditional
probabilities were not adjusted and remain as expert opinion.
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Figure 5. The process used for the BBN model development, calibration and validation.

Major variables (nodes) updated were:

• Layer 1 Calcium amount
• Layer 1 Exchangeable dispersion percentage
• Layer 1 Calcium availability
• Topsoil organic matter
• Nutrition
• Surface Gullying Exposure
• Erosion Risk
• Vegetation Cover
• Layer 2 Calcium amount
• Layer 2 Exchangeable dispersion percentage

The BBN model was then validated using observed data from German Creek East and
Moranbah North sites (Figure 5).

4. Results and Discussion
4.1. Dispersive Spoil Risk Management–The BBN Framework

The prototype BBN framework for dispersive spoil risk management (Figure 2) con-
sisted of a total of 104 variables, comprising six sub-models: Climate; Spoil–chemical
characteristics; Spoil–physical characteristics; Vegetation; Management; and Risk. The
‘Spoil–chemical characteristics’ sub-model was replicated over three spoil layers (Lay-
ers 1–3) representing a topsoil layer, a capping layer and buried spoil. Similarly, the
‘Spoil–physical characteristics’ sub-model was replicated for Layers 1 and 2. Details of the
parameter states for each of the variables in the model and how these were defined are
presented in Section 3.2.

4.2. BBN Model Validation

The BBN model was confirmed to provide a reliable representation of relative erosion
risk based on the Lake Lindsay results 18 months post-treatment. While the model might
not yet be accepted as a definitive decision tool predicting spoil rehabilitation performance
due to the uncertainty inherent in longer-term conditions such as variation in rainfall
intensity, Table 1 shows that the likelihood of occurrence of gully erosion in the field
(regardless of severity) has already been predicted by the BBN model. Agreement between
predicted soil erosion probability and field observation was 74%, 100% and 75% for Lake
Lindsay, Moranbah North, and German Creek East, respectively (Table 1). Instances were
also observed where erosion was predicted by the BBN model (despite applying treatments)
but no gully occurred 18 months post treatment, although this may be a matter of time and
may occur later.
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Table 1. Validation of erosion risk, i.e., occurrence of gully erosion (pre-calibration) at examined mining sites.

Site No Trials Treatments Observed Gully
Erosion%

Predicted Erosion Risk from BBN Model

Low Medium High Very High

Lake Lindsay

1 Gypsum 2 & Dry 0.0 32.1 23.7 21.6 22.6
2 Gypsum 1& Irrig. 0.0 32.0 23.8 21.3 22.9
3 Rock mulch 0.0 26.6 23.2 22.3 27.9
4 Gypsum 1 & Dry 1.7 32.1 23.7 21.6 22.6
5 Gypsum 2 & Dry 20.3 29 23.8 22.4 24.8
6 Control 0.0 28.8 23.8 22.4 25
7 Gypsum 1 & Irrig. 0.0 29.4 23.8 22.2 24.6
8 Rock mulch 0.0 46.5 21.8 17.9 13.8
9 Gypsum 2 & Irrig. 18.2 50.8 21.3 16.6 11.3
10 Gypsum 1 & Dy 12.7 49.9 21.6 17 11.5
11 Control- 0.0 50.3 21.5 16.8 11.4
12 Gypsum 2 & Irrig. 0.0 50.4 21.4 16.8 11.4
13 Gypsum 2 & Dry 0.0 56.6 19.1 14.5 9.8
14 Gypsum 1 & Irrig. 0.0 54.7 19.9 15.2 10.3
15 Rock mulch 0.0 46.5 21.7 17.9 13.8
16 Gypsum 1 & Dry 0.0 44.1 22.6 18.7 14.6
17 Gypsum 2 & Dry 10.5 51.2 21.1 16.5 11.2
18 Control 1.4 54.7 19.8 15.2 10.3
19 Rock mulch 0.0 38 23.3 20.5 18.2
20 Gypsum 2 &s Irrig. 0 54.7 19.8 15.2 10.3

Moranbah
North

1 No treatment NIL 32.1 23.6 21.7 22.6
2 No treatment NIL 39.7 22.8 19.7 17.8
3 No treatment NIL 46.7 21.7 17.7 14
4 No treatment NIL 45.4 22s 18.1 14.4
5 No treatment NIL 49.5 20.7 16.7 13.1
6 No treatment NIL 48 21.2 17.2 13.6
7 No treatment NIL 46.3 21.7 17.8 14.2
8 No treatment NIL 45 22.1 18.2 14.6

