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Abstract  

A simple modification of the volume balance equation of the IPARM model is presented to 

facilitate the use of variable inflow. Traditional approaches for estimating infiltration from 

advance and/or runoff have merely considered the constant or step inflow case. Whenever this 

assumption is violated, significant uncertainty is introduced into the estimated infiltration 

parameters. Evaluation of the procedure with a number of data sets has demonstrated significant 

improvements in the estimates of infiltration parameters. Furthermore, the technique has shown 

that a portion of the apparent variability in estimated soil intake rates between furrows in the same 

field is a consequence of the constant inflow assumption. Accounting for the variable inflow to 

estimate infiltration functions, both standardised the shape of the infiltration curve and reduced the 

magnitude of the variation between curves. The proposed technique remains restricted by 

limitations similar to that of other volume balance models but offers greater performance under 

typical inflow variations often experienced in practice. 
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Introduction 

Many studies (e.g. Jurriëns and Lenselink 2001; Raine et al. 1997) have demonstrated that 

substantial improvements in irrigation performance can be achieved through relatively 

minor alterations in irrigation management. Furrow irrigation optimisation generally 

requires the use of numerical methods to simulate various changes in irrigation 

management. However, the models must be calibrated prior to optimisation to represent 

the measured furrow conditions. In this calibration process, the inflow, furrow cross 

section, slope and field length are normally measured directly in the field while the 

infiltration and surface roughness must be estimated. 

 

The cumulative infiltration, Z (m3/m) is typically described as a function of opportunity 

time, τ (minutes) and should reflect the irrigation management and soil hydraulic 

properties. The modified Kostiakov equation is the most commonly used (e.g. Elliott et al. 

1983; McClymont and Smith 1996; Walker 2005) empirical function representing soil 

infiltration rates in surface irrigation:  

ττ 0fkZ a +=         (1) 

where k and a are empirical constants while fo is the steady infiltration rate (m3/min per m 

length). A number of techniques are available to determine the infiltration function but the 

most appropriate remains the inverse solution using measured field data. Estimation of the 

infiltration parameters may be carried out using the measured advance data (e.g. Elliott et 

al. 1983; McClymont and Smith 1996) or by using a combination of the advance and 

runoff hydrograph (e.g. Gillies and Smith 2005; Scaloppi et al. 1995). 

 

The volume balance approach is the preferred choice for the inverse solution methods due 

to its simplicity and speed of application. While the volume balance model neglects the 

momentum equation it has been found (e.g. Guardo et al. 2000) to provide an adequate fit 

during the advance phase and the simplifying assumptions facilitate rapid irrigation 

simulations making it ideal for the iterative procedures required to determine infiltration 

parameters. The general form of the volume balance equation used in these procedures is: 

rsI VVVtQ ++=0         (2) 



where Q0 is the steady inflow rate (m3/min), t is elapsed time (minutes), Vs is the volume 

stored on the soil surface, Vr is the volume of runoff from the end of the field, VI is the 

volume infiltrated (m3) from the integration of equation 1 over the wetted length of the 

furrow (x in metres): 
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σz1 and σz2 are sub-surface shape factors given by.  
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where λ is the ratio of the current time to the complete advance time and r is the exponent 

of the power curve for the advance (Gillies and Smith 2005); consequently in the storage 

phase both sub-surface shape factors are functions of time (Scaloppi et al. 1995). 

 

Variations in slope and roughness can both influence the advance curve but the variation 

in the inflow has an overriding effect (Renault and Wallender 1996). The inflow rate 

influences the volume of surface storage and hence determines the rate of advance. 

Estimates of infiltration parameters and the longitudinal variation in water application are 

sensitive to inflow rate variation. Renault and Wallender (1996) found that initial 

variations in inflow rates often cause the resulting Kostiakov infiltration functions to have 

low a but high k. Experience with the INFILT optimisation of  McClymont and Smith 

(1996) suggests that a seemingly small change in the inflow rate can have a considerable 

impact on the estimated infiltration function. However, inflow variation is often 

overlooked. Typically a constant (or step) inflow hydrograph is assumed to simplify the 

calculations. In this case, the inflow commences at time zero and remains at a constant 

rate until the cut-off time when the flow ceases instantaneously. The step inflow is merely 

an idealised representation as the inflow will always exhibit some degree of temporal 

variation (e.g. Gharbi et al. 1993; Mailhol et al. 1999). 

