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Abstract: Crop yield forecasting is critical for enhancing food security and ensuring an appropriate
food supply. It is critical to complete this activity with high precision at the regional and national levels
to facilitate speedy decision-making. Tea is a big cash crop that contributes significantly to economic
development, with a market of USD 200 billion in 2020 that is expected to reach over USD 318 billion
by 2025. As a developing country, Bangladesh can be a greater part of this industry and increase
its exports through its tea yield and production with favorable climatic features and land quality.
Regrettably, the tea yield in Bangladesh has not increased significantly since 2008 like many other
countries, despite having suitable climatic and land conditions, which is why quantifying the yield is
imperative. This study developed a novel spatiotemporal hybrid DRS–RF model with a dragonfly
optimization (DR) algorithm and support vector regression (S) as a feature selection approach. This
study used satellite-derived hydro-meteorological variables between 1981 and 2020 from twenty
stations across Bangladesh to address the spatiotemporal dependency of the predictor variables for
the tea yield (Y). The results illustrated that the proposed DRS–RF hybrid model improved tea yield
forecasting over other standalone machine learning approaches, with the least relative error value
(11%). This study indicates that integrating the random forest model with the dragonfly algorithm
and SVR-based feature selection improves prediction performance. This hybrid approach can help
combat food risk and management for other countries.

Keywords: satellite information; tea yield; meteorological variables; machine learning; hybrid
model; Bangladesh

1. Introduction

Tea is the most popular beverage globally after water and has had a price increase
of USD 0.05 per kg since the beginning of 2021. China is the leading producer of tea,
producing approximately 2.79 million metric tonnes in 2019, followed by India (1.39 M
metric tonnes), Kenya (0.45 M metric tonnes), Sri Lanka (0.30 M metric tonnes), and
Indonesia (0.13 M metric tonnes) [1,2]. As tea consumption increases every year due to
the increase in population in Bangladesh, most of the tea produced meets the national
demand [3]. Bangladesh annually earns around BDT 1.775 billion, which is 0.81% of the
GDP (Gross Domestic Product) in foreign currency in the export of tea [4]. Despite the
involvement of about 0.15 million people directly and many indirectly in the tea industry
as employees, the average yield is 1529 kgha−1, which is low compared to the other tea-
producing countries [5,6]. This is due to the change in agroclimatic conditions that presents
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ecological stress [7]. Tea production depends on land suitability and climate variables like
precipitation, temperature, and soil moisture [8]. Therefore, determining a suitable climate
and variables is imperative to maximize yield. Constant timely monitoring of the growth
and harvesting is also imperative for the tea industry.

Monitoring crops is achieved through field visits, interviewing farmers, and collat-
ing the data manually at the regional level, before presenting them to regional statistical
officers [9]. This system is time-consuming, costly, and inconsistent [10], and information
is only available long after harvesting [11]. Moreover, in cases such as the COVID-19
pandemic, the agricultural supply chain is highly affected by labor shortages, which delays
major practices such as sowing, fertilizing, irrigation, and harvesting on time [12,13]. Re-
mote sensing (RS) and other digital agricultural technologies can contribute to sustainable
agricultural practices by minimizing human contact [13]. Several studies have used deter-
ministic or probabilistic approaches for agricultural and soil component modeling [14–16].
However, these methods lack automation and can be time-consuming, complex, and
resource-intensive [17,18]. As described by Mosleh et al. [9], remote sensing can be an
effective alternative for countries like Bangladesh, providing significant benefits at a rela-
tively low cost and readily available satellite images with a spatial coverage of large areas,
offering error-free, reliable, and efficient analysis. The crop yield phenomenon is yet to be
explored utilizing the satellite-derived information for Bangladesh.

Das et al. [19] used Sentinel-2 satellite images for RS with the analytical hierarchy
process (AHP), and yield estimation was performed with the normalized difference veg-
etation index (NDVI) (R2 = 0.69, 0.66, and 0.67) and the leaf area index (LAI) (R2 = 0.68,
0.65, and 0.63) for 2017, 2018, and 2019, respectively. They reported that land evaluation is
related to the yield and productivity of tea. Moreover, Rama Rao et al. [20] used vegetation
indices such as the NDVI, simple ration (SR), and transformed vegetation index (TVI) to
predict tea yield in Assam, India, and a substantial prediction performance with the highest
correlation (R2 = 0.83) was reported. Different researchers have used satellite-derived
hydro-meteorological variables to predict crop yield. Schwalbert et al. [21] used satellite
imagery and weather data to predict soybean yield by integrating machine-learning meth-
ods in southern Brazil. The combination of satellite imagery and weather data provided
critical information in developing a more precise yield forecast. Peng et al. [22] developed
a machine-learning model to predict crop yield using three satellite-based products to
enhance the performance, revealing that the satellite-derived information could be help-
ful in crop yield prediction at any resolution. Rajapakse et al. [23] used satellite-derived
LAI values and existing spatial, meteorological, and agronomic variables with statistical
regression analysis and the analytical capabilities of GIS and investigated the relationship
between LAI (Leaf Area/Sample surface Area) and the NDVI to develop a tea yield estima-
tion model. However, the utilization of satellite-derived information in predicting the crop
yield of Bangladesh is yet to be explored for tea, in particular.

