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Selection functions in doppler planet searches
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ABSTRACT

We present a preliminary analysis of the sensitivity of Anglo-Australian Planet Search data
to the orbital parameters of extrasolar planets. To do so, we have developed new tools for the
automatic analysis of large-scale simulations of Doppler velocity planet search data. One of
these tools is the two-dimensional Keplerian Lomb–Scargle (LS) periodogram that enables the
straightforward detection of exoplanets with high eccentricities (something the standard LS
periodogram routinely fails to do). We used this technique to redetermine the orbital parameters
of HD 20782b, with one of the highest known exoplanet eccentricities (e = 0.97 ± 0.01). We
also derive a set of detection criteria that do not depend on the distribution functions of fitted
Keplerian orbital parameters (which we show are non-Gaussian with pronounced, extended
wings). Using these tools, we examine the selection functions in orbital period, eccentricity
and planet mass of Anglo-Australian Planet Search data for three planets with large-scale
Monte Carlo like simulations. We find that the detectability of exoplanets declines at high
eccentricities. However, we also find that exoplanet detectability is a strong function of epoch-
to-epoch data quality, number of observations and period sampling. This strongly suggests that
simple parametrizations of the detectability of exoplanets based on ‘whole-of-survey’ metrics
may not be accurate. We have derived empirical relationships between the uncertainty estimates
for orbital parameters that are derived from least-squares Keplerian fits to our simulations and
the true 99 per cent limits for the errors in those parameters, which are larger than equivalent
Gaussian limits by the factors of 5–10. We quantify the rate at which false positives are made
by our detection criteria, and find that they do not significantly affect our final conclusions.
And finally, we find that there is a bias against measuring near-zero eccentricities, which
becomes more significant in small, or low signal-to-noise ratio, data sets.

Key words: methods: numerical – methods: statistical – stars: individual: HD 20782 – stars:
individual: HD 38382 – stars: individual: HD 179949 – planetary systems.

1 IN T RO D U C T I O N

Extrasolar planet detection using the Doppler method has played
a dominant role in placing this field at the heart of astronomical
research. The advances made in this field have been primarily due
to the significantly increased stability of high-resolution spectro-
graphs, and improved techniques for calibrating residual spectro-
graph variations. An excellent example of this can be seen in the

�E-mail: otoole@aao.gov.au

Anglo-Australian Planet Search (AAPS), where a long-term veloc-
ity precision of 3 m s−1 over the initial ∼8 yr of observation (Tinney
et al. 2005) has been improved in recent years to better than 2 m s−1

(e.g. O’Toole et al. 2007).
With the time baselines of Doppler surveys now approaching (or

exceeding) a decade, and routine velocity precisions approaching
1 m s−1, we are now in a position to ask, and answer, critical ques-
tions about the underlying distributions of exoplanet parameters.
Questions such as how common are gas-giant planets in Jupiter-like
orbits (i.e. ∼5 au near circular orbits)? How common are gas-giant
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planets in Earth-like orbits, likely to host habitable terrestrial satel-
lites (i.e. ∼1 au near circular orbits)? How common are low-mass
planets in close orbits (i.e. ∼< 0.3 au with M sin i< 10MEarth)?

To answer these questions, we must first characterize and quan-
tify the selection effects that are present in our observations. It is
clear that the Doppler velocity planet searches have inherent ob-
servational biases. For example, Gaudi, Seager & Mallen-Ornelas
(2005) have noted that there is a sharp cut-off at the periods of
∼3 d for planets detected in Radial Velocity (RV) surveys, while
transit surveys have found the majority of their planets at periods be-
low this. We need to know, in detail, what orbital parameter space
Doppler surveys probe, and how their sensitivity varies over that
orbital parameter space.

Analysis of Doppler survey selection effects have, to date, been
forced to make a variety of simplifying assumptions. Narayan,
Cumming & Lin (2005), for example, examined the detectabil-
ity of short period, close-in planets, and so were able to ignore
the complicating effects of eccentricity. They derived an empirical
relation for detectability as a function of the number of observa-
tions and data quality. Wittenmyer et al. (2006) investigated the
detectability of exoplanets in their data using simulations at e = 0
and 0.6, enabling them to determine that there are selection effects
at high eccentricity, but not to quantify them across the full range
of eccentricities which exoplanets have been found to display. The
effects of eccentricity were considered by Cumming (2004), who
derived empirical relationships for velocity thresholds relying on an
F statistic for two different cases: when the orbital period is shorter
than the time-span of the observations and when it is longer. More
recently (in an expansion of work begun in Cumming, Marcy &
Butler 1999), Cumming et al. (2008) used this technique to derive
detection thresholds, determine selection effects and measure the
incompleteness of Keck Planet Search data in order to investigate
the exoplanetary minimum mass and orbital period distributions
present in that data. However, the analytical method used in these
studies makes a number of simplifying assumptions: that individual
velocity uncertainties can be represented with a Gaussian distribu-
tion; that observations are evenly spaced and that the number of
independent periods probed by a data set can be quantified in a
meaningful way (Marcy et al. 2005). Unfortunately, real observa-
tions violate all three of these assumptions.

In this paper, therefore, we lay the groundwork for an investiga-
tion of the full range of physically interesting exoplanet parameters
that Doppler data can probe (period P, eccentricity e and minimum
planet mass M sin i) using star-by-star, epoch-by-epoch Monte Carlo
simulations, in an effort to understand what our Doppler data are
telling us about the orbital parameters of exoplanets, while making
as few assumptions as possible. We introduce a set of automated
planet detection criteria and combine it with large-scale simula-
tions of Keplerian orbits for each star observed to determine the
sensitivity of our ‘as observed’ data.

1.1 Observations, sampling and data quality

Objects in the AAPS catalogue are listed in Jones et al. (2002)
and Tinney et al. (2003). The details of our observing programme
are described in more detail elsewhere (Butler et al. 2001). Briefly,
the data are taken using the University College London Echelle
Spectrograph mounted at the coudé focus of the Anglo-Australian
Telescope (AAT). An iodine absorption cell is placed in the beam,
imprinting a forest of molecular iodine absorption lines on to the
stellar spectrum. These lines are used as a wavelength reference to
derive high-precision velocities as described in Butler et al. (1996).

The target stars of the AAPS (in common with most Doppler
search targets) are observed in a non-uniform way. First, observing
runs are scheduled in blocks spread unevenly throughout a semester,
which necessarily needs to non-ideal (i.e. non-logarithmic) period
sampling. Secondly, the weather during each block of observations
affects the time sampling of data as well, with velocity precisions
generally being poorer in poor weather conditions, and with bright
objects tending to be generally observed more often when conditions
are poor. (Note that in this paper we use the median measurement
uncertainty of a given set of observations as an indicator of the data
quality.)

Finally, large amounts of data tend to be acquired for objects
where a planet is thought to exist and smaller amounts of data are
acquired for stars where planets are thought unlikely (or where a
possible planet has period longer than the current data string). As a
result ‘high-priority’ targets get observed more densely. As a result
of all these effects, time sampling can deviate markedly from the
ideal of uniform logarithmic sampling in period space.

