Table 1: Summary of selected road and highway runoff regression studies

Reference	Study details	Regression relationships
$\begin{aligned} & \text { Chui et al., } \\ & 1982 \end{aligned}$	1979-1981 data from 9 sites ($n=500$) in Washington State, USA.	TSS (load, kg/curb-km) $=\mathrm{K}(\mathrm{VDS})(\mathrm{RC})$ $\mathrm{K}=$ runoff rate factor depends on location, range $1.8-8.5, \mathrm{VDS}=$ vehicles during storm $\left(\times 10^{-3}\right.$ vehicles) when roadway is wet, $\mathrm{RC}=$ average runoff coefficient (<1)
$\begin{aligned} & \text { Irish et al., } \\ & 1998 \end{aligned}$	1993-1995 data from MoPac Expressway in Austin, Texas during storms and rainfall application by a simulator $(n=58)$	$\begin{aligned} & \text { TSS (load, } \left.\mathrm{g} / \mathrm{m}^{2}\right):=0.2556+0.3068(\mathrm{R})+ \\ & 2.0181(\mathrm{RI})+0.0037(\mathrm{ADP})-2.9856(\text { PINT }) \end{aligned}$ $\mathrm{R}=$ total runoff volume per unit area $\left(\mathrm{L} / \mathrm{m}^{2}\right), \mathrm{RI}=$ runoff intensity ($\mathrm{L} / \mathrm{m}^{2}-\mathrm{min}$), antecedent dry period (ADP, hr) and the runoff intensity of the previous storm (PINT, L/m ${ }^{2}$-min)
Kerri et al., 1985	1975-1981 data from 3 sites in California, USA	$\begin{aligned} & \text { FR (load, g) }=5360+0.140(\mathrm{VDS}) \\ & \text { FR = filterable residue, VDS = vehicles during } \\ & \text { storm(\#vehicles/event) } \end{aligned}$
Thomson et al., 1997	1976-1983 data from a concrete 10-lane highway (AADT=114000) located in north Minneapolis ($n=416$)	$\begin{aligned} & \text { TSS }(\mathrm{EMC}, \mathrm{mg} / \mathrm{L})=0.0039(\mathrm{TCB})^{1.047}(\mathrm{RI})^{0.236} \\ & \text { TCB }=\text { traffic count before the runoff event } \\ & (\# \text { vehicles), RI= runoff intensity (inches/hr). } \end{aligned}$
Kayhanian et al. 2007	2000-2003 data from 34 sites ($n=634$) in California, USA	TSS $(\mathrm{EMC}, \mathrm{mg} / \mathrm{L})=72\left(\mathrm{SCR}^{1 / 3}\right)^{-0.099}(\mathrm{AADT})^{4.934}$ TER $^{-0.124}$ ADP $^{0.102}$ TER=total event rainfall (mm), ADP= antecedent dry period (day), $\mathrm{SCR}^{1 / 3}=$ cube root of seasonal cumulative rainfall (mm), AADT=average annual daily traffic ($\times 10^{-6}$ vehicles/day). The type of surrounding land use was also a factor, with EMC increasing if the site is surrounded by agriculture or commercial uses.

Table 2: Details of impervious surfaces monitored at Toowoomba

Surface Type	Description	Area $\left(\mathrm{m}^{2}\right)$
Roof	Corrugated galvanised iron roof with Colorbond ® gutter	51.8
Road	Asphalt pavement with concrete kerb, no gutter. Average daily traffic $=3500$ vehicles/day	450
Carpark	Four-bay concrete carpark with concrete kerb	56.2

Table 3: Statistical criteria used to identify significant explanatory variable models for NCP EMC

Method	Source	Criterion function	Comment
Akaike's An	Akaike (1974)	$A I C=n \log (R S S / n)+2(p+1)$	Smaller AIC
Information			values indicate
Criterion (AIC)			better models

Bayesian \quad Schwarz (1978) $\quad B I C=n \log (R S S / n)+(p+1) \log n \quad$ Smaller BIC
Information
Criterion (BIC)

Predicted Weisberg (1985) Smaller PRESS
REsidual Sum of
Squares (PRESS)
$\sum_{i=1}^{n} \hat{e}_{(i)}$, where $\hat{e}_{(i)}$ is the error made when predicting response y_{i} from the model constructed without observation i

Adjusted R ${ }^{2} \quad$ Weisberg (1985)

$$
\bar{R}^{2}=1-\left(\frac{n-1}{n-(p+1)}\right)\left(1-R^{2}\right) \quad \begin{aligned}
& \text { Larger } \bar{R}^{2} \text { values } \\
& \text { indicate better } \\
& \text { models }
\end{aligned}
$$

The statistical criteria are used to assess how close the predictions from a model $\hat{\mu}_{i}$ are to the responses y_{i} over all observations $i . p$ is the number of explanatory variables in the model and n is the sample size. RSS is the residual sums-of-squares $R S S=\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right)^{2}$

Table 4: Correlations (r) between \log of NCP EMC and the log of rainfall explanatory variables for monitored storms at Toowoomba for each surface. Values of $|r|>0.4$ shown in bold.