German
Creek East

1 Full rock (500 mm) 0 24.9 23.2 22.7 29.2
2 Full rock (500 mm) 0 29.4 24 22.4 24.2
3 Gypsum & 100 mm rock 0 27.1 23.3 22.3 27.4
4 Gypsum & 100 mm rock 0 22.1 22.4 22.5 33

5 Contour benching &
rock drains 5.4 27.1 23.5 22.5 26.9

6 Contour benching &
rock drains 36.8 20.5 21.8 22.4 35.3

7 Half rock (250 mm) 0 24.8 23.2 22.7 29.3
8 Half rock (250 mm) 0 55.6 19.7 14.9 9.9

The BBN model performance for prediction of ground cover level in comparison with
observations was 94%, 71%, and 25% at Lake Lindsay, Moranbah North, and German Creek
East, respectively (Table 2). The greater uncertainty in predicting cover at the German
Creek East site relative to soil erosion may be related to the fact that soil erosion is also
highly sensitive to slope gradient and soil dispersivity may have had a greater effect than
cover in governing soil erosion processes in this case.

The BBN model was calibrated by modification of the CPTs using the Lake Lindsay
data and the predicted erosion risk probabilities of the BBN model prior to and after
calibration of CPTs were compared with observed gully erosion for Lake Lindsay, German
Creek East and Moranbah North mining sites (Tables 3 and 4). In general, the updated
model displayed enhanced performance with a noticeable improvement in its ability to
predict erosion risk for all mining sites following calibration compared to the original
BBN model.
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Table 2. Validation of ground cover modelling by developed BBN model (pre-calibration) at examined mining sites. Cover
below 70% was considered low because soil erosion rates typically increase sharply when ground cover is below this
proportion [59].

Site No Trials Observed Cover %
Predicted Vegetation Cover% from BBN Mode

Low Medium High

Lake Lindsay

1 0.9 (high) 16.7 39.6 43.7
2 1.0 (high) 12.2 40.7 47.1
3 0.6 (Low) 16.1 43.1 42.6
4 0.7 (medium) 14.3 40.8 44.9
5 1.0 (high) 14.5 40.9 44.6
6 0.9 (high) 16.2 41.3 42.4
7 1.0 (high) 14.4 40.9 44.7
8 0.3 (low) 23.1 40.0 36.9
9 0.9 (high) 14.3 40.3 45.6
10 0.9 (high) 14.5 41.0 44.4
11 0.7 (medium) 16.0 41.1 42.8
12 0.9 (high) 12.5 36.1 51.4
13 0.9 (high) 13.9 37.6 48.5
14 0.8 (medium) 14.1 37.4 48.5
15 0.6 (Low) 15.9 38.6 45.5
16 0.6 (Low) 16.0 38.6 45.4
17 0.9 (high) 13.6 37.6 48.8
18 0.7 (medium) 16.0 38.6 45.4
19 0.20 (low) 20.0 37.9 42.1
20 0.9 (high) 15.7 35.1 49.2
21 0.7 (medium) 15.3 35.7 49.0

Moranbah North

1 0.2 (low) 38.5 40.4 21.1
2 0.6 (low) 31.4 41.9 26.7
3 0.9 (high) 32.4 41.6 25.9
4 1.0 (high) 23.2 40.8 36.0
5 1.0 (high) 23.5 40.9 35.6
6 1.0 (high) 20.6 41.3 38.2
7 1.0 (high) 21.9 41.0 37.0
8 1.0 (high) 21.3 40.9 37.8
9 1.0 (high) 18.6 40.3 41.1
10 0.9 (high) 24.0 37.7 38.3
11 1.0 (high) 29.6 40.3 30.2
12 0.6 (Low) 26.5 40.6 33.2

German Creek
East

1 0.42 (low) 36.6 40.8 22.7
2 0.72 (medium) 28.7 40.4 30.9
3 0.29 (low) 21.8 40.0 38.2
4 0.12 (low) 21.5 40.7 37.8
5 0.29 (low) 28.0 40.2 31.8
6 0.13 (low) 36.6 41.2 22.1
7 0.28 (low) 34.8 41.6 23.5
8 0.99 (high) 29.9 42.0 28.2
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Table 3. Validation of calibrated BBN model for prediction of erosion risk (i.e., occurrence of gully erosion) at two
mining sites.