The ability of data-driven models to obtain information without considering the
complex relationship between the predictor and target variable is exploited frequently in
different fields [22,24]. Islam et al. [3] used the Auto-Regressive Integrated Moving Average
(ARIMA) model to forecast the internal tea production and consumption in Bangladesh
for the next five years using secondary data from 1990 to 2015. Rahman et al. [25] used the
ARIMA model to forecast tea production in Bangladesh using 1990–2013 data, finding the
model to be well-fitted and giving forecasts for 2014, 2015, and 2016 of 65.56, 67.86, and
60.99 million kilograms, respectively. Hossain and Abdulla [26] have conducted similar
studies using the ARIMA model to predict tea production from 1972–2013; the data and
adequacy of the fitted model were tested using the run test and the Jarque–Bera test criteria,
followed by residual test analysis. On the other hand, Saha et al. [6] compared the growth
rates of the area, production, and yield of tea in Bangladesh before (1947–1970) and after
(1972–2018) independence, and found an increase in the average area, production, and
productivity by 1.05, 1.89, and 0.98%, respectively, after independence, using a growth
model and decomposition analysis.
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To increase the performance of any prediction problem, innovation in using the
datasets and effectively applying the models is essential. Feature selection has shown to be
an effective and efficient approach for preparing data (especially high-dimensional data)
for various data-mining and machine-learning issues. Building simpler and clearer models,
enhancing the data-mining speed, and producing clean, understandable data are all goals
of feature selection [27]. This work uses two feature selection algorithms to optimize the
training procedure and test different predictor variables picked by the feature selection
algorithms. Dragonfly optimization (DR) in the first phase and support vector regression
(S) in the second phase selected the most appropriate predictor variables. Using multiple
feature selection methodologies to identify the predictors and efficiently quantify the Y
features will provide a diverse understanding of the predictors. DR has been applied
successfully to address feature selection problems [28–31]. In addition, support vector
regression (SVR), as a machine-learning technique, is a potential approach to creating a
combination of inputs. However, support vector regression (SVR) has long been recog-
nized as a sophisticated machine-learning system with a sound theoretical foundation in
statistical learning [32–34]. SVR explores a kernel-based ANN to address the drawbacks of
conventional ANNs [35]. As a result, SVR has been shown to be very resilient and efficient
for the nonlinear modeling of noisy mixed data [36–38]. The main principle underlying
SVR is the use of mathematical functions (kernels) to move the original data sets from the
input space to a high-dimensional feature space, simplifying the regression in the feature
space [39]. SVR makes use of a variety of kernels, including linear, nonlinear, polynomial,
and radial basis functions, to improve regression fitting on data with varying degrees of
complexity [40].

This study aims to develop a novel hybrid machine-learning model integrating Ran-
dom Forest (RF) with Dragonfly Optimization (DR) and support vector regression (S) to
forecast tea yield in Bangladesh using remotely sensed hydro-meteorological data, as this
has yet to be explored and implemented. Precisely, Dragonfly Optimization would select
the relevant features from each variable from the respective stations, and support vector
regression (S) in the second phase would help us develop a combination of the variables
based on the prediction performance. The study used 22 climate variables between 1981
and 2020 to investigate the favorable climatic situation for tea yield as influenced by the
predictor variables of 20 stations in Bangladesh. This study established a significant rela-
tionship between the inputs of neighboring stations and tea yield, which would be helpful
for the identification of the hydro-meteorological scenarios of the entire area.