After each observing block is completed, the data are processed
to update a data base of velocities. This is analysed periodically to
look for objects showing significant variability or periodicity. These
get promoted to the ‘higher priority’ status described above. This
prioritization analysis has been done to date using a Lomb–Scargle
(LS) periodogram, Keplerian fitting based on the most significant
periods, the determination of False Alarm Probabilities (Marcy et al.
2005) and the application of simple tests asking ‘Have we seen at
least one period?’ and ‘Do subsequent data obtained from a high-
priority object match the prediction from initial fits?’ This prior-
itization maximizes the rate at which exoplanets can be extracted
from our data, but means that our survey data base (like those of
most Doppler planet searches) is quite non-uniform. Simulation of
the as-observed data sets for all stars in our data base is therefore
the only way to quantify the non-uniform selection effects inherent
in Doppler velocity planet searches.

2 THE TWO-DI MENTI ONA L K EPLERI AN

L O M B – S C A R G L E P E R I O D O G R A M

A tool commonly used for detecting variability in light and ra-
dial velocity curves is the LS periodogram (Lomb 1976; Scargle
1982). It involves determining, as a function of frequency, the dif-
ference between the χ 2 of a sinusoid fit to data and the χ 2 of a
constant fit (with the resulting ‘power’ being normalized in some
way). There are well-developed statistics surrounding LS power, al-
lowing significant values to be attributed to possible detections (see
e.g. Cumming 2004, for a discussion). In most cases where the LS
periodogram is applied (e.g. in most areas of stellar pulsation and
close binarity), the signal under study is approximately sinusoidal,
and so the LS periodogram is applied appropriately.

The LS periodogram is now increasingly being used in Doppler
velocity planet searches where, however, circular orbits (giving rise
to sinusoidal velocity curves) are not common (Butler et al. 2006).
It therefore makes more sense to fit Keplerians to data instead of
sinusoids as discussed by Cumming (2004). As orbital eccentricity
is an important parameter in a Keplerian function, we have expanded
the traditional LS periodogram to include two dimensions – i.e. to
examine power as a function of both period and eccentricity. We call
this the two-dimensional Keplerian LS (2DKLS) periodogram. The
method we use to calculate the 2DKLS periodogram was briefly
discussed in O’Toole et al. (2007) and is described in more detail
below.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 392, 641–654



Selection functions in planet searches 643

2.1 Method

The 2DKLS is an extension of the traditional LS periodogram,
where we vary period and eccentricity in the calculation of power.
(While the argument of pericentre, ω, is also important in determin-
ing the shape of the velocity curve, it does not impact the orbital
period measurement in the same way as eccentricity.) This is also
an extension of the one-dimensional KLS periodogram introduced
by Cumming (2004). We find, however, that not fixing eccentric-
ity, while more efficient computationally, allows for possible non-
physical values (i.e. outside the range 0–1). The ‘smoothness’ of
the periodogram also depends a lot more on the initial guesses for
the free parameters. We use a grid of fixed periods and eccentric-
ities to calculate the 2DKLS, with e = 0–0.98 in steps of 0.01,
and periods on a logarithmic scale from 1 d up to the maximum
possible period of interest for that data sequence (in most cases
4500 d for current AAPS data), on a spacing of 10−3 in log10 P. A
Keplerian described by equation (1) is then fitted to the data using a
non-linear least-squares fitting routine with Levenberg–Marquardt
minimization from Press, Flannery & Teukolsky (1986).

Vr (t) = K{cos[ω + ν(t)] + e cos ω} + V0. (1)

Here, K is the semi-amplitude, ν(t) is the true anomaly in-
volving implicit dependence on the orbital period P and the time
of periastron passage Tp and V0 is the velocity zero-point. The
true anomaly is derived by solving Kepler’s equation M(t) = E(t)
− e sin E(t), where E(t) is the eccentric anomaly and M(t) =
2πt/P is the mean anomaly. The power, z(P, e), is determined
using z(P , e) = �χ 2/4 = (χ 2

mean − χ 2
Kep)/4, where χ 2

Kep is the
goodness-of-fit for the best-fitting Keplerian model and χ 2

mean is the
equivalent for a constant fit to the data. For each value of P and e,
we find the values of the remaining parameters that minimize χ 2

Kep

and therefore maximize z(P, e). As discussed by Cumming (2004),
when the noise level is not known in advance (i.e. for observations),
z(P, e) must be normalized in the 2DKLS case by χ 2

Kep. This form of
the 2DKLS was implemented by O’Toole et al. (2007) and is used
in the next section. For the purposes of the simulations in this paper
(described in Section 3), the power is not normalized because the
noise level is an input parameter and therefore known in advance.

The 2DKLS has several advantages over the traditional LS peri-
odogram. First, it is sensitive to high-eccentricity planets, which the
traditional LS periodogram is not (as we show with an example in
Section 2.2). Secondly, because the Keplerian functional form fitted
by the 2DKLS is a better representation of real orbits, the peak in
the 2DKLS power is higher than the traditional LS power. Thirdly,
the width of the 2DKLS power peak more accurately indicates the
level at which the eccentricity is determined by a given Doppler data
set than the cross-terms in a single non-linear least-squares ‘best’
Keplerian fit. (Real eccentricity uncertainties are invariably much
larger than the least-squares cross-term uncertainties.) In addition,
the 2DKLS can be used in a similar manner to that of the CLEAN

algorithm (Högbom 1974), if a simultaneous fit of multiple Keple-
rians is also done. But perhaps most importantly for our purposes,
the 2DKLS allows for a simpler automation of the planet detection
process, as it much more rapidly narrows a Keplerian trial fit on the
‘correct’ best estimate of period and eccentricity.

2.2 Application to HD 20782

The 2DKLS periodogram aids significantly in the detection of high-
eccentricity planets. As noted by Jones et al. (2006) in their pa-
per on the extremely eccentric planet, HD 20782b, detecting high-

Figure 1. (a) The 2DKLS periodogram for HD 20782. Dark areas indicate
significant power. The dashed lines indicate the positions of the slices. (b) Th-
ree slices through the 2DKLS at the fit eccentricity (top panel), e = 0.80
(middle panel) and e = 0.0 (bottom panel). The signal at the fit eccentricity
is very strong, barely detectable at e = 0.80 and undetectable at e = 0.0.

eccentricity planets using traditional periodogram methods is ex-
tremely difficult. With the 2DKLS, however, the detection of a
planet like HD 20782b becomes straightforward. The 2DKLS pe-
riodogram for all AAPS data on HD 20782 up to 2007 October 1
is shown in Fig. 1(a), along with slices through the 2DKLS at e =
0.97 (the best-fitting Keplerian eccentricity), 0.8 and 0.0 in Fig. 1.
The planetary orbital signal is obvious at e = 0.97, but the power
peak becomes progressively smaller at lower eccentricities; it is al-
ready difficult to discern at e = 0.8 and (most critically) completely
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Table 1. Updated orbital parameters of HD 20782b.

Parameter All obs. Without
extreme pt.

