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1 Introduction 

 Bilevel programming (BLP) was motivated by the game theory of Von 

Stackelberg [1] in the context of unbalanced economic markets [2].The majority of 

research on BLP has centered on the linear version of the problem in which only one 
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follower is involved. There have been nearly two dozen algorithms, such as, the Kth best 

approach [3, 4], Kuhn-Tucker approach [5, 6, 7], complementarity pivot approach [8], 

penalty function approach [9, 10], proposed for solving linear BLP problems since the 

field being caught the attention of researchers in the mid-1970s. Kuhn-Tucker approach 

has been proven to be a valuable analysis tool with a wide range of successful 

applications for linear BLP [2, 6, 7].  

 

 Our previous work presented new theory overcame the fundamental deficiency of 

existing linear BLP theory [11, 12, 13, 14]. We proposed a comprenhensive framework 

for bilevel multifollower programming (BLMFP) problems and developed solution 

technology for linear BLMFP problems without shared variables among followers [15, 16, 

17]. We also proposed an extended Kuhn-Tucker approach for linear BLMFP problems 

with shared variables among followers [18].This paper proposes an extended Kth-best 

approach for linear BLMFP problems with partial shared variables among followers.  

Following the introduction, this paper reviews a model for linear BLMFP problems with 

partial shared variables among followers in Section2. The Kth-best approach for this 

model is proposed in Section 3. A numeric example for this approach is given in Section 

4. A conclusion and further study are given in Section 5.  
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2 Model Overview  

2.1 A model for linear BLMFP problems with partial shared variables among 

followers 

 For nRXx ⊂∈ , im
ii RYy ⊂∈ , mRZz ⊂∈  1

1: RZYYXF K →×××× K , and 

1
1: RZYYXf Ki →×××× K , Ki ,,2,1 K= , a linear BLMFP problem where )2(≥K  

followers are involved and there are shared partial decision variables, but separate 

objective functions and constraint functions among the followers is defined as follows 

[18]:  

                         dzydcxzyyxF
K

s
ssK

Xx
++= ∑

=∈
1

1 ),,,,(min K  

                         subject to bBzyBAx
K

s
ss ≤++∑

=1

 

                               zeyexczyyxf i

K

s
sisiKi

ZzYy ii

++= ∑
=∈∈
1

1
,

),,,,(min K  

                      subject to ii

K

s
sisi bzCyCxA ≤++∑

=1

,  

1 

       

where nRc ∈ , n
i Rc ∈  , im

i Rd ∈ , mRd ∈ , im
is Re ∈ , m

i Re ∈ , pRb ∈ , iq
i Rb ∈ , 

npRA ×∈ , imp
i RB ×∈ , mpRB ×∈ , nq

i
iRA ×∈ , si mq

is RC ×∈ , mq
i

iRC ×∈ , Ksi ,,2,1, K= . 

 

Definition 1 A topological space is compact if every open cover of the entire space has a 

finite subcover. For example, ],[ ba  is compact in R  (the Heine-Borel theorem) [19]. 
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2.2 Model transformation for linear BLMFP with partial shared variables among 

followers 

The main idea to deal with linear BLMFP problems with partial shared variables 

among the followers is that an assumed third party controls the shared variablez . It 

means that the thi  follower controls the variable iy  ( Ki ,,2,1 K= ), and a third party 

called a virtual follower: the thK )1( +  follower controls the variablez . By using this 

splitting method, (1) can be rewritten as follows: 

                         ∑+

=
+∈

+=
1

1
11 ),,,,(min

K

s
ssKK

Xx
ydcxyyyxF K   

                         subject to byBAx
K
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ss ≤+∑+

=

1

1

 2 

                            ∑+

=
+∈

+=
1

1
11 ),,,,(min

K

s
sisiKKi

Yy
yexcyyyxf

ii

K   

                 subject to i

K

s
sisi byCxA ≤+∑+

=

1

1

,                                          

where 1,,,1 += KKi K , zyK =+1 , ddK =+1 , BBK =+1 , ),,1()1( Klee lKl K==+ , 

∑
=

+ =
K

s
sK cc

1
1 , )1,,1(

1
)1( +== ∑

=
+ Kjee

K

s
sjjK K , ),,1()1( KlCC lKl K==+ , ( )

1
01 +

=+ KqKA , 

( ) ),,1(0
1)1( KlC

lK mqlK K== ×+ +
, ( )

1
01 +

=+ KqKb . 

