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ABSTRACT 

Heat exchangers with non-ideal working fluids are core 
components of many industrial processes and power cycles, 
such as the supercritical CO2 Brayton cycle. In power 
applications, heat exchangers are involved in several control 
tasks. During steady operation, heat-exchanger outlet streams 
must be regulated to thermodynamic and mass flow setpoints 
in the presence of disturbances. During load-following 
operation, time-varying heat transfer profiles must be 
accurately tracked while respecting equipment and safety 
constraints. Model predictive control (MPC) can improve 
closed-loop performance in these scenarios since it performs 
well for transient multivariable control problems and can 
routinely deal with constraints. 

Implementing MPC for non-ideal-gas heat exchangers is 
challenging due to 1) nonlinear fluid behaviours rendering 
simplified modelling techniques invalid, 2) inherent numerical 
limitations in simulating compressible-flow systems, and 3) 
the unavailability of fluid property measurements inside heat 
exchangers. We address these challenges by developing an 
MPC that is implemented via successive online linearisations 
of an analytical reduced-order 1D heat exchanger model. The 
controller’s objective is to regulate the outlet state of the heat 
exchanger’s process stream to a specified reference state. The 
setpoints of the compressors that drive mass flow through each 
stream are used as the control variables. A nonlinear observer 
based on this reduced-order model is used to estimate the 
internal state of the heat exchanger from inlet and outlet fluid 
property measurements. We perform closed-loop simulations 
for a CO2-CO2 heat exchanger and a molten salt-CO2 heat 
exchanger to analyse the performance of the controller. The 
controller provides good performance with prompt 
disturbance rejection and negligible steady-state offset. 

 

1. INTRODUCTION 
The supercritical CO2 (sCO2) Brayton cycle is a 

promising heat engine for next-generation thermal power 
plants due to its high thermal efficiency (Dostal et al., 2004), 
compatibility with several heat sources (Musgrove and 
Wright, 2017), compact and inexpensive turbomachinery 
(Turchi et al., 2013), and good scalability (Turchi et al., 2013). 
To achieve high efficiencies, sCO2 Brayton cycles need to be 
highly recuperated and thus require large heat exchangers. The 
heat exchangers in the sCO2 Brayton cycle are involved in 
several control tasks. During steady operation, the CO2-
streams at the outlets of the heater and gas cooler must be 
regulated to temperature, pressure, and mass flow rate 
setpoints in the presence of disturbances and equipment 
constraints. Breaching these constraints, for example, by 
overshooting the maximum turbine inlet temperature, risks 
damaging expensive equipment and causing plant downtime.  
Furthermore, sCO2 Brayton cycle plants may provide 
dispatchable power to metropolitan grids with high renewable 
penetration or to remote island-grid installations (Mehos et al., 
2016). In these applications, sCO2 Brayton cycle plants will 
act in load-following roles, where control tasks are more 
complex. For example, to track a changing output power 
profile while maximising cycle efficiency, the CO2-stream 
outlet of the heater must be regulated to temperature and 
pressure setpoints while mass flow rate is modulated to meet 
output power requirements. In the aforementioned control 
scenarios, model predictive control (MPC) has the potential to 
improve plant performance since it performs well for transient 
multivariable control problems and it can routinely deal with 
equipment and safety constraints (Maciejowski, 2002). 

To implement MPC for the heat exchangers in the sCO2 
Brayton cycle, we require a control-oriented heat exchanger 
model that runs much faster than real time and is sufficiently 
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accurate for good control performance (Lovera and Casella, 
2015). Developing a model that meets these requirements is 
difficult for two reasons: 1) CO2 exhibits strong non-ideal gas 
effects over the operating conditions of interest (Dostal et al., 
2004) and 2) compressible flow systems are inherently 
challenging to simulate due to numerical constraints on spatial 
and temporal discretisation. Computational fluid dynamics 
techniques can accurately simulate the dynamics of 
compressible flow systems like sCO2 heat exchangers, 
although they are too computationally expensive for control 
systems use. Data-driven approaches produce 
computationally efficient models, although they require large 
datasets to accurately capture the behaviour of complex 
nonlinear systems and have not been proven for transient 
simulations of compressible flow systems. Furthermore, data-
driven approaches require specific training datasets for each 
component being modelled, limiting their practical 
application. Computationally-efficient dynamic models of 
sCO2 heat exchangers are best developed using 1D physics-
based approaches, where heat transfer behaviour and frictional 
pressure drop are captured using empirical correlations and 
fluid property variations are modelled using an appropriate 
equation of state (Moisseytsev and Sienicki, 2007; Carstens, 
2007). The steady-state response of these models can be 
accurately calibrated to operational heat exchangers using 
only small experimental data sets (approximately 15 data 
points) (Bone et al., 2018). 

 
1D physics-based heat exchanger models solve the 1D 

Euler equations with source terms to account for heat transfer 
and frictional pressure drop, which are systems of nonlinear 
hyperbolic partial differential equations (PDEs) (LeVeque, 
2002). For systems of hyperbolic PDEs, the different 
eigenmodes of the spatial differential operators contain 
approximately the same amount of energy, so the governing 
PDEs must be approximated by finite-dimensional ordinary 
differential equations (ODEs) to compute the dynamic 
behaviour of the system (Dubljevic et al., 2005). When 
explicitly solving these ODE approximations, as is required 
for MPC, the Courant-Friedrichs-Lewy (CFL) condition 
(Courant et al., 1967) must be satisfied. The CFL condition 
states that the maximum stable timestep is proportional to the 
speed of the fastest characteristic of the system of PDEs 
(Courant et al., 1967, which for the Euler equations is the 
downstream acoustic wave (Roe, 1986). For all flow regimes, 
this constraint on timestep renders real-time simulation of the 
1D Euler equations for non-ideal gases computationally 
intractable on regular computers. 

The computational efficiency of 1D heat exchanger 
models can be improved by using timescale separation to 
approximate the response of the fast subsystem, leaving only 
the dominant slow subsystem, where the characteristic speed 
is the bulk flow velocity. This approach significantly increases 

the allowable timestep, yielding a dynamic model that 
captures the phenomena releveant to control systems and that 
can run in real time. However, MPC requires a plant model 
that runs much faster than real time, so development of MPC 
based on this reduced-order nonlinear model is computational 
infeasible. Since the fastest dynamics of the reduced-order 
model are important for control, further timescale separation 
cannot be used to improve the model's speed. An alternative 
approach is to form a local approximation of the reduced-order 
nonlinear model that can be solved analytically, rather than 
numerically, thereby circumventing restrictions on timestep. 
Although the Euler equations and property variations of sCO2 
are highly nonlinear, the reduced-order dynamic model is 
smooth, so there exists some neighbourhood around the 
current operating point where a linear model accurately 
approximates the true nonlinear model. Thus, for each MPC 
update, we compute a linear time invariant (LTI) model about 
the current operating point using a first-order Taylor series 
approximation and use this model as the basis for the 
controller. A discrete-time representation of this LTI model 
can be computed analytically, allowing the timestep to be 
selected solely on the desired update frequency, thereby 
making the solution of the MPC problem for sufficiently large 
prediction horizons computationally tractable. However, since 
the underlying system is highly nonlinear and it is difficult to 
analytically assess the accuracy of local LTI approximations, 
closed-loop simulations of test cases that are relevant to the 
sCO2 Brayton cycle are required to determine the validity and 
practical limitations of this control strategy. 

 
2. METHODOLOGY 

In this paper we develop a model predictive controller for 
the heat exchanger system shown in Fig. 1. The objective of 
the controller is to drive the outlet thermodynamic state and 
mass flow rate of one of the streams (the process stream) to 
specified reference values. The mass flow rate setpoints of the 
pumps/compressors are used as the control variables. We 
assume that fluid properties and mass flow rates are measured 
at the inlet and outlet of each stream. 

