Reference	Study details	Regression relationships
Chui et al.,	1979–1981 data from 9 sites	TSS (load, kg/curb-km) = K (VDS) (RC)
1982	(<i>n</i> =500) in Washington	K= runoff rate factor depends on location, range
	State, USA.	1.8–8.5, VDS= vehicles during storm $(x10^{-3})$
		vehicles) when roadway is wet, RC= average
		runoff coefficient (<1)
Irish et al.,	1993–1995 data from	TSS (load,g/m ²): = $0.2556 + 0.3068(R) +$
1998	MoPac Expressway in	2.0181(RI) + 0.0037(ADP) - 2.9856(PINT)
	Austin, Texas during storms	R= total runoff volume per unit area (L/m^2), RI=
	and rainfall application by a	runoff intensity (L/m ² -min), antecedent dry
	simulator (<i>n</i> =58)	period (ADP, hr) and the runoff intensity of the
		previous storm (PINT, L/m ² -min)
Kerri et al.,	1975–1981 data from 3 sites	FR (load, g) = $5360+0.140$ (VDS)
1985	in California, USA	FR = filterable residue, VDS= vehicles during
		storm(#vehicles/event)
Thomson et	1976–1983 data from a	TSS (EMC, mg/L) = $0.0039 (TCB)^{1.047} (RI)^{0.236}$
al., 1997	concrete 10-lane highway	TCB = traffic count before the runoff event
	(AADT=114 000) located in	(#vehicles), RI= runoff intensity (inches/hr).
	north Minneapolis (<i>n</i> =416)	
Kayhanian et	2000–2003 data from 34	TSS (EMC, mg/L) = 72 (SCR $^{1/3}$) ^{-0.099} (AADT) ^{4.934}
al. 2007	sites (<i>n</i> =634) in California,	$\text{TER}^{-0.124} \text{ ADP}^{0.102}$
	USA	TER=total event rainfall (mm), ADP= antecedent
		dry period (day), $SCR^{1/3}$ =cube root of seasonal
		cumulative rainfall (mm), AADT=average annual
		daily traffic ($x10^{-6}$ vehicles/day). The type of
		surrounding land use was also a factor, with EMC
		increasing if the site is surrounded by agriculture
		or commercial uses.

Table 1: Summary of selected road and highway runoff regression studies

Table 2. Details of hilpervious surfaces monitored at 100w00mba					
Surface Type	Description	Area (m ²)			
Roof	Corrugated galvanised iron roof with Colorbond ® gutter	51.8			
Road	Asphalt pavement with concrete kerb, no gutter. Average	450			
	daily traffic = 3500 vehicles/day				
Carpark	Four-bay concrete carpark with concrete kerb	56.2			

Table 2: Details of impervious surfaces monitored at Toowoomba

Method	Source	Criterion function	Comment
Akaike's An Information Criterion (AIC)	Akaike (1974)	$AIC = n\log(RSS/n) + 2(p+1)$	Smaller AIC values indicate better models
Bayesian Information Criterion (BIC)	Schwarz (1978)	$BIC = n\log(RSS/n) + (p+1)\log n$	Smaller BIC values indicate better models
Predicted REsidual Sum of Squares (PRESS)	Weisberg (1985)	$\sum_{i=1}^{n} \hat{e}_{(i)}, \text{ where } \hat{e}_{(i)} \text{ is the error}$ made when predicting response y_i from the model constructed without observation i	Smaller PRESS values indicate better models.
Adjusted R ²	Weisberg (1985)	$\overline{R}^2 = 1 - \left(\frac{n-1}{n-(p+1)}\right)(1-R^2)$	Larger \overline{R}^2 values indicate better models

Table 3: Statistical criteria used to identify significant explanatory variable models for NCP EMC

The statistical criteria are used to assess how close the predictions from a model $\hat{\mu}_i$ are to the responses y_i over all observations *i*. *p* is the number of explanatory variables in the model and *n* is the sample size. RSS is the residual sums-of-squares $RSS = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2$

bolu.				
Variable	Carpark	Road	Roof	
log AR	-0.35	-0.26	-0.20	
log ADP	0.17	0.15	0.27	
log ED	-0.44	-0.50	-0.56	
log SD	-0.61	-0.64	-0.73	
log RD	-0.50	-0.48	-0.66	
log MI	0.30	0.34	0.28	
log PI	0.27	0.19	0.20	

Table 4: Correlations (*r*) between log of NCP EMC and the log of rainfall explanatory variables for monitored storms at Toowoomba for each surface. Values of |r| > 0.4 shown in **bold**.

		1	1.1			
	log ADP	log ED	log SD	log RD	log MI	log PI
log AR	-0.08	0.04	0.27	0.18	-0.17	-0.09
log ADP	1	0.03	-0.08	-0.15	-0.04	0.08
log ED		1	0.72	0.66	-0.28	-0.14
log SD			1	0.63	-0.66	-0.31
log RD				1	0.16	0.32
log MI					1	0.70
log PI						1

Table 5: Correlations (*r*) between log of rainfall explanatory variables for monitored storms at Toowoomba for carparks. Values of |r| > 0.4 shown in **bold**.

