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Abstract - In a real world bilevel decision-making, the lower level dfilavel decision
usually involves multiple decision units. This paper proposeKthdest approach for

linear bilevel multifollower programming problems with sharedialdes among

followers. Finally a numeric example is given to show howkitiebest approach works.
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1 Introduction
Bilevel programming (BLP) was motivated by the game theoryVoh
Stackelberg [1] in the context of unbalanced economic markets [2].Hjerity of

research on BLP has centered on the linear version of the problemmdhn only one



follower is involved. There have been nearly two dozen algoritbots) as, th&™ best
approach [3, 4], Kuhn-Tucker approach [5, 6, 7], complementarity pivot approgch [8]
penalty function approach [9, 10], proposed for solving linear BLP probsémes the
field being caught the attention of researchers in the mid-1970s-Rudker approach
has been proven to be a valuable analysis tool with a wide rangecoéssful

applications for linear BLP [2, 6, 7].

Our previous work presented new theory overcame the fundamentatmifiof
existing linear BLP theory [11, 12, 13, 14]. We proposed a comprenhenasmeviiork
for bilevel multifollower programming (BLMFP) problems and dewsld solution
technology for linear BLMFP problems without shared variables among friojd5, 16,
17]. We also proposed an extended Kuhn-Tucker approach for linear BLMFPnpsoble
with shared variables among followdiE3].This paper proposes an extendéith-best
approach for linear BLMFP problems with partial shared variabhesng followers.
Following the introduction, this paper reviews a model for linear BENbFoblems with
partial shared variables among followers in Section2. Rtiebest approach for this
model is proposed in Section 3. A numeric example for this approgoreis in Section

4. A conclusion and further study are given in Section 5.



2 Model Overview
2.1 A model for linear BLMFP problemswith partial shared variablesamong

followers
ForxOXOR",y, OY, OR™, zOZOR™ F:XxY,x...xY, xZ - R", and

foXxY,x..xY,xZ - R, i=12...,K, a linear BLMFP problem wher& (> 2)

followers are involved and there are shared partial decision \esjabut separate
objective functions and constraint functions among the followers isetkefas follows

[18]:

K
rxrglixnl:(xi y11--'!yK’Z) = CX+Zd5y5 +dZ

s=1

K
subject tdx + > B_y, + Bz<b

s=1

K
mlgz fi(X, yl,---nyyz) =CiX+ZQSyS +QZ

v, =1

K
subject thx+>_C.y, +Cz<h,

s=1

where cOR", ¢ OR" , d, OR™ ,dOR", ¢, OR™, e OR™,bOR", b OR%,

AOR™™, B OR™ ,BOR™, AORY, C,ORY™,C ORY™, i,s=12,.. K.

Definition 1 A topological space is compact if every open cover of theeespace has a

finite subcover. For examplga,b] is compact inR (the Heine-Borel theorem) [19].



2.2 Model transformation for linear BLMFP with partial shared variablesamong
followers
The main idea to deal with linear BLMFP problems with phdfeared variables

among the followers is that an assumed third party controls thredskariablez. It

means that thé" follower controls the variableg;, (i =12,...,K), and a third party

called a virtual follower: théK +1)" follower controls the variable. By using this

splitting method, (1) can be rewritten as follows:

K+1

MINF (X, Y1, Vi, Vi) = X+ 20,

s=1

K+1
subject tdx + > By, <b 2

s=1

K+1

min f.(X, Yy,..., Vi, Yes) = C’IX+ZQSyS

yillY; pry

K+1
subject t\x + > C.y, <h,

s=1

wherei=1....K.K+1, y,=z, de,,=d , By=B, €y =6(1=L...,K),

K K
CK+1=ZC5 r CKk+)j =Zesj(j =1...,K+1), Gy =C(=1...,K), A,<+1:(O)
=}

s=1

Ok +1

C(K+1)| = (O)QK+1"”\ (l = :L’ K) ! bK+1 = (O)QK+1 '
This simple transformation has shown that solving the linear BLMEPIis
equivalent to solving (2). There ake followers that share the variabtefor the linear