P (d) 591.9 ± 2.8 577.9 ± 2.6
K (m s−1) 185.3 ± 49.7 21.7 ± 1.2
e 0.97 ± 0.01 0.57 ± 0.04
ω 147.7 ± 6.5◦ 98.6 ± 5.7◦
T0 (JD-245 1000) 83.8 ± 8.2 175.9 ± 8.4
M sin i (MJup) 1.9 ± 0.5 0.73 ± 0.05
a (au) 1.381 ± 0.005 1.359 ± 0.005
Nobs 36 35
rms (m s−1) 5.6 4.8
χ2

ν 2.34 1.90
Jitter∗ (m s−1) 2.21 2.21

∗Stellar jitter is calculated using the updated prescription of
Wright (private communication).

Figure 2. Keplerian fit for HD 20782, along with the residuals after sub-
traction of the best-fitting model.

undetectable at e = 0.0. In other words, this is a planet which an
automated traditional LS ‘first-pass’ analysis would never detect.

We update the Jones et al. parameters for this planet using the
most recent data in Table 1 and show the revised fit in Fig. 2. The
planet is in a highly eccentric orbit; however, further refinement of
the orbit with confirmation of additional observations near perias-
tron (i.e. near the large velocity excursion) is important. The last
excursion for the e = 0.97 solution occurred in the window 2008
June 18–21, when (unfortunately) HD 20782 was inaccessibly be-
hind the Sun, so further refinement of the orbit will have to wait until
the beginning of 2010. Measured velocities are given in Table 2.
To highlight the importance of constraining eccentric planets in the
narrow windows when their velocities change most rapidly, we also
show in Table 1 the results of the fit excluding the most extreme
velocity point. The significant change in the best-fitting orbital ec-
centricity (0.97 to 0.57) that occurs as a result of removing just one
data point highlights the difficulties encountered in detecting and
characterizing eccentric planets.

3 SI M U L AT I O N S

The goal of this work is to derive the underlying distributions of
the orbital parameters (period, eccentricity and minimum mass)

Table 2. Velocities for HD 20782 with corre-
sponding measurement uncertainties.

JD RV
(−245 1000) (m s−1)

35.319456 17.7 ± 2.3
236.930648 −10.7 ± 3.3
527.017315 3.2 ± 3.4
630.882407 25.5 ± 2.7
768.308854 −10.8 ± 2.6
828.110660 −11.8 ± 3.0
829.274491 −10.8 ± 3.8
829.996250 −30.6 ± 8.7
856.135301 −14.5 ± 3.6
919.006597 −7.8 ± 2.9
919.996296 −5.8 ± 2.9
983.890093 0.000 ± 3.3

1092.304375 13.7 ± 2.3
1127.268137 13.5 ± 2.8
1152.163079 19.0 ± 2.5
1187.159653 20.7 ± 2.5
1511.206498 −6.5 ± 2.3
1592.048162 13.1 ± 2.3
1654.960313 11.4 ± 2.2
1859.305274 −206.2 ± 1.9
1946.138453 −20.6 ± 2.0
1947.122481 −17.3 ± 1.6
2004.001472 −4.2 ± 1.8
2044.023669 −3.3 ± 2.2
2045.960788 −5.8 ± 1.9
2217.288060 4.7 ± 1.6
2282.220295 18.1 ± 1.9
2398.969109 17.5 ± 1.3
2403.960670 25.5 ± 2.5
2576.306902 −12.7 ± 1.5
2632.281289 −11.7 ± 1.6
2665.186505 1.7 ± 1.7
3013.216410 28.3 ± 1.5
3040.131498 20.8 ± 1.9
3153.970057 −14.5 ± 2.1
3375.246543 10.2 ± 1.6

as revealed by our AAPS observations, so as to allow meaning-
ful comparison with planet formation and evolution models. Each
object in our catalogue has a different brightness, different intrin-
sic velocity variability and has been observed at different epochs
with varying seeing and transparency conditions. The only way,
therefore, to understand the selection functions inherent to our
data set is to simulate it on a star-by-star and epoch-by-epoch ba-
sis. We have therefore begun a major programme of Monte Carlo
simulations.

The time-stamps for the AAPS observations of our target stars
were used to create artificial data sets for single planets (modelled as
a single Keplerian using equation 1 with an input period, eccentric-
ity and planet mass). The input periods on a logarithmic grid from
log10 Pi = 0.0 to 3.6 in steps of 0.3 (or 1 to 3981 d); input eccentric-
ities are on a grid from 0.0 to 0.9 in steps of 0.1 and planet masses
are on a grid with M = (0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 1.6, 2.3, 3.0,
4.0, 6.0, 9.0, 13.0, 20.0) in units of MJ . The semi-amplitudes for
each artificial data set are derived using the following:

Ki = Mi sin i√
1 − e2

i

[
Pi(M∗ + Mi sin i)2

2πG

]−1/3

, (2)
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Table 3. Properties of our target stars. �T is the time-span of the observa-
tions.

Star V Spec N �T Median
(mag) type (d) unc. (m s−1)

HD 20782∗ 7.36 G3V 35 3119 2.27
HD 38382 6.34 F8V 17 2452 3.80
HD 179949∗ 6.25 F8V 56 2626 5.26

∗Indicates planet host star.

where M∗ is the mass of the host star, Mi is the planet’s mass, ‘i’ is
the (unknown) inclination of the system and G is the gravitational
constant. The subscript ‘i’ denotes the input parameter. Measured
parameters will be denoted with a subscript ‘m’. Stellar isochrone
masses from Valenti & Fischer (2005) are used to estimate M∗ for
each host star.

At each epoch, the ideal Keplerian has noise added – which we
model at present as being Gaussian, with a width given by the in-
ternal measurement uncertainty produced by that epoch’s Doppler
analysis. It is known that the measurement uncertainties themselves
do not follow a Gaussian distribution, for a variety of reasons. A
more realistic model for stellar noise in our simulations is currently
planned. This will incorporate stellar noise sources such as magnetic
activity (e.g. Wright 2005), stellar oscillations (O’Toole, Tinney &
Jones 2008) and stellar convection and systematic measurement ef-
fects. The 2DKLS necessarily involves an increase in computation
load compared to the LS, meaning that parallelization of code is
vital. Each simulation takes anywhere between 20 s and 10 min of
CPU time per processor depending on the number of data points.
We have used the MPICH implementation1 of the Message Passing
Interface library to run our simulation analysis system in parallel.
The analysis of our early simulations were run on a small Linux
cluster comprising 10 processors at the Anglo-Australian Observa-
tory, as well as some of the 224 processors available through the
Miracle facility at University College, London.2 Subsequent anal-
yses were moved to the Swinburne Centre for Astrophysics and
Supercomputing3 in 2007 July utilizing around 160 processors per
star.

One hundred simulations have been constructed for each set of
parameters (P, e, K), leading to 182 000 simulations for each target
object. In this paper, we focus on results for three stars: HD 20782,
HD 179949 and HD 38382, whose relevant properties are shown in
Table 3. The first two objects each have a known planet (Tinney et al.
2001; Jones et al. 2006). However, to also examine the effects of
sampling and number of observations, we also consider further two
subsets of the HD 179949 data – one using every second observation
and the other every fourth – and simulated those as well.

