

Complete Citation: Das Gupta, Jishu and Howard, Srecko and Howard, Angela (2006). Traffic
behaviour of VoIP in a simulated access network. International Transactions on Engineering,
Computing and Technology, 18, 189-194. ISSN 1305-5313.

Accessed from USQ ePrints http://eprints.usq.edu.au

Traffic Behaviour of VoIP in a Simulated Access
Network

Jishu Das Gupta, Srecko Howard, Angela Howard

University of Southern QLD

Toowoomba, QLD 4350, Australia

Abstract— Insufficient Quality of Service (QoS) of Voice over

Internet Protocol (VoIP) is a growing concern that has lead the need
for research and study. In this paper we investigate the performance
of VoIP and the impact of resource limitations on the performance of
Access Networks. The impact of VoIP performance in Access
Networks is particularly important in regions where Internet
resources are limited and the cost of improving these resources is
prohibitive. It is clear that perceived VoIP performance, as measured
by mean opinion score [2] in experiments, where subjects are asked
to rate communication quality, is determined by end-to-end delay on
the communication path, delay variation, packet loss, echo, the
coding algorithm in use and noise. These performance indicators can
be measured and the affect in the Access Network can be estimated.
This paper investigates the congestion in the Access Network to the
overall performance of VoIP services with the presence of other
substantial uses of internet and ways in which Access Networks can
be designed to improve VoIP performance. Methods for analyzing
the impact of the Access Network on VoIP performance will be
surveyed and reviewed. This paper also considers some approaches
for improving performance of VoIP by carrying out experiments
using Network Simulator version 2 (NS2) software with a view to
gaining a better understanding of the design of Access Networks.

Keywords— codec, DiffServ, Droptail, RED, VOIP

I. INTRODUCTION
HE startling growth of Internet technology, coupled with
the relatively low deployment cost of Interment Protocol
(IP) networks, has created a push for an integrated “IP-

based core” - a single network for data, video and voice
access. However, the diverse service-requirements and novel
traffic characteristics of the emerging Internet applications

have posed many technical challenges that the Internet
community must address in the near future, as the emerging
multimedia applications begin to constitute an ever-increasing
fraction of Internet traffic. High quality interactive voice and
video applications tolerate little delay variations and packet
losses. The economic advantages of provisioning this range of
service by means of a single infrastructure are considerable.
Effective networking for this diverse range of multimedia
applications requires in-depth research in various fields of the
internet based application. The change to VoIP provides a
more cost effective communication solution to the business
and more and more businesses are developing IP based
solutions for their day to day use. Firms that have upgraded
their hub-and-spoke architecture to a mesh network
architecture using Multi Protocol Label Switching (MPLS)
Virtual Private Network (VPN)’s may gain even bigger
savings from moving aggressively to VoIP [1]. All these
business developments are depending on quality of service
and the adoption of high bandwidth to ensure better
performance. The existing Access Networks are not able to
meet the needed services. While we like to think that everyone
is connected there are still households and businesses around
the world that do not have access to high bandwidth networks
preventing them to take advantage of more cost-efficient
options like VoIP.

This paper focuses on VoIP performance issues that mostly
relate to the packet drops in the Access Network. The
problems encountered with VoIP data in an Access Network
connection are outlined and an investigation is undertaken to
provide some solutions for these problems. Further research
would benefit from focusing on specific performance problem
as well as dynamic Differentiate Services (DiffServ)
developments.

T

II. BACKGROUND
VoIP generates a lot of traffic, which also increases the

traffic flow in the Access Networks. The end to end VoIP
communication needs to navigate through the Public Switched
Telephone Network (PSTN) causing an increase of traffic
which has a detrimental affect on the PSTN and VoIP quality
[2], [3], [4].

In today’s internet, the Core Network is sufficiently capable
to handle voice traffic [2]. However, performance degradation
in the Access Network requires further work. Although VoIP
services have partially supplanted traditional toll telephone
services, when users make a VoIP telephone call, they must,
in most cases, still go through a local telephone network.
Since the service was introduced to the public, VoIP toll
telephone traffic has increased with astonishing speed. By the
end of 2002, VoIP toll telephone traffic had surpassed
traditional toll telephone traffic [1]. Four factors have been
identified which have contributed to this phenomenon [5].