BLMFP (1). However, (2) ha& +1 followers and is the linear BLMFP without shared



variables among the followers. We can also find that all theas of the followers
parameterise into the objective functions and constraint functions of the followers.
2.3 Definition of solution

For simplification and convenience, we write model (2) as follows:

K
rl%ian(x,yl,...,yK):CX+SZ=;,dsys (3a)
K
subject tax + > By, <b (3b)
s=1
- K
min f,(x, y,..., ¥) = CiX+SZ=11%ys (3c)
K
subject tdyx + > C,y, <h, (3d)

s=1

where cOR", ¢ OR", d,OR™, e, JR™, bOR?, h ORY, AORP", B OR"™
AORY™, C.,ORV™ i,s=12... K.

The formulation (3) is the same as (2) except the number of followers. Theyhea
same solution algorithms. Corresponding to (3), [18] give following basic definition.
Definition 2

(a) Constraint region:

K
S={(X, Ypreoss Y ) O X XY, XY, , AX+ D By, < b,

s=1

K
AXx+> Cyy <b,i=12..,K}.

s=1



The constraint region refers to all possible combinations of chitiaeshe leader
and followers may make.

(b) Projection ofS onto the leader’s decision space:

K K
S(X) ={xOX:0y, OY,, Ax+ > By, <b,Ax+> C.y,<h,i=12,...,K}.

s=1 s=1

(c) Feasible set for each followéix 1 S(X) :

SC)={y, OY 1 (X Yp,...., V)OS
The feasible region for each follower is affected by tlaelée’'s choice of, and
the allowable choices of each follower are the elemen. of

(d) Each follower’s rational reaction set foir] S(X):
P(X)={y OY, .y, Oargmin[f (x,¥,,y,, ] = 12.....,K, j#i): §, OS(X)]} ,
wherei =12,...,K, argmin[f (X, ¥,,y,;, ] =12,...,K,j#i): §, 0S(X)] =
[ 0S00: Fi06 Yo Vi) S 06T Yy 5= 12,00, K, £0), 9, 0S (0} -

The followers observe the leader’s action and simultaneously react byngelect

y, from their feasible set to minimize their objective functions.
(e) Inducible region:
IR={(X, Vs es Y ) : (% Vpse-, YV )OSy, OR(X),i =12,...,K}.
Thus in terms of the above notations, (3) can be written as
min{F(X, Y;,..., Y ) : (X Vih.-, Y ) O IR} (4)

Shi proposed the following theorem to charactetiwecondition under which there

is an optimal solution for (3) [18].



Theorem 1 If S is nonempty and compact, there exists an optiwlatisn for a linear

BLMFP problem.

3 An Extended Kth-best Algorithm for Linear Bilevel Multifollower

Programming with Partial Shared Variablesamong Followers

3.1 Propertiesof Linear Bilevel Multifollower Programming with Partial Shared

Variablesamong Followers

Theorem 2 The inducible region of the model (3) can be wnttequivalently as a
piecewise linear equality constraint comprised wbporting hyperplanes of constraint
regions.

Proof: Let us begin by writing the inducible region of dtion 2(e) explicitly as

follower:

K
IR={(X, Yy,--, ¥i) - (X, V1., Y )OS, €y, =min[g;y, : By, <b- Ax- ZBsyy

s=1,s#i

K
C,¥ b -Ax- D> C.,j=12...,K, ¥ 20],i=12...,K}.

s=1,s#i

Let us define
b =(bb,....0)", A=(AA,...,A)", B =(B,C;,...,.C,.)",

where i =12,...,K. Now we have



IR={(X, ¥y, Vi) 1 (% Yy Y ) OS,g Y, =minfe, § : BY, <b -

K
Ax- > By, ¥ 20],i=12...,K}.