blutiblically bi	Similarit anno	i chices.		
Variable	AIC	BIC	PRESS	$Adj R^2$
combination				·
Carpark NCP	PEMC data			
AR	85.7	89.9	29.1	0.090
ADP	88.8	93.0	32.3	-0.006
ED	83.1	87.3	25.6	0.167
SD	75.6	79.8	20.3	0.351
RD	80.7	84.9	23.9	0.231
PI	87.4	91.6	30.3	0.039
SD+AR	75.4	81.0	20.4	0.374
SD+ ED	77.6	83.2	23.5	0.327
ED+ RD	81.8	87.4	25.0	0.227
SD+RD	76.3	81.9	21.0	0.356
RD+PI	73.6*	79.2*	18.9*	0.410*
SD+ADP	77.0	82.6	22.0	0.340
SD+PI	77.4	83.0	20.9	0.331
SD+RD+PI	75.1	82.1	20.0	0.399
Road NCP EN	MC data			
AR	56.3	60.6	10.5	0.037
ADP	57.8	62.1	10.9	-0.011
ED	48.5	52.8	7.93	0.252
SD	42.0*	46.3*	6.64*	0.392
RD	48.2	52.5	8.02	0.258
PI	57.4	61.7	11.1	0.002
SD+AR	43.2	48.9	6.98	0.387
SD+ ED	42.9	48.6	7.24	0.393
ED+ RD	46.2	51.9	7.34	0.326
SD+RD	42.7	48.4	6.75	0.397*
RD+PI	42.9	48.7	6.81	0.392
SD+ADP	43.8	49.6	7.21	0.374
SD+PI	44.0	49.7	7.01	0.371
SD+RD+PI	43.6	50.7	6.95	0.397*
Roof NCP EM	IC data			
AR	84.0	88.2	27.1	0.008
ADP	82.9	87.1	26.3	0.041
ED	71.4	75.7	17.6	0.346
SD	62.5	66.8	13.0	0.514
RD	67.3	71.6	15.1	0.430
PI	84.1	88.4	27.7	0.001
SD+AR	63.7	69.3	13.6	0.509

Table 6: Results of statistical analysis of carpark, road and roof NCP EMC data. (All variables are analysed on the logarithmic scale, but the logarithms are omitted from the table for readability.) The top four models for each statistical method and surface are shown in **bold**, with the highest performing model marked by an *, but do not necessarily indicate statistically significant differences.

SD+ ED	64.3	69.9	14.0	0.501
ED+ RD	65.9	71.5	14.6	0.473
SD+RD	60.5	66.1	12.6	0.560
RD+PI	55.9*	61.5*	10.2*	0.622*
SD+ADP	61.4	67.1	12.8	0.545
SD+PI	64.4	70.1	13.6	0.497
SD+RD+PI	56.8	63.8	10.6	0.622*

	Model with interactions between surface and explanatory variables		Model without interactions between surface and	
	-	·	explanatory	variables
Explanatory variable	Degrees of	<i>P</i> -value	Degrees of	P-value
	freedom		freedom	
Intercept by surface	2	< 0.001	2	< 0.001
log(RD)	1	< 0.001	1	< 0.001
log(PI)	1	< 0.001	1	< 0.001
log(SD)	1	0.164		
log(RD) by surface	2	0.126		
log(PI) by surface	2	0.305		
log(SD) by surface	2	0.983		

Table 7: *P*-values from sequential analysis of variance tests, using interactions between surface and the explanatory variables

Explanatory variable	Parameter	Coefficient	Standard	P-value	95% confidence
			error		interval
Constant for carpark	${\boldsymbol \beta}_0$	3.8958	0.3230	< 0.0001	3.25 to 4.54
Constant for road	${m eta}_0$	5.3633	0.3287	< 0.0001	4.71 to 6.02
Constant for roof	${oldsymbol{eta}}_0$	2.4581	0.3265	< 0.0001	1.81 to 3.11
log RD	β_1	-0.7355	0.08556	< 0.0001	-0.906 to -0.565
log PI	β_2	0.5618	0.0986	< 0.0001	0.366 to 0.758

Table 8: Regression statistics for common model to estimate NCP EMC for all surfaces of the log-form given in Equation 3.

1	Overall	Carpark	Road	Roof	
R^2	0.845	0.586	0.592	0.555	
Adjusted R^2	0.838	0.567	0.574	0.535	

Table 9. The R^2 and adjusted R^2 for the common model, for all data considered together and separated into subgroups by surface, evaluated on the log-scale

Table 10. The results from the BMA analysis: the posterior probability of the variable being among the top 41 models, and the posterior mean and standard deviation of the estimates for each potential predictor

Variable	Posterior probability	Posterior	Posterior
	the variable is in the	mean	standard
	model		deviation
Intercept (value for Carkpark)	100%	4.08	0.482
- Adjusted intercept for Road	84.2%	1.21	0.576
- Adjusted intercept for Roof	70.2%	-0.856	0.625
Log(RD)	80.1%	-0.502	0.288
Log(MI)	19.2%	-0.0392	0.175
Log(PI)	92.5%	0.402	0.170
Log(SD)	29.4%	-0.127	0.234
Log(AR)	55.8%	-0.0663	0.0720
Log(ADP)	3.9%	0.00160	0.0118
Log(ED)	0.0%	0.0000	0.0000
Surface(Road).log(RD)	20.4%	0.0934	0.2009
Surface(Roof).log(RD)	20.8%	-0.109	0.2148
Surface(Road).log(MI)	0.9%	0.00189	0.0241
Surface(Roof).log(MI)	0.3%	0.0203	0.0855
Surface(Road).log(SD)	10.0%	0.0229	0.0826
Surface(Roof).log(SD)	60.1%	-0.199	0.188
Surface(Road).log(PI)	1.6%	-0.00181	0.02798
Surface(Roof).log(PI)	8.9%	-0.02745	0.0896