 

Volume balance models assume that the average flow area during the advance phase is 

equal to the upstream cross sectional flow area multiplied by a constant typically taking 



the value of 0.77. Hence, the volume balance model may generate substantial errors 

whenever the surface storage is a large fraction of the inflow volume. DeTar (1989) found 

that  accurate furrow geometry measurements are crucial when the infiltrated volume is 

small relative to the cumulative inflow. Inaccuracies in inflow measurement will cause 

large uncertainties in estimates of surface storage and infiltration (Trout and Mackey 

1988). These uncertainties increase rapidly as the proportion of inflow that has infiltrated 

decreases. Valiantzas (1997) used the kinematic wave equation to develop an algebraic 

expression for the storage portion of the volume balance that enables the average cross 

sectional area to change with time. An other approach is to ignore the surface storage 

volume but this may lead to significant errors in the predicted advance (Valiantzas 2000). 

 

Variations in inflow between furrows have been found to be the most important factor in 

the variability of the infiltrated depth and advance (Schwankl et al. 2000). In general, non-

intentional inflow rate variation has a detrimental impact on irrigation performance. 

Inflow rate variation has a significant impact on application efficiency and distribution 

uniformity (Alazba 1999), particularly when a flow reduction is large enough to prevent 

the advance from reaching the end of the field (Gharbi et al. 1993). However, long 

furrows appear to be less susceptible to variations in inflow rate than shorter furrows 

(Eldeiry et al. 2005). Application efficiency has also been found to be more sensitive to 

changes in the inflow rate on a heavy soil rather than a light soil (Jurriëns and Lenselink 

2001). 

 

In this paper the volume balance model used in the estimation of infiltration parameters 

from advance and runoff data is modified to account for temporal variations in the inflow 

rate. Several sets of field data are presented to evaluate the ability of this model to provide 

improved estimates of the parameters and the resulting infiltrated volume. It is also 

hypothesised that a proportion of the apparent infiltration variability between furrows and 

over time is actually the result of errors in the estimation of the infiltration functions 

associated with temporal variations in the inflow rate. 

 



Model Development 

The Infiltration Parameters from Advance and Runoff Model (IPARM) was developed to 

calculate Kostiakov infiltration functions using advance and run-off data (Gillies and 

Smith 2005). A further development of this model is proposed here that allows the 

optional use of a full inflow hydrograph where available. The model is essentially as 

described in Gillies and Smith (2005). The only significant change for the work reported 

in this paper is a re-interpretation of the inflow term on the LHS of equation 2. The steady 

Qot is replaced by a summation of the inflow volume up to time t: ∑
t

ttQ δ)(  

 

Implicit in this modification is the assumption that the advance or run-off at any time is 

determined largely by the inflow up to that time. In the original model, the inflow volume 

corresponding to each advance or run-off point was calculated by simply multiplying the 

average inflow rate by the appropriate value of time. In this new version of IPARM, the 

model uses linear interpolation on the inflow hydrograph to calculate the total inflow 

volume for each advance point and each runoff point.  It is also assumed that the volume 

temporarily stored in the furrow at any time can be described by the same simple function 

used in the constant inflow version of the model, where it is a function of the 

instantaneous inflow rate. In essence this assumes that the rate of change of the inflow is 

slow and that the volume stored has time to adjust to the changed inflow. 

 

The general approach to calibration of the infiltration function remains as specified in the 

previous paper. The process involves the minimisation of either the advance error alone or 

a combination of the advance and runoff errors as in Eq. 17 of Gillies and Smith (2005). 

The advance and runoff errors are given by: 
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Evaluation 

Four irrigation data sets (Benson, Kooba, Merungle Hill and Huntawang) with different 

inflow hydrographs were chosen to evaluate the effect of using a variable inflow for 

estimating the infiltration parameters. For each data set, the infiltration parameters were 

calculated using each of four different data combinations: 

• advance data with a constant inflow set to equal the measured average inflow,  

• advance data with the measured variable inflow,  

• advance data and runoff hydrograph with a constant inflow set to equal the 

measured average inflow, and  

• advance data and runoff hydrograph with the measured variable inflow. 