Site No Trials Treatments Observed Gully
Erosion%

Predicted Erosion Risk from Updated BBN
Model

Low Medium High Very High

Moranbah
North

1 No treatment 0 44.3 19.9 21.7 14.1
2 No treatment 0 44.5 19.9 21.6 14.0
3 No treatment 0 45.1 19.9 21.3 13.8
4 No treatment 0 50.4 19.5 18.4 11.8
5 No treatment 0 49.3 19.7 18.9 12.1
6 No treatment 0 51.2 19.3 17.9 11.6
7 No treatment 0 47.8 19.6 19.8 12.8
8 No treatment 0 49.8 19.4 18.7 12.1
9 No treatment 0 50.6 19.3 18.3 11.9

10 No treatment 0 50.4 19.3 18.0 12.3
11 No treatment 0 48.9 19.4 19.2 12.5
12 No treatment 0 46.0 20.5 20.1 13.4

German
Creek East

1 Full rock (500mm) 0 37.9 31.5 21.1 9.4
2 Full rock (500 mm) 0 32.7 31.7 24.6 11.0
3 Gypsum + 100 mm rock 0 30.1 32.2 26.3 11.5
4 Gypsum + 100 mm rock 0 32.9 31.6 24.6 10.9

5 Contour benching w rock
drains 5.4 29.8 29.9 27.7 12.6

6 Contour benching w rock
drains 36.8 27.0 30.3 29.6 13.2

7 Half rock (250 mm) 0 36.6 23.4 27.1 12.9
8 Half rock (250 mm) 0 49.1 19.9 21.3 9.68

The updated model did not underestimate or fail to predict erosion risk for any of
the mining sites (Table 3). This indicates that the updated model can be considered an
enhanced model for spoil erosion assessment. However, uncertainties remain due to
the insufficient range of data available to adequately update all conditional probabilities
in the model. In general, the updated BBN model also predicted improved vegetation
cover (Table 4), especially when the observed vegetation was high, and better matched
observations than the original model. Uncertainty in the prediction of vegetation cover
was evident in the original BBN model when vegetation cover was low (e.g., the model
predicted high; Table 2). This uncertainty was reduced to some extent in the updated BBN
model. However, overall, it is likely that the ability to capture sufficient empirical data for
updating CPTs will be limited by the complexity of management scenarios for which data
need to be collected. To address this, a wider range of sites should be assessed from the
mining and related industries, measuring erosion as a function of vegetation cover.

Bayesian Belief Network models have been extensively utilised to evaluate and predict
environmental and ecosystem management but are often based only on expert opinion and
without model validation [1]. Successful validation of a BBN model to represent targeted
variables is paramount to providing accurate scenario output, particularly in sensitive
applications, such as mine spoil management. While the systems model, presented here,
has enabled us to quantify the occurrence of complex erosion associated with the diversity
of consolidated mine spoils and covariates in mining sites, it is apparent that this complexity
also becomes a weakness in validating such a model. The high spatial variability of spoil
characteristics within and between sites also means that erosion risks should be evaluated
in the long-term post-rehabilitation to reduce uncertainties in erosion risk evaluation [60,61].
This suggests that model validation should be treated as an ongoing process, which allows
the use and application of the best available data but accommodates the capacity to
progressively upgrade the model as resources and capacity become available, without
waiting for perfect information.
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Table 4. Validation of calibrated BBN model for prediction of ground cover level at two mining sites.

Site Soil Sample
No. Observed Cover %

Predicted Vegetation Cover% from Updated BBN
Model

Low Medium High

Moranbah
North

1 0.2 (low) 39.6 34.9 25.5
2 0.6 (low) 34.3 39.5 26.2
3 0.9 (high) 29.6 37.5 32.9
4 1.0 (high) 13.8 33.4 52.6
5 1.0 (high) 17.5 36.2 45.9
6 1.0 (high) 15.1 35.5 49.4
7 1.0 (high) 25.6 35.5 38.9
8 1.0 (high) 18.4 34.1 47.5
9 1.0 (high) 18.0 34.1 47.8

10 0.9 (high) 18.6 34.1 47.3
11 1.0 (high) 24.3 3.9 40.8

German Creek
East

1 0.42 (low) 35.5 36.5 28.1
2 0.72 (medium) 35.4 36.3 28.4
3 0.29 (low) 53.3 30.6 16.1
4 0.12 (low) 47.6 31.1 21.3
5 0.29 (low) 45.2 32.9 21.9
6 0.13 (low) 46.5 32.2 21.3
7 0.28 (low) 47.6 32.7 19.8
8 0.99 (high) 27.6 36.0 36.3

Given the limited data by which to train and validate the model, the original prototype
BBN model developed in this project may only be considered as a rudimentary decision
support tool. It has, however, provided a valuable framework for further data collection
to inform revision of CPTs. The resulting revised model has demonstrated the capacity
for updating to better reflect observed site conditions. This demonstrates the value of the
BBN modelling approach, whereby use of the currently best-available data can provide a
practical result, with the capacity for significant model improvement over time as more
(targeted) data come to hand.