3.1 Distributions of fitted Keplerian parameters

In a study of exoplanet parameter uncertainties, Ford (2005) found
that their distribution is typically non-Gaussian. In many ways this
is not surprising, considering the correlations existing between pa-
rameters and as the description of Keplerian motion given by equa-
tion (1) is highly non-linear.

We can attempt to understand the uncertainty distributions of the
Keplerian orbital parameters that are produced in a least-squares fit

1 http://www-unix.mcs.anl.gov/mpi/mpich1/index.htm
2 http://www.ucl.ac.uk/silva/research-computing/
3 http://astronomy.swin.edu.au/supercomputing/

Figure 3. Distribution of em − ei for HD 179949 with log Pi = 2.4 and ei =
0.4. The dashed curve is a Gaussian fitted to the data, while the solid curve
is a Lorentzian fit. The 99 per cent confidence limit is 7.7 times larger than
the equivalent 2.58σ limit (were Gaussian statistics valid).

Figure 4. Similar to Fig. 3 except for Pm − Pi with log Pi = 0.9 and ei =
0.0. The 99 per cent confidence limit is 6.5 times larger than the equivalent
2.58σ limit (were Gaussian statistics valid).

to an observed Doppler data set by using our simulations to look at
the distributions of the orbital parameter errors4 (i.e. the differences
between the input ‘i’ and measured ‘m’ simulation values). Fig. 3
shows the distribution of the errors in eccentricity for HD 179949,
with log Pi fixed at 2.4 and ei fixed at 0.4 (i.e. including eccentricity
errors at all planet masses). The dashed line is a Gaussian fit to
the histogram, while the solid line is a Lorentzian fit. The wings
of the distribution diverge significantly from a Gaussian and are
better matched by the Lorentzian. Note that we are not claiming
that the distribution is Lorentzian, simply that the extended wings
of this function is a better match to the extended wings of the
observed distribution. Similarly, the distribution of measured peri-
ods and semi-amplitudes, shown in Figs 4 and 5, respectively, is

4 We distinguish here between the error of a measurement (i.e. by how much
it is wrong, which can only be known when one knows the ‘right answer’
as in these simulations) and its uncertainty (i.e. an estimate of the quality of
a measurement in the absence of knowing the ‘right answer’).
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Figure 5. Similar to Fig. 3 except for Km − Ki with log Pi = 2.7 and
Ki = 37.5 m s−1. The 99 per cent confidence limit is 10.4 times larger than
the equivalent 2.58σ limit (were Gaussian statistics valid).

non-Gaussian, with extended Lorentzian-like wings. The special
case of ei = 0 is not only non-Gaussian, but also non-symmetric.
An obvious consequence of this and the analysis of Ford (2005) is
that Gaussian statistics for the orbital parameter estimates (e.g. 3 or
5σ limits) cannot be used as criteria for exoplanet detection.

To demonstrate this, we show in Figs 3–5 both the 99 per cent
limits of these error distributions and the data ranges that would cor-
respond to such a limit were Gaussian statistics valid (i.e. 2.58σ ).
In every case, the observed 99 per cent confidence limits are much
larger by the factors of ∼5–10. Thus, the real uncertainty on a
Keplerian fit parameter is significantly larger than that one would
predict based on Gaussian statistics alone, and Gaussian statistics
must be either avoided or suitably modified, in any set of exoplanet
detection criteria. We discuss a set of criteria that takes this effect
into account in Section 4 and, in particular, we examine empiri-
cal relationships which can be used to calibrate and derive robust
confidence limits for the orbital elements produced by least-squares
Keplerian fits in Section 4.3.

4 D ETECTION CRITERIA

One of the important practical considerations of our simulation
system is that it must be automated. We therefore require a set
of criteria to decide whether a planet has been detected, without
any human intervention. These will be applied to the results of
Keplerian fits to simulated data that should be both robust and not
add significantly to the time budget of our analyses.

When determining adequate criteria, there are two important dif-
ferences between the analysis of real and simulated data that must
be considered. First, there is a difference between simply trying to
determine whether one of 250 target stars has a planet, and whether
one of millions of data sets has a real planet or not. In the former
case, as much time can be spent as needed on trying to decide ‘by
eye’ whether it is real or not. For the latter case, an automation is
essential.

Secondly, the aim of these simulations is not the same as that for
planet discovery. In the latter, the bias is towards seeing whether
a planet has been found orbiting a target star, with subsequent ob-
servations being used to confirm or deny its status. For a simulated
detection, there are no subsequent observations – one has to de-

cide the status using only the simulated data. Moreover, there is a
simulated planet present in every data set. What we need to know
whether it has been detected with sufficient robustness that we can
be sure (within a given confidence level) that it is a real detection.
As such the simulated detection criteria will almost always be more
stringent than the criteria used for the discovery of an exoplanet
from actual planet search data.

Considered another way, these simulations are aiming to gener-
alize the same process that is used in estimating the 1/Vmax volume
that is represented by each star going into the estimation of a lumi-
nosity function. In this case, we are estimating for each star Vmax in
the (P, e, K) phase space that is accessible to a given set of data. This
means that a selection of a set of detection criteria that determines
Vmax is arbitrary – it determines the sensitivity, but not the results,
of our survey. Have too loose a set of detection criteria, and you
find lots of objects, and have a large Vmax, but are subject to false
positives. Have too tight a set of detection criteria, and you find few
objects and have a small Vmax, but are much less subject to false
positives.

4.1 Previous sets of detection criteria

There are several methods that have previously been used to deter-
mine the reality of a planet detection. Marcy et al. (2005) presented
an excellent discussion on two different approaches to the False
Alarm Probability (FAP). The FAP is the probability that the best-
fitting model Keplerian could have arisen simply as a result of noise
fluctuations. The first involves the classical F-test (Bevington 1969)
which has several weaknesses: it assumes that the uncertainties of
the measurements follow a Gaussian distribution – even the smallest
deviation from normality has been reported to be extremely non-
robust (Lindman 1974); it cannot properly account for the actual
uneven temporal sampling of the observations (e.g. Marcy et al.
2005) and it depends on the number of independent frequencies –
a number which can only be approximated. Both Cumming (2004)
and Cumming et al. (2008) used the F-test to investigate the de-
tectability of planets in Doppler surveys based on the analytical
FAPs.

The other method presented by Marcy et al. (2005) is empirical
and involves creating 1000 or more quasi-artificial data sets by gen-
erating randomly scrambling the velocities, but keeping the times
the same, and then analysing the new sets in the same way as the
original data. The number of χ 2

ν values similar to the value for the
candidate detection is then used to construct a FAP. This approach
has the advantage that the distribution of uncertainties and tem-
poral sampling of the observations are unimportant. If used alone,
it cannot distinguish between peaks with similar significance in a
power spectrum of the actual observations, as these are likely to
have similar FAPs.