  

The Benson irrigation (Walker 2005) was carried out in Colorado on a clay loam soil. A 

significant decrease in inflow (1.11 to 0.79 L/s) occurred during the advance phase. The 

value of the Manning n was assumed to be 0.02, where as Walker (2005) used a roughness 

of 0.015. 

 

The Kooba irrigation data set (Hornbuckle 1999) was obtained on a cracking clay soil 

planted to maize. This site consisted of furrows 443 m long at 1.93 m spacings with a 

slope of 0.0005. The data set included measurements collected from four furrows over 

three separate irrigations. The inflow rate for irrigation 1 (e.g. Fig. 1b) and irrigation 2 

increased with time while irrigation 3 used a cutback regime. No information was 

available regarding the furrow surface condition or flow depth and the Manning n was 

assumed as 0.04. 

 

The Merungle Hill data (Hornbuckle 1999) was obtained from a citrus orchard where the 

furrow bed had not been cultivated for some time and weed growth was controlled by 

herbicide application. The inflow hydrograph (Fig. 1c) increased during the event and the 

roughness parameter n was assumed to be 0.2.  

 

The Huntawang data set (Hornbuckle 2005, pers comm) was collected on a cotton field 

near Griffith in southern New South Wales. The inflow hydrograph (Fig. 1d) for this 

irrigation showed a decrease during the first 100 minutes of water application. The value 



of the Manning n (0.032) used in this irrigation was calculated from the measured 

upstream depth of flow. 
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Fig. 1 a - d - Measured inflow Hydrographs 

 

For the Benson, Kooba and Merungle Hill data sets, neither the upstream flow area nor 

depths of flow were measured hence, the assumed Manning n values were used to 

calculate the area of flow in the volume balance. The same n values were used in the 

subsequent simulations of the irrigations conducted using SIRMOD III (Walker 2003). 

Evaluation of the IPARM estimates of the infiltration parameters was based on the fit of 

the run-off hydrographs produced by the SIRMOD simulations. 

 



The inflow at Kooba (Fig. 1b) and Merungle Hill (Fig. 1c) increased with time while the 

inflow rate decreased with time for the Benson (Fig. 1a) and Huntawang (Fig. 1d) 

irrigations. The advance phase occupied 71%, 35%, 74% and 28% of the total inflow 

period for the Kooba, Merungle Hill, Benson and Huntawang irrigations respectively. 

 

 

Results and Discussion 

Infiltration functions 

The infiltration parameters estimated using the IPARM optimisation for each furrow and 

for each data combination are included in Table 1 with the corresponding cumulative 

infiltration curves shown in Fig. 2. The characteristic shape of the Benson and Huntawang 

curves (Fig. 2a and d) are similar for the different sets of input data. In general, where the 

actual inflow is decreasing, the infiltration function derived using a constant inflow 

underestimated the initial infiltration rate but tended to over estimate the infiltration 

during later stages of the irrigation. The opposite behaviour can be seen in the Kooba (Fig. 

2b) and Merungle Hill (Fig. 2c) functions where the use of a constant inflow 

overestimated the initial infiltration and under predicted later in the irrigation. Hence, 

using the average inflow to estimate the cumulative infiltration function introduces a 

systematic error into the function. The form of the error appears to depend on the shape of 

the measured inflow hydrograph. 

 

It is also possible to estimate the final infiltration rate f0 using the difference between the 

inflow and final runoff rate. This procedure is only valid where the inflow rate is constant 

and for times after the runoff has reached steady state. Both the Benson and Huntawang 

hydrographs and to a lesser extent the Kooba data possibly satisfy the criteria. From final 

inflow and outflow rates the f0 values were found to be 0.000047 for Benson, 0.000212 for 

Huntawang and 0.000172 m3/min/m for Kooba. In all three cases these values are greater 

than the values estimated using the advance and runoff data (Table 1), presumably 

indicating that either the final steady intake rate was not achieved during the irrigation 

time or that the IPARM optimisation routine biases an underestimation of this parameter. 