We assess the controller’s capabilities by performing 
closed-loop simulations where a high-fidelity simulation 
model is used to represent the ‘true’ behaviour of the plant. 
The controller is based on successive local linearisations of a 
simplified version of this underlying simulation model. We 
perform simulations for a CO2-CO2 heat exchanger and a 
solar salt (NaK)-CO2 heat exchanger that is representative of 
the heater in an sCO2 Brayton cycle. 
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Figure 1 – Schematic of the heat exchanger system 

2.1 Simulation model 
Printed circuit heat exchangers (PCHEs) consists of 

several layers of plates into which zigzag-shaped 
microchannels have been chemically etched (Musgrove et al., 
2017). Alternating hot-stream and cold-stream plates are 
arranged on top of one another in a counter-flow configuration 
and then diffusion bonded together to create a solid block. A 
plant-level simulation model for a PCHE can be developed by 
assuming that 1) mass flow is distributed evenly through all 
channels, 2) fluid properties in all channels are uniform at a 
given axial distance into the heat exchanger, and 3) all 
channels are geometrically identical. Under these 
assumptions, PCHEs may be modelled as two representative 
1D fluid channels that are separated by a conductive wall. 
Each representative fluid stream is modelled using the quasi-
1D compressible flow equations, where fluid flow area, heat 
transfer area, and wall conduction area are scaled by the 
number of channels 𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙, and source terms are used to 
model frictional pressure drop and heat transfer to the channel 
wall. The source terms use Nusselt number and friction factor 
correlations to capture the effects of actual channel geometry 
and multidimensional fluid flow. Axial conduction within the 
fluid streams is neglected since it is typically negligible in 
PCHEs (Bone et al., 2018). The walls are also modelled as 1D 
elements since 1) axial conduction in PCHE walls is typically 
negligible and 2) the thermal resistance for cross-wall 
conduction is minimal compared to that for forced convection 
(Bone et al., 2018). 

The governing equations for quasi-1D flow with frictional 
pressure drop and heat addition in a single representative fluid 
channel are 

Continuity    
∂𝜌𝜌
∂𝑡𝑡

= −
∂(𝜌𝜌𝑣𝑣)
∂𝑥𝑥

    (2.1 a) 

Momentum    
∂(𝜌𝜌𝜌𝜌)
∂𝑡𝑡

= −
∂(𝜌𝜌𝜌𝜌|𝑣𝑣| + 𝑝𝑝)

∂𝑥𝑥
− 𝑓𝑓𝑓𝑓

𝜌𝜌𝜌𝜌|𝑣𝑣|
2𝐷𝐷𝐻𝐻

    (2.1 b) 

Energy    
∂(𝜌𝜌𝜌𝜌)
∂𝑡𝑡

= −
∂(𝜌𝜌𝜌𝜌𝜌𝜌)
∂𝑥𝑥

− 𝑓𝑓𝑓𝑓
𝜌𝜌𝑣𝑣3

2𝐷𝐷𝐻𝐻
−
𝑞𝑞″

𝐴𝐴
    (2.1 c) 

where 𝐸𝐸 =  𝑒𝑒 +  0.5 𝑣𝑣2, 𝐻𝐻 =  ℎ +  0.5 𝑣𝑣2, 𝐷𝐷𝐻𝐻 is the 
hydraulic diameter, 𝑓𝑓𝑓𝑓 is Darcy friction factor, 𝐴𝐴 is the total 
flow area (i.e. for all channels), and 𝑞𝑞′′ is the heat flux through 
the wall. Closure of the equations is achieved through an 
appropriate equation of state (see Sec. 2.7), which allows two 
known thermodynamic properties to be used to calculate all 
others. Wall temperature is governed by the ODE 

𝐴𝐴𝑤𝑤𝜌𝜌𝑤𝑤𝐶𝐶𝑝𝑝,𝑤𝑤
𝑑𝑑𝑇𝑇𝑤𝑤
𝑑𝑑𝑑𝑑

= 𝑞𝑞ℎ″ + 𝑞𝑞𝑐𝑐″,        (2.2) 

where 𝐴𝐴𝑤𝑤, 𝜌𝜌𝑤𝑤, 𝐶𝐶𝑝𝑝,𝑤𝑤, and 𝑇𝑇𝑤𝑤 are the cross-sectional area, 
density, heat capacity, and temperature of the wall 

respectively, and 𝑞𝑞ℎ′′ and 𝑞𝑞𝑐𝑐′′ are the heat fluxes to the hot and 
cold stream. These heat fluxes are given by 

𝑞𝑞ℎ″ = 𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑃𝑃ℎ(𝑇𝑇ℎ − 𝑇𝑇𝑤𝑤)        (2.3) 

𝑞𝑞𝑐𝑐″ = 𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑃𝑃𝑐𝑐(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑤𝑤),                   

where 𝑃𝑃ℎ and 𝑃𝑃𝑐𝑐 are the wetted perimeters of the hot and cold 
channels respectively and 𝑈𝑈 is the local heat transfer 
coefficient, which is calculated using the Nusselt number Nu 
and characteristic length 𝐿𝐿𝐶𝐶 as 

𝑈𝑈 = Nu𝑘𝑘/𝐿𝐿𝐶𝐶 .        (2.4) 

In the simulation model, we integrate Eqs. (2.1) over 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 finite volumes spanning the computational domain, 
yielding a system of temporal ODEs for the evolution of 
density, velocity, and internal energy in each volume. For 
incompressible working fluids, density and pressure are by 
definition independent, and the discretised continuity equation 
becomes a constraint on the velocity field, rather than a 
transport equation for density (Versteeg and Malalasekera, 
2007a). In this case, we use the unsteady PISO algorithm (Issa, 
1986) on a staggered velocity grid with implicit Euler 
integration to compute the pressure and velocity fields. We 
then solve the unsteady energy equation with upwind 
differencing and implicit Euler integration to compute the 
temperature profiles at each timestep. We assume that fluid 
properties are fixed at the inflow boundary and assume fully 
developed flow at the outflow boundary. 

For compressible working fluids, we directly solve the 
governing temporal ODEs using the AUSMDV flux splitting 
scheme (Wada, 1997) and explicit Euler time integration. The 
wall temperature ODEs are integrated over the same set of 
finite volumes and are solved using explicit Euler time 
integration. The inflow boundaries are modelled by assuming 
that the fluid isentropically accelerates from a reservoir at 
specified stagnation conditions into the computational 
domain, as done in the compressible flow CFD solver Eilmer4 
(Jacobs and Gollan, 2017) for subsonic conditions. The 
reservoir stagnation conditions are modulated to achieve the 
desired mass flux at the inlet to the computational domain. The 
outflow boundary is modelled using the non-reflecting 
outflow scheme of the Navier-Stokes consistent boundary 
condition method (Poinsot and Lelef, 1992). 

Numerical solution of Eqs. 2.1 using explicit methods is 
limited by the CFL condition (Courant et al., 1967), 

𝐶𝐶 =
|𝑢𝑢|Δ𝑡𝑡
Δ𝑥𝑥

≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚        (2.5) 

where Δ𝑡𝑡 is timestep, Δ𝑥𝑥 is the spatial discretisation length, 𝑢𝑢 
is the fastest characteristic, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is a constant that takes 
the value 1 for explicit Euler time integration. Eqs. 2.1 share 
their homogenous part with the Euler equations, and therefore 
also share their characteristics, which are (Roe, 1986), 
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𝑢𝑢1 = 𝑣𝑣 − 𝑎𝑎         (2.6 a) 

𝑢𝑢2 = 𝑣𝑣 + 𝑎𝑎         (2.6 b) 

𝑢𝑢3 = 𝑣𝑣         (2.6 c) 

where 𝑎𝑎 is the speed of sound. The fastest characteristic, 
which governs the maximum stable timestep, is the 
downstream pressure wave (Eq. 2.6 b). When using explicit 
time integration methods, we set the timestep such that 𝐶𝐶 is 
approximately 0.9. 

The PISO algorithm is partially implicit and therefore not 
constrained by the CFL condition. Thus, for the 
incompressible flow model, we set the timestep such that 𝐶𝐶 is 
approximately 100, primarily due to accuracy considerations. 

2.2 Control-oriented model 
The timestep restrictions imposed by the CFL condition 

on explicit time integration of Eqs. 2.1 render them unsuitable 
for control applications. However, since Mach number is 
typically less than 0.1 in PCHEs, the acoustic characteristics 
(Eqs. 2.6a-b) are generally much faster than the bulk-flow 
charactersitic (Eq. 2.6c). Thus, an appropriate control model 
can be developed by assuming that the acoustic dynamics 
stabilise infinitely quickly compared to the bulk-flow 
dynamics, thereby removing the fast characteristics and 
significantly relaxing the timestep restriction imposed by Eq. 
2.5. This assumption also resolves the pressure-velocity 
coupling problem for incompressible fluids. Thus, the control 
model can be solved using the same numerical scheme for 
compressible and incompressible flow. 