Because of the large number of simulations we plan to carry out,
it is important that we have a simple set of criteria that can quickly
test the reliability of a detection. This automatically rules out sev-
eral approaches that are in themselves computationally intensive;
in particular, the Marcy et al. scrambling method to determine a
FAP described above would add considerably to the time budget
of our simulation analysis. The F-test used by Cumming (2004) is
also inappropriate for two reasons: first, AAPS data have uneven
temporal sampling and secondly, because we have incorporated our
velocity measurement uncertainties – which do not follow a Gaus-
sian distribution – into our noise estimates, the simulated velocities
show small departures from a pure Gaussian. We have therefore
developed our own set of criteria, discussed below.
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4.2 Our criteria

There are two final points to consider before we present our criteria.
First, the criteria we use must be ‘blind’ – i.e. they must only be
based on measured quantities, and have no reliance on the input
orbital parameters of the simulations. Secondly, the number of false
positives should be as low as possible. The following are by no
means the only criteria that we could use, however, as we show in
Section 4.4, they produce an acceptable fraction of false positives.
The set of criteria we have found to be useful is

rms(sim) ≥ rms(res). (i)

The rms of the simulated observations must be greater than or
equal to the rms of the residuals of the best-fitting model. That is,
by subtracting a Keplerian model from the time-series, the overall
scatter should decrease, rather than increase.

Km ≥ 2δK + rms(res). (ii)

The measured semi-amplitude must be greater than or equal to twice
the semi-amplitude uncertainty, plus the rms of the residuals of the
best-fitting model. The uncertainties from the fit procedure we have
used are correlated – the off-axis terms in the covariance matrix
calculated in the non-linear least-squares fit are non-zero – which
means that the fit uncertainties are lower limits. We approximate
the semi-amplitude uncertainties here as twice the fit uncertainty
plus the rms of the residuals of the best-fitting model. This criterion
rejects poorly constrained semi-amplitudes (and therefore poorly
constrained planet masses).

Pm ≥ 2δP . (iii)

The measured period must be greater than or equal to twice the
period uncertainty. As with the semi-amplitude uncertainties in cri-
terion (iv), the period uncertainties are underestimated. We double
the fit uncertainty to reject poorly constrained periods.

χ 2
ν ≤ 3. (iv)

The χ 2
ν value must be less than or equal to 3. This is a somewhat

arbitrary cut, however it significantly reduces the number of false
positives at high eccentricities, as discussed in Section 4.4.

As a simple test of our criteria we have used them to check
whether each of the published planets in the AAPS target catalogue
would be found. As a part of this test, we include a stellar jitter term
in our fits, despite not including it in our simulations. This is be-
cause jitter is present in the real observations (and contributes to the
individual measurement uncertainties of those real observations),
while it is not present in our simulated observations, which only
have had Gaussian noise added to them. By including the appropri-
ate jitter values in our analyses (Wright, private communication),
we find that 15 of the known planets satisfy our criteria. Excluding
the χ 2

ν cut, all bar one of the planets pass the test. This bares no
reflection of the reality of the planets, but rather a reflection of the
strictness of our criteria. Other effects at play here are the presence
of multiple companions, and accuracy of the jitter measurements
used, which is only around ±50 per cent (Wright, private commu-
nication; note that the jitter contains unquantified time variability).

4.3 Orbital parameter confidence limits

We have seen in the discussion of distribution functions in Sec-
tion 3.1 that Gaussian statistics cannot be used to model the distri-
bution of errors in orbital parameters that arise from least-squares

Figure 6. Plot of 99 per cent limits in errors (i.e. difference between input
and measured orbital parameters) versus median uncertainty in the parameter
from least-squares Keplerian fits to the simulated data, for each orbital
parameter for HD 20782. The dashed line shows a power law with the
parameters listed in Table 4.

Keplerian fits to our simulated data (and obviously they similarly
cannot be used to model the uncertainties in orbital parameters for
detected Doppler planets from real data sets either).

The orbital parameter error distribution functions do contain in-
formation that is useful, however, in that they allow us to empirically
calibrate the relationship between the uncertainties that arise from
the covariance matrix in a least-squares Keplerian fit (i.e. the source
of the traditional uncertainties in orbital parameters produced in
analysing Doppler data sets) and our observed error distributions.
To examine these relationships, we compare the uncertainties from
the least-squares Keplerian fit and the 99 per cent confidence range
from the simulations.

In Fig. 6, we show the 99 per cent confidence limit as a function
of the median uncertainty of the fit δPm (top panel), δKm (middle
panel) and δem (bottom panel) for HD 20782 at fixed pairs of Pi

and ei or Pi and Ki (as in Section 3.1). There is clearly a correlation
between these parameters, which we have characterized in the figure
with a power law for each parameter. The power laws have the
form: 99 per cent confidence = 10αXβ , where X = δPm, δem and
99 per cent confidence = α + β log δKm for semi-amplitude. The
parameters α and β from these fits for HD 20782 are listed in
Table 4 (along with the equivalent parameters for similar fits to the
equivalent data for HD 38382 and HD 179949).

For the period data, it is clear that the power-law slope is consis-
tent with an index of 1 – i.e. the 99 per cent confidence limits are
linearly related to the 1σ fit uncertainties by the factors of 26–47,
or equivalently Gaussian statistics overestimate the 99 per cent lim-
its for a period determination from these simulated Doppler data
by the factors of between 10 and 18. For eccentricity, the corre-
lation is weaker, and the power-law fit indicated is slightly above
1. More importantly, the 99 per cent confidence limits are about
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Table 4. Power-law exponents for each star. The power laws have the form
10αXβ , for X = δPm, δem and α + β log X for X = δKm.

Parameter HD 20782 HD 38382 HD 179949

αP 1.41 ± 0.03 1.67 ± 0.02 1.50 ± 0.02
βP 1.00 ± 0.01 1.07 ± 0.01 1.02 ± 0.01

αK 56.6 ± 1.3 90.0 ± 6.0 75.6 ± 4.3
βK 60.3 ± 4.9 134.5 ± 15.6 155.0 ± 10.2

αe 1.46 ± 0.13 1.82 ± 0.26 2.10 ± 0.26
βe 1.12 ± 0.06 1.33 ± 0.15 1.41 ± 0.13

10–50 times larger than those which would be derived from sim-
ply trusting the Gaussian nature of the uncertainties coming from a
least-squares Keplerian fit. This reflects the fact that eccentricity is,
in general, very poorly constrained by Doppler data sets, as was seen
in our analysis of the 2DKLS. The correlation between the observed
99 per cent confidence limits and the Keplerian fit uncertainties for
semi-amplitude K is poor, and again the 99 per cent confidence lim-
its in K are larger than those one would predict from the Keplerian
fit uncertainties.

From our analysis of these three data sets, it would not appear
that there are any general conclusions that can be reached, for every
star and every data set, on how to relate real 99 per cent confidence
limits to Keplerian fit uncertainties (other than that Keplerian fit
uncertainties significantly underestimate – by the factors of greater
than 10 – the real confidence limits). However, it is clear that for a
given simulated data set, the meaningful correlations can be derived
and applied. We have therefore used these relationships to convert fit
uncertainties into meaningful confidence limits for our subsequent
analysis of false positives.

4.4 False positives

It is important that the number of false positives (i.e. the number of
incorrect detections) triggered by our detection criteria be (a) quan-
tifiable and (b) as small as possible. We adopt as our ‘incorrectness’
criterion that the measured orbital parameter differs from the input
orbital parameter by more than the 99 per cent confidence limit for
that orbital parameter (as derived in Section 4.3).