This simple transformation has shown that solving the linear BLMFP (1) is 

equivalent to solving (2). There are K  followers that share the variable z  for the linear 

BLMFP (1).  However, (2) has 1+K  followers and is the linear BLMFP without shared 
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variables among the followers. We can also find that all the variables of the followers 

parameterise into the objective functions and constraint functions of the followers. 

2.3 Definition of solution 

For simplification and convenience, we write model (2) as follows: 

                         ∑
=∈

+=
K

s
ssK

Xx
ydcxyyxF

1
1 ),,,(min K  (3 a) 

                         subject to byBAx
K

s
ss ≤+∑

=1

 (3 b) 

                            ∑
=∈

+=
K

s
sisiKi

Yy
yexcyyxf

ii 1
1 ),,,(min K  (3 c) 

                 subject to i

K

s
sisi byCxA ≤+∑

=1

,                                         (3 d) 

 

where nRc ∈ , n
i Rc ∈ , im

i Rd ∈ , sm
is Re ∈ , pRb ∈ , iq

i Rb ∈ , npRA ×∈ , imp
i RB ×∈ , 

nq
i

iRA ×∈ , si mq
is RC ×∈ , Ksi ,,2,1, K= . 

The formulation (3) is the same as (2) except the number of followers. They have the 

same solution algorithms. Corresponding to (3), [18] give following basic definition. 

Definition 2 

(a) Constraint region: 

,,),,,{(
1

11 byBAxYYXyyxS
K

s
sskK ≤+×××∈= ∑

=

KK  

},,2,1,
1

KibyCxA i

K

s
sisi K=≤+∑

=

. 
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The constraint region refers to all possible combinations of choices that the leader 

and followers may make. 

(b) Projection of S  onto the leader’s decision space: 

},,2,1,,,:{)(
11

KibyCxAbyBAxYyXxXS i

K

s
sisi

K

s
ssii K=≤+≤+∈∃∈= ∑∑

==

. 

(c) Feasible set for each follower )(XSx ∈∀ : 

  }),,,(:{)( 1 SyyxYyxS Kiii ∈∈= K . 

 The feasible region for each follower is affected by the leader’s choice of x , and  

  the allowable choices of each follower are the elements of S .  

(d) Each follower’s rational reaction set for )(XSx ∈ : 

)]}(ˆ:),,,2,1,,ˆ,(min[arg:{)( xSyijKjyyxfyYyxP iijiiiiii ∈≠=∈∈= K ,  

where Ki ,,2,1 K= , =∈≠= )](ˆ:),,,2,1,,ˆ,(min[arg xSyijKjyyxf iijii K  

)}(ˆ),,,,2,1,,ˆ,(),,,(:)({ 1 xSyijKjyyxfyyxfxSy iijiiKiii ∈≠=≤∈ KK .  

The followers observe the leader’s action and simultaneously react by selecting 

iy  from their feasible set to minimize their objective functions. 

(e) Inducible region: 

},,2,1),(,),,,(:),,,{( 11 KixPySyyxyyxIR iiKK KKK =∈∈= .  

 Thus in terms of the above notations, (3) can be written as 

                         }),,,(:),,,(min{ 11 IRyyxyyxF KK ∈KK  (4) 

Shi proposed the following theorem to characterize the condition under which there 

is an optimal solution for (3) [18]. 
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Theorem 1 If S  is nonempty and compact, there exists an optimal solution for a linear 

BLMFP problem. 

 

 

 

3   An Extended Kth-best Algorithm for Linear Bilevel Multifollower 

Programming with Partial Shared Variables among Followers 

3.1 Properties of Linear Bilevel Multifollower Programming with Partial Shared 

Variables among Followers 

Theorem 2 The inducible region of the model (3) can be written equivalently as a 

piecewise linear equality constraint comprised of supporting hyperplanes of constraint 

regionS . 