To develop a control-oriented model, we assume that the 
momentum dynamics are infinitely fast compared to the other 
dynamics (the quasi-steady momentum assumption), so that 
for the slow subsystem 

∂(𝜌𝜌𝜌𝜌)
∂𝑡𝑡

= 0,         (2.7) 

which implies that Eqn. 2.1b degenerates into the spatial ODE 

0 =
∂(𝜌𝜌𝜌𝜌|𝑣𝑣| + 𝑝𝑝)

∂𝑥𝑥
+ 𝑓𝑓𝑓𝑓

𝜌𝜌𝜌𝜌|𝑣𝑣|
2𝐷𝐷

.         (2.8) 

In PCHEs, the pressure derivative usually dominates the 
momentum derivative, and thus Eq. 2.8can be approximated 
as 

∂𝑝𝑝
∂𝑥𝑥

= −𝑓𝑓𝑓𝑓
𝜌𝜌𝜌𝜌|𝑣𝑣|
∂2𝐷𝐷

.         (2.9) 

Furthermore, since flow area is time invariant, under the 
quasi-steady momentum assumption, the continuity equation 
implies that mass flow rate through the heat exchanger is 

𝑚̇𝑚 =  𝑚̇𝑚𝑖𝑖𝑖𝑖,         (2.10) 

where 𝑚̇𝑚𝑖𝑖𝑖𝑖 is the inlet mass flow rate. Using the chain rule, the 
time derivative in the energy equation (Eq. 2.1c) can be 
expressed as 

∂(𝜌𝜌𝜌𝜌)
∂𝑡𝑡

= 𝜌𝜌
∂𝐸𝐸
∂𝑡𝑡

+ 𝐸𝐸
∂𝜌𝜌
∂𝑡𝑡

.         (2.11) 

Substituting the continuity equation (Eqn. 2.1a) into Eqn. 2.11 
yields 

∂(𝜌𝜌𝜌𝜌)
∂𝑡𝑡

= 𝜌𝜌
∂𝐸𝐸
∂𝑡𝑡

− 𝐸𝐸
∂(𝜌𝜌𝜌𝜌)
∂𝑥𝑥

.         (2.12) 

Since 𝑚̇𝑚 is constant in space under the quasi-steady 
momentum assumption (Eq. 2.10) and since flow area does 
not vary along PCHEs 

∂(𝜌𝜌𝜌𝜌)
∂𝑥𝑥

= 0,         (2.13) 

and thus the time derivative of total energy is given by 

𝜌𝜌
∂𝐸𝐸
∂𝑡𝑡

= −
∂(𝜌𝜌𝜌𝜌𝜌𝜌)
∂𝑥𝑥

− 𝑓𝑓
𝜌𝜌𝑣𝑣3

2𝐷𝐷
−
𝑞𝑞″

𝐴𝐴
.         (2.14) 

The frictional-loss term in Eq. 2.14 is typically negligible and 
since 𝑣𝑣 is typically small compared to ℎ and 𝑒𝑒, we assume that 
𝐻𝐻 ≈  ℎ and 𝐸𝐸 ≈  𝑒𝑒, so that 

𝜌𝜌
∂𝑒𝑒
∂𝑡𝑡

= −
∂(𝜌𝜌ℎ𝑣𝑣)
∂𝑥𝑥

−
𝑞𝑞″

𝐴𝐴
.         (2.15) 

The governing equations for the control-oriented model are 
Eqs. 2.2, 2.9, and 2.15. 

2.3 Conversion to state-space form 
To implement MPC, we require that the control model 

consist of temporal ODEs in state-space form (Maciejowski, 
2002). To obtain a model of this form, the governing equations 
for the control model are integrated over 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 finite volumes 
along the heat exchanger's length, yielding temporal ODEs for 
fluid energy and wall temperature and differential algebraic 
equations (DAEs) for pressure distribution. 

Integrating the wall temperature ODE (Eq. 2.2) over a 
control volume yields 

𝐴𝐴𝑤𝑤𝜌𝜌𝑤𝑤𝐶𝐶𝑝𝑝,𝑤𝑤
𝑑𝑑𝑇𝑇𝑤𝑤,𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑈𝑈ℎ𝑃𝑃𝐶𝐶,ℎ(𝑇𝑇ℎ,𝑖𝑖 − 𝑇𝑇𝑤𝑤,𝑖𝑖)
+ 𝑈𝑈𝑐𝑐𝑃𝑃𝐶𝐶,𝑐𝑐(𝑇𝑇𝑐𝑐,𝑖𝑖 − 𝑇𝑇𝑤𝑤,𝑖𝑖))         (2.16) 

where 𝑇𝑇ℎ,𝑖𝑖, 𝑇𝑇𝑐𝑐,𝑖𝑖, and 𝑇𝑇𝑤𝑤,𝑖𝑖 are the temperatures in the ith control 
volume for the hot stream, cold stream, and wall respectively. 
𝑈𝑈ℎ and 𝑈𝑈𝑐𝑐 are calculated according to Eq. 2.4, where all 
thermodynamic state variables have similarly been discretised 
into control volumes. Δ𝑥𝑥𝑖𝑖 has been cancelled from both sides 
of Eq. 2.16. 

Integrating Eq. 2.15 over a control volume yields 

𝐴𝐴Δ𝑥𝑥𝜌𝜌𝑖𝑖
𝑑𝑑𝑒𝑒𝑖𝑖
𝑡𝑡

= ((𝜌𝜌ℎ𝑣𝑣)
𝑖𝑖−12

− (𝜌𝜌ℎ𝑣𝑣)
𝑖𝑖+ 1
𝑑𝑑2

) − Δ𝑥𝑥𝑖𝑖𝑞𝑞″         (2.17) 
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where the subscript 𝑖𝑖– ½  indicates the flux value at the 
interface between cells 𝑖𝑖 − 1 and 𝑖𝑖 and similar for 𝑖𝑖 + ½ . For 
systems where convection dominates diffusion, such as 
PCHEs, using central differencing to compute fluxes results in 
numerical instability (Versteeg and Malalasekera, 2007b). 
Thus, for simplicity, we use upwind differencing to compute 
flux values, 

𝜙𝜙
𝑖𝑖+12

= 𝜙𝜙𝑖𝑖 𝜙𝜙
𝑖𝑖−12

= 𝜙𝜙𝑖𝑖−1 for 𝑣𝑣 ≥ 0

𝜙𝜙
𝑖𝑖+12

= 𝜙𝜙𝑖𝑖+1 𝜙𝜙
𝑖𝑖−12

= 𝜙𝜙𝑖𝑖 for 𝑣𝑣 < 0,         (2.18) 

where 𝜙𝜙 is an arbitrary quantity. For positive 𝑣𝑣 this gives 

𝑑𝑑𝑒𝑒𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝑚𝑚
˙
𝑖𝑖𝑖𝑖(ℎ𝑖𝑖−1 − ℎ𝑖𝑖)
𝑑𝑑𝑑𝑑Δ𝑥𝑥𝜌𝜌𝑖𝑖

−
Nu 𝑘𝑘𝑖𝑖

𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 𝜌𝜌𝑖𝑖
(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑤𝑤,𝑖𝑖),         (2.19) 

where 𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the diameter of single PCHE channel. Any 
appropriate explicit Nusselt number correlation may be 
substituted into Eq. 2.19. 