4.3. Scenario Analysis

Qualitative analysis of the original and updated BBN models indicate acceptable
performance of the model and its potential as a useful tool for scenario analysis and
discussion. This might include:

• Investigation of the impact of site-specific weather and crop scenarios and their effects
on soil water storage and erosion risk to inform business discussions, planning and
decisions;

• Guidance on the collection of site condition monitoring data;
• Objective guidance for investment in site soil/spoil management;
• Use as a learning and discussion tool when there are limited local data.

Tables 5 and 6 present the analysis results for best- and worst-case erosion risk and
tunnelling risk scenarios, respectively. These results indicate that, for the most part, the
model is operating logically. These scenarios also show the value in developing a BBN and
its application as a potential decision support tool for predicting the risk of surface and
tunnel erosion in rehabilitated mine sites.

It should be noted that these examples are provided for illustrative purposes only and
should not be used to support decision making without further industry review and/or
model validation based on comprehensive site-level data collection. The results of scenario
analysis might differ depending on the specific spoils and contribution of the climatic
conditions; hence, model outcomes may vary from one site to another. A site-specific



Sustainability 2021, 13, 11267 17 of 23

validated model is required in order to assess the risks of surface and tunnelling erosion at
each location.

Table 5. Best- and worst-case scenarios for erosion risk. Values are reported for nodes with probability of occurrence.

Node State Best Case
Probability %

Worst Case
Probability % Node State Best Case

Probability %
Worst Case

Probability %

Surface erosion
risk

low 100 0
Woody species

cover

low 19.0 32.2
medium 0 0 moderate 31.6 33.9

high 0 100 high 49.4 33.9

Spoil L1
vulnerability

low 50.9 8.76
Tunnelling risk

low 29.7 18.2
moderate 27.7 15.3 medium 22.6 18.6

high 14.8 27.4 high 21.9 19.6
very high 6.66 48.6 v high 25.8 43.6

Surface
gullying
exposure

nil 67.7 18.5

Runoff risk

very low 22.3 17.3
low 19.7 16.9 low 31.6 26.2

moderate 9.19 27.3 medium 28.8 28.4
high 3.41 37.3 high 17.4 28.1

Profile
vulnerability

low 49.9 18.0
Spoil L3

vulnerability

low 30.4 22.9
medium 18.6 16.8 moderate 22.4 22.3

high 16.1 18.9 high 22.2 23.3
very high 15.4 46.4 very high 25.0 31.5

Runoff risk
with surface
management

very low 41.8 21.7
Spoil L2

vulnerability

low 34.4 16.2
low 25.6 17.5 moderate 24.9 21.8

medium 18.1 23.4 high 22.7 24.6
high 14.5 37.3 very high 18.0 37.4

Vegetation root
depth

shallow 23.7 42.8
Vegetation

cover

low 27.4 41.7
medium 24.4 24.4 moderate 36.2 35.3

deep 51.9 32.8 high 36.4 23.0

Depth of L1
shallow 27.7 40.0

Contour bank
interval

low 44.7 30.4
moderate 33.0 33.3 medium 39.4 42.1

deep 39.2 26.8 high 15.9 27.5

Zeta potential
(L1)

high 22.6 31.6 Water holding
capacity (L1)

low 51.6 63.5
medium 34.6 37.9 mid 22.7 18.5

low 42.9 30.5 high 25.7 18.0

Average
annual rainfall

very low 17.2 23.5
Spoil

dispersivity
(L1)

low 46.4 25.6
low 18.7 21.6 moderate 20.1 19.9
mid 20.2 19.6 high 11.4 16.1
high 21.3 18.3 very high 22.2 38.4very high 22.6 16.9

Table 6. Best and worst case scenarios for tunneling risk. Values are reported for nodes identified in
the sensitivity analysis only.