Proof: Let us begin by writing the inducible region of Definition 2(e) explicitly as 

follower: 

,~:~min[,),,,(:),,,{(
,1

11 ∑
≠=

−−≤=∈=
K

iss
ssiiiiiiiiKK yBAxbyByeyeSyyxyyxIR KK

          },,2,1],0~,,,2,1,~
,1

KiyKjyCxAbyC i

K

iss
sisiiiji KK =≥=−−≤ ∑

≠=

. 

Let us define 

T
Kbbbb ),,,( 1

'
K= , T

KAAAA ),,,( 1
'

K= , T
Kiiii CCBB ),,,( 1

'
K= , 

where  Ki ,,2,1 K= . Now we have 
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−≤=∈= ''
11

~:~min[,),,,(:),,,{( iiiiiiiiiKK byByeyeSyyxyyxIR KK          

},,2,1],0~,
,1

'' KiyyBxA i

K

iss
ss K=≥− ∑

≠=

.  

Let us define 

 

−≤=≠= '' ~:~min[),,2,1,,( iiiiiiji byByeijKjyxQ K  

]0~,
,1

'' ≥− ∑
≠=

i

K

iss
ss yyBxA , 

(5) 

where  Ki ,,2,1 K= . For each value of )(XSx ∈ , the resulting feasible region to problem 

(3) is nonempty and compact. Thus, foriQ , which is a linear program parameterized in 

jyx, , Kj ,,2,1 K=  and ij ≠ , always has a solution.  From duality theory we get 

}0,:)(max{ ''

,1

'' ≥−≥−+ ∑
≠=

ueuBbyBxAu iiii

K

iss
ss , (6) 

which has the same optimal value as (5) at the solution *u . Let suu ,,1
K be a listing of all 

the vertices of the constraint region of (6) given by }0,:{ ' ≥−≥= ueuBuU iii . Because 

we know that a solution to (6) occurs at a vertex of U , we get the equivalent problem  

}},,{:)(max{ 1'

,1

'' sl
i

K

iss
ss

l uuubyBxAu K∈−+ ∑
≠=

, 

which demonstrates that ),,,2,1,,( ijKjyxQ ji ≠= K ,  is a piecewise linear function.  

Rewriting IR  as  

0),,,2,1,,(:),,,{( 1 =−≠=∈= iiijik yeijKjyxQSyyxIR KK , },,2,1 Ki K=  (7) 

yields desired result. 
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Corollary 1 The problem (3) is equivalent to minimizing F over a feasible region 

comprised of a piecewise linear equality constraint. 

Proof: By (4) and 2, we have the desired result. 

The each function iQ defined by (5) is convex and continuous. In general, because 

we are minimizing a linear function ∑
=

+=
K

s
ss ydcxF

1

 over IR , and because F  is 

bounded below S  by, say, Syyxydcx K

K

s
ss ∈+∑

=

),,,(:min{ 1
1

K }, the following can be 

concluded. 

Corollary  2 A solution for the linear BLMFP problem occurs at a vertex ofIR . 

Proof: A linear BLMFP problem can be written as in (4). Since ∑
=

+=
K

s
ss ydcxF

1

 is 

linear, if a solution exists, one must occur at a vertex ofIR . The proof is completed. 

Theorem  3 The solution ),,,( **
1

*
Kyyx K of the linear BLMFP problem occurs at a vertex 

of S . 

Proof: Let ),,,(,),,,,( 1
11

1
1 r

K
rr

K yyxyyx KKK be the distinct vertices of S . Since any 

point in S  can be written a convex combination of these vertices, let 

∑ =
= r

j

j
K

jj
jK yyxyyx

1 1
**

1
* ),,,(),,,( KK α , where rjj

j

r

j
,,2,1,0,1

1
K=≥=∑ =

αα  and 

rr ≤ . It must be shown that 1=r . To see this let us write the constraints to (3) at 

),,,( **
1

*
Kyyx K  in their piecewise linear form (7). 