2. Study Area and Data
2.1. Study Area

The focus of this study was to investigate the impact of variabilities in the climate on
crop yields. In Bangladesh (23.6850◦ N, 90.3563◦ E), 48.4% of the population is employed
in agriculture, 70.1% of the land is devoted to agriculture, and agriculture accounts for
17.5% of the GDP [41]. Tea (Camellia Sinensis) was selected for the yield investigation study
as it is susceptible to variables in the climate [7]. To achieve a good harvest of tea, very-
specific conditions must be met. Crop yields are directly correlated to rainfall, humidity,
and specific temperature [42]. As a South Asian country with a tropical monsoon climate,
Bangladesh receives significant rainfall and has a perfect climate for growing tea during
the monsoon season. Since 2008, the tea yield of Bangladesh has not increased compared to
other nations, which is illustrated in Figure 1. An investigation of the reasons for this and a
quantification of the tea yield is therefore essential.
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Figure 1. A comparison of tea yield between 2008 and 2018 over the neighboring countries
of Bangladesh.

Considering the above factors, investigating the impact of climate variability on tea
yields in Bangladesh is well-suited for predicting agricultural crop yields. Interestingly,
96% of the annual tea production comes from the greater Sylhet area, 63% of which is
contributed by the Moulvibazar district within the Sylhet division [25]. Bangladesh lies
within the Indo-Gangetic plains of Southeast Asia in a complex delta with rich fertile soil.
Three significant rivers (the Ganges, the Meghna, and the Brahmaputra), starting from the
Himalayas, flow through the region into the Bay of Bengal. The country is subtropical,
with a wet and humid climate [25]. On average, Bangladesh experiences about 1500 mm
to 5000 mm of rainfall annually, with temperature and humidity in the range of 12–30 ◦C
and 65–95%, respectively. In this study we have considered 20 stations in Bangladesh as
illustrated in Figure 2. There are 150 tea estates in Sylhet, where most of the tea is produced
in Bangladesh. This area is highly suitable due to the hilly nature of the landmass and an
elevation in the range of 55 to 335 m. Water stress adversely affects the crop. A specific
elevation is required for a greater crop yield as it reduces waterlogging due to heavy rainfall.
This suits tea cultivation, which requires an average rainfall of 1000 mm per year. The
plants also require a temperature range of 13–25 ◦C, which is within the temperature range
seen throughout Bangladesh [19].

2.2. Satellite and Crop Data

Remote sensing was used to obtain satellite data on climate variability from Clouds
and the Earth’s Radiant Energy System (CERES) and Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2). MEERA-2 integrates satellite data with
weather observations and models them as a continuous dataset in time and space. This
modeling was conducted by the Goddard Earth Observing System, Version 5 (GEOS-5) [43].
The real-time weather observations were taken from the GOES satellite on a 5-kilometer
image of the earth. The GEOS model and GOES satellite uses infrared energy to measure
the amount of cloud cover. The model runs at 28 km/pixel to study the relation between
weather and climate (GEOS-5: a high-resolution global atmospheric model, 2010). The
satellite data from these two systems were used to gather specific data on the climate
variables that affect yield in tea production. MEERA-2 provided temperature, humidity,
wind-speed, surface soil wetness, and precipitation (mm/day) data. CERES provided data
on the percentage of cloud and irradiance (W/m2). Historical data from the Foos and
Agricultural Organization of the United Nations (FAO) were used for crop yield. FAOSTAT
provides accessible data on crops from 245 countries from 1961. Using this extensive data
from FAOSTAT, the tea production and crop yield of Bangladesh were modeled.
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Figure 2. The study area and selected 20 stations which were used to extract the predictor variables
to develop the hybrid DRS–RF model.

3. Materials and Methods
3.1. Theoretical Frameworks

This section summarizes the objective model (i.e., RF) and related algorithms (i.e., DR)
used in this research study. The technical details of multivariate adaptive regressive splines
(MARS) [44,45], extreme learning machine (ELM) [46,47], kernel ridge regression [48], and
extreme gradient-boosting random forest (XGBRF) [49] are explained elsewhere.

3.1.1. Dragonfly Optimization (DR)

The dragonfly algorithm (DR), proposed by Mirjalili [28], is a nature-inspired meta-
heuristic algorithm for solving optimization problems. Dragonflies, with 3000 different
species, have two stages in their lifecycle, called nymph and adult [28,50]. The DR algorithm
is mainly based on the hunting (called static swarm (feeding)) and migration mechanism
of idealized dragonflies [31]. The dragonflies search for food sources over a small area by
forming a small group of dragonflies in the hunting mechanism. The migration mechanism
is characterized by a larger group of dragonflies flying with each other in one direction over
a long distance so that the swarm migrates in a process. Five behaviors specify the actions
of a dragonfly population: separation, alignment, cohesion, the behavior of foraging, and
eluding enemies [51]. These behaviors are specified by the following equations:
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1. Separation mechanism is characterized by avowing collisions with other neighbor
individuals. This can be represented mathematically as:

Si = −
N

∑
j=1

X− Xj (1)

where j 1
4 1; 2; . . . ; N, i 1

4 1; 2; . . . ; Np, N is the number of neighboring individuals, and Np
is the number of population. X denotes the position of the current individual and Xj is the
position of the jth neighboring individual. The velocity matching of individuals defines
alignment to other neighboring search individuals, which is mathematically modeled as
Equation (2):

Ai =
∑N

i=1 Vi

N
(2)

where Vj represents the jth neighborhood individual’s velocity and N is the neighborhood
size. Cohesion specifies the tendency of individuals to move closer to each other or the
neighborhood’s center of mass, which is mathematically represented as:

Ci =
∑N

j=1 Xj

N
− X (3)

where X is the current individual’s position, Xj specifies the jth neighboring individual
of the X position, and N is the neighborhood size. Each individual survives through two
key behaviors: attraction towards a food source, known as foraging, and escaping from
enemies. The foraging behavior can be mathematically modeled as:

Fi = X+ − X (4)

where X+ represents the position of the food source and X represents the current individ-
ual’s position. The behavior of escaping from enemies can be represented as:

Ei = X− + X (5)

where X− represents the enemy’s position and X represents the current individual’s po-
sition. Step vector and position vector are used for solving optimization problems. Step
vector can be mathematically represented as:

∆Xt+1 = (sSi + αAi + cCi + f Fi + eEi) + w∆Xt (6)

where s represents the separation weight, Si shows the separation of the ith individual, α is
the alignment weight, Ai is the alignment of ith individual, c indicates the cohesion weight,
Ci is the cohesion of the ith individual, f specifies the food factor, Fi symbolizes the food
source of the ith individual, e is the enemy factor, Ei is the position of an enemy of the ith
individual, w is the inertia weight, and t is the iteration number. The position vector can be
represented as:

Xt+1 = Xt + ∆Xt+1 (7)

In the case of no adjacent individuals, the position vector is defined as:

Xt+1 = Levy(d)× Xt + Xt (8)

where d is the dimension of the dragonfly individual.
The Levy flight strategy can be mathematically modeled as:

Levy(x) = 0.01× r1 × σ

|r2|
1
β

(9)
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where r1 and r2 are the two stochastic numbers in (0,1) and β is a constant.

3.1.2. Random Forest (RF)

The random forest model is a popular supervised machine-learning algorithm devel-
oped by Breiman [52]. The RF model accumulates tree predictors associated with different
values of random vectors sampled independently. In the training phase, a random forest
model constructs decor-related decision trees, and the overall model output is obtained by
averaging the output values of all the individual trees. The learner bagging algorithm is
adopted in the random forest model for training any single tree [52]. The bootstrap samples
of the training sets are repeatedly selected, and Gini impurity fits tb trees in these samples.
Equation (10) calculates the predicted values for unseen complexes:

y =
1
B

B

∑
b=1

tb(x) (10)

The RF model obtains a better prediction result by modeling multiple trees instead of
just one [53]. This methodology produces results with more accuracy than CART.

The overall RF model can be defined as:

(1) Assemble ntrees of bootstrapping, involving input predictors where n is the number of
trees.

(2) Develop an unpruned regression tree through randomization of input predictor
samples for obtaining optimum split.

(3) The tea yield is predicted from the aggregated prediction values from ntrees.

3.1.3. Support Vector Regression (S)

This research used support vector regression to select the spatiotemporal feature of the
data. In his paper, Vapnik [53] developed the support vector regression (SVR) referred to
as S. SVR can find the correlation between the input and output of a system from existing
samples [54]. Using the following equation, the correlation is measured to predict the
outputs from the inputs [55]:

f (x) = ωϕ(x) + b (11)

where x represents the input vector, ω represents the weight vector of the input vector, and
ϕ(x) is the kernel function (a nonlinear transfer function that transforms the input data to
the higher dimensions) [55]. The Polynomial Kernel Function, Sigmoid Kernel Function,
and Radial Basis Kernel Function (RBF) are a few popular kernel functions [56].