For each simulation that results in a detection, we test for ‘cor-
rectness’ by asking:

(i) is the error in period (i.e. the difference between measured
and input periods) less than the 99 per cent confidence limit (as
derived from calibrating the least-squares fit period uncertainty to
a true confidence limit as described in Section 4.3)? If the error is
larger than the 99 per cent limit, we call the period incorrect. We
also ask:

(ii) is the error in the the semi-amplitude larger than the
99 per cent confidence limit? If it is then we call the semi-amplitude
incorrect.

If both the period and the semi-amplitude are determined to be
incorrect (at the 99 per cent level), we describe this as an incorrect
detection, or false positive. The false positive rate is then the ratio
of the number of incorrect detections to the total number of detec-
tions. Averaging over all the parameters, we find the false positive
rate due to incorrect period and semi-amplitude to be 1.2 per cent
for HD 179949, 2.2 per cent for HD 20782 and 9.0 per cent for
HD 38382. In the sections that follow, we look in more detail at
these numbers and their trends as a function of input orbital param-
eters.

Figure 7. False positives (open squares) for HD 20782 as a function of sim-
ulated input eccentricity. The filled squares represent the corresponding false
positives excluding the χ2

ν detection criterion (see Section 4.4.1 in the text).
Without this χ2

ν cut, the simulations would be subject to an unacceptable
level of false positives at high eccentricities.

4.4.1 The χ 2
ν ≤ 3 detection criterion

We are now in a position to demonstrate our reasons for including
this particular criterion, which we do in Fig. 7, which shows the
false positive fraction as a function of simulated input eccentricity
both with this criterion applied (open squares) and not applied (filled
squares). It immediately becomes apparent that without this particu-
lar criterion being applied, our data set is subject to an unacceptably
large fraction of false positives at high eccentricity. Even with this
criterion being applied, the number of false positives shows an in-
crease over the ‘base’ level of 1–2 per cent seen at low eccentricity,
up to 6 per cent at e = 0.9. (Similar patterns are seen for the other
sets of simulations for the other stars.)

4.4.2 Eccentricity

We show in the top panel of Fig. 8 the rate of false positives for
each object as a function of input eccentricity, at all the values
of Pi and Mi . For HD 179949 and HD 20782, the percentage of
false positives remains at ∼1 per cent up to ei ≈ 0.6 and then
increases to 3–6 per cent at ei = 0.9. In the case of HD 38382, the
false positive rate is around 7 per cent up to ei ≈ 0.5, increasing
to 18 per cent at ei = 0.9. The higher false positive rate for this
star is due to its having much fewer observations (just 17 epochs)
than the other two stars – fewer observations make it harder to
detect an exoplanet, and conversely makes that data set more subject
to false positive detections. To demonstrate this, we show in the
bottom panel of the same figure the false positive rate for the three
HD 179949 subsets. The 28 epoch subset (crosses) has two to three
times as many false positives as the full HD 179949 data set (with 56
epochs; diamonds) and the 14 epoch subset matches the HD 38382
false positive rate at low eccentricities and then becomes worse
as eccentricity increases. The star-by-star approach in this case
reproduces the expected behaviour – more observations give more
confidence in an exoplanetary detection.

4.4.3 Period

The false positive rates for our three stars are shown as a function
of Pi (at all values of ei and Mi) in Fig. 9. At periods longer than
the time-span of the observations and below ∼4 d, the rate of false
positives is 4–9 per cent for HD 179949 and HD 20782. As with
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Figure 8. Top panel: false positives for HD 179949 (diamonds), HD 38382
(triangles) and HD 20782 (squares) as a function of input eccentricity. Bot-
tom panel: false positives of each of the HD 179949 subsets – the full set of
56 epochs (triangles), the 28 epoch subset (crosses) and the 14 epoch subset
(circles) – demonstrating the significant increase in false positive detections
at low observation density. A dotted line is shown at the 1 per cent false
positive level.

Figure 9. False positives of the measured period values for HD 179949,
HD 38382 and HD 20782 as a function of the input period. Symbols have
the same meaning as Fig. 8.

eccentricity, the false positive rate is below ∼2 per cent for these
stars. For HD 38382, the false positive rate steadily increases as
a function of log P from around 6 per cent at short periods to
∼25 per cent at longer periods – again this is due to the sparser
sampling of the HD 38382 data.

4.4.4 Planet mass

Finally, the false positive rate as a function of Mi (at all values of Pi

and ei) is shown in Fig. 10. While the large numbers of false positives

Figure 10. False positives of the measured semi-amplitude values for
HD 179949, HD 20782 and HD 38382 as a function of input planet mass.
Symbols have the same meaning as Fig. 8.

at low mass might at first appear troubling, it must be remembered
that there is a significant selection effect against finding objects at
very low masses. Therefore, the number of correct detections will
decline steeply at very low masses (as low-mass planets are very
hard to detect), while the incorrect detection rate should remain
roughly constant. This will lead to a systematic increase in the false
positive rate at very low masses.

We test this idea by showing the false positives as a function
of the total number of simulations for each star in the top panel of
Fig. 11. The incorrect detections seem to be approximately constant
for HD 179949 and HD 20782, with values of ∼1–2 per cent for the
former and ∼2–3 per cent for the latter. In the case of HD 38382,
however, there is an increase from about 1.6 MJup up to around
20 per cent. Comparing HD 38382 to the three subsets of HD 179949
(bottom panel of Fig. 11), we see that the cause of the increase is
observation density. The subset with N = 14 – approximately the
same as HD 38382 – suffers from the same effect. The N = 28 sub-
set shows the effect to a lesser degree, and it is almost completely
removed in the N = 56 subset. This shows one weakness in our de-
tection criteria and we are currently investigating ways to minimize
the problem.

5 R ESULTS

Our automated detection criteria, and a means to analyse false posi-
tive rates, place us in a position to examine in detail the observational
biases present in our data for the three stars under simulation. We
define the detectability D′(Pi, ei , Mi) as the detection rate as a func-
tion of Pi , ei and Mi – in the case of our simulations, we performed
100 realizations at each point in (Pi , ei , Mi) space, so we divide the
number of detections by 100. False positives have been removed
from the D′(Pi, ei ,Mi) for each set of simulations. In Fig. 12, we
show contour maps of detectability, for each star, as a function of
input period and planet mass for three different eccentricities (e =
0.1, 0.6 and 0.9). Note that the HD 179949 map is for the full set
of 56 observations. The vertical dashed line indicates the time-span
of the observations (�T ). These detectability surfaces display a
number of common features.

