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Abstract— Insufficient Quality of Service (QoS) of Voice over 

Internet Protocol (VoIP) is a growing concern that has lead the need 
for research and study. In this paper we investigate the performance 
of VoIP and the impact of resource limitations on the performance of 
Access Networks. The impact of VoIP performance in Access 
Networks is particularly important in regions where Internet 
resources are limited and the cost of improving these resources is 
prohibitive. It is clear that perceived VoIP performance, as measured 
by mean opinion score [2] in experiments, where subjects are asked 
to rate communication quality, is determined by end-to-end delay on 
the communication path, delay variation, packet loss, echo, the 
coding algorithm in use and noise. These performance indicators can 
be measured and the affect in the Access Network can be estimated. 
This paper investigates the congestion in the Access Network to the 
overall performance of VoIP services with the presence of other 
substantial uses of internet and ways in which Access Networks can 
be designed to improve VoIP performance. Methods for analyzing 
the impact of the Access Network on VoIP performance will be 
surveyed and reviewed. This paper also considers some approaches 
for improving performance of VoIP by carrying out experiments 
using Network Simulator version 2 (NS2) software with a view to 
gaining a better understanding of the design of Access Networks. 
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I. INTRODUCTION 
HE startling growth of Internet technology, coupled with 
the relatively low deployment cost of Interment Protocol 
(IP) networks, has created a push for an integrated “IP-

based core” - a single network for data, video and voice 
access. However, the diverse service-requirements and novel 
traffic characteristics of the emerging Internet applications 

have posed many technical challenges that the Internet 
community must address in the near future, as the emerging 
multimedia applications begin to constitute an ever-increasing 
fraction of Internet traffic. High quality interactive voice and 
video applications tolerate little delay variations and packet 
losses. The economic advantages of provisioning this range of 
service by means of a single infrastructure are considerable. 
Effective networking for this diverse range of multimedia 
applications requires in-depth research in various fields of the 
internet based application. The change to VoIP provides a 
more cost effective communication solution to the business 
and more and more businesses are developing IP based 
solutions for their day to day use. Firms that have upgraded 
their hub-and-spoke architecture to a mesh network 
architecture using Multi Protocol Label Switching (MPLS) 
Virtual Private Network (VPN)’s may gain even bigger 
savings from moving aggressively to VoIP [1]. All these 
business developments are depending on quality of service 
and the adoption of high bandwidth to ensure better 
performance. The existing Access Networks are not able to 
meet the needed services. While we like to think that everyone 
is connected there are still households and businesses around 
the world that do not have access to high bandwidth networks 
preventing them to take advantage of more cost-efficient 
options like VoIP. 

 
 

This paper focuses on VoIP performance issues that mostly 
relate to the packet drops in the Access Network. The 
problems encountered with VoIP data in an Access Network 
connection are outlined and an investigation is undertaken to 
provide some solutions for these problems. Further research 
would benefit from focusing on specific performance problem 
as well as dynamic Differentiate Services (DiffServ) 
developments. 
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II. BACKGROUND 
VoIP generates a lot of traffic, which also increases the 

traffic flow in the Access Networks.  The end to end VoIP 
communication needs to navigate through the Public Switched 
Telephone Network (PSTN)  causing an increase of traffic 
which has a detrimental affect on the PSTN and VoIP quality 
[2], [3], [4]. 

In today’s internet, the Core Network is sufficiently capable 
to handle voice traffic [2]. However, performance degradation 
in the Access Network requires further work. Although VoIP 
services have partially supplanted traditional toll telephone 
services, when users make a VoIP telephone call, they must, 
in most cases, still go through a local telephone network. 
Since the service was introduced to the public, VoIP toll 
telephone traffic has increased with astonishing speed. By the 
end of 2002, VoIP toll telephone traffic had surpassed 
traditional toll telephone traffic [1]. Four factors have been 
identified which have contributed to this phenomenon [5]. 