• Price advantage
• New and profitable area for ISPs’
• Potential value in the transition to next generation

networks
• Benefits for the traditional telephone service provider

The main problem with VoIP at present is the lack of

guaranteed QoS. There are different types of delay involved
in the transmission of IP packets for VoIP. From [2] we can
focus on the different types of delay that are involved in the
VoIP QoS. End-to-end delay is due to codec processing as
well as propagation delay. ITU-T Recommendation G.114 [6]
recommends the following one-way transmission time limits
for connections with adequately controlled echo mechanism
(complying with G.131 [7]):

• 0 to 150ms: acceptable for most user applications;
• 150 to 400ms: acceptable for international connections;
• > 400ms: unacceptable for general network planning

purposes; however, it is recognized that in some
exceptional cases this limit will need to be exceeded.

As discussed previously the Core Network is capable of

handling large amount of data packets. But when we consider
the Access Network there remains a problem that occurs when
large data chunks are introduces inside the Access Network as
well as from Access Network to Internet. Losing packets in
the Access Network may cause missing sentences, broken
speech, and noise on the line which could cause a delay in the
conversation as well as affect quality of the conversation.
Handling the data effectively can eliminate the problem of
quality of service. Managing the data flow to smoothly handle
the extra load seems to be the best way to prevent packet loss
and improving the QoS.

III. EXPERIMENT OUTLINE
To investigate possible solutions for improving QoS, a

number of simulations were undertaken using Transmission
Control Protocol (TCP) flows as well as User Datagram
Protocol (UDP) flows. TCP flows were used mostly for the
shortest transmission and normal data flow whereas UDP was
used for the VoIP data flow. TCP by design backs off when
TCP packets get dropped and retransmits the packets again.
UDP by design transmits the packets once and never
retransmits the packets again. Voice communication does not
require retransmission as the delay would lower the quality of
service and in the case of VoIP to ensure quality service we
need to ensure a smooth transmission of data (UDP flow). Fig.
1 shows a complex network of the telecommunication system
(in outline). Thousands of such Access Networks shown here,
together with the core network create an entire real world
network. Studying an individual link in this network could
lead us towards a solution for the entire network.

Fig. 2 shows the model used in the simulations. In this
network both VoIP and TCP/IP data traffic will be used to test
the link and bottleneck condition.

Fig. 1: Real life picture of a typical network

Fig. 2: Basic Model for Simulation

In Fig. 2, n0, n1, n2, n3 are four IP routing nodes. In these

four nodes n0 is a TCP/IP node and FTP service is the traffic
generator for this node. The TCP/IP node has been attached to
node n3 via n2 where a “sink” agent is attached. These are all
duplex links. Again on the other side node n1 is linked via n2
to n3 and a “null” agent, which just drops the packets received
is attached to it. With node n1 a Constant Bit Rate (CBR)
traffic generator is attached which generates the traffic for the
UDP connection. There are buffers at the head of every link in

the network. The focus in this experiment is on one of these
buffers, namely the one at the head of the link from n2 to n3.

Three different simulation experiments were executed using
the NS2 software. These three simulations were based on the
same basic model. The tests were performed by changing the
traffic control methods in the network. In Experiment 1, a
normal Droptail AQM was used. Minor variations of
experiment 2 labelled 2B and experiment 3 labelled 3B were
performed to fine tune the buffer size to achieve improved
performance. In sequence, experiment 2 and experiment 3
have been implemented using RED and DiffServ respectively.

Fig. 3: Model for Simulation with DiffServ extensions

For every experiment several different types of outputs

were generated:
Graphical output using The Network Animator (NAM)
Graphical output using xgraph, each graph showing queue

and loss versus time. NAM and xgraph is widely used
software for graphical representation of data collected from
simulations

All tests were performed under specifically controlled
circumstances to generate data that would lead to a clearer
understanding of the problems and assist in further research.
In Fig. 2, n0 and n1 could be in an Access Network for
example. This could be a small business or a home premise. In
the third experiment changes were made in the network to
accommodate the DiffServ architecture.

The Access Network link was selected to represent the link
capacity that most closely resembled the real scenario at the
time the simulation was run.