First, it can be clearly seen that detectability is quite low at pe-
riods longer than the time-span of the observations (as seen by
both Cumming 2004 and Wittenmyer et al. 2006), and is also
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Figure 11. False positives as a function of total number of simulations for
HD 179949 (diamonds), HD 20782 (squares) and HD 38382 (triangles) (top
panel) and for the HD 179949 subsets (bottom panel): N = 14 – dotted line;
N = 28 – dashed line and N = 56 – solid line.

low at short periods (below ∼2 d). Both these effects are precisely
what one would naively expect based on our ability to sample the
Doppler variability of our target stars. And both are reflected in
the properties of the currently detected exoplanets. Few exoplan-
ets are known at periods of 10 yr or longer as a result of Doppler
searches, which are based on around a decade’s worth of data. And,
no Doppler exoplanet has been found at periods of less than ∼2 d
without first being detected via a transit event.

Secondly, D′(Pi, ei , Mi) as a function of planet mass, for a given
eccentricity, reveals the same general pattern for each star, with de-
tectability decreasing with increasing period. This is not surprising,
since (to first order) for data sets with similar Doppler measurement
precision over time, the ability to detect an exoplanet is determined
by the size of the semi-amplitude Km relative to that precision,
which is in turn (from equation 2) a function of Pm of the form

M ∝ 1/
3
√

P .

The combination of these two effects means that the general form
of the D′(Pi, ei ,Mi) surface is one of a transition region (with slope
M ∝ 1/

3
√

P ) dividing highly detectable planets (or generally higher
mass and shorter period) from undetectable ones (or lower mass
and longer period), modified by a cut-on at short periods of ∼2 d
(determined by the shortest data sampling obtained) and a cut-off
at long periods (determined by the length of the observation string,
�T ). These are the general behaviours that one would expect. Of
more interest is the detailed behaviour these surfaces reveal for each
target.

In particular, for example, we see that the steepness of the ‘tran-
sition region’ between highly detectable and mostly undetectable

planets is a strong function of the number of observations ob-
tained. The slope in the transition region is steep for HD 179949
and HD 20782, but shallow for the more poorly sampled HD 38382
data.

Moreover, the slope of the transition region is also a function
of eccentricity, for all three stars, highly eccentric planets have a
gently sloping transition region that mostly fills the entire available
mass–period plane. Indeed, it is only at short periods that even the
best-sampled data sets have high detectability.

To assist in the visualization of a more detailed analysis of these
general trends, we define the integrated detectability, D′

int, such that
D′

int(Pi) is simply the detectability at a given period Pi , over all ei

and Mi [and by extension D′
int(Mi) and D′

int(ei) are defined as the
detectability over all the other relevant parameters in each case].
In particular, we pay special attention to the three subsets of the
HD 179949 data set (as described in Section 3) in order to examine
the impact of data sampling.

5.1 Eccentricity

Fig. 13 shows the integrated detectability for each of the HD 179949
subsets as a function of eccentricity, D′

int(ei); recall that false pos-
itives have been removed. There is a clear difference at high ec-
centricity between each of the subsamples. At N = 14 (squares),
D′

int(ei) drops significantly at ei = 0.5 and higher. At higher values
of N (28 – triangles; 56 – diamonds), the drop-off starts at higher
eccentricity (ei > 0.6 for N = 28 and ei > 0.7 for N = 56). Below
each of these values, D′

int(ei) is approximately constant. As demon-
strated elsewhere (e.g. Cumming 2004), the implication here is that
the higher observation density makes detection of high-eccentricity
planets more likely.

The subsets of HD 179949 show significant variations in D′
int(ei),

but is there a difference between stars? Fig. 14 shows D′
int(ei) for

each of the three objects HD 179949, HD 20782 and HD 38382. The
shape of the curves, while in general decreasing at higher eccen-
tricities, is different for each object. For example, when ei ≤ 0.1,

HD 179949 has the lowest fraction of planets redetected, however
when ei ≥ 0.8, it has the highest. Thus, data sampling and qual-
ity are fundamental to the selection effects present in the planet
search observations and a simple parametrization of the detectabil-
ity of exoplanet parameters using ‘whole-of-survey’ metrics – e.g.
Cumming (2004) – cannot be done. As an example, consider the
case of HD 179949. Of the three sets of observations we discuss
here, the HD 179949 data have the highest median measurement
uncertainty (5.26 m s−1), and one might naively expect its detectabil-
ities to be the lowest. However, the observation density (equal to the
observation time-span/number of observations or �T /N ) is high-
est at 47 d/epoch, which should counteract the first effect to some
degree. It is not intuitively clear how to parametrize and compare
the detectability of the HD 179949 observations, with, for example,
that of the HD 38382 observations – which have lower observation
density but also lower median measurement uncertainty – without
the simulations we have carried out in this study. Therefore, carrying
out simulations on a star-by-star basis is the only way to understand
the selection effects in Doppler velocity planet searches.

5.2 A Bias against zero eccentricity detections

In the previous section, we examined D′
int(ei), the detectability at

each ei , which is at all Pi and Mi . This is fine for the case of
these simulations, where we know the input parameter values a
priori. However, as this is never the case for actual Doppler planet
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Figure 12. Detectability of planets as a function of input period and input planet mass at three different values of eccentricity (0.1, 0.6, 0.9) for HD 179949
(56 epochs, �T = 2626 d), HD 20782 (35 epochs, �T = 3119 d) and HD 38382 (17 epochs, �T = 2452 d). False positives have been subtracted from each
star. The vertical dashed line in each panel indicates �T .

Figure 13. Fraction of simulated planets redetected as a function of input
eccentricity, or D′

int(ei ), for HD 179949 with N = 14, 28 and 56 with false
positives removed. This is over all periods and semi-amplitudes and shows
the importance of data sampling and number of epochs for detecting highly
eccentric planets. The points are connected to identify different trends for
each star.

data, it is useful to consider our detectability at each em; i.e. the
measured eccentricities rather than the input eccentricities. We call
this quantity D′

int(em). It is determined by counting the number of
correct detections – i.e. false positives are excluded – in equally

Figure 14. Similar to Fig. 13, except for HD 20782, HD 38382 and
HD 179949.

spaced bins of em, normalized by the number of simulations in each
of bin.

We now compare the two quantities, D′
int(em) and D′

int(ei), and
show the difference between them for each of our three stars in
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Figure 15. The difference between measured and input detectabilities as
function of input eccentricity. There are fewer measured detections at ei =
0.0 and a small excess at other eccentricities, peaking at ei = 0.1.

Fig. 15. The striking feature is that when binned by measured ec-
centricity, the detectability is lower by up to 15 per cent at ei = 0
than when binned by input eccentricity. At other eccentricities ei ,
there is an opposite effect, albeit smaller. What could be causing
these apparent biases, especially against finding zero eccentricity
orbits?

The answer can be seen in Fig. 16, which shows the measured
semi-amplitude, Km, as a function of the measured eccentricity,
em, for HD 38382 where the input eccentricity is ei = 0.0. Also
plotted is the median value of em over various ranges of Km (shown
by the error bars in Km) and the median value of the fit error for
em over the same range of Km (shown by the error bars in em). As
semi-amplitude decreases, the measured eccentricity (em) increases,
i.e. the Keplerian fit to noisy data with a perfectly circular orbit
(e = 0.0) tends towards a higher eccentricity. This has the effect of
decreasing the number of em = 0 orbits and increasing the number
of non-zero eccentricity orbits, in particular for the em = 0.1 bin
of orbits (Fig. 16). At low values of Km, up to one-third of zero
eccentricity orbits have best fits that move them out of the e =
0 bin. This occurs because the shape of the velocity curve is not
well constrained in low signal-to-noise ratio data, even if the orbital
period and semi-amplitude are. For ei ≥ 0.1 eccentricity orbits, the
distribution of measured eccentricities is symmetric so the median of

Figure 16. Measured semi-amplitude Km as a function of measured eccen-
tricity em where ei = 0.0. Also plotted is the median value of em over various
ranges of Km (shown by the error bars in Km) and the median value of the
fit error for em over the same range of Km (shown by the error bars in em).
At low signal-to-noise ratios – and therefore low values of Km – there is a
bias against measuring zero eccentricity orbits.