 
• Price advantage 
• New and profitable area for ISPs’ 
• Potential value in the transition to next generation 

networks 
• Benefits for the traditional telephone service provider 

 
The main problem with VoIP at present is the lack of 

guaranteed QoS.  There are different types of delay involved 
in the transmission of IP packets for VoIP. From [2] we can 
focus on the different types of delay that are involved in the 
VoIP QoS. End-to-end delay is due to codec processing as 
well as propagation delay. ITU-T Recommendation G.114 [6] 
recommends the following one-way transmission time limits 
for connections with adequately controlled echo mechanism 
(complying with G.131 [7]): 

• 0 to 150ms: acceptable for most user applications; 
• 150 to 400ms: acceptable for international connections; 
• > 400ms: unacceptable for general network planning 

purposes; however, it is recognized that in some 
exceptional cases this limit will need to be exceeded. 

 
As discussed previously the Core Network is capable of 

handling large amount of data packets.  But when we consider 
the Access Network there remains a problem that occurs when 
large data chunks are introduces inside the Access Network as 
well as from Access Network to Internet. Losing packets in 
the Access Network may cause missing sentences, broken 
speech, and noise on the line which could cause a delay in the 
conversation as well as affect quality of the conversation. 
Handling the data effectively can eliminate the problem of 
quality of service. Managing the data flow to smoothly handle 
the extra load seems to be the best way to prevent packet loss 
and improving the QoS. 

  

III. EXPERIMENT OUTLINE 
To investigate possible solutions for improving QoS, a 

number of simulations were undertaken using Transmission 
Control Protocol (TCP) flows as well as User Datagram 
Protocol (UDP) flows. TCP flows were used mostly for the 
shortest transmission and normal data flow whereas UDP was 
used for the VoIP data flow. TCP by design backs off when 
TCP packets get dropped and retransmits the packets again. 
UDP by design transmits the packets once and never 
retransmits the packets again. Voice communication does not 
require retransmission as the delay would lower the quality of 
service and in the case of VoIP to ensure quality service we 
need to ensure a smooth transmission of data (UDP flow). Fig. 
1 shows a complex network of the telecommunication system 
(in outline). Thousands of such Access Networks shown here, 
together with the core network create an entire real world 
network. Studying an individual link in this network could 
lead us towards a solution for the entire network. 

Fig. 2 shows the model used in the simulations. In this 
network both VoIP and TCP/IP data traffic will be used to test 
the link and bottleneck condition. 

 

 
 

Fig. 1: Real life picture of a typical network 
 

 
Fig. 2: Basic Model for Simulation 

 
In Fig. 2, n0, n1, n2, n3 are four IP routing nodes. In these 

four nodes n0 is a TCP/IP node and FTP service is the traffic 
generator for this node. The TCP/IP node has been attached to 
node n3 via n2 where a “sink” agent is attached. These are all 
duplex links. Again on the other side node n1 is linked via n2 
to n3 and a “null” agent, which just drops the packets received 
is attached to it. With node n1 a Constant Bit Rate (CBR) 
traffic generator is attached which generates the traffic for the 
UDP connection. There are buffers at the head of every link in 

 



 

the network. The focus in this experiment is on one of these 
buffers, namely the one at the head of the link from n2 to n3. 

Three different simulation experiments were executed using 
the NS2 software. These three simulations were based on the 
same basic model. The tests were performed by changing the 
traffic control methods in the network. In Experiment 1, a 
normal Droptail AQM was used. Minor variations of 
experiment 2 labelled 2B and experiment 3 labelled 3B were 
performed to fine tune the buffer size to achieve improved 
performance. In sequence, experiment 2 and experiment 3 
have been implemented using RED and DiffServ respectively. 

 
Fig. 3: Model for Simulation with DiffServ extensions 

 
For every experiment several different types of outputs 

were generated: 
Graphical output using The Network Animator (NAM)  
Graphical output using xgraph, each graph showing queue 

and loss versus time.  NAM and xgraph is widely used 
software for graphical representation of data collected from 
simulations 

All tests were performed under specifically controlled 
circumstances to generate data that would lead to a clearer 
understanding of the problems and assist in further research. 
In Fig. 2, n0 and n1 could be in an Access Network for 
example. This could be a small business or a home premise. In 
the third experiment changes were made in the network to 
accommodate the DiffServ architecture. 

The Access Network link was selected to represent the link 
capacity that most closely resembled the real scenario at the 
time the simulation was run. 