** ),,,2,1,,(0 iiili yeilKlyxQ −≠== K , Ki ,,2,1 K=             

Rewrite it as follows 
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)()),,,2,1,,((0 ∑∑ −≠==
j

j
ijii

j
l

j

j
ji yeilKlyxQ αα K  

j
iii

j
j

j
l

j
i

j
i yeilKlyxQ ∑∑ −≠=≤ αα ),,,2,1,,( K , 

where Ki ,,2,1 K= . 

By convexity of ),,,2,1,,( ilKlyxQ li ≠= K , we have 

  )),,,2,1,,((0 j
iii

j
l

j
i

j
j yeilKlyxQ −≠=≤ ∑ Kα , 

where Ki ,,2,1 K= . But by a definition, 

 j
iiiiii

xSy

j
l

j
i yeyeilKlyxQ

j
i

≤=≠=
∈ )(
min),,,2,1,,( K , Ki ,,2,1 K= . 

Therefore, rjyeilKlyxQ j
iii

j
l

j
i ,,2,1,0),,,2,1,,( KK =≤−≠= , Ki ,,2,1 K= . 

Noting that rjj ,,2,1,0 K=≥α , the equality in the preceding expression must hold or 

else a contradiction would result in the sequence above. Consequently, 

0),,,2,1,,( =−≠= j
iii

j
l

j
i yeilKlyxQ K , rj ,,2,1 K= , Ki ,,2,1 K= . This implies that 

IRyyx j
K

jj ∈),,,( 1 K , rj ,,2,1 K=  and ),,,( **
1

*
Kyyx K can be written as a convex 

combination of points in IR . Because ),,,( **
1

*
Kyyx K  is a vertex of IR , a contradiction 

results unless 1=r . The proof is completed. 

Corollary  1 If x  is an extreme point of IR , it is an extreme point of S . 

Proof: Let ),,,(,),,,,( 1
11

1
1 r

K
rr

K yyxyyx KKK be the distinct vertices of S . Since any 

point in S  can be written a convex combination of these vertices, let 

∑ =
= r

j

j
K

jj
jK yyxyyx

1 1
**

1
* ),,,(),,,( KK α , where rjj

j

r

j
,,2,1,0,1

1
K=≥=∑ =

αα  and 
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rr ≤ . It must be shown that 1=r . To see this let us write the constraints to (3) at 

),,,( **
1

*
Kyyx K  in their piecewise linear form (7). 

** ),,,2,1,,(0 iiili yeilKlyxQ −≠== K , Ki ,,2,1 K=  .           

Rewrite the above formulation as follows 

)()),,,2,1,,((0 ∑∑ −≠==
j

j
ijii

j
l

j

j
ji yeilKlyxQ αα K  

j
iii

j
j

j
l

j
i

j
i yeilKlyxQ ∑∑ −≠=≤ αα ),,,2,1,,( K , 

where Ki ,,2,1 K= . 

By convexity of ),,,2,1,,( ilKlyxQ li ≠= K , we have 

  )),,,2,1,,((0 j
iii

j
l

j
i

j
j yeilKlyxQ −≠=≤ ∑ Kα , 

where Ki ,,2,1 K= . But by a definition, 

 j
iiiiii

xSy

j
l

j
i yeyeilKlyxQ

j
i

≤=≠=
∈ )(
min),,,2,1,,( K , Ki ,,2,1 K= . 

Therefore, rjyeilKlyxQ j
iii

j
l

j
i ,,2,1,0),,,2,1,,( KK =≤−≠= , Ki ,,2,1 K= . 

