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A B S T R A C T   

Applying new approaches in the management of water resources is a vital issue, especially in arid and semi-arid 
regions. The water footprint is a key index in water management. Therefore, it is necessary to predict its changes 
for future durations. The soft computing model is one of the most widely used models in predicting and esti
mating agroclimatic variables. The purpose of this study is to predict the green and blue water footprints of 
saffron product using the soft computing model. In order to select the most effective variables in prediction water 
footprints, the individual input was eliminated one by one and the effect of each on the residual mean square 
error (RMSE) was measured. In the first stage, the Group Method of Data Handling (GMDH) and evolutionary 
algorithms have been applied. In the next stage, the output of individual models was incorporated into the In
clusive Multiple Model (IMM) as the input variables in order to predict the blue and green water footprints of 
saffron product in three homogenous agroclimatic regions. Finally, the uncertainty of the model caused by the 
input and parameters was evaluated. The contributions of this research are introducing optimized GMDH and 
new ensemble models for predicting BWF, and GWF, uncertainty analysis and investigating effective inputs on 
the GWF and BWF. The results indicated that the most important variables affecting green and blue water 
footprints are plant transpiration, evapotranspiration, and yield, since removing these variables significantly 
increased the RMSE (range=11–25). Among the GMDH models, the best performance belonged to NMRA (Naked 
Mole Ranked Algorithm) due to the fast convergence and high accuracy of the outputs. In this regard, the IMM 
has a better performance (FSD=0.76, NSE=0.95, MAE) = 8, PBIAS= 8) than the alternatives due to applying the 
outputs of several individual models and the lowest uncertainty based on the parameters and inputs of the model 
(p = 0.98, r = 0.08).   

1. Introduction 

Population growth, agricultural expansion, industrial development, 
improvement of living standards, and changes in consumption patterns 
have caused the water demand to be increased (Siam and Eltahir, 2017; 
Elbeltagi et al., 2020a; Wang et al., 2021). 

The problem of freshwater shortage may intensify in the future due 
to the increasing demands and decreasing water availability, quantity 
and quality. This issue will cause problems for food security and envi
ronmental sustainability (Rosegrant et al., 2009; Ercin and Hoekstra, 
2016). 

Almost 85% of global freshwater is consumed in the agricultural 

sector (Mekonnen and Hoekstra, 2011; Bhat et al., 2017; Elbeltagi et al., 
2021). Therefore, water footprint (WF) could be a useful tool for dealing 
with water security challenges, especially in the agricultural sector 
(Hoekstra and Hung, 2003; Hoekstra, 2008; Bazrafshan et al., 2019b). 

The water footprint (WF) approach was first proposed by Hoekstra in 
2003. WF describe the total volume of freshwater that is used directly or 
indirectly to produce of goods and services (Hoekstra and Hung, 2003; 
Zhang et al., 2017, 2020; Zhai et al., 2019). WF is a combination of 
green, blue, and gray water footprints (Jamshidi et al., 2020). The blue 
WF (BWF) involves the volume of surface and underground water con
sumption (Hoekstra et al., 2011; Mekonnen and Hoekstra, 2014; Sidhu 
et al., 2021). The green WF (GWF) denotes the volume of rainwater 
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consumed during the growing period of the crop (Wang et al., 2022b; 
Sidhu et al., 2021; Zhao et al., 2019). 

The gray WF is the volume of water required to dilute pollutants 
tolerably (Hoekstra and Chapagain, 2006; Wang et al., 2022a). WF is a 
key index in the management of water resources and agriculture. 
Therefore, the prediction WF is important due to its dependence on 
various parameters, and its prediction is a complicated issue. In this 
regard, the soft computing model is one of the appropriate models for 
predicting and estimating hydrological and agricultural variables. 

High accuracy, fast convergence and high flexibility are the char
acteristics of soft computing models. Previous studies have used 
different soft computing methods for predicting WF. Elbeltagi et al. 
(2020b) applied climatic parameters and Artificial Neural Networks 
(ANNs) model to predict WF. They indicated that the ANN model 
accurately predicts the blue and green water footprints using the cli
matic data. Preparing the parameters of the ANN model and determining 
the number of hidden layers was a research challenge. 

Mokhtar et al. (2021) used random forest, decision tree, and incre
mental regression algorithm to predict the BWF and GWF. They per
formed their forecast for the future period of 2021–2050 under the 
conditions of climate change. According to their reports, the BWF and 
GWF will increase in future periods. Collecting data, preparing climate 
scenarios and selecting the best model were their research challenges. 

Elbeltagi et al. (2021) used climatic parameters such as temperature, 
wind speed, solar radiation, and vapor pressure to predict WF. They 
applied four different kernels in the Gaussian model and indicated that 
the Gaussian algorithm is an appropriate model for estimating WF. 

However, various models produce different accuracies. Setting 
model parameters and collecting required data were the main challenges 
of their research. The main challenges of the previous studies were 
determining the input predictors, selecting the best model, and adjusting 
the parameters. Past researches have focused more on using individual 
models rather than using an ensemble approach to predict BWF and 
GWF. Integrated models use optimization algorithms for modeling and 
then the output of these models is used as the input of the final model. 
Also, in most past researches, the analysis of uncertainty caused by 
model parameters and input data has not been considered. 

The purpose of the present study is to extract the most effective 
variables on BWF and GWF, then their prediction based on the optimized 
ensemble model and finally to analysis the model uncertainty based on 
the input data and model parameters. 

The artificial neural network (ANN) is one of the most important soft 
computing models. The ANN algorithm is useful for extracting infor
mation from imprecise and non-linear data (Adisa et al., 2019). The ANN 
algorithms have fewer limitations than the conventional approaches 
(Elbeltagi et al., 2020b). They have various characteristics, including 
high accuracy, fast computing, and convergence. They also have high 
analytical power to simulate complex and non-linear problems by 
applying different mathematical activation functions. (Zhang et al., 
1998). 

Group Method of Data Handling (GMDH) proposed by Ivakhnenko 
(1968) is a multivariate analysis approach developed based on the 
artificial neural network and applied to identify and model complex 
systems. GMDH model could be used to model complex systems when 
there is no prior information (Muller and Ivakhnenko, 1996). This 
method provides more accurate results for low samples and dispersed 
data than physical models (Ivakhnenko, 1968). Although the GMDH 
model is a powerful tool, it needs improvements to increase accuracy. 
The accuracy of the GMDH model directly depends on the estimated 
parameters. The optimization algorithms are appropriate methods for 
improving the accuracy of the GMDH model. 