s=1,s#i

Let us define

Q (XY, j=12...K,j#i)=min[eV, :BY, <b -

K
Ax- ZBlsys’yi =0],

s=1,s#i

()

where i =12,...,K . For each value of(] S(X), the resulting feasible region to problem
(3) is nonempty and compact. Thus, @y which is a linear program parameterized in

XY, j=12...,K and j #i, always has a solution. From duality theory we ge

max{u( A X + ZK: B.y.—h):uB =-e,u=0}, ©6)

s=1,s#i
which has the same optimal value as (5) at theisalu’ . Let u*,...,u*be a listing of all
the vertices of the constraint region of (6) gitsnU ={u:uB = —¢,,u >0} . Because

we know that a solution to (6) occurs at a vertek)Q we get the equivalent problem

max{u' (A x + ZK:B'syS—bI'):u' O{u',...,u’}},

s=1,s#i

which demonstrates th&, (x,y;, j =12,...,K, j #1i), is a piecewise linear function.
Rewriting IR as
IR={(X,¥;,....,¥)OS:Q(Xy;,j=12....K,j#i)-gy, =0,i =12,...,K} @)

yields desired result.



Corollary 1 The problem (3) is equivalent to minimizirfg over a feasible region

comprised of a piecewise linear equality constraint.

Proof: By (4) and 2, we have the desired result.

The each functior@ defined by (5) is convex and continuous. In general, because

K
we are minimizing a linear functiof =cx+stys over IR, and becausé- is

s=1

K
bounded belows by, say,min{cx+2dsys:(x, Yi,---, Y )OS}, the following can be

s=1

concluded.

Corollary 2 A solution for the linear BLMFP problem occurs at a vertebRof

K
Proof: A linear BLMFP problem can be written as in (4). Sifee cx+ZdSyS is

s=1

linear, if a solution exists, one must occur at a vertéR off he proof is completed.

Theorem 3 The solution(x',Y;,..., Y, pf the linear BLMFP problem occurs at a vertex
of S.
Proof: Let (X', ¥i,...,Vx )s....(X", Y1 ,..., Vi ) be the distinct vertices ab. Since any
point in S can be written a convex combination of these vertices, let
(X, Yo Vo) :er:laj (x),yl,...,yt) , where er:laj =1a,20,j=12....,7 and
r<r. It must be shown that=1. To see this let us write the constraints to B) a
(X', ¥,,..., Y ) intheir piecewise linear form (7).

0=Q(x Yy, =12... K I#i)-ey, i=12...,K

Rewrite it as follows



0=Q(Q a;(xy I =12 K I#i)-e( ay)
<> aQ(xy =12 K lzi)->aey,

wherei =12,...,K.

By convexity ofQ (x,y,,l =12,...,K,I #i ) we have
OsZaj(Qi(xj,ylj,l =12....K,l zi)-gy/),
j
wherei =12,...,K . But by a definition,

Q(x',y,1=12...,Kl#i)= miney <ey',i=12.. K.

¥0S(x))

Therefore, Q (x',y/,1 =12,...,K,l 2i)-e y/ <0,j=12...,T , i=12...,K
Noting thata; 20, j =12,...,7, the equality in the preceding expression must hold or
else a contradiction would result in the sequence above. Consequently,
Q(x,y,1=12... ,Klzi)-ey =0, j=12...,7,i=12...,K . This implies that
(x',y),..,y)OIR, j=12...,f and (X,y;,...,Y, )can be written as a convex
combination of points inR. BecausgX ,Y;,...,Yx Js a vertex ofiR, a contradiction
results unlesg =1. The proof is completed.
Corollary 11If x is an extreme point dfR, it is an extreme point o.
Proof: Let (X', ¥i,..., Vs )s....(X", Y1 ,..., Vi ) be the distinct vertices ab. Since any

point in S can be written a convex combination of these vertices, let

(X*,y;,,..,y;):zrjzlaj (x',yl,...,yl) , where er:laj =1a,20,j=12..,F and

10



r<r. It must be shown that=1. To see this let us write the constraints to B) a
(X', ¥,,..., Y ) intheir piecewise linear form (7).