Variable	Carpark	Road	Roof
\log AR	-0.35	-0.26	-0.20
\log ADP	0.17	0.15	0.27
\log ED	$\mathbf{- 0 . 4 4}$	$\mathbf{- 0 . 5 0}$	$\mathbf{- 0 . 5 6}$
\log SD	$\mathbf{- 0 . 6 1}$	$\mathbf{- 0 . 6 4}$	$\mathbf{- 0 . 7 3}$
\log RD	$\mathbf{- 0 . 5 0}$	$\mathbf{- 0 . 4 8}$	$\mathbf{- 0 . 6 6}$
\log MI	0.30	0.34	0.28
\log PI	0.27	0.19	0.20

Table 5: Correlations (r) between log of rainfall explanatory variables for monitored storms at Toowoomba for carparks. Values of $|r|>0.4$ shown in bold.

	$\log \mathrm{ADP}$	$\log \mathrm{ED}$	$\log \mathrm{SD}$	$\log \mathrm{RD}$	$\log \mathrm{MI}$	$\log \mathrm{PI}$
\log AR	-0.08	0.04	0.27	0.18	-0.17	-0.09
\log ADP	1	0.03	-0.08	-0.15	-0.04	0.08
\log ED		1	$\mathbf{0 . 7 2}$	$\mathbf{0 . 6 6}$	-0.28	-0.14
\log SD			1	$\mathbf{0 . 6 3}$	$\mathbf{- 0 . 6 6}$	-0.31
\log RD				1	0.16	0.32
\log MI					1	$\mathbf{0 . 7 0}$
\log PI						1

Table 6: Results of statistical analysis of carpark, road and roof NCP EMC data. (All variables are analysed on the logarithmic scale, but the logarithms are omitted from the table for readability.) The top four models for each statistical method and surface are shown in bold, with the highest performing model marked by an *, but do not necessarily indicate statistically significant differences.

Variable combination	AIC	BIC	PRESS	Adj R
Carpark	NCP	EMC data		
AR	85.7	89.9	29.1	
ADP	88.8	93.0	32.3	-0.000
ED	83.1	87.3	25.6	0.167
SD	$\mathbf{7 5 . 6}$	$\mathbf{7 9 . 8}$	$\mathbf{2 0 . 3}$	0.351
RD	80.7	84.9	23.9	0.231
PI	87.4	91.6	30.3	0.039
SD+AR	$\mathbf{7 5 . 4}$	$\mathbf{8 1 . 0}$	$\mathbf{2 0 . 4}$	$\mathbf{0 . 3 7 4}$
SD+ ED	77.6	83.2	23.5	0.327
ED+ RD	81.8	87.4	25.0	0.227
SD+RD	76.3	$\mathbf{8 1 . 9}$	21.0	$\mathbf{0 . 3 5 6}$
RD+PI	$\mathbf{7 3 . 6}$	$\mathbf{7 9 . 2}$		$\mathbf{1 8 . 9}$
SD+ADP	77.0	82.6	22.0	$\mathbf{0 . 4 1 0}$
SD+PI	77.4	83.0	20.9	0.340
SD+RD+PI	$\mathbf{7 5 . 1}$	82.1	$\mathbf{2 0 . 0}$	0.331
Road NCP	EMC data			$\mathbf{0 . 3 9 9}$
AR	56.3	60.6	10.5	
ADP	57.8	62.1	10.9	0.037
ED	48.5	52.8	7.93	-0.011
SD	$\mathbf{4 2 . 0}$	$\mathbf{4 6 . 3}$		0.252
RD	48.2	52.5	$\mathbf{6 . 6 4}$	$\mathbf{0 . 3 9 2}$
PI	57.4	61.7	11.1	0.258
SD+AR	43.2	48.9	6.98	0.002
SD+ ED	$\mathbf{4 2 . 9}$	$\mathbf{4 8 . 6}$	7.24	0.387
ED+ RD	46.2	51.9	7.34	$\mathbf{0 . 3 9 3}$
SD+RD	$\mathbf{4 2 . 7}$	$\mathbf{4 8 . 4}$	$\mathbf{6 . 7 5}$	0.326
RD+PI	$\mathbf{4 2 . 9}$	$\mathbf{4 8 . 7}$	$\mathbf{6 . 8 1}$	$\mathbf{0 . 3 9 7}$
SD+ADP	43.8	49.6	7.21	0.3974
SD+PI	44.0	49.7	7.01	0.371
SD+RD+PI	43.6	50.7	$\mathbf{6 . 9 5}$	$\mathbf{0 . 3 9 7}$
Roof NCP	EMC	data		
AR	84.0	88.2	27.1	0.008
ADP	82.9	87.1	26.3	0.041
ED	71.4	75.7	17.6	0.346
SD	62.5	$\mathbf{6 6 . 8}$	13.0	0.514
RD	67.3	71.6	15.1	0.430
PI	84.1	88.4	27.7	0.001
SD+AR	63.7	69.3	13.6	0.509