3.2. Development of DRS–RF Model

This research developed a hybrid machine-learning method (i.e., DRS–RF) coupled
with dragonfly optimization algorithm and support vector regression using satellite-
derived predictors to predict the tea yield of Bangladesh. The DRS–RF model was created
on a PC with a 3.6 GHz Intel i7 processor and 16 GB of RAM. The proposed framework
used the Python-based machine-learning library scikit-learn [57,58] to develop the RF and
other benchmark models. The dragonfly algorithm was performed by MATLAB R2020b,
and matplotlib [59] and QGIS tools were used for visualization. An integrated workflow of
the present study to develop DRS–RF integrated with DR and support vector regression
for tea yield prediction is shown in Figure 3. The development procedure of the hybrid
DRS–RF model involved the following steps.
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Figure 3. An integrated workflow of the present study to develop DRS–RF integrated with DR and
support vector regression for tea yield prediction.

3.2.1. Feature Selection

The 22 variables from 20 stations of Bangladesh were collected from the MERRA-2
model to address the prediction problem of tea yield. The list of all predictor variables is
tabulated in Table 1. Each variable of 20 stations was then run for the dragonfly optimization
(DR) algorithm to select the significant variables from every station. Figure 4a shows the
features selected by DR along with the respective stations (subscripted). After that, the
study used support vector regression (S) as a feature selection approach in the 2nd step.
The machine-learning approach is prevalent in selecting input variables [60]. The result of
SVR is shown in Figure 4b, which shows that RH2M had the highest correlation coefficient
(r), where WD10M showed the lowest. Based on the result of SVR shown in Figure 4b,
the study constructed different combinations of predictors, adding them one by one in
ascending order, as illustrated in Figure 4c. Because of the use of DR, the best-selected
predictors were used for model application. With 100 iterations, the optimal number of
dragonflies for the DR was fixed at 12.

Table 1. A description of the 22 predictors from the MERRA-2 satellite system used to design the
hybrid DRS–RF model.

Acronyms Description of Predictor Variables (Unit)

PS Surface Pressure (kPa)

TS Earth Skin Temperature (C)

T2M Temperature at 2 Meters (C)

QV2M Specific Humidity at 2 Meters (g/kg)

RH2M Relative Humidity at 2 Meters (%)
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Table 1. Cont.

Acronyms Description of Predictor Variables (Unit)

WD2M Wind Direction at 2 Meters (Degrees)

WS2M Wind Speed at 2 Meters (m/s)

WD10M Wind Direction at 10 Meters (Degrees)

WS10M Wind Speed at 10 Meters (m/s)

T2MD Dew/Frost Point at 2 Meters (C)

GWT Surface Soil Wetness (1)

T2X Temperature at 2 Meters Maximum (C)

T2M2 Temperature at 2 Meters Minimum (C)

GWP Profile Soil Moisture (1)

GWR Root Zone Soil Wetness (1)

CLD Cloud Amount (%)

T2R Temperature at 2 Meters Range (C)

PRE Precipitation Corrected (mm/day)

ASA All Sky Surface Albedo (Dimensionless)

ASW All Sky Surface Longwave Downward
Irradiance (W/mˆ2)

ASD All Sky Surface Shortwave Downward
Irradiance (MJ/mˆ2/day)

CSS Clear Sky Surface PAR Total (W/mˆ2)

Figure 4. (a) The selected predictors with their respective stations (subscripted) using a butterfly
optimization algorithm; (b) correlation coefficient (r) of the SVR model for feature selection; (c) the
input combinations prepared by selecting the best resulting variables one-by-one in ascending order.
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3.2.2. Data Preparation

The screened variables from 20 stations were normalized to overcome the oversatura-
tion problems of the model. The study normalized the following equations to ensure they
received proportional attention in network training between (0,1) [45,61,62].

∆norm =
∆− ∆min

∆max − ∆min
(12)

In Equation (12), ∆ is the respective variable, ∆min is the minimum variable, ∆max is
the maximum, and ∆norm is the normalized variable. After normalizing the variables, the
datasets were partitioned, 85% into training and 15% into testing; additionally, 15% of
training datasets were kept for validation. The data partitioning was carried out by the
trial-and-error method.

3.2.3. Model Application

Finally, the study developed the RF model to use the predictors’ data to predict
the tea yield of Bangladesh. GridSearchCV was used to create an optimal architecture
of the RF model (ccp_alpha = 0.1; min_impurity_decrease = 0.1; min_samples_leaf = 1;
min_samples_split = 3; n_estimators = 200; random_state = 1). The performance of the
proposed model was compared to that of standalone machine-learning models. Figure 3
shows the methodological steps of the proposed DRS–RF model.

3.2.4. Model Evaluation

Pearson’s Correlation Coefficient (r), root mean square error, and normalized root
mean square error was used to assess the proposed machine-learning model (DRS–RF) and
the benchmark models. Due to the geographical and climatological differences between the
study stations, the study used relative RMSE (RRMSE) to compare tea yield. The following
are the performance metrics, expressed in mathematical terms.