The GMDH model is an individual model. Individual models have 
advantages and disadvantages. However, previous studies showed that 
ensemble models composed of several individual models have better 
accuracy than individual models. Therefore, the current research aims to 
develop the GMDH model using optimization algorithms. Then 

constructs an ensemble model that involves several optimized GMDH 
models in order to predict the water footprint of the saffron product. 

Saffron is one of the most expensive medicinal plants in the world, 
that is called red gold (Leone et al., 2018) and is used to treat diseases. 
This plant is also used as a flavoring, coloring, and preservative in the 
food industry (Fallahi et al., 2018; Siddique et al., 2020). 

Due to its special morphological characteristics, resistance to 
drought, and its dormant phase that does not require irrigation, saffron 
needs little water compared to other crops (Kafi et al., 2006; Cardone 
et al., 2020). These characteristics allow the plant to grow in arid and 
semi-arid areas (Alizadeh et al., 2009; Agayev et al., 2006). 

Saffron is one of the native products of Iran. The importance of 
saffron can be evaluated from various aspects, such as low water 
requirement, job creation, preventing the migration of villagers and the 
livelihood of more than 4,000,000 people (Rastegaripour and Moham
madi, 2018). 

Iran with production of 90% of global saffron, has the first rank in 
terms of cultivated area and production rate in the world (Baghalian 
et al., 2010; Cardone et al., 2020; Bazrafshan et al., 2019b; Mollafilabi 
et al., 2020). According to the Ministry of Agricultural Jihad reports 
published in 2019, the production of saffron in Iran with a cultivated 
area of 118,372 ha has been 428.19 tons. Khorasan Razavi with 70% of 
the saffron production and 77% of the saffron cultivation area, has the 
first rank of saffron production and cultivation area in Iran. After that, 
Khorasan Jonoobi and Khorasan Shomali provinces have the second and 
third ranks of saffron production in Iran, respectively (MAJ, 2019). 

This study develops the new and optimized GMDH and ensemble 
models for predicting BWF and GWL. In this regard, we applied the 
optimization algorithms to improve the GMDH model and estimate its 
parameters. 

Salgotra and Singh (2019) introduced a new optimization algorithm 
called naked mole rate algorithm (NMRA) to solve optimization prob
lems. The characteristics of this algorithm are high accuracy for solving 
non-linear optimization, fast convergence, and the ability of training 
soft computing models. This study uses NMRA optimization algorithm to 
train GMDH model and estimating parameters. For further investigation, 
we also applied the GMDH-BA (Bat Algorithm), GMDH-PSO (Particle 
Swarm Optimization) and GMDH-SA (Shark Smell Algorithm) optimi
zation algorithms to predict the WF. In the second stage, the outputs of 
the mentioned models are used as the inputs of the IMM (Inclusive 
Multiple Model) model to predict the WF and evaluate the uncertainty of 
the model using GLUE. The contributions of current study as follows:  

1) Developing a new ensemble method for predicting of BWF and GWF 
based on optimized GMDH models, 2) this research quantifies the 
uncertainties of model outputs using a new method. 

2. Material and methods 

2.1. Case study and data set 

Khorasan region in northeastern Iran covering an area 313,335 Km2, 
involves three provinces of Khorasan Shomali, Khorasan Razavi and 
Khorasan Jonoobi, that covers about one-fifth of the Iran land area. 
These provinces with almost 96% of saffron production (269.12 tons), 
are the biggest saffron production areas in Iran (Bazrafshan et al., 
2019b). 

In this research, crop data including cultivation area, saffron pro
duction, and the rate of chemical fertilizer consumption in 38 counties 
are collected from the Ministry of Agricultural Jihad (MAJ, 2021). The 
meteorological data are taken from the meteorological data source of 
the Iran (IRIMO, 2021). In this regard, the cultivated area, production, 
chemical fertilizer consumption, irrigation efficiency, cultivation date 
and soil type of each region were selected to determine the homoge
neous agroclimatic points of saffron production in Khorasan region. In 
this research, Fuzzy C-Mean (FCM) clustering algorithm was used to 
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determine homogeneous points. 

2.2. FCM clustering methodology 

The purpose of clustering is to divide the observations into several 
categories in which the observations of each category are more similar 
and closer to each other than the observation of other categories. Fuzzy 
c-means is one of the clustering algorithms that assign observations to 
separate clusters with a specific degree of membership. 

In these algorithms, an objective function is used as the evaluation 
index, that optimally clusters the existing observations. The fuzzy 
clustering algorithm was firstly proposed by Ruspini (Ruspini, 1969). 

In this method, the degree of membership or belonging of each 
observation to each cluster, is determined through the membership 
matrix (U =

[
uij
]

c×n = ( u→1; u→2;…; u→n) where c is the number of clus
ters and n represent the number of observations). 

Two constrains have been considered in FCM clustering method. 

First, no cluster should be null (
∑u

j=1uij > 0∀i ∈ {1;…; c}) and second, 
the normalization constrains that states the total degree of membership 
of each observation in all clusters should be equal one (

∑u
j=1uij =

0∀j ∈ {1;…; n}). 
The FCM algorithm attempts to find partitions sets (c fuzzy clusters) 

for an observation group through minimizing the following objective 
function 

Jf
(
X;Uf ;C

)
=

∑c

i=1

∑n

j=1
um

ij d
2
ij (1)  

where dij is the distance between jth observation, Xj and the center of the 
ith cluster and m ∈ [1, ∞ ) denotes the degree of fuzziness (usually 
m=2). Therefore, if m tends to one (m→1), the clustering becomes the 
crisp method and if m tends to infinity (m→∞), the clustering becomes a 
fuzzy clustering. However, the Jf function cannot be minimized directly, 
and the iterative algorithms must be used. To solve this problem, the 
optimal steps are as follows:  

1. Choosing appropriate values for m, c and selecting a small positive 
number for ε. We also fill the matrix C (the center of the clusters) 
randomly and set the value t = 0.  

2. We calculate the membership matrix at t = 0 and then update at 
t > 0. Then the membership matrix, for fixed value of parameters is 
optimized as follows 

u(t+1)
ij =

d− 2/(m− 1)
ij

∑c
1=1d− 2/(m− 1)

1j

=
1

∑c

1=1

(
d1j

/
dij
)1/(1− m)

for i = 1,…, c and j

= 1,…,N (2)  

In this equation, the degree of membership depends on the 

Fig. 1. Homogeneous regions of saffron production in Khorasan province; location of Iran in the world (a); location of Khorasan in Iran (b) and location of clusters in 
case study (c). 

Table 1 
Crop information and climatic variables in each cluster at the Khorasan region.  