Figure 17. Similar to Fig. 13 except as a function of input period.

spread at low signal-to-noise ratio converges to the real value and the
effect is not observed. The distribution of measured eccentricities is
non-symmetric when ei → 0.0, however, so the median is always
non-zero. Similar plots for the other two stars show the same effect
to varying degrees.

The conclusion from this analysis is that there is a small, but
significant, bias against measuring an eccentricity of zero, espe-
cially at low signal-to-noise ratios. This bias has also been recently
reported in an independent analysis by Shen & Turner (2008).

5.3 Period

We now turn our attention to D′
int(Pi), which is the integrated de-

tectability at a given input period, Pi . Fig. 17 shows D′
int(Pi) for

each subset of the HD 179949 data as a function of Pi . Perhaps
unsurprisingly, a higher density of observations leads to a higher
detectability of planets at all the periods. For the 56 and 28 epoch
data sets, D′

int(Pi) is mostly a linear function of log Pi , with a drop
at Pi ∼ 2 d and a large drop-off at Pi � 2 d (as noted above). For
the 14 epoch subset, however, D′

int(Pi) drops sharply at �4 d, rather
than at Pi � 2 d, reflecting the fact that the reduced data set does
not sample short periods well. At periods longer than �T (=2626 d
for HD 179949), D′

int(Pi) drops off by almost a factor of 2.
We have seen the effects of sampling on the period detectabil-

ity above, but what role does the data quality (indicated by the
median measurement uncertainty in Table 3) play, if any? To inves-
tigate this, we show D′

int(Pi) for each of the three objects studied in
Fig. 18. Once again, we see a drop in detectability at periods below
∼2 d and periods longer than �T . While there is an offset between
the D′

int(Pi) for each of the HD 179949 subsets, caused by differ-
ing observation density, there is no clear offset between the three
different stars, despite the significantly different observation den-
sities (HD 179949 – 47 d epoch−1; HD 20782 – 89 d epoch−1 and
HD 38382 – 144 d epoch−1). If we examine the median measure-
ment uncertainties as a proxy for data quality, we see, for example,
that HD 20782, which has the lowest measurement uncertainties at
2.27 m s−1, has typically higher period detectabilities, despite hav-
ing lower observation density than HD 179949. This suggests that
once again a complicated combination of observation density and
data quality is important in selection functions for Doppler planet
search data.

We also consider the detectability at each Pm, the measured
period, denoted D′

int(Pm), and compare it with the D′
int(Pi) dis-

cussed above. We calculate D′
int(Pm) by counting the number of

correct detections in equally spaced bins of log Pm, normalized by
the number of simulations in each of the bins. At periods up to
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Figure 18. Similar to Fig. 14 except as a function of input period.

1000 d (log P = 3.0), the difference in detectabilities is less than
0.5 per cent for all stars. There is a small offset for the two longest
periods of up to ±5 per cent, which is caused by poorly constrained
long periods (log P = 3.6) ‘leaking’ into the next shorter period bin
(log P = 3.3).

5.4 Planet mass

The integrated detectability as a function of planet mass, D′
int(Mi),

is more complicated than the integrated detectability as a function
of period or eccentricity, because planet mass is a function of both of
these parameters (as well as semi-amplitude) through equation (2).
Fig. 19 shows D′

int(Mi) as a function of planet mass for the three
HD 179949 subsets. As one might naively expect, we see that more
data result in higher detectabilities for a given mass of planet. (Re-
call also that at low masses false positives begin to have a significant
impact on the false positives for sparsely sampled data – they rep-
resent up to 20 per cent as a fraction of the total detections at M <

0.2MJup, leading to an apparently higher detectability than data sets
with more observations.)

Once again if we examine the D′
int(Mi) curves for simulations of

each star, we find variations (see Fig. 20). The HD 20782 observa-
tions, which have the highest quality with a median measurement
uncertainty of 2.27 m s−1, allow the detection of the lowest planet
masses (after false positives are removed) as shown in Fig. 20. Even
though there are more observations of HD 179949, the median un-
certainty of HD 20782 is less than half of that star’s value. In the
case of HD 38382, the median uncertainty of the observations and
the number of epochs appear to be important, giving a slightly lower
number of planets detected at intermediate masses (1 MJup < Mi <

Figure 19. Similar to Fig. 13 except as a function of input planet mass.

Figure 20. Similar to Fig. 14 except for each of the three stars studied.

6 MJup) compared with the HD 179949. It is this complexity that
shows the importance of a star-by-star analysis.

Finally, we examine the detectability at Mm, the measured planet
mass, which we denote as D′

int(Mm), and once again we compare
it with the corresponding detectability for input planet mass. The
detectabilities are binned in log Mm, with the centroid of each bin
set to the corresponding value of log Mi to allow comparison. The
width of the bins was set to half the difference between the adjacent
bins. Recall that D′

int(Mi) is calculated by counting the number of
detections at a given Mi , which assumes that the mass is known a
priori. We find that the difference between D′

int(Mm) and D′
int(Mi) is

within ∼3 per cent for each star. We do not consider these differences
to be significant.

6 SU M M A RY

We have begun a project to investigate the observational biases
inherent in Doppler velocity data, in particular in the AAPS. An
essential part of this study is the development of a set of tools that
will allow the automatic detection of exoplanets. We present the
2DKLS periodogram, a new algorithm based on an extension of
the traditional LS periodogram, which includes eccentricity. This
is very efficient at detecting high-eccentricity planets, which we
highlight with a re-analysis of the extreme object HD 20782b.

We have constructed Monte Carlo like simulations of AAPS data
that include the time-stamps of the observations and a simple noise
model that incorporates into it the measurement uncertainties. The
simulations cover the full range of physically important exoplanet
orbital parameters: period, eccentricity and planet mass. As a part
of the simulation system, we have developed a set of detection
criteria, which can be applied to our simulated data sets in an au-
tomated fashion. We have investigated the false positives produced
by these detection criteria and found them to be quantifiable and
at an acceptably low level, which enables meaningful conclusions
to be reached from our simulations. We also find that there is a
bias against detecting zero-eccentricity orbits at low signal-to-noise
ratios.

Finally, we present preliminary results from simulations of ve-
locity observations of three AAPS objects: HD 179949, HD 38382
and HD 20782. Our investigation shows that the detectability of
exoplanet orbital parameters differs significantly from object to ob-
ject, meaning that the simple parametrizations invoked by previous
studies are of limited validity.
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