Node State Best Case
Probability %

Worst Case
Probability %

Tunnelling risk

low 100 0
medium 0 0

high 0 0
very high 0 100

Tunnel exposure

none 50.2 4.91
low 20.6 6.09

medium 8.27 8.29
high 20.9 80.7
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Table 6. Cont.

Node State Best Case
Probability %

Worst Case
Probability %

Profile
vulnerability

low 58.8 10.5
medium 21.7 11.4

high 12.1 21.8
very high 7.35 56.3

Ponding yes 22.7 75.7
no 77.3 24.3

Spoil L1
vulnerability

low 43.5 14.2
moderate 26.6 19.8

high 18.9 26.9
very high 11.1 39.1

Spoil L2
vulnerability

low 36.5 14.0
moderate 26.5 20.3

high 21.5 26.1
very high 15.6 39.6

Erosion risk

low 47.8 29.6
medium 20.8 23.7

high 17.1 22.2
very high 14.3 24.5

Spoil L3
vulnerability

low 32.8 20.4
moderate 23.6 21.0

high 21.6 23.8
very high 22.0 34.8

Spoil dispersivity
(L1)

low 43.1 29.0
mid 20.3 20.2
high 12.1 15.4

very high 24.5 35.4

Upslope bund yes 72.9 85.0
no 27.1 15.0

Depth of L1
shallow 27.7 39.6

moderate 33.4 33.0
deep 38.9 27.3

Vegetation root
depth shallow 27.1 38.0

medium 24.7 24.6
deep 48.2 37.4

Water holding
capacity (L1)

low 51.8 63.0
medium 22.7 18.7

high 25.4 18.4

4.4. Further Refinement of the BBN Model

Annual and seasonal variability of rainfall and runoff risk might potentially influence
the prediction of erosion risk, especially when these conditions fall outside the range of
observations on which the BBN model has been validated. The main factors influencing
soil erosion risks are cover (i.e., vegetation, mulch), rainfall and runoff rates along with
slope gradient [41,62]. We have used the best available data and relied on the various
scenarios and treatment trials from the Lake Lindsay mine site to improve expert elicited
CPTs. This has been further validated by comparison of the model outputs to observed data
for the German Creek and Moranbah North mines. As future data on soil erosion and spoil
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behaviour become available, it will be possible to incorporate this into the BBN to allow
ongoing improvement of the capacity of the model to predict erosion risk at these sites.

The experimental adaptive management approach adopted has been shown to be
useful in improving the model and for testing a range of management scenarios [13,63].
The initial process of developing the model identified data deficiencies, which required
targeted data collection to allow updating of the model CPTs. As discussed, this new
empirical data assisted in updating and improving the performance of the original BBN,
increasing its value to spoil erosion risk prediction and decision-making.

The revised BBN model has potential to improve industry understanding of the be-
haviour and management of dispersive spoil materials and to contribute to improved
decision making and site management. Effective dispersive spoil management will en-
hance the environmental performance of the mining industry and reinforce the industry’s
social license to operate. Further investment will help with continuous improvement of
the model as a decision support tool for practical, cost-effective rehabilitation of disper-
sive spoil. Although the current available data has improved the capacity of the BBN
model to predict erosion risks, an extensive field data collection program on various mine
sites, in combination with ongoing user-defined improvement and widespread industry
engagement, will enable the utility of the model to be further enhanced. Availability of
additional data may also help the integration of process based/biophysical models with
BBN modelling to develop a more comprehensive framework for scenario analysis.

The established BBN model informs adaptive, evidence-based best practice dispersive
mine spoil management. An ongoing iterative process, with targeted long-term data
collection from different mine sites and feedback from industry decision makers and
discipline experts, will support continuing improvements in the current model. The
modelling framework will help inform policy for development and implementation of
dispersive spoil rehabilitation in the mining sector, both in Australia and globally.

4.5. Limitations and Opportunities of Bayesian Belief Networks

Development of the BBN for dispersive spoil management was based on current best
understanding of the processes that contribute to erosion risk on these difficult to manage
materials. Field trials conducted to fill some of the knowledge gaps apparent in the model
have provided important but still incomplete additional understanding, but more work
is required.