The spatial ODE arising directly from the quasi-steady 
momentum assumption (Eq. 2.9) is converted to an explicit 
DAE as follows. Firstly, for rough channels, 𝑓𝑓𝑓𝑓 is given by the 
implicit Colebrook-White equation (White, 2011). Explicit 
approximations for 𝑓𝑓𝑓𝑓 are available, however all are functions 
of Reynolds number, which must be computed implicitly 
using an equation of state for non-ideal fluids. Thus, to obtain 
an explicit control model, we assume that the axial distribution 
of 𝑓𝑓𝑓𝑓 persists over the prediction horizon and compute future 
estimates of ρ and 𝑣𝑣 using a Taylor series expansion around 
the current time 𝑡𝑡0 and current fluid state (𝑒𝑒0, 𝑝𝑝0) as Thus, to 
obtain an explicit control model, we assume that the axial 
distribution of 𝑓𝑓𝑓𝑓 persists over the prediction horizon and 
estimate 𝜌𝜌 at 𝑘𝑘 timesteps into the future using a Taylor series 
expansion around the current time 𝑡𝑡0 and current fluid state 
(𝑒𝑒0, 𝑝𝑝0) as 

𝜌𝜌𝑘𝑘 = 𝜌𝜌0 +
∂𝜌𝜌
∂𝑒𝑒

|𝑝𝑝0,𝑡𝑡0(𝑒𝑒𝑘𝑘 − 𝑒𝑒0) +
∂𝜌𝜌
∂𝑝𝑝

|𝑒𝑒0,𝑡𝑡0(𝑝𝑝𝑘𝑘 − 𝑝𝑝0).        (2.20) 

 

Future velocity estimates are obtained from these density 
estimates and future mass flow rate estimates (see Sec. 2.4) as 

𝑣𝑣𝑘𝑘 =
𝑚̇𝑚𝑘𝑘

𝜌𝜌𝑘𝑘
1
𝐴𝐴

.         (2.21) 

Under the quasi-steady momentum assumption, future 
estimates pressure estimates are obtained from 𝑣𝑣𝑘𝑘, 𝜌𝜌𝑘𝑘, and 
future inlet pressure estimates 𝑝𝑝0,𝑘𝑘 by integrating Eq. 2.9 over 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 finite volumes, yielding 

𝑝𝑝𝑖𝑖+1,𝑘𝑘 = 𝑝𝑝𝑖𝑖,𝑘𝑘 − 𝑓𝑓𝑖𝑖,𝑘𝑘
Δ𝑥𝑥𝑖𝑖,𝑘𝑘𝜌𝜌𝑖𝑖,𝑘𝑘𝑣𝑣𝑖𝑖,𝑘𝑘2

2𝐷𝐷𝐻𝐻
,         (2.22) 

where 𝑖𝑖 indexes the cells spatially. 

To obtain a state-space model, we choose thermodynamic 
state variables of 𝑒𝑒 and 𝜌𝜌 for the control-oriented model and 
compute all other thermodynamic properties in Eqs. 2.16, 
2.19, and 2.22 using an appropriate equation of state (see Sec. 
2.7). 

2.4 Pump and compressor modelling 
The inlet mass flow rate of each heat exchanger stream is 

set by a pump for incompressible fluids and a compressor for 
compressible fluids. For incompressible fluids, the 
thermodynamic state at the pump outlet is constant and the 
mass flow rate is linearly proportional to pump speed. For 
compressible fluids, the efficiency and pressure ratio of the 
compressor are functions of the speed, guide vane angle, and 
inlet thermodynamic state, so the compressor outlet 
thermodynamic state varies with mass flow rate in a complex 
nonlinear manner. Here, however, we take a simplified 
approach by assuming that compressor efficiency and pressure 
ratio are constant for all speeds and thus all mass flow rates 
that we model. Under these assumptions, the outlet 
thermodynamic conditions of the compressor are constant and 
the mass flow rate varies linearly with compressor speed. This 
simplified approach introduces some error in the compressor 
model but is satisfactory for investigating the feasibility of 
controlling real-gas heat exchangers with MPC. 

We consider the case where a PID controller modulates 
pump or compressor speed such that mass flow rate is driven 
to the commanded setpoint 𝑚̇𝑚𝑟𝑟𝑟𝑟𝑟𝑟. We do not explicitly model 
the separate pump and PID controller subsystems; instead, we 
assume that the closed-loop dynamics of the complete system 
can be modelled by a linear second-order ODE, 

𝐼𝐼
𝑑𝑑2𝑚̇𝑚
𝑑𝑑𝑡𝑡2

= 𝑘𝑘(𝑚̇𝑚𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑚̇𝑚) − 𝑐𝑐
𝑑𝑑𝑚̇𝑚
𝑑𝑑𝑑𝑑

,         (2.23) 

and that some PID gains exist that give the desired closed-loop 
performance (𝐼𝐼, 𝑐𝑐, and 𝑘𝑘 are the effective inertia, damping 
coefficient, and spring constant of the system). We set the 
natural frequency to a value of 2 Hz in accordance with typical 
operating data and assume that the PID is tuned to give a 
slightly overdamped response with a damping ratio of 1.3. 
Additionally, we consider that the mass flow rate has an upper 
limit 𝑚̇𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum rate of change in both direction 
𝑑𝑑𝑚̇𝑚/𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 that are dictated by maximum speed and 
rotordynamics respectively. 

2.5 Linearisation 
MPC requires that the plant model take the explicit state-

space form, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥,𝑢𝑢)

𝑦𝑦 = 𝑔𝑔(𝑥𝑥,𝑢𝑢)
         (2.24) 
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where 𝑥𝑥, 𝑢𝑢, and 𝑦𝑦 are the state, control and output vectors of 
lengths 𝑛𝑛, 𝑙𝑙, and 𝑚𝑚 respectively, 𝑓𝑓(. ) is the nonlinear control-
oriented model, and 𝑔𝑔(. ) is a function that computes the 
measured outputs from the state and control vectors. For real-
gas heat exchangers, 𝑓𝑓 is comprised of Eqs. 2.16, 2.19, and 
2.22 for the fluid stream dynamics, Eq. 2.16 for the wall 
dynamics, and Eq. 2.23 for the 
pump/compressor dynamics. x is comprised of the hot-stream 
and cold-stream thermodynamic states, wall temperatures in 
each axial discretisation, and mass flow rates and their 
derivatives at the outlet of each pump/compressor, so 

𝑥𝑥                (2.25)

= [𝑒𝑒ℎ𝑜𝑜𝑜𝑜 ,𝑝𝑝ℎ𝑜𝑜𝑜𝑜 , 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑚̇𝑚ℎ𝑜𝑜𝑜𝑜,
𝑑𝑑ṁℎ𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑
, ṁ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,

𝑑𝑑ṁ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
]⊺, 

where 

𝑒𝑒ℎ𝑜𝑜𝑜𝑜 = [𝑒𝑒ℎ𝑜𝑜𝑜𝑜,1, . . . , 𝑒𝑒ℎ𝑜𝑜𝑜𝑜,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]⊺         (2.26) 

and similar for the other thermodynamic properties. For the 
case that we study, the mass flow rate setpoints for each stream 
are used as the control inputs, so 

𝑢𝑢 = [𝑚𝑚
˙
𝑟𝑟𝑟𝑟𝑟𝑟,ℎ𝑜𝑜𝑜𝑜 ,𝑚𝑚

˙
𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐].         (2.27) 

y is specific to the particular operating case being analysed and 
is discussed in Sec. 3.2. A nonlinear explicit state-space model 
may be obtained from Eqs. 2.16, 2.19, and 2.22 by developing 
explicit approximations of the equation of state, however, 
even under the quasi-steady momentum approximation (Eq. 
2.7), this model would be severely limited in allowable 
timestep due to the CFL condition (Eq. 2.5). Additionally, 
solving predictive control problems for nonlinear systems 
with high state dimensionality, such as real-gas heat 
exchangers, is computationally prohibitive. Thus, at each 
timestep, we compute a local linear approximation of the 
nonlinear model about the current operating point (𝑥𝑥0,𝑢𝑢0) and 
use this linear model to implement the controller. 