IV. RESULTS

A. Experiment 1: Droptail
The first experiment was a simple network test with

Droptail. In this experiment the network consisted of 4 nodes
(n0, n1, n2, n3) as shown in Fig. 2. The duplex links between
n0 and n2, and n1 and n2 have a 1.5Mbps bandwidth and
10ms delay. The duplex link between n2 and n3 has a 2Mbps
bandwidth and 20ms delay. Each node uses a Droptail queue,
of which the maximum size is 25 packets. A "TCP" agent is
attached to n0, and a connection is established to a TCP "sink"
agent attached to n3. As default, the maximum size of a packet
that a "TCP" agent can generate is 1KByte. A TCP "sink"
agent generates and sends ACK packets to the sender ("TCP"
agent) and digests the received packets. A "UDP" agent is
attached to n1 and n1 has a direct connection with n3 which is

a "null" agent. A "null" agent just frees the packets received.
An FTP and a CBR traffic generator are attached to "TCP"
and "UDP" agents respectively. The "CBR" agent is
configured to generate 128 Byte packets at the rate of 1Mbps.
The CBR is set to start at 1.0 sec and stop at every 3.0 sec.
The CBR is set to start at 3.5 sec and stop at 4.0 sec and the
"FTP" agent is set to start at 0.1 sec and stop at 4.9 sec. For
these experiments the time parameters will give a good
indication of traffic flow in the simulated network.

Fig. 4: The NAM outlook

Fig. 5: The network for Experiment 1

NS2 provides an animation tool called NAM, which shows

all significant events during a simulation by means of a
graphical display. Fig. 4 is an example the screenshot of
running NAM simulation.

In the simulation, using NAM output it will be noticed that
when the queue limit is reached the TCP traffic backs off and
this back off situation happens when the TCP packets are
dropped and node n0 doesn’t receive the acknowledgements
from the "sink" agent. On the other hand, the UDP traffic
continues as it doesn’t have to wait for acknowledgements.
Comparing Experiment 1 with Experiment 2, it is apparent
that by using a standard queuing technique, the data traffic
handling condition can be improved. Retransmission of lost
voice packets would only degrade the quality that is why UDP
has been used.

This experiment can be modified in multiple ways for the
purpose of observing real time picture of the data flow.

Fig. 6: Experiment 1 xgraph output

In Experiment 1 the CBR packet size was set to 128 bytes

which is often used with the VoIP calls. The Droptail queue
system was used to trace the queue and draw the xgraph from
the acquired data. From the NAM output we have observed
that large number of CBR packets are dropped. The size of the
TCP packets in this experiment was 1000 bytes. TCP is
expected to back off when data flow increases to the point that
packets are dropped. As a consequence of the flow load TCP
begins to send acknowledgement for the same packet more
than once. The FIFO Droptail queue begins dropping more
CBR packets than TCP as the CBR packets don’t back off due
to congestion. The main goal was to transmit the CBR packets
without excessive loss. The TCP lost packets are retransmitted
with a delay which is acceptable for that service. However
massive loss of UDP traffic will result in degraded
performance in the voice transmission.

Fig. 6 is an xgraph plot of the queue and packet loss versus
time. Here the queue limit is reached regularly resulting in
packet loss. The loss displayed on the graph is accumulated
loss. It is massive in this experiment. Modification of the
Droptail AQM over the existing link is not feasible because
increasing the buffer size will cause massive delay. This
experiment will be further discussed when comparing it to
Experiment 2 and 3.

In the presence of the Droptail, AQM Droptail drops
substantial amount of packets. These are combinations of
UDP and TCP packets. Using NAM it can be observed that
the drop rates of UDP packets are higher than TCP packets.

B. Experiment 2: RED
Experiment 2A
The Second experiment uses the same network design with

the RED AQM at the buffer at the head of the link from n2 to
n3. The network topology and traffic conditions are exactly
the same as Experiment 1. Each buffer except for the one at
the head of the link n2 to n3 uses a Droptail queue which has
the maximum size of 25 packets.

Fig. 7: Experiment 2 diagram

In the Experiment 2 simulation, using NAM output, we also

have noticed that when the queue limit is reached the TCP
traffic backs off and this back off situation happens when the
TCP packets are dropped and node n0 receive repeated
acknowledgement or doesn’t receive the acknowledgements
from "sink" agent. This is very similar to the scenario of the
Experiment 1. We tried to keep all the node points to behave
identically. The UDP traffic, as before, starts and continues as
it doesn’t wait for the reply or acknowledgements. As a result
in Experiment 2, using the RED AQM data traffic handling
condition has been improved. Overall loss is similar but buffer
level is reduced, especially in the second half of the
experiment.