Correlation coefficient:

(r) =


∑N

i=1
(
Yobs −Yobs

)(
Ypred −Ypred

)
√

∑N
i=1
(
Yobs −Yobs

)2
∑N

i=1

(
Ypred −Ypred

)2


2

(13)

Relative Root Mean Square Error:

(RRMSE, %) =

√
1
N ∑N

i=1

(
Ypred −Yobs

)2

1
N ∑N

i=1(Yobs)
× 100 (14)

Mean Absolute Percentage Error:

(MAPE; %) =
1
N

(
i=1

∑
N

∣∣∣∣∣ (Ypred −Yobs)

Yobs

∣∣∣∣∣
)
∗ 100 (15)

In Equations (13)–(15), Yobs and Ypred represent the observed and predicted wheat
yield values for ith test value; Yobs and Ypred refer to their average wheat yield, respectively;
and N is defined as the number of observations (years).

4. Results

For predicting tea yield (Y) in Bangladesh, this study developed and tested a hybrid RF
predictive model called BRS–RF, coupled with the dragonfly optimization algorithm (DR)
and support vector regression (S) for feature selection to improve performance accuracy.
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The model was evaluated using statistical score metrics (Equations (13)–(15)) and diagnostic
plots of both the observed and predicted Y for each dataset.

Table 2 compares the observed and predicted Y for the testing data in terms of r and
MAPE for different combinations and their respective standalone models. The input combi-
nations prepared by dragonfly optimization and support vector regression were improved
by our proposed DRS–RF model. The objective hybrid DRS–RF model obtained the highest
r (0.993) and the lowest MAPE (11.95%) with combination 7, followed by the DRS–XGBRF
model with combination 14. The DRS–KRR model with combination 1 included RH2M
and GWT, which improved the performance (r = 0.947; MAPE = 20.47). The standalone
model of RF showed poor performance; the hybrid machine-learning predictive model
outperformed the other models using satellite-derived hydro-meteorological variables.

Table 2. Evaluation of hybrid DRS–RF vs. benchmark modes concerning different combinations, as
specified in Figure 4. The correlation coefficient (r) and mean absolute percentage error (MAPE, %).

C
om

bi
na

ti
on

s KRR MARS ELM RF SVR XGBRF

R MAPE R MAPE R MAPE R MAPE R MAPE R MAPE

Standalone Approach

0.897 21.36 0.390 20.90 0.387 33.78 0.763 14.86 0.955 21.72 0.945 20.79

Hybrid Approach (Using Dragonfly Optimization and SVR, DRS)