0=Q(x,y,1=12... . KIzi)-ey,i=12... K .
Rewrite the above formulation as follows

0=Q (X a,(Xy/.1=12...,KIzi)-e( ay)
<> aQ(xy 1 =12, K1 2zi)=-> aey,
j j

wherei =12,...,K.

By convexity of Q (x,y,,l =12,...,K,l #i ) we have
OSZGJ(Q|(XJ’y|J’| = 1$21---1K,| ¢|)_QIyIJ)1
j

wherei =12,...,K . But by a definition,

Q(x',y,1=12..,Kl#i)= miney <ey',i=12..,K.

¥0S(x))

Therefore, Q (x',y/,1 =12,....K,1 #i)-e y/ <0,j=12,...,T , i=12...,K .
Noting thata; 20, j =12,...,7, the equality in the preceding expression must hold or
else a contradiction would result in the sequence above. Consequently,
Q) y,1=22.. . ,KIzi)-gy =0,j=212..,7,i=12...,K . This implies that
(x',y),..,y)OIR, j=12...,f and (X,y;,...,Yx )can be written as a convex
combination of points inR. BecausgX ,Y;,...,Yx Js a vertex ofiR, a contradiction

results unles§ =1. This means thatx',y;,...,Yx s an extreme point db. The proof

is completed.

11



4. An Extended Kth-best Algorithm for Linear Bilevel Multifollower

Programming with Partial Shared Variables among Followers

Theorem and Corollary have provided theoretical foundation for ourafgeawithm. It
means that by searching extreme points on the constraint &gies can efficiently find
an optimal solution for a linear BLMFP problem. The basic ideauofalgorithm is that
according to the objective function of the upper level, we arralighe extreme points
in S in descending order, and select the first extreme point to cliatksi on the
inducible regiorR. If yes, the current extreme point is the optimal solution. Otiserw

the next one will be selected and checked.
More specifically, let(x",y;,...,¥),....(x",y',...,yr ),denote theN ordered

extreme points to the linear BLMFP problem

min{cx+ > doye 1 (X Yy, Y )OS (8)

s=1
such that cx’ +> d.y! sex™+> d.yl™, j=12...,N-1 Let (¥, ¥,...., Yx) denote
s=1 s=1

the optimal solution to the following problem.
min(f, (X, y;,.... Y)Yy, O0S(x)),i =12,...,K). 9)
We only need to find the smallegt, j=12,...,N under whichy' =y ,
i=12,...,K. Let us write (9) as follows

min f,(X,Yo,---,Yy)

subject toy, O S(x )

x=x,

12



wherei=12,...,K . We only need to find the smallegt under which yij =y,

i =12,...,K. From Definition 2(b), we have

K
Min £, (X, Yo, Vi) S G X+ D 84Y, (10a)
s=1
K
subject fax+ > By, <b (10b)
s=1
K
AXx+> C.yy,<hb,1=12... K (10c)
s=1
X=X (10d)
y,20,y,20,...,y, 20, (10f)

wherei =12,...,K.
The solving is equivalent to select one orderedeex¢ point(x',y;/,...,y} ) then
solve (10) to obtain the optimal solutign. If for all i, y/ =y, then(x',y},...,y} )is

the global optimum to (3). Otherwise, check the next extreme .ptlintan be

accomplished with the following procedure.

Step 1: Put j — 1. Solve (8) with the simplex method to obtain the optimal solution
(X' Y1, ¥r). LetW = (X', y1,...,yx ) andT = ¢. Go to Step 2.

Step 2. Solve (10) with the bounded simplex method. fetdenote the optimal
solution to (10). Ify/ =y, for alli,i=1...,K, stop;(x',y},...,y} )is

the global optimum to (3). Otherwise, go to Step 3.

13



Step 3: Let W, denote the set of adjacent extreme pointgxéfy,,...,y. such

K K
that (X, Y;,...,Yc) OW;, implies cx+> d.y, scx! +> d.y! . Let

s=1 s=1

T=TO{(xX,y{,....,yi)}andW = (W OW,;,)\T . Go to Step 4.