Cluster I II III 

Yield (kg/ha)  3.38  3.42  3.67 
Fertilizer (kg/ha)  88  84  70 
Wind Speed (m/s)  2.54  2.95  2.90 
Tmax (◦C)  24.48  22.90  21.73 
Tmin (◦C)  10.70  9.43  8.41 
Tmean(◦C)  18.40  15.99  15.63 
Average Precipitation (mm/day)  135.9  211  232 
Relative Humidity (%)  35.5  43.7  49.5 
Sunshine Hours (hr)  9  8.6  8.2 
Peff (mm)  54.5  62.7  64.9 
Etc(mm/day)  839.2  728.8  875.4 
IWR (mm)  784.7  666.1  810.7  

Z. Gerkani Nezhad Moshizi et al.                                                                                                                                                                                                           



Agricultural Water Management 277 (2023) 108125

4

distance between an observation with the center of its cluster, and 
the distance with the center of other clusters. 

c(t+1)
i =

∑n
j=1

(
u(t+1)

ij

)m
X→j

∑n
j=1

(
u(t+1)

ij

)m for i = 1,…, c (3)   

3. In the final step, we update the membership matrix using the opti
mized membership degree. 

The updating equation for the cluster centers depends on several 
parameters such as the location, shape, and size of the clusters. In 

addition to the mentioned parameters, the method of measuring the 
distance will be very sensitive.  

4. Repeat steps 2 and 3 until 
⃦
⃦C(t+1) − C(t)

⃦
⃦ < ε or 

⃦
⃦U(t+1) − U(t)

⃦
⃦ < ε are 

established. 

In practice, it has been shown that this method does not fall into local 
optimization. The FCM algorithm has been widely used as a clustering 
method in many studies. 

Fig. 1 illustrates the three homogenous regions which was deter
mined based on the FCM algorithm and Table 1 represents the crop and 
climatic information of each cluster located in these homogeneous 
regions. 

Fig. 2. Flowchart of methodology.  
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In cluster I, the climate type is moderate extra-arid (based on De 
Martonne classification (Rahimi et al., 2013)), average temperature is 
18.40 degrees Celsius, average rainfall is 135.9 mm, average wind speed 
is 2.54 m/s, the sunshine hours is 9 h per day, the average humidity is 
35.5%, and the saffron yield is 3.38 kg/ha. 

Cluster II has cold arid climate type wherein average temperature is 
15.99 degrees Celsius, average rainfall is 211.09 mm, humidity per
centage is 43.7, average wind speed is 2.95 m/s, the sunshine hours is 
8.6, and the saffron yield is 3.42 kg/ha. 

In cluster III, climate type is cold semi-arid, average temperature is 
15.63 degrees Celsius, average rainfall is 232 mm, average wind speed is 
2.90 m/s, the sunshine hours is 8.2, the average humidity is 49.5%, and 
the saffron yield is 3.67 kg/ha. 

2.3. WF computing 

In this study, the BWF and GWF of the saffron product were calcu
lated using the main framework described by Hoekstra and Chapagain 
(2008). In this regards, crop evapotranspiration, irrigation requirement 
and effective rainfall were calculated by applying the CropWat model in 
each plain of the study area. 

The Penman-Monteith equation (Allen et al., 1998) has been used to 
calculate the evapotranspiration and the FAO-56 coefficients was 
considered to calculate crop evapotranspiration. For more details, one 
can refer to Allen et al. (1998). 

In this study, the CropWat tool using the crop coefficients (Kc) pro
posed by Shahidi et al. (2020); Keykhamoghadam et al. (2013) was 
applied and the ETc was calibrated for each saffron cultivation area. 

Then, the net irrigation requirement was calculated from the dif
ference of evapotranspiration with the effective precipitation. The water 

requirement was also calculated using the irrigation efficiency (reported 
by the Ministry of Agriculture for each region). After determining the 
variables affecting the product, the BWF and GWF were calculated. 

Green water is a part of effective rainfall that is consumed by plants 
in an unsaturated soil environment (Bazrafshan et al., 2019a). The green 
water footprint is computed using the following equation. 

GWF =
(Pe)*10

Y
(4)  

where, GWF is green WF in cubic meters per ton; Pe denotes the total 
effective rainfall (using USDA S.C. Method) during the plant growth 
period in millimeters and Y is the yield of saffron in ton per hectare. 

Blue water involves the underground water and surface runoff from 
rains and lakes water that collects behind the dams and are used in the 
irrigation sector. (Bazrafshan et al., 2019b) The BWF is calculated using 
the equation 

BWF =
(ETc − Pe)*10

Y
(5) 

where BWF is the blue WF in cubic meters per ton and ETc represents 
the crop evapotranspiration in millimeter. 

2.4. Structure of group method of data handling 

The group method of data handling (GMDH) model is a machine 
learning algorithm proposed by Ivakhnenko (1971). The GMDH is used 
to analyze complex and non-linear systems without pre-assumptions 
about internal parameters. 

GMDH is a multilayer perceptron neural network (MLP) that con
structs the successive layers with connections. GMDH analyses data 
using polynomial transfer activation functions such that the layers and 
neurons are determined automatically. The mathematical function of 
GMDH is as follows (Mahdavi-Meymand and Zounemat-Kermani, 2020): 

y = b0 +
∑m

i=1
bixi +

∑m

i=1

∑m

j=1
bijxixj +

∑m

i=1

∑m

j=1

∑m

k=1
bijkxixjxk (6)  

Where yis the response variable,b0, bij,biand bijk rare the model 
weighting coefficients, xi, xk, and xjare the predictors, and m denotes the 
number of input (predictor) variables. This study used the quadratic 
form of the polynomial function. Therefore, Equation 6 is reduced to the 
Equation 7 which is expressed as below (Mahdavi-Meymand and 
Zounemat-Kermani, 2020). 

y = b0 + b1x1 + b2x2 + b3x2
1 + b4x2

2 + b5x1x2 (7) 

According to estimation parameters in regression models, the 
weighting coefficients vector of GMDH can be estimated as (Ivakhnenko, 

Table 2 
Different input scenarios for modeling BWF and GWF.  