1 0.947 20.47 0.885 22.14 0.442 19.82 0.981 14.84 0.335 18.69 0.869 19.37

2 0.921 22.00 0.895 20.36 0.888 8.29 0.951 15.05 0.712 18.79 0.853 20.40

3 0.909 21.97 0.868 19.87 0.406 10.43 0.987 14.95 0.801 19.30 0.961 19.71

4 0.877 21.43 0.868 19.87 0.395 19.78 0.958 14.90 0.723 19.14 0.951 20.04

5 0.871 21.84 0.868 19.87 0.455 19.56 0.959 14.91 0.671 21.74 0.961 20.19

6 0.865 21.79 0.817 22.03 0.814 25.96 0.965 14.87 0.685 21.83 0.957 20.14

7 0.880 21.85 0.817 22.03 0.922 26.57 0.993 11.95 0.699 21.71 0.857 20.49

8 0.889 21.93 0.817 22.03 0.783 36.92 0.942 14.94 0.679 21.45 0.964 20.36

9 0.884 21.89 0.790 21.53 0.884 22.18 0.965 14.87 0.815 20.41 0.951 20.72

10 0.875 22.14 0.790 21.53 0.536 18.52 0.984 14.91 0.550 20.38 0.954 20.34

11 0.872 22.08 0.790 21.53 0.855 18.20 0.886 14.83 0.560 20.30 0.972 19.84

12 0.893 22.14 0.790 21.53 0.926 28.97 0.963 14.98 0.745 20.22 0.867 20.61

13 0.903 22.21 0.790 21.53 0.588 12.46 0.937 14.84 0.368 19.62 0.975 19.76

14 0.908 22.91 0.351 29.97 0.367 13.59 0.958 14.94 0.817 16.46 0.977 19.63

15 0.904 23.04 0.351 29.97 0.695 21.40 0.942 14.69 0.936 21.16 0.965 19.82

16 0.889 22.82 0.307 43.58 0.491 31.51 0.928 14.76 0.928 21.71 0.974 20.22

17 0.883 22.42 0.167 53.18 0.196 38.48 0.990 14.98 0.915 20.34 0.975 20.23

18 0.909 22.52 0.075 28.27 0.286 51.26 0.872 14.68 0.938 20.38 0.970 20.06

19 0.909 22.44 0.075 28.27 0.370 44.25 0.929 14.76 0.935 20.45 0.915 20.03

20 0.898 22.27 0.075 28.27 0.361 27.09 0.961 14.83 0.927 21.11 0.977 20.23

21 0.894 22.33 0.678 29.32 0.438 45.67 0.981 14.94 0.929 21.13 0.971 20.09

Figure 5 shows the results of an in-depth investigation of the correlation coefficient (r)
and MAPE (%), which demonstrated that the proposed hybrid DRS–RF model performed
significantly better than other models in predicting Y for the loop of 20 combinations. The
r-value and MAPE (%) were distributed between the lower quartile (25th percentile) and
the upper quartile (75th percentile). However, one outlier was discovered to be greater
than the 25th percentile in terms of the r-value. In contrast, the MAPE showed a very
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condensed distribution, resulting in an improved performance in predicting the Y value
with the RF model coupled with Dragonfly Optimization and support vector regression.
The standalone models showed lower r-values, with Figure 5 indicating that the proposed
hybrid machine-learning predictive model outperformed various competing methods.

Figure 5. Box plots of proposed hybrid models (i.e., DRS–RF) along with their respective standalone
counterparts in predicting tea yield in terms of Correlation Coefficient (r) and MAPE (%).

To better understand the predictive performance of the proposed hybrid DRS–RF
model, the study employed the RRMSE (%) value for the standalone models (i.e., KRR,
MARS, ELM, RF, SVR, and XGBRF) and their respective hybrid models, along with the
percent change of RRMSE (%) while applied to the proposed hybrid approach (i.e., DRS–RF).
Figure 6 shows that the newly constructed DRS–RF model had the lowest RRMSE (18%),
significantly improving the performance of the standalone RF model (12%). The standalone
ELM model had the highest RRMSE (%) value (30%), and the lowest value was found for
the RF model (29%). After analyzing the different combinations with the proposed hybrid
models and several benchmark models, the proposed hybrid model produced significantly
superior results to standalone machine-learning modeling when it came to Y predicting.

Figure 6. The RRMSE of the proposed model and other comparison models and the respective change
in percentage from the standalone model.

As shown in Figure 7, a scatterplot of the observed and predicted Y using the DRS–RF
and standalone RF models indicated a precise prediction as an additional evaluation of
the hybrid predictive model (i.e., DRS–RF). The scatter plots show that the coefficient of
determination (R2) was related to the goodness-of-fit between the predicted and observed
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Y as well as a line of least-square fitting with the appropriate equation: Y = mx + c, where
“m” is the gradient and “c” is the regression line’s y-intercept. As shown in Figure 7,
the suggested model outperformed the baseline model by a wide margin, with an R2

value that was significantly higher using a hybrid machine-learning model (i.e., DRS–RF).
The magnitudes reported from the hybrid DRS–RF model were the closest to unity when
measured in pairs (m|R2), with values of 0.986|0.07 (m|R2) in comparison to the RF
model (0.582|0.06). The unity for the other models (i.e., DRS–KRR, DRS–MARS, and
DRS–SVR) provided a lower value of R2. The newly proposed hybrid RF predictive
model outperformed the benchmark models using a carefully selected set of satellite-based
predictor variables.

Figure 7. Scatter plot of predicted vs. observed Y using the proposed hybrid model and comparison
models. A least-square regression line and coefficient of determination (R2) with a linear fit equation
are shown in each subpanel.

Figure 8 depicts the study site; the empirical cumulative distribution function (ECDF)
examined the plots of various prediction skills in terms of the empirical cumulative distri-
bution function (ECDF). The study plotted the normalized absolute prediction error (PE) in
this figure. The generated error ranged from 0 to 0.25 within the 90th percentile when the
proposed hybrid RF model was compared to the benchmark models, demonstrating that
the DRS–RF model combined with dragonfly optimization and support vector regression
performed the best. However, the ECDF plot for the other benchmark models showed poor
distribution, comparatively.
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Figure 8. Empirical Cumulative Distribution Function (CDF) of prediction error |FE| of Y generated
by the proposed DRS–RF vs. benchmark models.