 

IV. RESULTS 

A. Experiment 1: Droptail 
The first experiment was a simple network test with 

Droptail. In this experiment the network consisted of 4 nodes 
(n0, n1, n2, n3) as shown in Fig. 2. The duplex links between 
n0 and n2, and n1 and n2 have a 1.5Mbps bandwidth and 
10ms delay. The duplex link between n2 and n3 has a 2Mbps 
bandwidth and 20ms delay. Each node uses a Droptail queue, 
of which the maximum size is 25 packets. A "TCP" agent is 
attached to n0, and a connection is established to a TCP "sink" 
agent attached to n3. As default, the maximum size of a packet 
that a "TCP" agent can generate is 1KByte. A TCP "sink" 
agent generates and sends ACK packets to the sender ("TCP" 
agent) and digests the received packets. A "UDP" agent is 
attached to n1 and n1 has a direct connection with n3 which is 

a "null" agent. A "null" agent just frees the packets received. 
An FTP and a CBR traffic generator are attached to "TCP" 
and "UDP" agents respectively. The "CBR" agent is 
configured to generate 128 Byte packets at the rate of 1Mbps. 
The CBR is set to start at 1.0 sec and stop at every 3.0 sec.  
The CBR is set to start at 3.5 sec and stop at 4.0 sec and the 
"FTP" agent is set to start at 0.1 sec and stop at 4.9 sec. For 
these experiments the time parameters will give a good 
indication of traffic flow in the simulated network. 

 
Fig. 4: The NAM outlook 

 
Fig. 5: The network for Experiment 1 

 
NS2 provides an animation tool called NAM, which shows 

all significant events during a simulation by means of a 
graphical display. Fig. 4 is an example the screenshot of 
running NAM simulation. 

In the simulation, using NAM output it will be noticed that 
when the queue limit is reached the TCP traffic backs off and 
this back off situation happens when the TCP packets are 
dropped and node n0 doesn’t receive the acknowledgements 
from the "sink" agent. On the other hand, the UDP traffic 
continues as it doesn’t have to wait for acknowledgements. 
Comparing Experiment 1 with Experiment 2, it is apparent 
that by using a standard queuing technique, the data traffic 
handling condition can be improved. Retransmission of lost 
voice packets would only degrade the quality that is why UDP 
has been used. 

This experiment can be modified in multiple ways for the 
purpose of observing real time picture of the data flow. 

 



 

 
Fig. 6: Experiment 1 xgraph output 

 
In Experiment 1 the CBR packet size was set to 128 bytes 

which is often used with the VoIP calls. The Droptail queue 
system was used to trace the queue and draw the xgraph from 
the acquired data. From the NAM output we have observed 
that large number of CBR packets are dropped. The size of the 
TCP packets in this experiment was 1000 bytes. TCP is 
expected to back off when data flow increases to the point that 
packets are dropped. As a consequence of the flow load TCP 
begins to send  acknowledgement for the same packet more 
than once. The FIFO Droptail queue begins dropping more 
CBR packets than TCP as the CBR packets don’t back off due 
to congestion. The main goal was to transmit the CBR packets 
without excessive loss. The TCP lost packets are retransmitted 
with a delay which is acceptable for that service. However 
massive loss of UDP traffic will result in degraded 
performance in the voice transmission. 

Fig. 6 is an xgraph plot of the queue and packet loss versus 
time. Here the queue limit is reached regularly resulting in 
packet loss. The loss displayed on the graph is accumulated 
loss. It is massive in this experiment. Modification of the 
Droptail AQM over the existing link is not feasible because 
increasing the buffer size will cause massive delay. This 
experiment will be further discussed when comparing it to 
Experiment 2 and 3. 

In the presence of the Droptail, AQM Droptail drops 
substantial amount of packets. These are combinations of 
UDP and TCP packets. Using NAM it can be observed that 
the drop rates of UDP packets are higher than TCP packets. 

B. Experiment 2: RED 
Experiment 2A  
The Second experiment uses the same network design with 

the RED AQM at the buffer at the head of the link from n2 to 
n3. The network topology and traffic conditions are exactly 
the same as Experiment 1. Each buffer except for the one at 
the head of the link n2 to n3 uses a Droptail queue which has 
the maximum size of 25 packets. 