SD+ ED	64.3	69.9	14.0	0.501
ED+ RD	65.9	71.5	14.6	0.473
SD+RD	$\mathbf{6 0 . 5}$	$\mathbf{6 6 . 1}$	$\mathbf{1 2 . 6}^{*}$	$\mathbf{0 . 5 6 0}$
RD+PI	$\mathbf{5 5 . 9}$	$\mathbf{6 1 . 5}^{*}$	$\mathbf{1 0 . 2}^{*}$	$\mathbf{0 . 6 2 2}^{*}$
SD+ADP	$\mathbf{6 1 . 4}$	67.1	$\mathbf{1 2 . 8}$	$\mathbf{0 . 5 4 5}$
SD+PI	64.4	70.1	13.6	0.497
SD+RD+PI	$\mathbf{5 6 . 8}$	$\mathbf{6 3 . 8}$	$\mathbf{1 0 . 6}$	$\mathbf{0 . 6 2 2} *$

Table 7: P-values from sequential analysis of variance tests, using interactions between surface and the explanatory variables

	Model with interactions between surface and explanatory variables		Model without interactions between surface and explanatory variables	
Explanatory variable	Degrees of freedom	P-value	Degrees of freedom	P-value
Intercept by surface	2	<0.001	2	<0.001
$\log ($ RD $)$	1	<0.001	1	<0.001
$\log (\mathrm{PI})$	1	<0.001	1	<0.001
$\log (\mathrm{SD})$	1	0.164		
$\log (\mathrm{RD})$ by surface	2	0.126		
$\log (\mathrm{PI})$ by surface	2	0.305		
$\log ($ SD) by surface	2	0.983		

Table 8: Regression statistics for common model to estimate NCP EMC for all surfaces of the log-form given in Equation 3.

Explanatory variable	Parameter	Coefficient	Standard error	P-value	95% confidence interval
Constant for carpark	β_{0}	3.8958	0.3230	<0.0001	3.25 to 4.54
Constant for road	β_{0}	5.3633	0.3287	<0.0001	4.71 to 6.02
Constant for roof	β_{0}	2.4581	0.3265	<0.0001	1.81 to 3.11
\log RD	β_{1}	-0.7355	0.08556	<0.0001	-0.906 to -0.565
\log PI	β_{2}	0.5618	0.0986	<0.0001	0.366 to 0.758

Table 9. The R^{2} and adjusted R^{2} for the common model, for all data considered together and separated into subgroups by surface, evaluated on the log-scale

	Overall	Carpark	Road	Roof
R^{2}	0.845	0.586	0.592	0.555
Adjusted R^{2}	0.838	0.567	0.574	0.535

Table 10. The results from the BMA analysis: the posterior probability of the variable being among the top 41 models, and the posterior mean and standard deviation of the estimates for each potential predictor

Variable	Posterior probability the variable is in the model	Posterior mean	Posterior standard deviation
Intercept (value for Carkpark)	100\%	4.08	0.482
- Adjusted intercept for Road	84.2\%	1.21	0.576
- Adjusted intercept for Roof	70.2\%	-0.856	0.625
Log(RD)	80.1\%	-0.502	0.288
Log(MI)	19.2\%	-0.0392	0.175
Log(PI)	92.5\%	0.402	0.170
$\log (\mathrm{SD})$	29.4\%	-0.127	0.234
$\log (\mathrm{AR})$	55.8\%	-0.0663	0.0720
Log(ADP)	3.9\%	0.00160	0.0118
Log(ED)	0.0\%	0.0000	0.0000
Surface(Road).log(RD)	20.4\%	0.0934	0.2009
Surface(Roof).log(RD)	20.8\%	-0.109	0.2148
Surface(Road).log(MI)	0.9\%	0.00189	0.0241
Surface(Roof).log(MI)	0.3\%	0.0203	0.0855
Surface(Road).log(SD)	10.0\%	0.0229	0.0826
Surface(Roof) $\cdot \log$ (SD)	60.1\%	-0.199	0.188
Surface(Road).log(PI)	1.6\%	-0.00181	0.02798
Surface(Roof).log(PI)	8.9\%	-0.02745	0.0896