While the incorporation of ameliorants such as gypsum into dispersive materials has
not been shown to be completely successful in previous trials, concerns over the method
of incorporation used in earlier trials justifies further investigation of this approach. A
small-scale trial at Lake Lindsay displayed a sharp difference in ground cover between
gypsum treated spoil and no treatment. Rilling was similar between the treatments, but
this had stabilised on the gypsum addition treatment, while the no gypsum treatment
displayed significant sheet erosion evident from pedestalling. This highlights an important
point, which is that gypsum does not instantaneously act, requiring dissolution to occur to
instigate exchange process that leads to stabilisation. The BBN cannot build this dynamic
into the model and assumes instantaneous action. Therefore, a level of erosion must be
expected during the amelioration phase.

Analysis of field characteristics and spoil chemical data also found a negative correla-
tion between erosion severity and cations with higher levels of iconicity (Ca2+, Fe3+), plus
silt. This result indicates that amendment of chemical factors leading to dispersive spoil
conditions, particularly low exchangeable calcium, is an important requirement to control
erosion on dispersive sites. This is a significant finding that underpins the importance of
characterising spoil and applying targeted amendments based on the evidence of data.
However, it is not an unexpected finding, given the plethora of literature pertaining to
dispersive soil management [48,64,65]. Perhaps the most important acknowledgement is
that while it might be seemingly expensive to apply gypsum at the required amount per
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hectare and depth of dispersive soil/spoil, it is more likely that the failure to do so will
result in significantly greater expense in management and maintenance in the long-term.

Despite these knowledge gaps, here we have demonstrated the strength of BBNs for
decision making in a data limited environment. However, whilst such models offer great
potential for providing inference in such situations, they are not suited to all environmental
management applications. In particular, as information flow within BBNs is unidirectional,
they are unable to represent dynamic feedback processes, which can be a limitation in some
instances [66]. Furthermore, BBNs assume instantaneous system change (e.g., application of
gypsum instantaneously results in reduced soil ESP, when in reality this is time dependent).
Whilst this limitation is not specific to BBNs and empirical models often suffer from the
same assumption, it is worth noting, and particularly so in soil systems where change is
regularly dependent on time and environmental/climate factors (e.g., rainfall), due to the
buffered nature of the systems. Although the use of expert opinion allows for inference
where empirical data are lacking, the effect of cognitive bias must be considered [67–69]
and these data alone should not be seen as a substitute when empirical data is available [66].
However, this can be overcome by undertaking model validation when empirical data
become available, similar to the approach presented here.

Developing a BBN is often difficult in complex systems without empirical data, as the
CPTs can become large and cumbersome to populate. This can be managed by limiting
the states of each node, such that meaningful inference can still be maintained. Whilst the
use of qualitative states at the nodes can be seen as a limitation, it presents an opportunity
for modelling in soil systems where qualitative information is regularly used (e.g., a soil
having poor structure, a clay being defined as a cracking clay, etc.) and has a meaningful
influence on the outcome variable [42].

BBNs for environmental decision making are not expected to provide the ultimate
modelling solution; however, they provide opportunity for empirical modelling where data
are limiting. In turn, this allows informed decisions to be made and applied in the field in
situations where data are insufficient, time is important and the risk of lost opportunity
exceeds the risk of poor decision making [19]. BBNs therefore provide opportunity to assist
land managers in decision making by leveraging limited data (qualitative and quantitative)
with expert opinion and knowledge to allow for risk-based assessment of management
decisions. As empirical data become available through time, we see merit in adopting other
modelling methods, such as artificial neural networks or decision trees, either on their own
or using a hybrid empirical-probabilistic approach (19).

5. Conclusions

This work has developed a probabilistic predictive framework to support practical
and cost-effective decisions for management of dispersive spoil in Queensland mine sites.
Given the inherent complexity of the problem as well as limited data availability, adoption
of a probabilistic BBN modelling approach to capture processes that govern dispersive
spoil processes in erosion risk was considered appropriate. This enabled incorporation
of expert judgement where data were insufficient for conventional modelling purposes.
Model performance was validated using field data from actively managed mine sites and
the initial model was updated to better capture the relationships revealed by these data.
This significantly improved the predictive capability of the model. Ongoing observation
and collaboration with industry will enable a comprehensive dataset to be built, which
will progressively inform further improvements in the model and increase confidence in
decision making and more effective rehabilitation of dispersive spoil materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132011267/s1, Supplementary material S1 Soil chemistry details at Lake Lindsay. Topsoil
properties of Lake Lindsay trial site, Table S1. Rehabilitation treatments in trial site at Lake Lindsay,
Table S2. Calculated gypsum requirement, Table S3.
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