Like previous experiments, this experiment can also be
modified in multiple ways so that we can observe the real time
picture of the data flow using NAM.

Fig. 8: Experiment 2 xgraph output

After implementing much the same experiment as

Experiment 1 in presence of AQM and RED we found that we
can control the buffer levels better. However, from the NAM
output we can see that noticeable UDP packets are being
dropped. Although in regard to managing the queue we have
improved the situation in Experiment 2, but still we are not
delivering all the UDP packets. The QoS for VoIP has not
been greatly improved by the changes.

Fig. 9: Experiment 2 xgraph output with tuning

Experiment 2B
In Experiment 2B we have changed the bottle neck

bandwidth from 2Mbps to 2.45Mbps. The delay time of 20ms
is the same as in the original experiment. Introducing such a
change we can see an enormous difference in the queue and
packet loss versus time graph shown in Fig. 9.

The improvement we observe is a consequence of change
changing the bandwidth to 2.45Mbps. Many other changes
can be made. The factors that can be adjusted include delay,
queue limit etc.

After more adjustments with bandwidth in the bottleneck
we can see in Fig. 9, the queue length and the loss of packets
has been substantially decreased. The NAM output shows us
that we have a fewer UDP packets dropped which will still
cause degradation on VoIP QoS.

The main dilemma with RED is that is not able to
differentiate between CBR and TCP packets. It would be
preferable that no CBR packets were dropped. To try and
achieve this goal the third experiment will use DiffServ.

C. Experiment 3:DiffServ
Experiment 3A
Our third experiment in ns2 is a network test with the

DiffServ system implemented in node n2. In this experiment
the network consists of 6 nodes (s1, s2, n0, n1, e2, dest) as
shown in Fig. 10.

The core topology of Experiment 3 is the same as
Experiments 1 and 2. The details of the additional links are as
follows: All the Droptail, AQMs’ have 1.5Mbps bandwidth
and 10ms delay. Another two simplex links n2 and e2 use
dsRED/core, and e2 and n2 dsRED/edge have 2Mbps
bandwidth and 20ms delay.

The full duplex links between s1 and n0, and s2 and n1, and
e2 and dest have 10Mbps bandwidth and 1ms delay and use
Droptail. The AQM’s are in use as follows: The simplex link
from n0 to n2 uses the dsRED/edge AQM, which marks the
packets; the link from n2 and n0 uses dsRED/core which
drops packets, in a manner similar to RED, except that voice
and data packets are given different treatment, the link from
n1 to n2 uses dsRED/edge; and the link from n2 to n1 uses
dsRED/core. The link from n2 to e2 used dsRED/core.

The traffic conditions are basically the same as in
experiments 1 and 2 however, the agents are attached at
different locations because the network topology has changed.
The "TCP" agent is attached to s1, and a connection is
established to a TCP "sink" agent attached to dest. As default,
the maximum size of a packet that a "TCP" agent can generate
is 1KByte. A TCP "sink" agent generates and sends ACK
packets to the sender ("TCP" agent) and frees the received
packets. A "UDP" agent that is attached to s2 is connected to a
"null" agent attached to dest. A "null" agent just frees the
packets received. A FTP and a CBR traffic generator are
attached to "TCP" and "UDP" agents respectively. The CBR is
configured to generate 1KByte packets at the rate of 1Mbps.
The CBR is set to start at 1.0 sec and stop at every 3.0 sec,
again CBR is set to start at 3.5 sec and stop at 4.0 sec and FTP
is set to start at 0.1 sec and stop at 4.9 sec.

Fig. 10: Experiment 3 diagram

In the Experiment 3 simulation, using NAM output, we

have noticed that when congestion occurs the TCP traffic
backs off as expected.