A linear approximation to the nonlinear model is 
developed by considering the effects of small perturbations in 
the state and control variables, 

𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥0
𝑢𝑢 = 𝑢𝑢 − 𝑢𝑢0.         (2.28) 

Using these perturbed variables, Eqn. 2.24 may be 
approximated using a Taylor series as 

        
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝑓𝑓(𝑥𝑥0 + 𝑥𝑥,𝑢𝑢0 + 𝑢𝑢)                            (2.29) 

≈ 𝑓𝑓(𝑥𝑥0,𝑢𝑢0) +
∂𝑓𝑓
∂𝑥𝑥

|𝑥𝑥0,𝑢𝑢0𝑥𝑥 +
∂𝑓𝑓
∂𝑢𝑢

|𝑥𝑥0,𝑢𝑢0𝑢𝑢

𝑦𝑦 ≈ 𝑔𝑔(𝑥𝑥0,𝑢𝑢0) +
∂𝑔𝑔
∂𝑥𝑥

|𝑥𝑥0,𝑢𝑢0𝑥𝑥 +
∂𝑔𝑔
∂𝑢𝑢

|𝑥𝑥0,𝑢𝑢0𝑢𝑢
 

where quadratic and higher order terms have been neglected. 
By noting that 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

,         (2.30) 

we obtain an approximate linear time-invariant (LTI) state-
space model about the current operating point (𝑥𝑥0,𝑢𝑢0) in the 
new variables 𝑥̅𝑥 and 𝑢𝑢� 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 + 𝑓𝑓0
𝑦𝑦 = 𝑦𝑦0 + 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑢𝑢

         (2.31) 

where 

𝐴𝐴 =
∂𝑓𝑓
∂𝑥𝑥

|𝑥𝑥0,𝑢𝑢0 ,𝐵𝐵 =
∂𝑓𝑓
∂𝑢𝑢

|𝑥𝑥0,𝑢𝑢0 , 𝑓𝑓0 = 𝑓𝑓(𝑥𝑥0,𝑢𝑢0) 

𝐶𝐶 =
∂𝑔𝑔
∂𝑥𝑥

|𝑥𝑥0,𝑢𝑢0 ,𝐷𝐷 =
∂𝑔𝑔
∂𝑢𝑢

|𝑥𝑥0,𝑢𝑢0 ,𝑦𝑦0 = 𝑔𝑔(𝑥𝑥0,𝑢𝑢0). 

The matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 are determined using a computer 
algebra system and their terms are excluded here for brevity. 
Terms in these matrices contain fluid property partial 
derivatives which can be obtained directly from fluid property 
databases such as CoolProp (Bell et al., 2014). Partial 
derivatives of Nusselt number correlations may be determined 
analytically or numerically. Since Nusselt number correlations 
for turbulent flow are always functions of Reynolds number, 
partial derivatives with respect to mass flow rate and the two 
thermodynamic state variables must be included. Commonly, 
the nonlinear model is linearised about an equilibrium point, 
making 𝑓𝑓0 zero (Maciejowski, 2002). However, due to the 
highly nonlinear nature of real-gas heat exchangers, the 
linearisation must be frequently recomputed, often about non-
equilibrium points. 

2.6 Conversion to discrete time 
To implement MPC, the linearised plant model must be 

converted to discrete-time form, 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑑𝑑𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑑𝑑𝑢𝑢𝑘𝑘 + 𝑓𝑓0𝑑𝑑
𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘,          (2.32) 

where 𝐴𝐴𝑑𝑑, 𝐵𝐵𝑑𝑑, and 𝑓𝑓0,𝑑𝑑 are the discrete-time versions of the 𝐴𝐴 
and 𝐵𝐵 matrices and 𝑓𝑓0 vector. Discrete time conversion is 
performed by noting that 𝑓𝑓0 is time-invariant until the model 
is re-linearised and by using a zero-order hold assumption for 
𝑢𝑢�. This assumption on 𝑢𝑢� is valid since the control inputs are 
the mass flow rate setpoints rather than the mass flow rates 
themselves. Under these conditions, analytic solutions for the 
discrete-time LTI matrices are 

𝐴𝐴𝑑𝑑 = exp(𝐴𝐴Δ𝑡𝑡)         (2.33) 

𝐵𝐵𝑑𝑑 = � exp�𝐴𝐴(𝛥𝛥𝛥𝛥 −  𝜏𝜏)� 𝑑𝑑𝑑𝑑 𝐵𝐵
Δ𝑡𝑡

0
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Γ𝑑𝑑 = � exp�𝐴𝐴(𝛥𝛥𝛥𝛥 −  𝜏𝜏)� 𝑑𝑑𝑑𝑑 𝐼𝐼,
Δ𝑡𝑡

0
 

where Δ𝑡𝑡 is the sampling interval (Franklin et al., 1990) and 
Γ𝑑𝑑 is the discrete-time coefficient matrix of 𝑓𝑓0such that 

𝑓𝑓0𝑑𝑑 = Γ𝑑𝑑𝑓𝑓0.         (2.34) 

𝐴𝐴𝑑𝑑, 𝐵𝐵𝑑𝑑, and 𝑓𝑓0,𝑑𝑑 are evaluated using the properties (DeCarlo, 
1989) 

exp ��𝐴𝐴 𝐵𝐵
0 0

� Δ𝑡𝑡� = �
𝐴𝐴𝑑𝑑 𝐵𝐵𝑑𝑑
0 𝐼𝐼

�          (2.35) 

exp ��𝐴𝐴 𝐼𝐼
0 0

� Δ𝑡𝑡� = �
𝐴𝐴𝑑𝑑 Γ𝑑𝑑
0 𝐼𝐼

� ,                    

where 0� denotes zero matrices sized such that the arguments 
of the matrix exponentials in Eq. 2.35 are square. 𝐴𝐴 is typically 
poorly conditioned, so the matrix exponentials in Eq. 2.35 are 
computed using the scaling and squaring algorithm (Moler and 
Van Loan, 2003) with a 13th order Padé approximant, which 
is evaluated using Horner's method (Higham, 2005). Since the 
expressions for the discrete-time matrices given in Eq. 2.33 
are exact, the resulting model is a highly accurate 
representation of the continuous-time LTI at the sampling 
instants 𝑘𝑘 Δ𝑡𝑡. Additionally, since the discrete-time matrices 
are not computed using a temporal discretisation method, the 
CFL condition need not be obeyed and an arbitrarily large Δ𝑡𝑡 
may be chosen, thereby allowing the use of a suitably large 
prediction horizon. 

2.7 Fluid property calculations 
We calculate all fluid properties using lookup tables 

generated using the open-source fluid property database 
CoolProp (Bell et al., 2014). CoolProp computes CO2’s 
thermodynamic state by iteratively solving the Span and 
Wagner equation of state (Span and Wagner, 1996), and 
computes its thermal conductivity and viscosity using the 
Scalabrin et. al. (Scalabrin et al., 2006) and Fenghour et. al. 
(Fenghour et al.,1998) correlations respectively. CoolProp 
models sodium nitrate (known as ‘solar salt’) using an 
incompressible equation of state that is based on experimental 
data from Zavoico (Zavoico, 2001). 
 
3. CONTROL STRATEGY 

3.1 State estimation 
To implement MPC, the full state vector 𝑥𝑥 must be known 

at the current timestep 𝑘𝑘 (Maciejowski, 2002). We assume that 
the outlet mass flow rate from each pump/compressor and its 
derivative (arising in Eq. 2.23) are measured exactly using 
appropriate flow meters. For heat exchangers, however, the 
internal thermodynamic state profiles are not directly 
measurable and must be estimated using an observer. We 
consider the case where the inlet and outlet thermodynamic 

states are measured exactly using ideal temperature and 
pressure sensors. For this case, the vector of measured outputs 
is 

𝑦𝑦                  (3.1)

= [𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑜𝑜𝑜𝑜,𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,ℎ𝑜𝑜𝑜𝑜 , 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑚̇𝑚ℎ𝑜𝑜𝑜𝑜,
𝑑𝑑𝑚̇𝑚ℎ𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑
, 𝑚̇𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,

𝑑𝑑𝑚̇𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
]⊺. 

The outlet properties in 𝑦𝑦 may be calculated by extrapolating 
over half a cell from the first or last cell values in 𝑥𝑥 using one-
sided finite differences. Using this approach with second-
order differencing, the cold-stream outlet internal energy is 
computed as 

𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1 − 0.5Δ𝑥𝑥
𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

         (3.2) 

𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.75 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1 − 1.0 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2 + 0.25 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2,         (3.3) 

and similar for pressure, and for the hot-stream outlet 
conditions. This extrapolation is a linear function of 𝑥𝑥, so 

𝑔𝑔(𝑥𝑥�,𝑢𝑢) = 𝐶𝐶𝐶𝐶,         (3.4) 

where to record the outlet conditions of each stream, C 
includes the nonzero entries 

𝐶𝐶1,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐶𝐶2,2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.75, 𝐶𝐶1,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1,𝐶𝐶2,2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1 = −1.0, 𝐶𝐶1
𝐶𝐶3,2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1,𝐶𝐶4,3𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1 = 1.75 𝐶𝐶3,2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+2,𝐶𝐶4,3𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+2 = −1.0, 𝐶𝐶3,2

          

and to record the mass flow rate terms, 

𝐶𝐶5,4𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1,𝐶𝐶5,4𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+2,𝐶𝐶5,4𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+3,𝐶𝐶5,4𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+4 = 1.       (3.6) 

Additionally, the observer is augmented with an 
integrating disturbance model to account for mismatch 
between the simulation and control models. The disturbance 
model drives the output estimates to zero as 𝑡𝑡 → ∞, thereby 
ensuring that state estimate converges. Since the state estimate 
converges, the controller can track a constant reference 
without steady-state offset (Borrelli et al, 2017). 