Scenario Inputs for the BWF and GWF RMSE for BWF (m3/kg) RMSE for GWF (m3/kg) 

Cluster1 Cluster2 Cluster3 Cluster1 Cluster2 Cluster3  

1 All inputs except ETC  24  22  23 23 23 23  
2 All inputs except IWR  22  24  25 - - -  
3 All inputs except Tmax  15  15  15 14 15 15  
4 All inputs except Tmean  19  19  19 18 19 19  
5 All inputs except P  21  23  23 20 20 20  
6 All inputs except Peff  14  14  14 16 15 14  
7 All inputs except SH  15  16  16 16 14 15  
8 All inputs except RHmin  17  18  19 19 18 18  
9 All inputs except RHmax  15  15  12 15 17 14  
10 All inputs except RHmean  14  15  14 15 16 15  
11 All inputs except WS  12  14  14 14 15 14  
12 All inputs except Yield  25  27  28 22 22 24  
13 All inputs  12  11  12 11 12 11 

Bold number: The best input set for modeling 

Table 3 
Determining sample size percentages for training and testing.   

BWF GWF 

Training Testing RMSE Training Testing RMSE 

Cluster 1  50  50  19  50  50  17  
60  40  23  60  40  24  
70  30  12  70  30  11  
80  20  18  80  20  21 

Cluster 2  50  50  22  50  50  17  
60  40  25  60  40  26  
70  30  14  70  30  12  
80  20  18  80  20  22 

Cluster 3  50  50  25  50  50  17  
60  40  17  60  40  19  
70  30  11  70  30  12  
80  20  19  80  20  26  
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1971). 

b =
(
AT A

)− 1AT y (8)  

Where Ais the matrix of observations in the following form (Ivakhnenko, 
1971). 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1
1 x1

2 x1
1x1

2

(
x1

1

)2 (
x1

2

)2

1 x2
1 x2

2 x2
1x2

2

(
x2

1

)2 (
x2

2

)2

. . . . . .

1 xm
1 xm

2 xm
1 xm

2

(
xm

1

)2 (
xm

2

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9) 

The next layer neurons of GMDH model is calculated as 

Fig. 3. Determining sample size for training and testing stages based on GMDH NMR.  
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Nn =

(
Nnp
2

)

(10)  

where Nnp is the number of neurons in the current layer. In GMDH, the 
neurons are added layer by layer. In order to avoid the complexity of the 
GMDH model, the maximum number of neurons may in each layer is 

determined based on the pressure criteria (Mahdavi-Meymand and 
Zounemat-Kermani, 2020). 

ec = w × RMSEbest +(1 − w) × RMSEworst (11)  

where ec is the selection pressure parameter, RMSEbest is the RMSE of the 
best neuron, andRMSEworst denotes the RMSE of the worst neuron. 
Equation (11) will remove some neurons from the structure of the 
GMDH. 

2.5. Naked mole rate algorithm (NMRA) 

Salgotra and Singh (2019) introduced the NMRA optimization al
gorithm, which was developed based on the mating pattern of NMRs. 
The group of NMRs consists of 295 individuals. In this group, Queens 
leads the group and divides members into breeders and workers. 

Breeders are selected for mating while workers carry out other 
duties. The best workers replace the breeders. At the first stage, the 
NMRs population is generated as follows: 

NMi,j = NMmin ,j +U(0, 1) ×
(
NRmax ,j − NRmin ,j

)
(12)  

where NMi,j is the ith solution in the jth dimension, NRmax ,jdenotes the 
upper bound of the decision variable, NRmin ,jrepresents the lower bound 
of the decision variable and U(0,1)is a random number taken from the 

Fig. 4. F Sensitivity Analysis of population size (POP) for various algorithms in predicting BWF.  

Table 4 
The sensitivity analysis of random parameters.   

Parameter BWF GWF 

Maximum number of iterations 

Cluster 1 NMRA  150  150 
BA  200  250 
SA  300  300 
PSO  400  400 

Cluster 2 NMRA  150  150 
BA  200  250 
SA  300  300 
PSO  400  400 

Cluster 3 NMRA  150  150 
BA  200  250 
SA  300  300 
PSO  400  400 

Iteration: Random parameter 
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uniform distribution. After initialization, the objective function is 
calculated. The objective function is used to divide the population into 
workers and breeders. Now, two stages should be considered:  

1) Worker Phase: At this stage, workers attempt to improve their skills. 
They strive to become a breeder for mating with the queen. The 
objective function of the new NMR is determined and will be saved if 
it is a better objective function. The following equation is used to 
provide the new NMRS in this stage: 

wot+1
i = wot

i + λ
(
woj

t − wok
t

)
(13)  

where wot+1
i denotes the ith worker in the (t + 1)th iteration, 

woj
trepresents the ith worker in the t th iteration, λ denotes the 

mating factor, and wok
t is a random solution that is selected from the 

worker’s pool.  
2) Breeder phase: Breeders must also strive to update themselves to 

remain breeders and to be selected for mating. when breeders cannot 
update fitness information, they may be pushed back to the worker 
group. The following equation updates the breeders at (t + 1)th 
iteration. 

brt+1
i = (1 − λ)brt

i + λ
(
d − brt

i

)
(14)  

where brt+1
i denotes the ith breeder in the (t + 1)th iteration and dis the 

best solution. It is assumed that there is only one queen such that the best 

breeder mates with it. The algorithm identifies breeders and workers. 
The breeders and workers are selected based on an initial evaluation. 
Workers’ fitness is updated such that they may improve and gain the 
opportunity to be breeders. Breeders update themselves to remain 
breeders. The best breeders are considered as the candidate solutions. 

2.6. Structure of Bat algorithm (BA) 

This algorithm was inspired from the Bat (BA) life. The advantages of 
BA algorithm involve fast convergence, high flexibility, and high accu
racy. BA has been applied in different fields, such as training soft 
computing models (Lu et al., 2021), numerical optimization (Wang 
et al., 2019), optimal reactive power dispatch (Mugemanyi et al., 2020), 
optimal feature selection (Al-Dyani et al., 2018), energy-efficient clus
tering (Bacanin et al., 2022), and reservoir operation (Shourian and 
Jamshidi, 2022). Echolocation ability helps bats to identify food and 
obstacles. Bats randomly fly with velocity Vi at location Xi, frequency Fi, 
wavelength λ, and loudness A0. Bats update their location, velocity, and 
frequency based on the following equations 

Fi = Fmn +(Fmax − Fmin)β (15)  

Vt
i = Vt− 1

i +
(
Xt− 1

i − X*)Fi (16)  

Xt
i = Xt− 1

i +Vt
i (17) 

Fig. 5. Radar plots of optimizing algorithms in modeling BWF.  
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where Fidenotes the frequency of ith bat, Fmax and Fminare the maximum 
and minimum frequency respectively, Vt

i represents the velocity of ith 
bat, t is number of iteration, X*indicates the best location of bat, 
Xt

idenotes the location of ith bat and β is a random number. Bats perform 
local search based on the random walk method as below (Bacanin et al., 
2022): 

Xnew = Xold + εAt (18)  

where Xnew denotes the new location of bats, Xoldis the old location of 
bat, and At indicates the loudness. A balance between exploration and 
exploitation is maintained by adjusting the pulsation rate and loudness 
denoted in the following expressions. 