Fig. 11: Experiment 3 xgraph output

This experiment too has experienced high level of packet

loss. However, using DiffServ successfully eliminated the
CBR loss; the loss is reduced to zero packets. All lost packets
are TCP. TCP backs off and retransmits the lost data so this
will not seriously degrade the performance. Careful choice of
parameters will produce better performance than has been
shown in Fig. 11. Here it should be mentioned that congestion
in the Access Network will normally occur for a modest
proportion of the time. Once the CBR stops sending the
packets, the TCP flow will transmit more rapidly. The
performance of the DiffServ devices can be modified by
adjusting the parameters further.

Fig. 12 Experiment 3B xgraph output with simple tuning

Experiment 3B
An adjustment on the existing DiffServ code was made

which has been represented on Fig. 12. From the NAM output
it can be observed that not a single UDP packet has been
dropped.

The main reason this experiment was conducted with
DiffServ is to help explain the somewhat high loss rate in
Experiment 3. In Experiment 3B this has improved
considerably even though the only change has been increased
buffer size (50 packets instead of 25). This was undertaken as
the most cost effective solution to improve performance on an
access network. Due to the specified buffer lengths (queue
limit) in packets rather than lengths, and UDP packets being
shorter than TCP packets, the effective buffer size in
Experiment 3 was less than in Experiment 2. This is one
probable explanation for the high packet loss rate in
Experiment 3. Experiment 3B helps to strengthen the
assumption.

Using Different system in our experiment 3 and
implementing the same network it can be seen that the queue
length and loss has been fairly controlled. Using the parameter
setup option in DiffServ system successfully controlled UDP

packet drops. DiffServ system has successfully mitigated the
UDP packet drops which is important for VoIP QoS. During
the running of the simulation software NAM for this
experiment observations have been made that only packets
marked TCP were dropped by the simulated network.

It appears from Experiment 3 that using adjustment of
parameters in the DiffServ system the quality of service can
be substantially increased in the Access Network.

V. CONCLUSION
Providing reliable, high-quality voice communications over

a network designed for data communications is a complex
engineering challenge. Factors involved in designing a high-
quality VoIP system include the choice of codec and call
signalling protocol. There are also engineering tradeoffs
between delay and efficiency of bandwidth utilization. VoIP is
a time-sensitive application and requires real-time support for
its quality of service (QoS) requirements. The traditional
Internet, which uses a best-effort mechanism, fails to support
the QoS requirement of most multimedia application.

There are several other parameter options available in the
DiffServ. Changing those parameters the performance of the
network can also be further improved. The parameters and
tuning with variable codec can be effective future study and
research topics. The findings show that DiffServ
implementation provide a better control in better performance
in real time sensitive applications in Access Network.

These experiments provide a guideline for future studies
implementing complex configurations to better understand
and predict the performance of real time media in Access
Networks.

It would be interesting to look at the performance of data
traffic in the VoIP architecture. This would involve a study of
TCP’s ability to utilize the residual bandwidth (bandwidth
unused by voice traffic) in the link.

Research could be undertaken in areas of Adaptive variable
codec, automated DiffServ design, and parameter
reconfiguration. This could automatically be reconfigured
implementing Policy based management to assure optimal use
of specific service requirements, based on the variations in the
traffic flow.

REFERENCES
[1] General Information on the Internet System Survey, ITU-T Publication,

Jan 2000.
[2] Goode, B Sep 2002, 'Voice Over Internet Protocol', paper presented to

Proceeding of The IEEE, IEEE, Sep 2002.
[3] Cisco System 2001, Quality of Service for Voice Over IP, pp 3-18,

<http://www.cisco.com/univercd/cc/td/doc/cisintwk/qosVoIP.pdf>.
[4] Moreno, C, Antolin, A, & Diaz, F Jun 2001, Recognizing Voice Over

IP: A Robust Front-End for Speech Recognition on the World Wide
Web, IEEE Transactions On Multimedia.

[5] ITU-T Proceeding, 2003, ITU-T PUBLICATION,
<http://www.itu.int/ITU-T/>.

[6] One way Transmission time, 1996, ITU-T Recommendation G114,
<http://www.itu.int/ITU-T/>.

[7] Stability and Echo CCITT Recommendation G.131 1988, ITU-T,
<http://www.itu.int/ITU-T/>.

	I. INTRODUCTION
	II. Background
	III. Experiment Outline
	IV. Results
	A. Experiment 1: Droptail
	B. Experiment 2: RED
	C. Experiment 3:DiffServ
	V. Conclusion