5. Discussion

The inclusion of remote sensing (RS) satellite data, MERRA- 2 and CERES-syn1 data
of climate variables, and tea yield data were significant in this study to assess their suit-
ability for tea yield forecast. Twenty-two climate variables were individually tested before
additional variables were added to test climatic conditions for tea production. Out of
the 22 parameters tested, 10 parameters were significant for forecasting. Relative and
specific humidity, surface soil wetness, root zone soil moisture, all-sky surface longwave
downward irradiance, precipitation, the temperature at 2 m, and the earth skin temperature
were shown to be essential factors for tea production in the study.

The proposed DRS–RF model generated spatial and temporal dependency, outper-
forming other standalone or hybrid models in tea yield prediction. The study considered
20 stations in Bangladesh and found suitable climatic conditions in Sylhet. RS data can be
cost-effective, providing almost real-time information for tea and other crops [2,7,63–65].
RS data can sometimes act poorly due to the spectral mixing issue for the same greenery
and shrubs in an exact location [66], and newer satellites such as Sentinel-2 with a return
cycle of five days instead of 13–16 days and 13 high-resolution spectral bands can radically
change the crop-monitoring and -predicting procedures [67]. The results show that combin-
ing climate and satellite data achieved the best performance using our proposed hybrid
DRS–RF model to provide an accurate forecast for tea yield prediction. The proposed
DRS–RF model provided the highest correlation coefficient (r) (0.933) and the lowest mean
absolute error (MAPE) (11.95%) compared to all other tested standalone models (RF, KRR,
MARS, ELM, RF, SVR, and XGBRF) and their respective hybrid models (Table 2). Out of the
twenty-two variables first tested individually and then integrated one by one, combination
7 was revealed as achieving the best performance (Figure 4c). The water-supply-related
variables such as relative humidity, soil moisture, and precipitation proved to be significant
factors for tea yield, which agrees with previous studies [2,67,68]. The same studies also
confirm the highest correlation coefficient using climate variables.

Additionally, this study explored the use of the RS satellite dataset and combined
it with advanced machine algorithms to predict tea yield, as studies have previously
explored with other crops [2]. In the future, further tea yield forecasting can be carried out
incorporating deep-learning approaches [69–71] and including more features such as the
elevation of the land [72] and vegetation indices, as described in [73]. The present study is
important for developing countries such as Bangladesh, with land and climates suitable
for producing cash crops such as tea. This carries more importance when tea is used for
export purposes after satisfying the national demand. The analysis also suggested suitable



Remote Sens. 2022, 14, 805 15 of 18

locations where tea is not currently being produced, which essentially agreed with the
findings of Saha et al. [6] and could be used to increase tea cultivation.

6. Conclusions

In Bangladesh, almost half of the total population is directly or indirectly dependent on
agriculture, and most of the land is arable. Remote sensing data is imperative to modernize
agriculture and provide farmers and policymakers with near-real-time information on
climate variables to make an informed decision. This helps ensure better returns, minimize
production cost losses, and improve seed yield and overall production. The novel hybrid
random forest (RF) model was combined with dragonfly optimization for the first feature
selection and support vector regression for the second feature selection to find the optimum
combination with the DRS–RF model. The overall findings of the study can be summarized
as follows:

1. The proposed hybrid DRS–RF model showed the best performance in predicting the
tea yield by a significant margin.

2. The DRS–RF model showed the highest correlation coefficient (r) (0.933) and the
lowest mean absolute percentage error (MAPE) (11.95%) with combination 7, out of
20 combinations of hydro-meteorological variables.

3. The study also checked the standalone models RF, KRR, MARS, ELM, RF, SVR,
and XGBRF and their respective hybrid models. The hybrid DRS–KRR and hybrid
DRS–XGBRF models (which preferred combination 14) demonstrated significant
performances with combination 1, with an r value of 0.947 and an MAPE of 20.47.
The proposed model also showed the lowest relative root mean square error (RRMSE;
18%), whereas standalone Extreme Learning Machines (ELM) had an RRMSE value of
30%, followed by RF at 29%.

4. The proposed model could be used for other crops with feature selection approaches
in future works. Numerous authors have suggested that a popular and widely used
deep-learning methodology could also be involved at the modeling stage [7,45,61,62].
Lastly, the model could be tested at several temporal horizons to give more accurate
predictions for other geographies.

In a nutshell, using remote sensing data, the proposed hybrid model could be applied
to numerous national and global problems, such as carbon emission and climate studies,
to name a few, helping governments and policymakers reach economic, financial, and
social sustainability.
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