At+1
i = αAt

i (19)  

rt+1
i = r0

i [1 − exp( − γt)] (20)  

Where At+1
i denotes the loudness of ith bat at iteration t + 1, r0

i is the 
initial pulsation rate, and γ and αare the constant terms. 

2.7. Structure of shark algorithm (SA) 

The shark algorithm was inspired from shark life. Abedinia et al. 
(2016) proposed SA for solving complex problems. Applying the rota
tional movement of the sharks reduces the possibility of falling the SA 

algorithm into the local optimization. SA algorithm has been applied in 
various fields, such as training soft computing models (Seifi et al., 2020), 
medical image enhancement (Zhou et al., 2020), fingerprint authenti
cation (Ahmed and Abdulhameed, 2020), estimating groundwater level 
(Rezaei et al., 2021), and reservoir operation (Ehteram et al., 2021). 
Sharks use their olfactory sense to locate prey. When they get closer to 
their prey, they smell more strongly. The SA operates based on the 
following assumptions:  

1) Sharks consider wounded fish to be prey. Blood is injected into the 
water when the fish is wounded.  

2) Continuously, blood is injected into the ocean, and the impact of 
water flow is ignored.  

3) In the search space, there is only one fish. 

Sharks vary their speed from a minimum to a maximum. However, a 
speed limiter is considered for updating the shark’s velocity (Ehteram 
et al., 2021): 
⃒
⃒
⃒vek

i,j

⃒
⃒
⃒ = min

[⃒
⃒
⃒
⃒ςk.r1.

∂(OF)
∂xj

⃒
⃒
⃒
⃒+ αk.r2.vek− 1

i,j

⃒
⃒
⃒
⃒,

⃒
⃒
⃒δ.vek− 1

i,j

⃒
⃒
⃒

]

(21)  

where vek
i,j denotes the velocity of ith shark in jth dimension, K is the 

number of stages, r1, and r2 are the random numbers, δis the speed 
limiter, αkrepresents the inertia coefficient, and ςkis a random number 
and OF denotes the objective function. The sharks update their location 

Fig. 6. Radar plots of optimizing algorithms in modeling GWF.  
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as follows: 

Yk+1
i = Xk

i +Δtk (22)  

where Yk+1
i denotes the location of the shark after the forward move

ment, Δtkrepresents the time interval and Xk
i is the location of ith shark in 

the kth stage. With the rotational movement, the SA achieves the best 
location. Sharks typically perform rotational movements and forward 
movements to improve their movement direction. Sharks rotate on a 
closed contour, not necessarily a circle. Shark performs local search in 
each stage to find better candidates for optimization 

Zk+1,m
i = Yk+1

i + r3.Yk+1
i (23)  

Where r3 is the random number, m: (m=1. to M) represents the number 
of points in the local search at each stage, and Zk+1,m

i denotes the location 
of sharks after rotational movement. For a maximization problem, the 
final location is obtained as follows: 

Xk+1
i = arg(max)

{
OF

(
Yk+1

i

)
,OF

(
Zk+1

i

)
,OF

(
Zk+1,M

i
)}

(24)  

2.8. Structure of particle swarm optimization (PSO) 

PSO is a robust optimization algorithm that is used for solving 
complex problems. The key advantages of the PSO algorithm are easy 
implementation, fast convergence, high accuracy, parallel computation, 
and high flexibility for coupling with various models (Kashani et al., 
2021). First, the initial locations and velocities of the particles are 
initialized. Next, the objective function is computed to determine the 
optimal solution. This solution leads the other solutions toward the best 
location (Wang et al., 2021). The location and velocity of particles are 
updated according to the following equations, and the process continues 
until a stop condition is met (Wang et al., 2021). 

vn
id = ωvn

id +ϕ1rand1
[
pn

id − xn
id

]
+ϕ2rand2

[
gn

id − xn
id

]
(25)  

Fig. 7. The heat scatter plots for predicted and observed BWF (Cluster I).  
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xn+1
id = xn

id + vn+1
id (26)  

where n is the number of iterations, d is the number of dimensions, 
ϕ1andϕ2denote the acceleration coefficient, pn

idrepresents the local best 
solution, gn

idis the global best solution, rand1 and rand2 are the random 
numbers, vn+1

id denotes the velocity of the ith particle in (n + 1)th itera
tion and xn+1

id represents the location of the ith particle. 

2.9. Structure of inclusive multiple models (IMM) 

The Inclusive Multiple Model is an ensemble model that improves 
the accuracy of individual models. Shabani et al. (2021) indicated that 
the IMM model has a good performance in predicting CO1 emission. 
They applied the outputs of several individual models as the inputs of 

the IMM. Khatibi and Nadiri (2021) stated that the IMM model uses the 
advantages of multiple models and improves the efficiency of individual 
models. Jalil-Masir et al. (2022) applied the IMM model as a collabo
rative model. In this study, the IMM model was used in order to improve 
the accuracy of the optimized GMDH models as follows: 

The individual GMDH NMRA, GMDH-SA, GMDH-BA, and GMDH are 
applied in order to predict the output variables in the first stage. Then, 
the outputs of the previous stage are used as the inputs of the GMDH 
model. The GMDH in the second stage integrates and combines the 
outputs of various models. 

2.10. Generalized likelihood uncertainty estimation (GLUE) 

GLUE is a useful approach for quantifying the uncertainty in the 
modeling process. GLUE has been applied in various fields, such as un

Fig. 8. The heat scatter plots for predicted and observed GWF (cluster I).  

Z. Gerkani Nezhad Moshizi et al.                                                                                                                                                                                                           



Agricultural Water Management 277 (2023) 108125

12

certainty analysis of discharge (Maghrebi and Vatanchi, 2021), reservoir 
operation (Muronda et al., 2021), hydrological model uncertainty (Zuo 
et al., 2021), uncertainty quantification of eruption (Constantinescu 
et al., 2022), and urban flood model (Kobarfard et al., 2022). According 
to the following steps, the input and parameter uncertainties are 
quantified: 

1. In the first step the prior distribution of input parameters is deter
mined. Typically, the normal distribution is used for input parame
ters. However, it cannot be used as a prior distribution for model 
parameters. The parameters fluctuate during the training step, which 
demonstrates the parameter properties. In this study, 4000 GMDH 
models are trained to estimate the probability distribution of ANN 
parameters. This training number was selected because the param
eters remained unchanged between 1000 and 4000 GMDH models.  