A nonlinear observer that estimates 𝑥𝑥� from 𝑦𝑦 takes the 
form 

𝑑𝑑𝑥𝑥�
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥�,𝑢𝑢) + 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�)

𝑦𝑦� = 𝑔𝑔(𝑥𝑥�,𝑢𝑢) + 𝑑̂𝑑
         (3.7) 

𝑑̂𝑑𝑘𝑘+1 =  𝑑̂𝑑𝑘𝑘 + 𝐿𝐿𝑑𝑑(𝑦𝑦𝑘𝑘 −  𝑦𝑦�𝑘𝑘) 

where 𝑓𝑓(. ) is the reduced-order nonlinear model (Eqs. 2.16, 
2.19, 2.22, 2.16, and 2.23, see Secs. 2.2–2.4), ‘hats’ indicate 
estimated quantities, and 𝐿𝐿 is the 𝑛𝑛 ×  𝑚𝑚 observer gain matrix. 
The reduced-order model, rather than the full simulation 
model, is used since the observer must run in real time. To 
compute updated state estimates, Eq. 3.7 is solved using 
explicit Euler integration with the Courant number equal to 
0.9, with the speed of the fastest characteristic being given by 
Eq. 2.6c. All elements in the matrix 𝐿𝐿𝑑𝑑 are set to 0.1. 
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The observer gain matrix 𝐿𝐿 is set using the following 
logic. We assume that the sensors have no error, so the inlet 
thermodynamic state for each stream is known exactly. Since 
heat transfer is a cumulative process, we assume that the errors 
in the estimates for 𝑒𝑒 and 𝑝𝑝 for each stream gradually increase 
from zero to their maximum value as fluid travels from the 
inlet to the outlet. We use only the error in the outlet value of 
a given fluid property to correct internal estimates for that 
property (for example, we use only 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑒̂𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜  to 
correct the estimates of 𝑒𝑒 along the cold stream). Since the 
error in the state estimate gradually increases from inlet to 
outlet, we scale the observer gains using a linear function from 
zero at the inlet to unity at the outlet. Thus, the observer gains 
corresponding to the state estimate at cell 𝑖𝑖 for the cold stream 
are 

𝐿𝐿𝑖𝑖,1, 𝐿𝐿𝑖𝑖+𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2 =
𝑖𝑖 − 0.5
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜,         (3.8) 

 
 
 
 
 
and the gains corresponding to the hot stream state estimates 
are 

𝐿𝐿𝑖𝑖+2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,3, 𝐿𝐿𝑖𝑖+3𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,4 =
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑖𝑖 + 0.5

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜,         (3.9) 

where 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 is a tuning parameter for the observer 
dynamics. A value of 5 × 10−4 was found to be appropriate 
for 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜. All other values in 𝐿𝐿 are zero. The observer does not 
directly correct wall temperature estimates since the wall 
temperatures are not measured at any location. However, since 
the wall temperatures are governed by adjacent fluid 
temperatures, they are indirectly corrected by the observer 
through the reduced-order heat exchanger model. 

3.2 MPC formulation 
We develop a model predictive controller that drives the 

process-stream outlet of a heat exchanger to a specified 
temperature and mass flow rate using the mass flow rate 
setpoints of both streams as the control inputs. We consider 
the case where the process stream is the cold stream and where 
the heat exchanger is arranged in counter-flow configuration 
with the cold-stream outlet at a nondimensional distance of 
𝑑𝑑 =  0 and the hot-stream outlet at 𝑑𝑑 =  1. Here, the vector 
of controlled outputs is 

𝑧𝑧 = �𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑚̇𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�.        (3.10) 

Additionally, we assume that the component connected to the 
cold-stream outlet has a maximum temperature limit Tmax that 
must be respected by the controller. 

Tracking MPC with move suppression (Maciejowski, 
2002) is used to drive the controlled outputs to their specified 
target values 𝑟𝑟. For tracking MPC, the cost function takes the 
form 

𝐽𝐽(𝑘𝑘, 𝑥𝑥,𝐮𝐮) = �(𝑧𝑧
^
𝑘𝑘+𝑖𝑖 − 𝑟𝑟)⊺𝑄𝑄(𝑧𝑧

^
𝑘𝑘+𝑖𝑖 − 𝑟𝑟)

𝐻𝐻𝑝𝑝

𝑖𝑖=1

+ �(Δ𝑢𝑢𝑘𝑘+𝑖𝑖)⊺𝑅𝑅(Δ𝑢𝑢𝑘𝑘+𝑖𝑖)
𝐻𝐻𝑢𝑢

𝑖𝑖=0

,         (3.11) 

where 𝒖𝒖 is the vector of control inputs over the control horizon 
𝐮𝐮 = [𝑢𝑢𝑘𝑘,𝑢𝑢𝑘𝑘+1, . . . ,𝑢𝑢𝑘𝑘+𝐻𝐻𝑢𝑢],         (3.12) 

 
Δ 𝑢𝑢𝑘𝑘+1 = uk+i −  uk+i−1, 𝑄𝑄 is the weighting matrix for the 
outputs, and 𝑅𝑅 is the move suppression matrix (𝑄𝑄 and 𝑅𝑅 are 
both diagonal). So that tracking errors for each controlled 
output are weighted approximately equally, we set the entries 
of 𝑄𝑄 using the nominal values of each of the controlled outputs 
(denoted using overbars) as 

𝑄𝑄 = diag�𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−1 , 𝑚̇𝑚�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1 �         (3.13) 

For moderate move suppression, we set 

𝑅𝑅 = diag(0.5,0.5).         (3.14) 

The maximum cold stream outlet temperature limit 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚is incorporated into the MPC by computing 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 — 
the internal energy equivalent to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚at the current cold-
stream outlet pressure — then imposing the output constraint 

𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚         (3.15) 

at all timesteps. Additionally, assuming that reverse flow is 
not permissible, the constraints on mass flow rate imposed by 
the turbomachinery (see Sec. 2.4) are incorporated into the 
MPC formulation by imposing the input constraints 

0 ≤ ṁℎ𝑜𝑜𝑜𝑜 ≤ 𝑚̇𝑚ℎ𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚,         (3.16) 

−
𝑑𝑑ṁℎ𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
≤

ṁℎ𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑
≤
𝑑𝑑ṁℎ𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
,         (3.17) 

and analogous for the cold stream. 
At each sampling instant k, to compute the next control 

update, the constrained quadratic programming problem 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐮𝐮

𝐽𝐽(𝑘𝑘, 𝑥𝑥�,𝐮𝐮)

subject to 𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑑𝑑𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑑𝑑𝑢𝑢𝑘𝑘 + 𝑓𝑓0𝑑𝑑
𝑦𝑦� ∈ [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]
𝑢𝑢 ∈ [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚]

Δ𝑢𝑢 ∈ [𝛿𝛿𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚],

         (3.18) 

is solved for the current state estimate 𝑥𝑥� using the constrained 
optimisation software Gurobi (Gurobi Optimization, 2018). 
Only 𝑢𝑢𝑘𝑘 from 𝒖𝒖 is used as the control signal, and at the next 
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sampling instant, the process is repeated to compute the 
subsequent control update. Due to its high state 
dimensionality, we formulate the optimisation problem using 
dense matrices, so its time complexity depends only its input 
and output dimensionalities (Wang and Boyd, 2010). 
 