Step4: Setj — j+1 and chooséx’,y!,...,y. ¥o that

K K
CXj -l-zdsysJ = min{CX+stys : (X’ yl'--1yK) DVV} .

s=1 s=1

Go to Step 2.

4. A Numeric Example

Let us give a following example to show how Kia-best approach works.
Example 1

Consider a following linear BLMFP problem witkOR", y,,y, OR", zOR"'and
X ={x=20},Y={y, 20y, 20}, Z={z=0}
rpmixn F(X,¥,Y,,2) =-8x+y, +2y, -2
subject tox <1
min 1% Y1 Y2, 2) = X=2y, Y, +2
subjecttoy, < 1
Jin fo(X Y1 Y2, 2) =X+, =2y, +2
subjecttoy, < 1

z<1.

14



The followers share the variab#e According to the way of model transformation,

(1), (2) and (3), we have as follows:
n%ixn F(X, Y1, Y2, 2) = =8X+y, +2y, -2
subject tox <1
minf,(X,y;,¥,,2) =X=2y, +y, +z
yibY

minf,(X, ¥;,Y,,2) = X+y, -2y, +z
Y0¥

T]izn fo(X Y, Y,,2) =2X-y,— Y, +22
subjecttoy, < 1

y,<1

z<1.

According to the extendeith-bestapproach, the transferred form of Example can

be rewritten as follow in the format of (8),

minF(X,Y,,Y,,2) =-8x+vy, +2y, -2z

subject tox <1

x=20y,20y,202z=0.
Step 1, setj =1, and solve the above problem with the simplex oetio obtain the

optimal solution(x, Yy j» Yo(i1: %) = @001). LetW ={(1001)} andT =¢. Go to
Step 2.

15



Loop 1:

Settingi ~ 1 and by (10), we have
min f,(X, ¥1, ¥,,2) = X=2y, +y, +z

subjecttox<1

Using the bounded simplex method, we hgye=1. Because ofy,; # y,;;, we go
to Step 3. We havay, ={( 1011), (110D, (1000), (0001)} , T ={(1001)} and
W ={( 1011, (1101, (1,0,00), (0001)}, then go to Step 4. Updaje= 2, and choose
(X i Yaripr Yorj0 &) = (@L0O1), then go to Step 2.

Loop 2:
Settingi ~ 1 and by (10), we have

min f, (X, ¥,,Y,,2) =X-2y, +Yy, +2

subjecttox<1

16



Using the bounded simplex method, we hage=1 and y,, =y, . Setting
i « i+1and by (10), we have

min f,(X, ¥1,¥,,2) =X+ Y, =2y, +2
Y2

subjecttox<1

Using the bounded simplex method, we hgyg=1. Because ofy,; # y,;,, we go
to Step 3. We havé; ={( 0101), (111D, (L000), 1100)} , T ={( 1003), (1101)}
and

W ={( 0003, (1L000), (1011, (0101), (111D, (1100)} , then go to Step 4. Update

j=1+1, and choos&x;, Yyj;» Yz 3, ;) = (1000),

Loop 3:

17



Settingi ~ 1 and by (10), we have
min f,(X, ¥1, ¥,,2) = X=2y, +y, +z

subjecttox<1

Using the bounded simplex method, we hgye=1. Because ofy,; # y,;;, we go
to Step 3. We havew,, ={( 1010), (0000)} , T ={( 1001, (1102), (1000)} and
W ={( 0001, (1011, (01,01), (1111, (1100), (1,010), (0000)} , then go to Step 4.
Update j = j +1, and chooséX;;;, Yy ;- Yari10 %) = (LOL1), then go to Step 2.