Noting that rjj ,,2,1,0 K=≥α , the equality in the preceding expression must hold or 

else a contradiction would result in the sequence above. Consequently, 

0),,,2,1,,( =−≠= j
iii

j
l

j
i yeilKlyxQ K , rj ,,2,1 K= , Ki ,,2,1 K= . This implies that 

IRyyx j
K

jj ∈),,,( 1 K , rj ,,2,1 K=  and ),,,( **
1

*
Kyyx K can be written as a convex 

combination of points in IR . Because ),,,( **
1

*
Kyyx K  is a vertex of IR , a contradiction 

results unless 1=r . This means that ),,,( **
1

*
Kyyx K  is an extreme point of S . The proof 

is completed. 
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4.   An Extended Kth-best Algorithm for Linear Bilevel Multifollower 

Programming with Partial Shared Variables among Followers 

Theorem   and Corollary have provided theoretical foundation for our new algorithm. It 

means that by searching extreme points on the constraint regionS , we can efficiently find 

an optimal solution for a linear BLMFP problem. The basic idea of our algorithm is that 

according to the objective function of the upper level, we arrange all the extreme points 

in S  in descending order, and select the first extreme point to check if it is on the 

inducible regionIR . If yes, the current extreme point is the optimal solution. Otherwise, 

the next one will be selected and checked. 

More specifically, let ),,,,(,),,,,( 1
11

1
1 N

K
NN

K yyxyyx KKK  denote the N  ordered 

extreme points to the linear BLMFP problem 

}),,,(:min{ 1
1

Syyxydcx K

K

s
ss ∈+∑

=

K , (8) 

such that  .1,,2,1,
1

11

1

−=+≤+ ∑∑
=

++

=

Njydcxydcx
K

s

j
ss

j
K

s

j
ss

j
K  Let )~,,~,~( 21 Kyyy K  denote 

the optimal solution to the following problem.  

),,2,1),(:),,,(min( 1 KixSyyyxf j
iiK

j
i KK =∈ . (9) 

We only need to find the smallestj , Nj ,,2,1 K=  under which i
j

i yy ~= , 

Ki ,,2,1 K= . Let us write (9) as follows 

 ),,,(min 1 Ki yyxf K  

 subject to )(xSyi ∈  

       jxx = , 
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where Ki ,,2,1 K= . We only need to find the smallest j  under which i
j

i yy ~= , 

Ki ,,2,1 K= . From Definition 2(b), we have 

∑
=

+=
K

s
sisiKi yexcyyxf

1
1 ),,,(min K  (10a) 

                                subject to byBAx
K

s
ss ≤+∑

=1

 (10b) 

l

K

s
slsl byCxA ≤+∑

=1

, Kl ,,2,1 K=  (10c) 

jxx =  (10d) 

0,,0,0 21 ≥≥≥ Kyyy K , (10f) 

where Ki ,,2,1 K= . 

The solving is equivalent to select one ordered extreme point ),,,( 1
j

K
jj yyx K , then 

solve (10) to obtain the optimal solution iy~ . If for all i , i
j

i yy ~= , then ),,,( 1
j

K
jj yyx K  is 

the global optimum to (3). Otherwise, check the next extreme point. It can be 

accomplished with the following procedure. 

Step 1: Put 1←j . Solve (8) with the simplex method to obtain the optimal solution 

),,,( 11
1

1
Kyyx K . Let ),,,( 11

1
1

KyyxW K=  and φ=T . Go to Step 2. 

Step 2: Solve (10) with the bounded simplex method. Let iy~  denote the optimal 

solution to (10).  If i
j

i yy ~=  for all i Ki ,,1, K= , stop; ),,,( 1
j

K
jj yyx K  is 

the global optimum to (3). Otherwise, go to Step 3. 
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Step 3: Let ][ jW  denote the set of adjacent extreme points of ),,,( 1
j

K
jj yyx K  such 

that  ][1 ),,,( jK Wyyx ∈K  implies ∑∑
==

+≤+
K

s

j
ss

j
K

s
ss ydcxydcx

11

. Let 

)},,,{( 1
j

K
jj yyxTT K∪= and TWWW j \)( ][∪= . Go to Step 4. 

Step 4: Set 1+← jj  and choose ),,,( 1
j

K
jj yyx K  so that  

  }),,(:min{ 1
11

Wyyxydcxydcx K

K

s
ss

K

s

j
ss

j ∈+=+ ∑∑
==

K . 

 Go to Step 2. 

 4. A Numeric Example 

Let us give a following example to show how the Kth-best approach works.  