4. RESULTS 

We test the performance of the MPC developed in Sec. 3 
by performing closed-loop simulations of a CO2–CO2 heat 
exchanger and a NaK-CO2 heat exchanger. Both heat 
exchangers have a length of 1 m, 1600 channels per stream, a 
channel diameter of 1.06 mm, and a wall thickness of 0.6 mm. 
We use the Ngo correlation, Nu = 0.1696 Re0.629Pr0.317 
(Ngo et al., 2007), to model heat transfer in CO2 streams and 
the correlation for fully-developed laminar flow in a straight 
channel with constant heat flux, 𝑁𝑁𝑁𝑁 = 4.089 (Faghri et al., 
2010), to model heat transfer in the salt streams. 

We simulate the closed-loop behaviour of the CO2-CO2 
heat exchanger in response to two load changes, one occurring 
close to design-point conditions and one occurring at highly 
off-design conditions in the presence of inlet temperature 
disturbances. We perform a single simulation around design-
point conditions for the salt-CO2 heat exchanger. We simulate 
the behaviour of the plant using the simulation model 
described in Sec. 2.1 with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = 100. We compute state 
estimates at 1 kHz using the nonlinear observer developed in 
Sec. 3.1 with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12. We use these state estimates to 
compute control updates at 4 Hz using the MPC developed in 
Sec. 3.2, also with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  12 and with prediction and 
control horizons of 𝐻𝐻𝑝𝑝, 𝐻𝐻𝑢𝑢  =  40 (10 sec). 

For the design-point CO2-CO2 case, we simulate the 
behaviour of the controlled heat exchanger system in response 
to setpoint changes in cold-stream outlet temperature from 
635K to 700K and cold-stream mass flow rate from 5.55 kg/s 
to 3.2 kg/s at t = 1 sec over 15 sec. The initial and final 
temperature distributions are shown in Fig. 2 and the temporal 
profiles of inlet and outlet temperature and mass flow rate for 
both streams are shown in Fig. 3. For the off-design CO2-CO2 
case, we simulate the system’s response to setpoint changes in 
cold-stream outlet temperature from 435K to 550K and cold-
stream mass flow rate from 5.55 kg/s to 3.2 kg/s at t = 0 sec 
over 15 sec. In this test case, the inlet temperatures of both 
streams are subject to disturbances beginning at t = 6 sec. The 
initial and final temperature distributions are shown in Fig 4. 
and the temporal profiles of inlet and outlet temperature and 
mass flow rate are shown in Fig. 5. 

 

 
Figure 2 - Initial (𝒕𝒕𝟎𝟎) and final (𝒕𝒕𝒇𝒇) temperature 
profiles for the design-point CO2-CO2 case 

 

 

 
Figure 3 - Closed-loop response of inlet and outlet 
temperatures and mass flow rates for the design-

point CO2-CO2 case 
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Figure 4 - Initial (𝒕𝒕𝟎𝟎) and final (𝒕𝒕𝒇𝒇) temperature 

profiles for the off-design case 
 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 5 – Closed-loop response of inlet and outlet 
temperatures and mass flow rates for the off-

design CO2-CO2 case 
For the NaK-CO2 case, we simulate the behaviour of the 

system in response to setpoint changes in cold-stream outlet 
temperature from 620K to 650K and cold-stream mass flow 
rate from 5.2 kg/s to 3.8 kg/s at t = 1 sec over 15 sec. The 

temporal profiles of inlet and outlet temperature and mass 
flow rate for both streams are shown in Fig. 6. (The initial and 
final temperature distributions are omitted for brevity.) 

 
 
 
 
 

 

 

 
 

 
Figure 6 – Closed-loop response of inlet and outlet 
temperatures and mass flow rates for the NaK-CO2 

case 
For the design-point case, the controller performs well. 

The controlled variables are driven to their specified setpoints 
quickly with no overshoot and no steady-state offset. The rate 
constraints on the inputs are active through much of the 
transient, which is a typical characteristic of MPC. For the off-
design case, the controller performs similarly, though slightly 
overshoots both the mass flow rate and temperature targets. 
The disturbances are rejected promptly, with almost no impact 
on the controlled outputs. Again, steady-state offset is 
negligible (0.1% for mass flow rate and 0.06% for outlet 
temperature). Similar control characteristics are shown for the 
NaK-CO2 test case. The excellent closed-loop performance in 
all test cases suggests that the approach of developing a model 
predictive controller based on successive online linearisations 
of the time scale-separated analytical model is valid. The 
results suggest that MPC may be viable control approach for 
controlling non-ideal gas heat exchangers in operational 
processing plants and power cycles, despite the fundamental 
complexities of these components. 

4.1 Discretisation and model uncertainty study 
MPC is a computationally demanding control 

methodology. Model complexity is often constrained in 
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industrial MPC implementations so that real-time operation 
can be achieved. Here we study the effect of model 
discretisation on closed-loop performance to gain insight into 
the computational feasibility of implementing MPC for real-
world non-ideal-gas heat exchanger systems. 

We repeat the simulations performed for the off-design 
CO2-CO2 heat exchanger using twelve, six, three, and two 
cells for both the observer and controller. We analyse 
controller performance for each discretisation level by 
computing the normalised squared tracking error for both the 
temperature and mass flow rate outputs. For the cold-stream 
outlet temperature, this tracking error is defined as 

𝑒𝑒𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � �1 −  𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �
2

 𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

𝑡𝑡0
         (4.1) 

where 𝑟𝑟𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the set point value for cold-stream outlet 
temperature. 𝑒𝑒𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐̇ , the tracking error for cold-stream mass 
flow rate is calculated similarly. 

Furthermore, for operational non-ideal-gas heat 
exchangers, exact internal geometry measurements and 
accurate heat transfer correlations are generally not available 
(Bone et. al., 2018), leading to errors in heat transfer 
predictions. Here, we also study the effect of using inaccurate 
heat transfer correlations in the observer and controller. To 
study this effect, we scale the Nusselt number in the observer 
and controller model as 

𝑁𝑁𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 0.6,        (4.2) 

so that heat transfer is under predicted. We then repeat the 
off-design CO2-CO2 heat exchanger simulations for all 

discretisation levels and recompute the tracking errors. The 
results of these studies are shown in Fig. 7. 

The results in Fig. 7 show that good closed-loop 
performance can be obtained for all discretisation levels when 
using the true heat transfer model. This result is encouraging 
for industrial applications, since a comparatively simple and 
therefore computationally efficient model can be used. 
However, when using the degraded heat transfer model, 
controller performance begins to worsen with coarser 
discretisation. 

 
 

Figure 7 – Discretisation study using regular (solid 
line) and degraded (dashed line) models. Closed-

loop performance is only sensitive to model 
discretisation when using a degraded model. 
 
Fig. 7 suggests that decent controller performance can be 

obtained in the presence of model uncertainty by using 
sufficiently-fine discretisation. The temporal profiles of cold-
stream outlet temperature using a degraded control model for 
two and twelve cells are shown in Fig 8. 

Figure 8 – Inlet and outlet temperature profiles 
using a degraded control model with 2 cells (top) 

and 12 cells (bottom) 
The results in Fig. 8 suggest that good performance can 

be obtained, even in the presence of significant model error, 
by using sufficiently fine model discretisation. This provides 
further evidence that MPC is a suitable control methodology 
for controlling non-ideal-gas heat exchangers. 

 
5. CONCLUSION 

This paper presented a methodology to implement MPC 
for heat exchangers with non-ideal-gas working fluids. This 
methodology involves developing an analytical control-
oriented heat exchanger model from a high-fidelity simulation 
model by using timescale separation to capture only the slow 
dynamics. The MPC is facilitated via successive online 
linearisations of this control-oriented model, and an observer 
is used to estimate the internal heat exchanger state from 
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inflow and outflow measurements. The controller exhibits 
good closed-loop performance with quick responses to 
setpoint changes, prompt disturbance rejection, and negligible 
steady-state offset. When using an accurate control model, 
good performance is obtained using a low-dimensional 
computationally efficient model. When using a control model 
with significant error, good performance can still be obtained 
by using sufficient discretisation. 

 
6. REFERENCES 

Bell, I. H., Wronski, J., Quoilin, S., Lemort, V., 2014. 
Pure and pseudo-pure fluid thermophysical property 
evaluation and the open-source thermophysical property 
library Coolprop. Industrial & Engineering Chemistry 
Research 53 (6), 2498–2508.  
URL http://pubs.acs.org/doi/abs/10.1021/ie4033999 

Bone, V., McNaughton, R., Kearney, M., Jahn, I., 2018. 
Methodology to develop off-design models of heat exchangers 
with non-ideal fluids. Applied Thermal Engineering. 