 



The small advance and runoff errors in table 1 (Eq 6 and 7) indicate that the volume 

balance model is predicting values close to the measured data. The inclusion of the 

variable inflow hydrograph in the estimation typically decreased the volume balance 

errors. In the Benson and Huntawang furrows there was also a small trade off between 

advance and runoff errors. This demonstrates that use of the variable inflow in the 

optimisation results in an improved fit to the measured data and hence, improved 

estimates of the infiltration parameters. 

 
Table 1 – Modified Kostiakov infiltration function parameters estimated using various combinations 

of input data from four different irrigations 

a k f0 
a

C. Inflow 0.0000 0.003343 0.000070 1.252
V. Inflow 0.0292 0.005313 0.000069 0.701
C. Inflow 0.2951 0.001595 0.000045 3.191 1.753
V. Inflow 0.2234 0.003334 0.000039 1.955 2.808
C. Inflow 0.0496 0.303953 0.000000 2.603
V. Inflow 0.2234 0.096727 0.000000 2.610
C. Inflow 0.0236 0.295273 0.000136 4.278 7.183
V. Inflow 0.2053 0.092881 0.000100 3.622 4.534
C. Inflow 0.0000 0.049425 0.000000 1.107
V. Inflow 0.0155 0.018645 0.000104 0.000
C. Inflow 0.2359 0.014862 0.000055 7.346 3.311
V. Inflow 0.0000 0.016006 0.000138 1.702 3.364
C. Inflow 0.2597 0.021271 0.000169 0.900
V. Inflow 0.3038 0.024447 0.000070 1.834
C. Inflow 0.3017 0.019854 0.000118 1.754 1.788
V. Inflow 0.1724 0.040619 0.000159 2.205 0.735
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a f0 is measured in m3/min/m. b,c sum of the square errors from the IPARM optimisation (b eq 6 and c 

eq 7) 
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Fig. 2 a - d - Cumulative infiltration functions estimated using various combinations of measured 

input data 

 

The accuracy of the calculated infiltration parameters can be further illustrated by a 

comparison between predicted and actual infiltration volumes (Fig. 3). In this figure the 

Predicted Infiltration is taken from Eq. 3 and the measured advance data (x and t). The 

Actual Infiltration is determined from Eq. 2 rearranged to make VI the dependent variable. 
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Fig. 3 a - d - Cumulative infiltrated volumes – Comparing infiltration from the volume balance 

(Actual) with predicted infiltration from parameters estimated from the advance and storage phases 

 

Fig. 3 shows that in all cases there is little difference between the actual infiltration and 

that predicted using the parameters determined from the variable inflow. The infiltration 

parameters determined from the constant inflow failed to give a reasonable prediction of 

the infiltrated volume. The perturbations in the actual infiltrated volume for the Merungle 



Hill site result from the surface storage term reacting too quickly to the rapid variations in 

the inflow rate. 

 

Effect on simulated irrigation performance 

The SIRMOD model (Walker 2003) was used to calculate advance trajectories, runoff 

hydrographs and performance indicators from the infiltration functions. Simulations in this 

section refer to analysis of the SIRMOD results. The summary results from the SIRMOD 

irrigation simulations for the four data sets and combinations of input data are shown in 

Table 2. The run-off hydrographs from the simulations are shown in Fig. 4. The dashed 

line (Runoff (Constant Inflow) with V.In) in Fig. 4 and 5. represents a simulation where the 

infiltration function calculated assuming constant inflow is used in conjunction with the 

actual inflow hydrograph. In Table 2, the runoff and infiltration errors are expressed as a 

percentage of the measured volumes. The Advance SSE/Point is the sum of squares 

difference between the measured and simulated advance points divided by the total 

number of points and is a useful measure of the accuracy of the simulated advance curve.  

 

All of the infiltration parameters from the various data combinations gave acceptable 

predictions of the irrigation advance (Table 2). In general this prediction was improved 

(the error in the advance was reduced) when the variable inflow was used to calculate the 

infiltration function. The only exception was the Benson data where both the constant 

inflow and variable inflow gave a very good fit to the advance data. In all cases the error 

in the advance was increased slightly when the runoff was included in the IPARM 

optimisation.   