Example 1  

Consider a following linear BLMFP problem with 1Rx ∈ , 1
21, Ryy ∈ , 1Rz ∈ and 

}0{ ≥= xX , }0,0{ 21 ≥≥= yyY , }0{ ≥= zZ  

 zyyxzyyxF
Xx

−++−=
∈ 2121 28),,,(min  

 subject to 1≤x   

        zyyxzyyxf
ZzYy

++−=
∈∈ 21211

,
2),,,(min

1

 

      subject to 11 ≤y  

                    zyyxzyyxf
ZzYy

+−+=
∈∈ 21212

,
2),,,(min

2

 

      subject to 12 ≤y  

        1≤z  .  
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The followers share the variable z . According to the way of model transformation, 

(1), (2) and (3), we have as follows: 

     zyyxzyyxF
Xx

−++−=
∈ 2121 28),,,(min  

 subject to 1≤x   

       zyyxzyyxf
Yy

++−=
∈ 21211 2),,,(min

1

 

                     zyyxzyyxf
Yy

+−+=
∈ 21212 2),,,(min

2

 

    zyyxzyyxf
Zz

22),,,(min 21213 +−−=
∈

 

         subject to 11 ≤y  

        12 ≤y       

              1≤z . 

According to the extended Kth-best approach, the transferred form of Example  can 

be rewritten as follow in the format of (8),  

zyyxzyyxF −++−= 2121 28),,,(min  

 subject to 1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

   0,0,0,0 21 ≥≥≥≥ zyyx .     

Step 1, set 1=j , and solve the above problem with the simplex method to obtain the 

optimal solution )1,0,0,1(),,,( ][][2][1][ =jjjj zyyx .  Let )}1,0,0,1{(=W  and φ=T .  Go to 

Step 2. 
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Loop 1: 

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .  

Using the bounded simplex method, we have 1~
1 =jy . Because of ][11

~
jj yy ≠ , we go 

to Step 3. We have: )}1,0,0,0(),0,0,0,1(),1,0,1,1(),1,1,0,1{(][ =jW , )}1,0,0,1{(=T  and 

)}1,0,0,0(),0,0,0,1(),1,0,1,1(),1,1,0,1{(=W , then go to Step 4.  Update 2=j , and choose 

)1,0,1,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 2:  

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  
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      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .    

Using the bounded simplex method, we have 1~
1 =jy  and ][11

~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Yy

+−+=
∈ 21212 2),,,(min

2

 

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .   

Using the bounded simplex method, we have 1~
2 =jy . Because of ][22

~~
jj yy ≠ , we go 

to Step 3. We have )}0,0,1,1(),0,0,0,1(),1,1,1,1(),1,0,1,0{(][ =jW , )}1,0,1,1(),1,0,0,1{(=T  

and  

 )}0,0,1,1(),1,1,1,1(),1,0,1,0(),1,1,0,1(),0,0,0,1(),1,0,0,0{(=W , then go to Step 4. Update 

1+= jj , and choose )0,0,0,1(),,,( ][][2][1][ =jjjj zyyx , 

Loop 3:  
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Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .  

Using the bounded simplex method, we have 1~
1 =jy . Because of ][11

~
jj yy ≠ , we go 

to Step 3. We have: )}0,0,0,0(),0,1,0,1{(][ =jW , )}0,0,0,1(),1,0,1,1(),1,0,0,1{(=T  and 

)}0,0,0,0(),0,1,0,1(),0,0,1,1(),1,1,1,1(),1,0,1,0(),1,1,0,1(),1,0,0,0{(=W , then go to Step 4.  

Update 1+= jj , and choose )1,1,0,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 4:  

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   
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                     01 ≥y   

                     02 ≥y   

                            0≥z .  

Using the bounded simplex method, we have 1~
1 =jy . Because of ][11

~
jj yy ≠ , we go 

to Step 3. We have: )}1,1,0,0{(][ =jW , )}1,1,0,1(),0,0,0,1(),1,0,1,1(),1,0,0,1{(=T  and 

}1,1,0,0(),0,0,0,0(),0,1,0,1(),0,0,1,1(),1,1,1,1(),1,0,1,0(),1,0,0,0{(=W , then go to Step 4.  