2. The prior distribution using the Monte Carlo method provides N 
samples.  

3. The GMDH models are run using the generated parameters in the 
previous step.  

4. The likelihood function is determined. The Nash-Sutcliffe efficiency 
is used as the likelihood function (McCuen et al., 2006): 

P(L|θi) = 1 −

∑O

o=1
[lo − l̂o(θ)]

∑O

o=1
([lo − l̄o])

2
(27)  

Where P(L|θi)is the likelihood function, lodenotes the observation 
value, ̄lrepresents the oth simulated value using parameter sets θ and 
l̄denotes the average of observed value.  

5. A threshold is considered and the parameters with a likelihood blow 
threshold are discarded, whereas other parameters are used.  

6. The posterior probability is obtained as follows: 

p(θi|L) =
p(θi).p(L|θi)

∑N

i=1
p(L|θi)

(28)  

where p(θi|L)denotes the posterior probability. 
The mean and variance of the parameters are computed. Fig. 2 dis

plays the methodology flowchart. 

3. Result 

3.1. Selecting the best input scenario 

In this research, in order to select the best input scenario (introduced 
in Table 2), the RMSE criterion based on the GMDH NMRA algorithm 
was considered. The lowest RMSE indicates the best input. 

The input scenarios for GWF and BWF are displayed in Table 2. 
According to the results, the lowest RMSE and the best results in all three 
clusters and both predictive variables, belongs to the scenario 13, in 
which all predictors are included into the model. 

In regards with GWF, the highest value of RMSE belongs to the 
scenarios 1 and 12, in which the inputs contain all variables except ETC 
and Yield. Therefore, the GWF is highly correlated with ETC and Yield. 

Like the GWF, the highest RMSE in predicting BWF belongs to the 
scenarios 1 and 12, whose input involves all variables except the Yield 
and ETc. Further, in both cases the lowest RMSE produced by a scenario 
that involves all predictors. 

3.2. Determining the sample size 

Determining the sample size for training and testing parts is very 
important in modeling. In this research, the RMSE was used to deter
mine the appropriate sample size of the data. The best sample size is one 
that minimizes the RMSE in both training and testing steps. 

Table 3 represents the error rate RMSE versus the sample size for the 
testing and training stages for BWF and GWF in all three clusters. Ac
cording to the results, assigning 70% and 30% of observations respec
tively to the training and testing sets produced the lowest RMSE in all 
three clusters. Therefore, in order to modeling BWF and GWF in all three 
clusters, observations were separated into 70% and 30% for the training 
and testing purpose respectively (Fig. 3). 

3.3. Selecting appropriate random parameters 

Fig. 4 illustrates the RMSE versus different population sizes (POP) for 
NMRA, BA, SA and PSO algorithms in modeling BWF in all three clus
ters. Each algorithm involves various random parameters, such that the 
population size is an important random parameter. Sensitivity analysis 
means changing the population size versus the objective function in 
order to achieve the best population size. The objective function in the 
present study is the RMSE and the best population size is one that pro
duces the lowest RMSE value. 

The objective function in cluster 1 based on the NMR algorithm and 
for population sizes POP= 50, POP= 100, POP= 200, POP= 250 and 
POP= 300 were 16.55, 12.23, 14.55, 15 and 15.5, respectively. There
fore, the best population size for the NMR algorithm is POP= 150 with 
the value 12.23 of objective function. 

The objective function for BA with respect to POP= 50, POP= 100, 
POP= 200, POP= 250 and POP= 300 was 16.12, 15.54, 14.35, 14.78 
and 15.23, respectively. Therefore, the best population size for BA is 
POP= 200 that produced the lowest RMSE= 14.35. 

Further analysis indicated that the NMR algorithm has the best 
performance in cluster I such that it produced the lowest RMSE= 12.23 
for population size POP= 150. In clusters II and III, the best population 
size was investigated in different algorithms, and the NMRA algorithm 
produced the lowest RMSE= 12.34 for the population size POP= 150. 

Table 3 represents large number of iterations for various algorithms 
in modeling BWF and GWF in all three clusters. Since the iteration 
number is another important parameter in evolutionary algorithms, 
sensitivity analysis is performed to calculate the maximum iteration 
number. In order to achieve the best value of the objective function, the 
parameter of maximum iteration such as the population size is changed. 
The best value of maximum iteration number for each algorithm are 
provided in Table 4. 

Fig. 9. The coefficient of determination (R2) between predicted and observed 
GWF and BWF (Clusters II& III). 
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3.4. Graphical assessment of model accuracy 

Fig. 5 illustrates the radar plot of comparing model accuracy based 
on the FSD, NSE, PBIAS and MAE criteria for modeling BWF. Fig. 5a 
indicates the radar plot based on the FSD value. 

The training FSD for IMM, GMDH NMRA, GMDH-SA, GMDH-BA, 
GMDH-PSO and GMDH algorithms were 0.76, 0.89, 1.12, 1.23, 1.28 and 
1.32, respectively. Fig. 6b illustrates the NSE values of modeling BWF. 

The testing NSE for IMM, GMDH NMRA, GMDH-SA, GMDH-BA, 
GMDH-PSO and GMDH algorithms were 0.95, 0.92, 0.89, 0.86, 0.84 and 
0.72, respectively. 

The testing PBIAS for IMM, GMDH NMRA, GMDH-SA, GMDH-BA, 
GMDH-PSO and GMDH algorithms were 8, 12, 15, 18, 23, 27 respec
tively (Fig. 6c). Fig. 6d illustrates the radar plot MAE criterion. 

The training MAE for IMM, GMDH NMRA, GMDH-SA, GMDH-BA, 
GMDH-PSO and GMDH algorithms were 8, 9, 11, 12, 14 and 15, 

Fig. 10. Boxplot of the observed and predicted BWF and CWF based on the testing observations in Clusters I & II & III.  
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respectively. According to all assessment criteria, the IMM algorithm 
was the best compared to the alternatives. Results of this section indicate 
that the evolutionary algorithms increase the accuracy of the GMDH 
model. 

The hybrid GMDH models have different accuracies. In this regard, 
the NMRA algorithm had the best and the PSO algorithm had the lowest 
accuracy than the other optimization algorithms. Since the IMM used 
the outputs of several individual models, it had better accuracy than the 
individual GMDH models. Therefore, using the IMM model has 
improved the results. 

Fig. 6 represents the radar plots of FSD (Fig. 6c), NSE (Fig. 6b), PBIAS 
(Fig. 6a) and MAE (Fig. 6d) criteria for modeling GWF. Similarly, the 
results of modeling BWF, the IMM model produced the lowest error rate 
than the alternatives in modeling GWF, so that the optimized GMDH had 
better performance than the individual GMDH model. 