 
Fig. 7: Experiment 2 diagram 

 
In the Experiment 2 simulation, using NAM output, we also 

have noticed that when the queue limit is reached the TCP 
traffic backs off and this back off situation happens when the 
TCP packets are dropped and node n0 receive repeated 
acknowledgement or doesn’t receive the acknowledgements 
from "sink" agent. This is very similar to the scenario of the 
Experiment 1. We tried to keep all the node points to behave 
identically. The UDP traffic, as before, starts and continues as 
it doesn’t wait for the reply or acknowledgements. As a result 
in Experiment 2, using the RED AQM data traffic handling 
condition has been improved. Overall loss is similar but buffer 
level is reduced, especially in the second half of the 
experiment. 

Like previous experiments, this experiment can also be 
modified in multiple ways so that we can observe the real time 
picture of the data flow using NAM. 

 
Fig. 8: Experiment 2 xgraph output 

 
After implementing much the same experiment as 

Experiment 1 in presence of AQM and RED we found that we 
can control the buffer levels better. However, from the NAM 
output we can see that noticeable UDP packets are being 
dropped. Although in regard to managing the queue we have 
improved the situation in Experiment 2, but still we are not 
delivering all the UDP packets.  The QoS for VoIP has not 
been greatly improved by the changes.  

 

 



 

Fig. 9: Experiment 2 xgraph output with tuning 
 
Experiment 2B 
In Experiment 2B we have changed the bottle neck 

bandwidth from 2Mbps to 2.45Mbps. The delay time of 20ms 
is the same as in the original experiment. Introducing such a 
change we can see an enormous difference in the queue and 
packet loss versus time graph shown in Fig. 9. 

The improvement we observe is a consequence of change 
changing the bandwidth to 2.45Mbps. Many other changes 
can be made. The factors that can be adjusted include delay, 
queue limit etc. 

After more adjustments with bandwidth in the bottleneck 
we can see in Fig. 9, the queue length and the loss of packets 
has been substantially decreased. The NAM output shows us 
that we have a fewer UDP packets dropped which will still 
cause degradation on VoIP QoS. 

The main dilemma with RED is that is not able to 
differentiate between CBR and TCP packets. It would be 
preferable that no CBR packets were dropped. To try and 
achieve this goal the third experiment will use DiffServ. 
 

 



 

C. Experiment 3:DiffServ 
Experiment 3A 
Our third experiment in ns2 is a network test with the 

DiffServ system implemented in node n2. In this experiment 
the network consists of 6 nodes (s1, s2, n0, n1, e2, dest) as 
shown in Fig. 10. 

The core topology of Experiment 3 is the same as 
Experiments 1 and 2. The details of the additional links are as 
follows: All the Droptail, AQMs’ have 1.5Mbps bandwidth 
and 10ms delay.  Another two simplex links n2 and e2 use 
dsRED/core, and e2 and n2 dsRED/edge have 2Mbps 
bandwidth and 20ms delay. 

The full duplex links between s1 and n0, and s2 and n1, and 
e2 and dest have 10Mbps bandwidth and 1ms delay and use 
Droptail. The AQM’s are in use as follows: The simplex link 
from n0 to n2 uses the dsRED/edge AQM, which marks the 
packets; the link from n2 and n0 uses dsRED/core which 
drops packets, in a manner similar to RED, except that voice 
and data packets are given different treatment, the link from 
n1 to n2 uses dsRED/edge; and the link from n2 to n1 uses 
dsRED/core. The link from n2 to e2 used dsRED/core. 

The traffic conditions are basically the same as in 
experiments 1 and 2 however, the agents are attached at 
different locations because the network topology has changed. 
The "TCP" agent is attached to s1, and a connection is 
established to a TCP "sink" agent attached to dest. As default, 
the maximum size of a packet that a "TCP" agent can generate 
is 1KByte. A TCP "sink" agent generates and sends ACK 
packets to the sender ("TCP" agent) and frees the received 
packets. A "UDP" agent that is attached to s2 is connected to a 
"null" agent attached to dest. A "null" agent just frees the 
packets received. A FTP and a CBR traffic generator are 
attached to "TCP" and "UDP" agents respectively. The CBR is 
configured to generate 1KByte packets at the rate of 1Mbps. 
The CBR is set to start at 1.0 sec and stop at every 3.0 sec, 
again CBR is set to start at 3.5 sec and stop at 4.0 sec and FTP 
is set to start at 0.1 sec and stop at 4.9 sec. 