Borrelli, F., Bemporad, A. and Morari, M., 2017. 
Predictive control for linear and hybrid systems. Cambridge 
University Press. 

Carstens, N., 2007. Control strategies for supercritical 
carbon dioxide power conversion systems. Ph.D. thesis, 
Massachusetts Institute of Technology. 

Courant, R., Friedrichs, K., Lewy, H., 1967. On the partial 
difference equations of mathematical physics. IBM journal of 
Research and Development 11 (2), 215–234. 

DeCarlo, R. A., 1989. Linear systems: A state variable 
approach with numerical implementation. Prentice-Hall, Inc. 

Dostal, V., Driscoll, M. J., Hejzlar, P., 2004. A 
supercritical carbon dioxide cycle for next generation nuclear 
reactors.Ph.D. thesis, Massachusetts Institute of Technology, 
Department of Nuclear Engineering. 

Dubljevic, S., Mhaskar, P., El-Farra, N. H., Christofides, 
P. D., 2005. Predictive control of transport-reaction 
processes.Computers & chemical engineering 29 (11-12), 
2335–2345. 

Fenghour, A.,Wakeham,W. A., Vesovic, V., 1998. The 
viscosity of carbon dioxide. Journal of Physical and Chemical 
Reference Data 27 (1), 31–44. 

Franklin, G. F., Powell, J. D., Workman, M. L., 1990. 
Digital control of dynamic systems. Addison-Wesley 
Reading, MA, Ch. 2. 

Gurobi Optimization, L., 2018. Gurobi optimizer 
reference manual. URL http://www.gurobi.com 

Faghri, A., Zhang, Y. and Howell, J.R., 2010. Advanced 
heat and mass transfer. Global Digital Press. 

Higham, N. J., 2005. The scaling and squaring method for 
the matrix exponential revisited. SIAM Journal on Matrix 

Analysis and Applications 26 (4), 1179–1193. 

Issa, R. I., 1986. Solution of the implicitly discretised 
fluid flow equations by operator-splitting. Journal of 
computational physics 62 (1), 40–65. 

Jacobs, P. A., Gollan, R. J., February 2018. The Eilmer 
4.0 flow simulation progrm: Guide to the transient flow solvr, 
including some examples to get you started. School of 
Mechanical and Mining Engineering Technical Report 
2017/26, The University of Queensland, Brisbane, Australia. 

LeVeque, R. J., 2002. Finite volume methods for 
hyperbolic problems. Vol. 31. Cambridge university press. 

Lovera, M., Casella, F., 2015. Model building for control 
system synthesis. In: Baillieul, J., Samad, T. (Eds.), 
Encyclopedia of Systems and Control. Springer, pp. 715–722. 

Maciejowski, J. M., 2002. Predictive control: with 
constraints. Pearson education. 

Mehos, M., Turchi, C., Jorgenson, J., Denholm, P., Ho, 
C., Armijo, K., 2016. On the path to sunshot. Advancing 
concentrating solar power technology, performance, and 
dispatchability. Tech. rep., National Renewable Energy 
Laboratory (NREL), Golden, CO (United States). 

Moisseytsev, A., Sienicki, J., 2007. Development of a 
plant dynamics computer code for analysis of a supercritical 
carbon dioxide brayton cycle energy converter coupled to a 
natural circulation lead-cooled fast reactor. Tech. rep., 
Argonne National Laboratory (ANL), Argonne, IL. 

Moler, C., Van Loan, C., 2003. Nineteen dubious ways to 
compute the exponential of a matrix, twenty-five years later. 
SIAM review 45 (1), 3–49. 

Musgrove, G., Sullivan, S., Shiferaw, D., Fourspring, P., 
Chordia, L., 2017. Heat exchangers. In: Brun, K., Dennis, R. 
(Eds.), Fundamentals and Applications of Supercritical 
Carbon Dioxide (sCO2) Based Power Cycles. Woodhead 
Publishing in energy. Elsevier Science & Technology, Ch. 8, 
pp. 217–244. 

Musgrove, G., Wright, S., 2017. Introduction and 
background. In: Brun, K., Dennis, R. (Eds.), Fundamentals 
and Applications of Supercritical Carbon Dioxide (sCO2) 
Based Power Cycles. Woodhead Publishing in energy. 
Elsevier Science & Technology, Ch. 1, pp. 1–21. 

Ngo, T.L., Kato, Y., Nikitin, K. and Ishizuka, T., 2007. 
Heat transfer and pressure drop correlations of microchannel 
heat exchangers with S-shaped and zigzag fins for carbon 
dioxide cycles. Experimental Thermal and Fluid Science, 
32(2), pp.560-570. 

Poinsot, T. J., Lelef, S., 1992. Boundary conditions for 
direct simulations of compressible viscous flows. Journal of 
computational physics 101 (1), 104–129. 

Roe, P. L., 1986. Characteristic-based schemes for the 
euler equations. Annual review of fluid mechanics 18 (1), 
337–365. 

Scalabrin, G., Marchi, P., Finezzo, F., Span, R., 2006. A 
reference multiparameter thermal conductivity equation for 

http://www.gurobi.com/


13 

 

carbon dioxide with an optimized functional form. Journal of 
physical and chemical reference data 35 (4), 1549–1575. 

Span, R., Wagner, W., 1996. A new equation of state for 
carbon dioxide covering the fluid region from the triplepoint 
temperature to 1100 k at pressures up to 800 mpa. Journal of 
physical and chemical reference data 25 (6), 1509–1596. 

Turchi, C. S., Ma, Z., Neises, T. W., Wagner, M. J., 2013. 
Thermodynamic study of advanced supercritical carbon 
dioxide power cycles for concentrating solar power systems. 
Journal of Solar Energy Engineering 135 (4), 041007. 

Versteeg, H., Malalasekera, W., 2007a. An introduction 
to computational fluid dynamics: the finite volume method. 
Prentice Hall, Ch. Solution algorithms for pressure-velocity 
coupling in steady flows. 

Versteeg, H., Malalasekera, W., 2007b. An introduction 
to computational fluid dynamics: the finite volume method. 
Prentice Hall, Ch. The finite volume method for convection-
diffusion problems. 

Wada, Y., Liou, M.-S., 1997. An accurate and robust flux 
splitting scheme for shock and contact discontinuities. SIAM 
Journal on Scientific Computing 18 (3), 633–657. 

Wang, Y., Boyd, S., 2010. Fast model predictive control 
using online optimization. IEEE Transactions on control 
systems technology 18 (2), 267–278. 

White, F., 2011. Fluid Mechanics. McGraw-Hill series in 
mechanical engineering. McGraw Hill. URL 
https://books.google.com.au/books?id = egk8SQAACAAJ 

Zavoico, A. B., 2001. Solar power tower design basis 
document. Tech. rep., Sandia National Laboratories. 

 

APPENDIX A - COPYRIGHT/OPEN ACCESS  
The GPPS policy is that all articles will be Open Source 

accessible. This article will be published using the Creative 
Commons Attribution CC-BY 4.0, thus allowing the author(s) 
to retain their copyright.  

For answers to frequently asked questions about Creative 
Commons Licences, please see 
https://creativecommons.org/faq/. 

 
APPENDIX B - GPPS Presenter Policy and Paper 

Acceptance 
According to GPPS's presenter attendance policy, a paper 

cannot be published or be indexed and may not be cited as a 
published paper until at least one author pays the registration 
fee and attends the conference. The GPPS reserves the right to 
withdraw from its publications any paper that is not presented 
by an author of the paper at the appropriate conference. Any 
paper that is withdrawn may not be cited as a published paper. 

http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/faq/

	ABSTRACT
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Simulation model
	2.2 Control-oriented model
	2.3 Conversion to state-space form
	2.4 Pump and compressor modelling
	2.5 Linearisation
	2.6 Conversion to discrete time
	2.7 Fluid property calculations

	3. CONTROL STRATEGY
	3.1 State estimation
	3.2 MPC formulation

	4. RESULTS
	4.1 Discretisation and model uncertainty study

	5. CONCLUSION
	6. REFERENCES
	APPENDIX A - COPYRIGHT/OPEN ACCESS