Scatter plot is a useful tool for evaluating the accuracy of predicted 
models. When the data overlaps, the heat scatterplot helps to identify 
the number of observations in a specific area. Figs. 7 and 8 denote the 
scatter plot of prediction BWF and GWF in cluster I. 

Fig. 7(a-f) represents the scatter plot between predicted and observed 
BWF. The estimated R2 for IMM, GMDH NMRA, GMDH-SA, GMDH-BA, 
GMDH-PSO and GMDH models are 0.99, 0.98, 0.97, 0.97, 0.96 and 0.95, 
respectively. Therefore, based on the R2 criterion, the IMM model is 
more accurate than the alternatives. 

Fig. 9(a-f) denotes the scatter plot of predicted versus the observed 

GWF. As results show, the highest R2 was produced by IMM model. 
Therefore, the IMM model has higher accuracy in prediction both var
iables in cluster I. 

Fig. 9 represents the barplot of R2 value for predicted GWF and BWF 
in clusters II and III. According to the results, the IMM model produced 
the highest R2 between the estimated and observed BWF and GWF in 
both clusters. Therefore, due to the use of the outputs of several indi
vidual models, the IMM has the highest accuracy among the alternatives 
in all three clusters. 

3.5. Graphical assessment of model performance 

In order to evaluate the performance of the models, the boxplot of 
the estimated and observed GWF and BWF was used. Fig. 10 compares of 
the boxplot of the predicted and the observed BWF and GWF for saffron 
in 3 clusters. 

Cluster I: In this cluster, the IMM model performed very well in 
estimating the dispersion indices of observed GWF including median 
(799.5), maximum (2567), minimum (51), first quartile (660) and third 
quantile (1900). Compared to the other hybrid models, the GMDH 
NMRA also estimated the dispersion indices very well however, it ranks 
after the IMM in terms of efficiency. 

As figure shows, the median, the first and the third quartiles of IMM 
boxplot in estimating BWF are 5500, 2400, and 7000 ton/m3, respec
tively, which completely closed to the observed values. The maximum ( 

Fig. 11. Uncertainty analysis caused by the inputs and parameters for BWF (a, c) and for GWF (b, d) in cluster I.  
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11,553) and minimum (840) values of the IMM boxplot are also closed 
to the observed BWF values. The other models are highly deviated from 
the observed BWF dispersion indices. 

Cluster II: The estimated median (2300 ton/m3) and third quantile 
(3200 ton/m3) of the BWF by the IMM model is very closed to the 
observed values. Further, there is the highest agreement between the 
first quartile (1225), the minimum (537) and the maximum (5956) of 
observed BWF and the predicted values by the IMM model. 

In addition, the IMM model has performed very well compared to the 
other hybrid models in estimating the median (1800), maximum (4067) 
and minimum (172) of the observed GWF. This model also estimated the 
third quartile (3200) of GWF very accurately. 

Cluster III: The IMM model has the best performance compared to the 
alternatives with the most similarity of estimated to the observed BWF 
and GWF. This model also estimated the maximum (5999) and mini
mum (789) of BWF as well as the maximum (2753) and minimum (123) 
of GWF very accurately. The estimated values by the other hybrid 
models are significantly deviated from the observed BWF and GWF. 

3.6. Uncertainty analysis caused by the parameters and inputs on 
estimating WF saffron 

Uncertainty in the modeling process is dependent to the inputs and 
parameters. In the present study, the uncertainty caused by the pa
rameters and inputs is analyzed separately. 

Figs. 11a, 11b, 11c and 11d illustrate the uncertainty due to the in
puts and parameters in predicting BWF and GWF variables. 

More observation points within the confidence region indicate the 
lower uncertainty. Also, the smaller band of the confidence region 
represents the lower uncertainty. According to Figs. 11a and 11c, the 
uncertainty caused by the inputs is less than the uncertainty caused by 
the parameters. For instance, in predicting GWF, the p value due to the 
inputs and parameters uncertainty is 0.98 and 0.95 respectively 
(Fig. 11a). Figs. 11b and 11d also indicate that the uncertainty caused by 
inputs is lower than the uncertainty caused by the parameters for GWF 
prediction. 

Fig. 12 displays the uncertainty of the models caused by the 

Fig. 12. Uncertainty analysis in all clusters.  

Fig. 13. Variation of RMSE for selection of the best inputs for predicting BWF (a) and GWF (b) based on GMDH NMR (scenarios provided in Table 1).  
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parameters and inputs. According to the results, the IMM and the GMDH 
NMRA models have the lowest (p = 0.98, r = 0.08) and the second 
lowest (p = 0.97, r = 0.09) uncertainties compared to the alternatives. 
Further investigation indicated that the uncertainty due to the inputs is 
lower than the parameters. The results also denoted that the optimiza
tion algorithms have been effective in reducing the uncertainty of the 
GMDH model given that the GMDH-hybrid models have lower uncer
tainty than the GMDH model. 

4. Discussion 

In this research, in order to measure the effect of inputs on the pre
dicted values and determining the most effective predictors, the RMSE 

was used. This method has been widely used by researchers in agro- 
climatological and hydrological studies such as the sediment transfer 
rate modeling (Jalil-Masir et al., 2022), groundwater level prediction 
(Khozani et al., 2022) and daily pan evaporation (Ehteram et al., 2022a, 
2022b). Therefore, regarding the number of input variables, 13 sce
narios were considered such that in each, one input was eliminated and 
the influence was measured. Fig. 13 represents the effect of removing 
each predictor on the output of the GMDH NMR model. 

As result shows, removing the ETC and yield, significantly increases 
the RMSE. Therefore, they are evaluated as the most effective inputs in 
predicting BWF and GWF. According to several studies (Papadavid and 
Toulios, 2018; Bazrafshan et al., 2019b) and FAO 33 or 56 or 66 equa
tions (Allen et al., 1998), increasing (decreasing) evapotranspiration 

Fig. 14. Comparing models in predicting saffron BWF (left) and GWF (right) based on the Taylor diagram.  
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directly affects the yield. On the other hand, the yield directly was 
included in GWF (in the denominator) Eq. (4). Therefore, removing 
these variables causes high sensitivity in model prediction. The error 
rate of removing individual variables is lower in GWF than in BWF. This 
indicates that the correlation between input variables in GWF is higher 
than in BWF. 