Update 1+= jj , and choose )0,0,1,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 5: 

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .    

Using the bounded simplex method, we have 1~
1 =jy  and ][11

~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Yy

+−+=
∈ 21212 2),,,(min

2
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 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .   

Using the bounded simplex method, we have 1~
2 =jy . Because of ][22

~~
jj yy ≠ , we go 

to Step 3. We have  

)}0,1,1,1(),0,0,1,0{(][ =jW , )}0,0,1,1(),1,1,0,1(),0,0,0,1(),1,0,1,1(),1,0,0,1{(=T  and 

)}0,1,1,1(),0,0,1,0(},1,1,0,0(),0,0,0,0(),0,1,0,1(),1,1,1,1(),1,0,1,0(),1,0,0,0{(=W , then go to 

Step 4.  Update 1+= jj , and choose )1,1,1,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 6:  

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   
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                     02 ≥y   

                            0≥z .    

Using the bounded simplex method, we have 1~
1 =jy  and ][11

~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Yy

+−+=
∈ 21212 2),,,(min

2

 

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .   

Using the bounded simplex method, we have 1~
2 =jy and ][22

~~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Zz

22),,,(min 21213 +−−=
∈

 

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   
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                     01 ≥y   

                     02 ≥y   

                            0≥z .   

 

Using the bounded simplex method, we have 0~ =jz . Because of ][
~

jj zz ≠ , we go to 

Step 3. We have  

)}1,1,1,0{(][ =jW , )}1,1,1,1(),0,0,1,1(),1,1,0,1(),0,0,0,1(),1,0,1,1(),1,0,0,1{(=T  and 

)}1,1,1,0(),0,1,1,1(),0,0,1,0(},1,1,0,0(),0,0,0,0(),0,1,0,1(),1,0,1,0(),1,0,0,0{(=W , then go to 

Step 4.  Update 1+= jj , and choose )0,1,0,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 7: 

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .  

Using the bounded simplex method, we have 1~
1 =jy . Because of ][11

~
jj yy ≠ , we go 

to Step 3. We have:  
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)}0,1,0,0{(][ =jW , )}0,1,0,1(),1,1,1,1(),0,0,1,1(),1,1,0,1(),0,0,0,1(),1,0,1,1(),1,0,0,1{(=T  and 

)}0,1,0,0(),1,1,1,0(),0,1,1,1(),0,0,1,0(},1,1,0,0(),0,0,0,0(),1,0,1,0(),1,0,0,0{(=W , then go to 

Step 4.  Update 1+= jj , and choose )0,1,1,1(),,,( ][][2][1][ =jjjj zyyx , then go to Step 2. 

Loop 8:  

Setting 1←i  and by (10), we have 

zyyxzyyxf ++−= 21211 2),,,(min  

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .    

Using the bounded simplex method, we have 1~
1 =jy  and ][11

~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Yy

+−+=
∈ 21212 2),,,(min

2

 

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  
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                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .   

Using the bounded simplex method, we have 1~
2 =jy and ][22

~~
jj yy = . Setting 

1+← ii  and by (10), we have 

zyyxzyyxf
Zz

22),,,(min 21213 +−−=
∈

 

 subject to  1≤x  

      11 ≤y  

      12 ≤y  

      1≤z  

                            1=x   

                     01 ≥y   

                     02 ≥y   

                            0≥z .   

Using the bounded simplex method, we have 1~ =jz  and ][
~

jj zz = . Solution 

)0,1,1,1(),,,( ][][2][1][ =jjjj zyyx  is the global solution to Example . 

By examining above procedure, we found that the solution occurs at the point 

)0,1,1,1(),,,( **
2

*
1

* =zyyx  with 5* −=F , 0*
1 =f  and 0*

2 =f  for the Example . 
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5. Conclusion and further study 

This paper proposes the Kth-best approach for linear bilevel multifollower programming 

problems with shared variables among followers. A numeric example is given to show 

how the Kth-best approach works. The further study of the research is to integrate this 

method into decision support system (DSS) technology. 
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