 

More important than the advance prediction are the predictions of the irrigation 

performance in the later stages of the irrigation, that is, when the infiltration characteristic 

is projected to times greater than the advance time. This ability is best reflected in the 

predictions of the runoff outflow hydrograph and volumes infiltrated (Table 2). As would 

be expected, the infiltration parameters derived using the runoff data and the variable 

inflow gave the best predictions. The simulations based on infiltration parameters derived 

from only the advance data with constant inflow generally yielded the poorest predictions. 

For example, the Benson data runoff hydrograph (Fig. 4a) based only on the advance data 

resulted in poor reproductions of the measured runoff data. The simulations using  
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Fig. 4 a - d - Measured and predicted runoff hydrographs estimated using various combinations of 

measured input data. 

 

infiltration functions estimated using the runoff and constant inflow were able to predict 

the magnitude of runoff accurately (Table 2) but not the shape of the hydrograph (Fig. 4). 

However, when the variable inflow and run-off data were used to estimate the infiltration 

function the simulations were also able to accurately reproduce the shape of the runoff 

hydrographs (Fig. 4). 



Table 2 – Summary of simulations conducted with infiltration parameters estimated using various 

combinations of input data from four different irrigations 

Runoff 
Error (%)

Infiltration 
Error (%)

Advance 
SSE per 

point
C. Inflow -73.91 22.45 6.8
V. Inflow -95.58 29.04 24.2
C. Inflow -3.27 0.99 13.6
V. Inflow 0.06 -0.02 16.2

C. Inflow V. Sim -12.05 3.66 691.7
C. Inflow 40.17 -9.97 279.1
V. Inflow 20.00 -4.96 248.6
C. Inflow -13.74 3.41 985.0
V. Inflow -10.22 2.54 649.9

C. Inflow V. Sim -3.22 0.80 3199.1
C. Inflow 56.64 -52.36 232.5
V. Inflow 14.91 -13.78 1.5
C. Inflow -6.52 6.03 502.7
V. Inflow -3.79 3.51 23.9

C. Inflow V. Sim 2.31 -2.13 4104.9
C. Inflow -9.85 1.09 611.5
V. Inflow 17.40 -1.93 472.7
C. Inflow 17.17 -1.90 516.5
V. Inflow -0.55 0.06 487.7

C. Inflow V. Sim 18.34 -2.03 2658.8
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The infiltrated depth at a point in the furrow is determined by the infiltration function and 

the opportunity time at that distance. The above analysis has indicated that using an 

assumption of constant inflow to determine the infiltration function introduces errors into 

both the predicted infiltration parameters and simulated advance distance. Differences in 

either or both of these quantities will undermine the ability of the simulation model to 

predict the distribution of water applied in the field. For example, the choice of data used 

in estimating the infiltration function was found to produce differences in both the 

volumes and pattern of water application along the field (Fig. 5). For the Merungle Hill 

data, the use of a constant inflow and advance data only in estimating the infiltration 

function resulted in an under estimation of the volume infiltrated and a relatively constant 

infiltrated volume along the field (Fig. 5). However, using the variable inflow hydrograph 

and/or the incorporating the run-off data resulted in a doubling of the estimated infiltration 

and a less uniform pattern of infiltration along the furrow (Fig. 5). The simulation based 

on infiltration parameters estimated from advance using constant inflow is incapable of 

predicting the infiltrated depth along the furrow length, and therefore substantial errors 

will be present in the calculated irrigation performance measures, such as application 



efficiency and distribution uniformity. This is particularly important considering that the 

primary objective of field evaluation and simulation is to calculate and optimise these 

measures. 
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Fig. 5 - The effect of infiltration function estimation on the infiltrated depth profile for the Merungle 

Hill data set 

 

Inflow as a source of variability in spatial estimates of infiltration 

Data from all furrows and irrigations from the Kooba site (Hornbuckle 1999) were 

analysed to further illustrate the importance of accounting for the varying inflow when 

assessing infiltration variability at a field scale. Infiltration functions were calculated for 

all furrows at this site from the advance data using both the constant average inflow and 

variable inflow (Fig. 6). The use of the variable inflow was found to standardise the 

general shape of the infiltration curves reducing the apparent variation in infiltration 

between events. The coefficient of variation in the depths infiltrated at 100, 200, 500 and 