 
Fig. 10: Experiment 3 diagram 

 
In the Experiment 3 simulation, using NAM output, we 

have noticed that when congestion occurs the TCP traffic 
backs off as expected.  

 
Fig. 11: Experiment 3 xgraph output 

 
This experiment too has experienced high level of packet 

loss. However, using DiffServ successfully eliminated the 
CBR loss; the loss is reduced to zero packets. All lost packets 
are TCP. TCP backs off and retransmits the lost data so this 
will not seriously degrade the performance. Careful choice of 
parameters will produce better performance than has been 
shown in Fig. 11. Here it should be mentioned that congestion 
in the Access Network will normally occur for a modest 
proportion of the time. Once the CBR stops sending the 
packets, the TCP flow will transmit more rapidly. The 
performance of the DiffServ devices can be modified by 
adjusting the parameters further.  

 
Fig. 12 Experiment 3B xgraph output with simple tuning 

 
Experiment 3B 
An adjustment on the existing DiffServ code was made 

which has been represented on Fig. 12. From the NAM output 
it can be observed that not a single UDP packet has been 
dropped. 

The main reason this experiment was conducted with 
DiffServ is to help explain the somewhat high loss rate in 
Experiment 3. In Experiment 3B this has improved 
considerably even though the only change has been increased 
buffer size (50 packets instead of 25). This was undertaken as 
the most cost effective solution to improve performance on an 
access network. Due to the specified buffer lengths (queue 
limit) in packets rather than lengths, and UDP packets being 
shorter than TCP packets, the effective buffer size in 
Experiment 3 was less than in Experiment 2. This is one 
probable explanation for the high packet loss rate in 
Experiment 3. Experiment 3B helps to strengthen the 
assumption. 

Using Different system in our experiment 3 and 
implementing the same network it can be seen that the queue 
length and loss has been fairly controlled. Using the parameter 
setup option in DiffServ system successfully controlled UDP 

 



 

packet drops. DiffServ system has successfully mitigated the 
UDP packet drops which is important for VoIP QoS. During 
the running of the simulation software NAM for this 
experiment observations have been made that only packets 
marked TCP were dropped by the simulated network. 

It appears from Experiment 3 that using adjustment of 
parameters in the DiffServ system the quality of service can 
be substantially increased in the Access Network. 

 

V. CONCLUSION 
Providing reliable, high-quality voice communications over 

a network designed for data communications is a complex 
engineering challenge. Factors involved in designing a high-
quality VoIP system include the choice of codec and call 
signalling protocol. There are also engineering tradeoffs 
between delay and efficiency of bandwidth utilization. VoIP is 
a time-sensitive application and requires real-time support for 
its quality of service (QoS) requirements.  The traditional 
Internet, which uses a best-effort mechanism, fails to support 
the QoS requirement of most multimedia application. 

There are several other parameter options available in the 
DiffServ. Changing those parameters the performance of the 
network can also be further improved. The parameters and 
tuning with variable codec can be effective future study and 
research topics. The findings show that DiffServ 
implementation provide a better control in better performance 
in real time sensitive applications in Access Network. 

These experiments provide a guideline for future studies 
implementing complex configurations to better understand 
and predict the performance of real time media in Access 
Networks. 

It would be interesting to look at the performance of data 
traffic in the VoIP architecture. This would involve a study of 
TCP’s ability to utilize the residual bandwidth (bandwidth 
unused by voice traffic) in the link. 

Research could be undertaken in areas of Adaptive variable 
codec, automated DiffServ design, and parameter 
reconfiguration. This could automatically be reconfigured 
implementing Policy based management to assure optimal use 
of specific service requirements, based on the variations in the 
traffic flow. 
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