Fig. 14 compares the performance of models based on the Taylor 
diagram. Taylor diagram is illustrated in two forms: half circle (denotes 
negative and positive correlation) and quarter circle (denotes positive 
correlation only). In both cases, the correlation coefficients are the 
radius of the circle on its arc, the standard deviations are the concentric 
circles with respect to the center and the RMSE values are drawn as 
concentric circles with respect to the reference point on the horizontal 
axis. The closer the location of the models to the reference point (black 
square on the horizontal axis), the better the model performance. 

In order to evaluate the performance of IMM, the Taylor diagram was 
used. As shown for BWF in cluster I, the location of IMM is between the 
correlation coefficients 0.99 and 0.97 and the CRMSE is 2.5. In this re
gard, the best performance among various GMDH models belongs to 
GMDH NMRA, whose correlation coefficient is 0.97 and its CRMSE is 3. 
Results of Jalil-Masir et al. (2022) also indicates that the IMM performed 
better than the alternatives due to using the outputs of several optimized 
models. 

Ensemble models combine several individual models which have 
several advantages (Abbaszadeh et al., 2021). the IMM is an ensemble 
model that applies the advantages of multiple individual models. 
Therefore, the IMM improves the performance of individual models with 
more flexibility (Ehteram et al., 2022a, 2022b). 

The GMDH model with correlation coefficient 0.74 and 
CRMES= 9.93 has the worst performance in cluster I. The reason for the 
weak performance of GMDH is the training algorithm (gradient algo
rithm) and insufficient accuracy in finding the model parameters 
(Ehteram et al., 2022a, 2022b). Among GMDH models, the GMDH 
NMRA has the best performance in cluster I, with correlation coefficient 
0.96 and CRMES= 3.0. The same results are obtained in clusters II and 
III. 

According to Ehteram et al. (2022a, 2022b) in the NMR algorithm, 
worker and breeder balances the exploration and exploitation. Due to 
their large population size, workers perform exploration and breeders 
use more intensive exploitation than workers since they attempt to 
improve their compatibility in order to mate with queens. The NMRA 
algorithm can achieve better results when workers and breeders update 
themselves. Therefore, these algorithms produce better solutions such 
that low quality solutions are removed from optimization as breeders 
update themselves. Through the updating of NMR solutions, the prob
lem space is investigated accurately. 

The IMM also had better performance in predicting GWF than the 
alternatives. The noteworthy point is that all models have better per
formance in predicting GWF than predicting BWF. This issue was held in 
elimination the less effective variables in selecting best inputs which the 
main reason was the high correlation between input parameters in GWF 
compared to BWF. 

Further analysis of Taylor diagram indicated that although the 
optimization algorithms increase the accuracy of GMDH, however the 
performance of models are different such that the GMDH-BA model has 
a weaker performance than the other GMDH hybrid models. This is due 
to the more ability of NMRA and SA than BA and PSO optimization al
gorithms in finding the absolute optimal answer for prediction models 
(Salgotra and Singh, 2019). 

5. Conclusion 

Increasing population, and consequently water demand in the agri
cultural sector and frequent drought events causes water resources 
management to be very important. Prediction water footprint is a key 
issue in the management of water resources and helps decision makers to 

have a true understanding of the volume of water consumed by the 
products. Therefore, prediction water footprints play a significant role in 
irrigation and agriculture management. 

This study constructed a new ensemble model based on the improved 
GMDH models and investigated the model uncertainty due to the pa
rameters and inputs and provided important step in predicting BWF and 
GWF indices. 

Various climatic and crop inputs have been used to calculate the 
saffron BWF and GWF indices in major saffron production areas in Iran. 
In this regard, The FCM clustering method was used to determine the 
homogeneous agro-climatic of saffron cultivation areas in Khorasan 
region. Then, the most effective predictors in prediction BWF and GWF 
were selected using the step-by-step elimination and measuring their 
effect on GMDH NMRA output through 13 scenarios. 

The GMDH model and various optimization algorithms such as 
NMRA, SA, BA, PSO, have been applied to predict the response vari
ables. In the next step, the output of individual GMDH was included into 
the ensemble IMM model, and the uncertainty analysis of the model 
parameters and input was performed. 

The present study indicated that applying the IMM and the optimized 
GMDH models improved the accuracy of the outputs. IMM performed 
better than the alternatives due to using the outputs of several individual 
models. Further analysis demonstrated that the uncertainty caused by 
the inputs was lower than the uncertainty caused by the model 
parameters. 

Selecting the input variables is one of the important challenges in the 
present study. Another feature selection methods such as the gamma 
test, wavelet theory, principal component analysis and Boruta algorithm 
can be used to select the best input variables in the future studies. In this 
regard, collecting climatic and crop dataset was another limitation in 
modeling BWF and GWF indices. Although the IMM model may increase 
the accuracy, however collecting suitable dataset for training models is a 
complicated issue. The main finding of this research is that the ensemble 
models can improve the accuracy of optimized soft computing models. 
There are different ensemble models such as Bayesian model averaging 
(BMA) and copula Bayesian averaging model (CBMA). The advantage of 
IMM over BMA and CBMA is that the model does not have complex 
computations. 

Although the optimization algorithms can enhance the performance 
of soft computing models, the optimized models are outperformed by 
the new ensemble models. This study indicated that the accuracy of 
models was affected by the uncertainty values. The model parameters 
and input parameters were the important uncertainty resources. The 
optimization algorithms can be used to set the model parameters. Thus, 
these algorithms can reduce the uncertainty values of models because of 
model parameters. The results of study also indicated that the optimi
zation algorithms provided different accuracies because they used 
different and advanced operators. A robust optimization algorithm can 
decrease the uncertainty of model parameters. 

The models introduced of the current study can be used for different 
regions of the world. These models can be coupled with climate sce
narios to predict GWF and BWF under climate change. Thus, we can use 
the outputs of climate change models under different scenarios for 
predicting of GWF and BWF in the future periods. 

Selecting best optimization algorithm is another issue of the present 
study. Choosing an optimization algorithm with fast convergence and 
high accuracy is very important, since a suitable optimization algorithm 
can reduce the model uncertainty caused by the parameters. 

Measuring the model uncertainty caused by the parameters and in
puts is another important result of the present study. 

Applying the models of the present study is not limited to predicting 
BWF and GWF, but they could also be used to predict the other hydro
logical, hydroclimatic, drought and water resources variables. The re
sults of the current research can also be extended in future studies to 
predict the BWF and GWF in various regions and products. Further, in 
future studies, the other ensemble models such as the Bayesian and 
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Bayesian copula can be used to improve the results. The next studies can 
use the methods such as gamma test and principal component analysis to 
choose the best inputs. 
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