1000 minutes were 87.3, 71.8, 51.3 and 37.8% where the function was calculated using a 

constant inflow and 68.7, 58.5, 39.8 and 28.9% respectively, where the measured inflow 

hydrograph was used. In this case, the errors in the infiltration caused by assuming 



constant inflow are larger during the initial stages of the irrigation and gradually decline as 

time increases up to the advance time. This suggests that accounting for the temporal 

variation in inflow should in many cases reduce the apparent variability between estimated 

infiltration rates for furrows in the same field. 
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Fig. 6 a – b Estimated infiltration curves for four furrows measured across three different irrigation 

events using advance data and (a) the constant inflow assumption and (b) measured inflow 

hydrographs 

 



A number of furrows experienced major inflow fluctuations in the initial stages of the 

hydrograph. Renault and Wallender (1996) concluded that this would result in larger 

values of the Kostiakov k and lower values of a when assuming constant inflow. 

Comparisons between the irrigation functions estimated using the constant and variable 

inflow hydrographs confirm this statement. Eight of the furrows experience inflows that 

undergo a significant increase during the initial stages of the irrigation. In every one of 

these cases the constant inflow assumption results in infiltration functions where the k 

parameter is higher and a is lower than for the variable inflow. In the remaining four 

furrows where the inflow does not change initially, k is lower for the constant inflow 

assumption and a does not favour either direction. 

 

Limitations of the IPARM Model 

The IPARM model is based on the volume balance model and is therefore still subject to 

the limitations of that model, in particular those caused by the assumptions that: 

1. The advance can be represented by the power function (x = ptr), and 

2. The average cross-sectional area of the flow is proportional to the upstream flow 

area. 

The IPARM model does not attempt to correct for these limitations, it is merely an 

improvement on existing volume balance based methods.  

 

IPARM takes a simple approach to accommodate variable inflow and an equally simple 

approach to calculation of the corresponding volume of water temporarily stored in the 

flow in the furrow. Traditionally this volume of water stored on the soil surface is 

calculated by multiplying the (constant) upstream area of flow by a predetermined shape 

factor (typically 0.77). IPARM takes a similar approach but one where the upstream area 

is allowed to change as the inflow changes. It is assumed that if the variation in the inflow 

is gradual then the volume stored will continuously adjust at a rate consistent with the rate 

of change of the inflow. 

 

Problems are likely to occur when using a low resolution inflow hydrograph or when the 

inflow changes rapidly. For example if the inflow declines rapidly, IPARM incorrectly 

assumes that the upstream area of flow will decline by a corresponding amount and in a 

similar time frame. This means that the surface storage is assumed to reduce at a similar 



rate hence underestimating the true surface storage. This sudden change in the volume 

balance must either cause an abrupt increase in the runoff term of the equation or in the 

advance rate. The result will be substantial errors in the infiltration parameters predicted 

by the model. This is the major limitation of the IPARM model and hence, future work 

will be directed toward a more rigorous description of the relationship between the surface 

storage and the variable inflow. Other models based on the hydrodynamic equations do 

not have this limitation and can readily accommodate variable inflow rate but the 

additional complexity of these models is rarely warranted. 

 

Conclusions 

The volume balance model used for the inverse solution of soil infiltration parameters 

from irrigation advance and runoff data was modified to accommodate gradually varied 

inflow. The results presented in this paper show that the variable inflow option of the 

IPARM model offers significant improvements in the accuracy of infiltration estimates 

when applied to data consistent with the assumptions inherent in the model. This in turn 

resulted in improved estimates of the volumes infiltrated and the runoff hydrographs in 

subsequent simulations of the irrigation events. However it should not be applied where 

the inflow changes rapidly and cannot be applied to a traditional cutback inflow regime. 

 

Accounting for the variable inflow across an entire irrigated field produced cumulative 

infiltration curves with a more consistent shape and resulted in a reduction in the apparent 

variability in the cumulative infiltration across the field. 
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