L oop 4:

Settingi ~ 1 and by (10), we have
min f,(X, ¥y, ¥,,2) = X=2y, +y, + 2

subjecttox<1

18



Using the bounded simplex method, we hgye=1. Because ofy,; # y,;;, we go

to Step 3. We havew,;, ={(0011)} , T ={( 1001, (110]), (1000), (1011)} and
W ={( 0001), (0102), (1111), (1100), (1010), (0000), (0011} , then go to Step 4.
Update j = j +1, and choos€X,;;, Yy o510 %45;) = (LL00), then go to Step 2,
Loop 5:
Settingi ~ 1 and by (10), we have

min f,(X,y,,¥,,2) =xX—-2y,+y,+z

subjecttox<1

Using the bounded simplex method, we hage=1 and y, =y, . Setting
i « i+1and by (10), we have

min f,(X, V1, ¥,,2) = X+Yy, =2y, + 2
\Zng

19



subjecttox <1

Using the bounded simplex method, we hgye=1. Because ofy,; # ¥,;;;, we go
to Step 3. We have
W, ={( 0100), 1110)} . T ={( 1001, (1101, 1000), (101D, 1100)}  and
W ={( 000D, (010D, 1LY, (1L010), (06000), (0011}, (0100), (11L0)} , then go to
Step 4. Updatg = j +1, and chooséx ;. Yy ;s Yo 4) = @LLY), then go to Step 2.
L oop 6:
Settingi ~ 1 and by (10), we have

min f,(X,y,,¥,,2) =x-2y,+y,+z

subjecttox<1

20



.2 0

z=0.

Using the bounded simplex method, we hage=1 and y,, =y, . Setting

i « i+1and by (10), we have
min f,(X Y1, Y2,2) =X+ Y, =2y, +2

subjecttox<1

Using the bounded simplex method, we hawe =1and y,, =V, . Setting

i — i+1and by (10), we have
min f3(X, Y1, ¥,,2) =2x =y, — Y, +22

subjecttox<1

21



Using the bounded simplex method, we h@ye 0. Because of; # z,,, we go to
Step 3. We have
W, ={(0111)} . T ={( 1001, @10, 1000), 01D, (1100), @111)}  and
W ={( 000D, (0101), (1010), (0000), (0011}, (0100), (1110), (0111)} , then go to
Step 4. Updatg = j +1, and choos&x ;. Yy ;s Vo510 451) = (L010), then go to Step 2.

Loop 7:

Settingi ~ 1 and by (10), we have
min f,(X, ¥y, ¥,,2) = X=2y, +y, + 2

subjecttox<1

Using the bounded simplex method, we hgye=1. Because ofy,; # y,;;, we go

to Step 3. We have:

22



W, ={(0010)} , T ={( 1001, (10D, (1000), (LOLD, (1100), (111D, (LOLO)} and
W ={( 0002), (0101), (0000), (0011}, (0100), (1110), (O111), (0010)}, then go to
Step 4. Updatg = j +1, and choos€x ;. Yy ;s Va0 451) = (@LL0), then go to Step 2.

L oop 8:

Settingi ~ 1 and by (10), we have
min f,(X, ¥1,¥,,2) = X=2y, +y, +z

subjecttox<1

Using the bounded simplex method, we hage=1 and y, =y, . Setting
i « i+1and by (10), we have

minf,(X,y;,Y,,2) =X+y, -2y, +z
Y0¥

subjecttox<1

23



Using the bounded simplex method, we hawe =1and y,, =V, . Setting

i « i+1and by (10), we have
min f3(X, Y1, ¥,,2) =2x =y, — Y, +22

subjecttox<1

Using the bounded simplex method, we haxe=1 and Z; =z, . Solution

(X1 Yai Yorip» Zjp) = (@L10) is the global solution to Example .

By examining above procedure, we found that theit&wl occurs at the point

(X, ¥:,Y,,Z2)= (1110) with F* =-5, f =0 and f, = Ofor the Example .

24



5. Conclusion and further study

This paper proposes tih-best approach for linear bilevel multifollowetogramming
problems with shared variables among followers.unaric example is given to show
how theKth-best approach works. The further study of tle=aech is to integrate this

method into decision support system (DSS) technyolog
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